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SUMMARY

This is Volume 1 of a two-volume final report on Contract NAS1-14690, The
contract covers a cooperative NASA/Lockheed program investigating the use of
active controls in a modern wide body transport, the Lockheed I-1011, for in-
creased energy efficiency. Volume 1 covers active wing load alleviation,

Tasks 1 (Baseline Tests) and 3 (Extended—Span Tests) of the contract, and

Volume 2 (NASA CR-159098) covers the Task 2 aft- -cg simulation work and active
stability augmentation for use with a significantly smaller horizontal tail.

The extended span and small tail each result in a 3% fuel saving, for a combined

saving of 6%.

The active wing load alleviation uses symmetric motions of the outboard
ailerons for Maneuver Load Control (MLC) and Elastic Mode Suppression (EMS),
and stabilizer motions for Gust Load Alleviation (GIA). The control laws were
derived, after initial exploration of optimal control theory, with the aid of
large-scale maneuver loads, flutter and gust loads programs. They were basi-

cally similar for both the baseline and extended-span configurations.

Results of laboratory and flight tests in both configurations showed good
agreement with analysis. Slow maneuvers verified the MILC, and open- and
closed-loop flight frequency response tests verified the aircraft dynamic

response to symmetric aileron and stabilizer drives as well as the active sys-~

- tem performance., Flight tests in turbulence verified the effectiveness of the

active controls in reducing gust-induced wing loads. It was concluded that

ractive wing load alleviation/extended span is proven in the L-10l11 and is
ready for application to airline service; it is a very practical way to

' obtain the increased efficiency of a higher aspect ratio wing with minimum

,structural 1mpact
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SECTION 1

INTRODUCTION

This report covers the application of active controls to a modern
wide-body transport, the Lockheed 1-1011, for increased aerodynamic efficiency.
The term "active controls" is applied to aircraft systems in which controls
are moved automatically, independently of the pilot, in response to signals
from appropriate sensors. Active controls may be used for flight path con-
trol, for load alleviation, and for ride comfort control. This aircraft
already confaingd ractive controls for flight path management in its Autoland
automatic landing system, Reference 1, and for vertical stabilizer design
load reduction, Reference 2. These developments were important in setting
up some of the basic principles and techniques for active controls in
commercial transports: the use of probability-based analyses to maintain a
level of safety consistent with past experience (Reference 2), and definition
and mechanization of the related redundancy and monitoring requirements

(Reference 1).

Building on this base, research was started in 1974 on use of active
controls for wing load alleviation and for longitudinal stability augmenta-
tion. Although the initial objective of the load alleviation was an increase
in gross weight using existing wing structure - an increase of 12 percent was
found possible - the rising costs of fuel soon made it apparent that load
alleviation could best be used to increase the wing span for improved fuel
efficiency. The objective of the stability augmentation studies was drag
reduction by use of a smaller horizontal tail and reduced stability margin.
Studies and wind tunnel tests indicated that the extended span and the
smaller tail would each result in a 3 percent fuel saving, for a combined

saving of 6 percent.

1-1



Starting in February 1977, these studies were funded on a cost-sharing
basis by NASA's Aircraft Energy Efficiency (ACEE) Program, Reference 3,
through the Energy Efficient Transport Element (EET), Reference L, under
Contract NASl—lh690.j At that time a breadboard load alleviation system was
already under test on the full-scale L-1011 Vehicle Systems Simulator (vss)

at Lockheed's Rye Canyon research facility.
Three tasks were defined for the program:

Task 1 - Flight testing of the load alleviation system on an L-1011 air-
craft (Baseline Tests).

Task 2 - Design and pilot-in-the-loop simulator testing of a longitudinal
stability augmentation system.

Task 3 -~ Flight testing and evaluation of a modified L-1011 with extended
span and active controls.

These tasks have been successfully completed.

This is the Final Report on the basic tasks. The Final Report is
divided ihto two volumes. This is Volume 1, covering the load alleviation
work, Tasks 1 and 3, Volume 2, NASA CR 159098, covers the augmented stdbility
work, Task 2,

Lockheed's background philosophy and guidelines for use of active
‘controls in commercial transports have been covered in previous bublications
;and are not repeated here. As previously noted, Reference 1 defined a prac-
;tical redundant active control system and Reference 2 defined the probability-
ibased analyses. Reference 5, giving the results of Tasks 1 and 2, reiterates
the principles of equivalent safety, the probabilistic approach, and their
attainment without sacrificing dispatch reliability. Certification consider-
ations are discussed in Reference 6, and details of the design loads task and

active load alleviation tradeoffs are given in Reference 7.
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SECTION 2

SYSTEM DESCRIPTIONS

2.1 L-1011 AIRFRAME

The L-1011 is a triple-turbofan wide-body transport having the relatively
high fuel efficiency and low noise of the high-bypass-ratio fan engine.
Figure 2-1 is a plan view showing the 5.8% extended span discussed in this
volume and the smaller tail covered in Volume 2. The airplane with extended
span is shown in Figure 2-2. Pertinent dimensions of the baseline and ex-

tended span configurations are given in Table 2-1.

