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Abstract 
Duality behavior of photons in wave-particle property has posed challenges 
and opportunities to discover other frontiers of fundamental particles leading 
to the relativistic and quantum description of matter. The speed of particles 
faster than the speed of light could not be recognized, and matter was always 
described as a real number. A new fundamental view on matter as a complex 
value has been introduced by many authors who present a paradigm that is 
shifted from real or pure imaginary particles to Complex Matter Space. A new 
assumption will be imposed that matter has two intrinsic components: i) 
mass, and ii) charge. The mass will be measured by real number systems and 
charged by an imaginary unit. The relativistic concept of Complex Matter 
Space on energy and momentum is investigated and we can conclude that the 
new Complex Matter Space (CMS) theory will help get one step closer to a 
better understanding toward: 1) Un-Euclidean description of Minkowski Geo-
metry in the context of the Complex Matter Space, 2) transformation from 
Euclidean to Minkowski space and its relativistic interpretation. Finally, geo-
metrical foundations are essential to have a real picture of space, matter, and 
the universe. 
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1. Introduction 

Several thousand years of human experiences in geometry, which was structured 
by Pythagoras and Euclid, has undergone challenges during the past few centu-
ries. Among all were the attempts to prove Euclid’s fifth postulate independently 
from other postulates and distinguish all undefined terms like point, line, plane, 
from terms that can be redefined like distances and parallel lines. 
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In seeking the truth behind the parallel postulate in 19th century, some alter-
natives and geometric models to Euclid’s parallel postulate were presented.  

In 1898, one of the great mathematicians of all time, David Hilbert presented a 
rigorous axiomatic approach to Euclidean Geometry (see Hilbert, 1902 [1]). Many 
others like Riemann, Bolyai, and Lobachevski created Un-Euclidean Geometry. 

Thus, Hyperbolic Geometry was born and many geometrical models were de-
veloped (see Milnor, 1996 [2]). 

Many were skeptical of the validity of this bizarre geometry which was axi-
omatically consistent and agreed with the models developed. But all these theo-
ries were not experimented physically to be consistent with the natural universe. 

Certainly, in a small velocity for a shorter distance, Euclidean Geometry is a 
simplest model for our physical universe. But it is not the proper model for the 
entire universe particularly when the velocity of the object is near or approaches 
to the speed of light. 

Einstein’s General Relativity predicted that gravity alters the velocity of light 
and this causes the light ray to bend. Or, it can be interpreted that light travels in 
a geodesic line. This is a revolutionary conclusion that the physical space with 
the existing mass and gravity is not Euclidean (see Taylor et al., 2004 [3], and 
Feynman, 1963 [4]). 

NASA Experiment, May 4, 2011: Einstein was right again. There is a space- 
time vortex around Earth, and its shape precisely matches the predictions of 
Einstein’s theory of gravity. Researchers confirmed these points at a press confe-
rence today at NASA headquarters where they announced the long-awaited re-
sults of Gravity Probe B (GP-B). “The space-time around Earth appears to be 
distorted just as general relativity predicts”, says Stanford University physicist 
Francis Everitt, principal investigator of the Gravity Probe B mission (NASA, 
2011 [5]). 

A shortest path in traveling between two points can be defined by an arc- 
length or geodesic line. It may not be considered as straight lines because acce-
leration creates distortion. Due to high speed of the particle or a constant curva-
ture there may two possibilities. The yard stick or rulers can get longer or shrink 
as they move away from the stationary point (Lavenda, 2009 [6]). 

A massive object in space curves the space and bends the light, when a photon 
moves past a star; it’s the star’s gravity that causes it to deflect, regardless of 
whether we consider photon a particle or wave. 

All evidence indicating the existence of dark matter and dark energy suggests 
that we may need to redefine matter. As a result we present the following two 
postulates: 

Complex Matter Space (CMS) (see Ahangar, 2014 [7] [8] [9]) 
- Postulate (I): mass and charge are two intrinsic components of matter and 

they can be measured and determined in a complex plane. The real part is equal 
to the mass and the imaginary part is the charge of the particle. That is  

iM m q= + . 
- Postulate (II): In a one dimensional space, position and velocity are assumed 
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to be real numbers and the rate of change of the position of a particle can be as-
sumed to be faster than the speed of light. 