The baseline wing aspect ratio of 6.95 was proportioned for minimum
direct operating costs when fuel costs were about 15 cents per gallon. A
relatively low design stress, wide-tread gear and ocutboard engine location
all led to a relatively stiff wing in both bending and torsion, with the
result that the outboard ailerons remain effective to the maximum design
speed. This characteristic facilitates use of active wing load alleviation
which in turn permits the increased span and aspect ratio, with minimum

structural impact, appropriate to design for a higher fuel cost level.

2.1.1 Structural Modifications for Extended Span

The span extension is shown in more detail in Figure 2-3. The tip plan-
form was selected to maintain high 1lift without need for a leading edge slat.
The tip does not require anti-icing provisions. The aileron was extended
the same amount as the wing; two hinges were added. Although an added ail-
eron damper was not required for the conditions of the test, a third damper
is added to the production extended-span aircraft to ensure flutter safety

in event of dual hydraulic system failures.

The experimental span extension consists of an aluminum structural box

between the extended front and rear spars; a fiberglass formed leading edge,

t
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TABLE 2-1. CHARACTERISTIC DIMENSIONS OF TEST AIRPLANE

Baseline (Task 1) Extended Span (Task 3)

Wing

Area (Reference) 321.0m° (3456 £t.°) 328.9m° (3541 £t°)

Span (Reference) L7.2km (155.0 ft.) 50.09m (164.33 ft)

Aspect Ratio 6.95 7.63

Taper Ratio .30 .26

Sweep at 0.25C 35° 350
Outboard Aileron

Area, 2 Sop/Sy .0260 .031k

Root at 1= .811 (Avg.) n=.769 (Avg.)

Tip at 1= .988 n = .990
Horizontal Stabilizer

Area 119.1m2 (1282 sq. ft.)

Span 21.82m (71.58 ft.)

Aspect Ratio 4

Taper Ratio .33

aluminum-covered for lightning protection; a trailing-edge section with ribs
supporting the aileron hinge; and & removable fiberglass-and-metal tip section.
The rear-facing light was unchanged, but the forward-facing light required new

mounting hardware and a new formed transparent cover.

Design loads for the span extension were selected as those of the
L-1011-500, which is the version having the most severe loads. The extension

was designed by the roll maneuver and symmetric maneuver load analysis cases.

The outer wing was strengthened for about 2 meters inboard of the

WBL 910.4 structural Joint. This area, which has previously had
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near-negligible design loads, required addition of stringers, more area on
existing stringers, and doubler sheets on the spar webs and wing box upper

and lower skins.

The extensions were similar in mass to the production values of 249 kg
(550 1b) per ship; i.e., 31.5 kg/m2 (6.5 psf). In production, the wing
structural modifications inboard of the extensions add a mass of L6 kg (102

1b) per ship.

2.2 PRIMARY FLIGHT CONTROL SYSTEM

The Primary Flight Control System (PFCS) consists of controls for
the horizontal stabilizer, rudder, inboard ailerons, outboard ailerons, énd
spoilers. Geared elevators, driven mechanically by the stabilizer, improve
the effectiveness of the horizontal stabilizer. The control systems are
irreversible hydro-mechanical systems. All mechanical and electrical con-
trols and instrumentation necessary for operation of the aircraft are
located in the flight station compartment. Dual control wheels, columns, and
rudder pedals are provided for the captain and first officer. These flight
controls are conventional in operation and connect to control cable paths
(dual in pitch and roll) which terminate at the pitch, roll, and yaw aft
cable gquadrants. The surface actuators are multiply redundant for all axes.
In the flight station area, the pitch and the roll dual-control paths are
interconnected by couplers so that either pilot has control of both control
paths. In the event of a malfunction, the dual-control paths may be separated
by either pilot by a manual uncoupling mechanism. Inflight reconnection may

be made if desired.

2.2.1 Pitch Control System

The pitch attitude of the aircraft is controlled by the incidence angle
of the horizontal stabilizer. Four linear hydraulic servos act in unison to
position the stabilizer as commanded by control column inputs or by the auto-
pilot. The effectiveness of the horizontal stabilizer is increased by two
elevators which are geared directly to the stabilizer. They move with a
fixed relationship as a function of the stabilizer motion and are not con-

trollable independently.



An overall schematic of the pitch control system is shown in Figure 2-k,
The power servos are controlled by means of two separate control channels from
the columns to the servo inputs with separate cables and a feel and trim
system. These channels are coupled by interconnecting linkages between the
columns and between the servo inputs. Both connections incorporate couplers
which can be opened to allow independent control in case of input system
failures or jams. An input system monitoring system is provided which warns
the pilot in case of a failure or jam by indicating which channel is affected.
Pilot feel forces are generated by means of mechanical springs. The spring
gradient is automatically scheduled as a function of the stabilizer position

and the Mach number.

Failure warning lights, system monitoring lights, and mode control
switches are mounted on three panels located in the flight station above the

windshield.

Stabilizer Servo System

The Stabilizer Servo System is composed of two power servo assemblies,
four actuators, and four mechanical feedback link mechanisms, two of which
are feedback monitors. Hydromechanical safety provisions are included for

failure detection and isolation.

The system is powered by four independent hydraulic sources. The actu-
ators, any one of which is capable of controlling the airplane, act in unison
and are controlled by the two separate servo valve assemblies on opposite
sides of the airplane. Each valve assembly contains a dual four-way, tandem
spool which controls two adjacent actuators. The control valves operate in
response to mechanical inputs at the input arms from the pilot or autopilot
to port fluid flow and pressure to each actuator. The hydraulic flow to the
actuators is approximately proportional to the control valve displacement,
except during overtravel. The stabilizer displacement is mechanically fed
back and compared with the input commands in summing linkage arrangements
internal to the servo valve assemblies to null the servo control valves when
the commanded position is attained. The actuators are normally all four

active, but the shutoff/bypass functions permit the system to operate also
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with two or three active actuators. They have balanced pistons, each able

to support a load of TL,700 newtons (16,800 1b) when the static pressure
differential is at the expected minimum of 19MPa (2750 psid). They have
teflon seals with very low friction. Snubbers provide smooth piston decelera-

tion at each end of the cylinder. The full stroke is 0.71 m (28 inches).

2.2.2 Roll Control System

The roll control system controls the motion of the aircraft about the
longitudinal axis by the use of "full-time" inboard and outboard ailerons
supplemented by the five outboard (of six per wing) spoilers during low-speed
flaps-extended flight. The four inboard spoilers also operate symmetrically
for speedbrake and direct 1ift control. Motion of the spoilers for roll

control is asymmetric, upward only, regardless of previous symmetric inputs.

Outboard Aileron Servo System

The outboard aileron servo system, Figure 2-5, includes a hydromechanical
position servo on each wing. Each servo contains a tandem valve dual hydraulic
servo module which provides control of fluid pressure and flow to two parallel
acting unequal area actuators which drive the corresponding outboard aileron.
A command input from an|inboard aileron opens the corresponding outboard
aileron control valves,‘ﬁressurizing the hydraulic cylinders. The external
dual feedback linkage nulls the valves when the commanded position is
attained. The input linkage is a dual redundant load path system; one primary
path for input from the inboard aileron, and the other secondary path an
internal centering spring arrangement to return the surface to faired position
in the event of loss of the primary input connection or the primary feedback.
The feedback linkages are dual to prevent an open loop failure due to loss of
either feedback link. The control valve consists of two four-way spools
in tandem. The valve ends are ported to the static cavity. The valve has

been designed with over-travel provisions.
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2.3 ACTIVE CONTROL SYSTEM (ACS)

2.3.1 Functional Description

Reductions in wing design loads are achieved by automatically moving

the outboard ailerons symmetrically in response to accelerations sensed at

fhé wing tips and in the fuselage. In a positive-g maneuver (pullup or
banked turn) or long-term updraft, the ailerons deflect upward (and

downward for negative maneuvers and downdrafts) thus moving the wing

center of pressure inboard and reducing the wing bending stresses.

This active controls application is designated maneuver load control, or

MLC. In continuous atmospheric turbulence, in addition, motion in the first
wing bending mode in the 1-2 Hz frequency range is sensed by accelerometers
at the wing tips. The ailerons are moved symmetrically so that the resulting
air pressures oppose the wing tip velocities and thus further redice the
stresses produced by the turbulence. This function is designated elastic

mode suppression, or EMS,

In addition to moving the ailerons symmetrically, the system moves the
horizontal stabilizer automatically to compensate for the airplane pitching
moment produced by the airplane as it enters a gust. This function is

designated gust alleviation, or GA.

2.3.2 Servo System Modifications

In order to provide incremental motion to the power servo input linkages
without interfering with the primary commands from the pilot or autopilot,
series servos are utilized for the active control system. The original out-
board aileron (OA) power servo modules in the flight test airplane (and in
the laboratory "iron bird") included series servos with an authority of 170
as an early precaution against possible need for a roll damper. The MLC/EMS
command capability is added in the same manner as if from a roll stability
augmentation system, except that the commands are symmetrical. The series
servo in the horizontal stabilizer (HS) channel, an electro-hydraulic exten-

sible link servo, was added by replacing that part of the series trim output

- link which is connected to the output arm of the feel and mechanical trim

unit (see Figure 2-5). The authority of the HS series servo is +8.1 mm
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(1.32 inches). The corresponding deflection at the horizontal stabilizer
varies from 19.60 at high speed to about i;.7o at approach as a function of
the column to stabilizer gearing. For this "off-the-shelf" extensi