According to de Broglie’s duality of particles used to describe matter—wave 
characteristic of photons (see Mayer, 2007 [10] and Gauthier, 2009 [11]). It is 
well known that the complex plane can help us to explain the duality of waves 
and explain a wave with two components in the complex plane with real and 
imaginary components: 

( ) real imag, itψ ψ ψ= +r                       (1) 

We will refer the value 2ψ  as the intensity of the wave function where the 
magnitude of the complex number is denoted by 

22
real imagψ ψ ψ= +  [3]. 

Traveling Beyond the Speed of Light: 
According to the “Special Theory of Relativity”, it is not allowed to cross the 

boundary of the speed of light c, in the real universe. But if we can pretend from 
this assumption that we exist in the imaginary world then it may be allowed to 
go faster than light, since our conjugate space will be the real world.  

In section two we present an introduction to the geometric structure of Com-
plex Matter Space. We will show its relation with Minkowski Geometry and 
pseudo-Euclidean space. 

In section three, we use a bilinear transformation in hyperbolic geometry. In 
section four, we investigate the hyperbolic rotation which is equivalent to Lo-
rentz transformation. In section five, we will show that the relativistic view of 
geometry is consistent with hyperbolic geometry. As a conclusion, the law of co-
sines is redeveloped in a hyperbolic triangle. 

2. Geometrical Structure of the CMS 

Assume V is a vector space and T represents a bilinear transformation from V V×  
into the R. Let us select vectors 0 1 2 0 1 2, , ,.  and  , , , ,n nu u u u u v v v v v= =   in 
the vector space V, where all of the first ( 1n + ) components are real  

 and u v V∈  

define the transformation T from V V R× →  by 

( ) 0 0 1 1 2 2
0, k n k k n n

kT u v u v u v u v u v u v=

=
= = + + + +∑            (2) 

In the following theorem, we will show that the transformation T defined in 
(2) is a bilinear transformation.  

Theorem (1): The operator :T V V R× →  defined by (2) is a bilinear opera-
tor meaning that for any real numbers a and b 

( ) ( ) ( )1 2 1 2, , ,T au bu v aT u v bT u v+ = +                (3) 

Proof: Notice that the superscripts are not exponents, thus 

( ) ( ) ( )

( ) ( )
( ) ( )

1 2 1 2
0

1 2
0 0

1 2

,

, ,

k n
k k k

k
k n k n

k k k k

k k

T au bu v a u b u v

a u v b u v

aT u v bT u v

=

=

= =

= =

 + = + 

= +

= +

∑

∑ ∑  
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which proves that T is a bilinear operator that can be used to define the Mi-
kowski norm. 

Also notice that the operator T mapping a vector u to itself will produce a 
value in R: 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 20 1 2
1, k n k n

kT u u u u u u u=

=
= = + + + +∑          (4) 

If the vector space V is selected from real valued vectors then 

( )2
, , 0k kk N u R u∀ ∈ ∈ ≥                     (5) 

implies that the relation (4), is a positive definite inner product, that is for non-
zero vector u, the transformation ( ), 0T u u > . 

But when the vectors are selected from the complex field then the relation (4) 
can be one of the following cases: 

i) ( ), 0T u u > , the transformation T is positive definite, when the vector u is 
in the region which is called space-like. 

ii) ( ), 0T u u <  the transformation T is negative definite, when u is in the 
time-like, otherwise 

iii) ( ), 0T u u =  and the transformation is called indefinite, when the vector 
u belongs in the light-like. 

Many questions exist to justify the operator T for objects in complex space as 
well as explanation for the properties of the transformation T. The most impor-
tant one is when T is positive or negative definite and the operator T from  

1 1n nR R R+ +× − − >  satisfies the properties of a metric space (see Naber, 1992 
[12]). 

To answer this question we need the definition of Metric Space first. 
Metric Space: A set X, whose elements we shall call points, is said to be a Me-

tric Space if with any two points P and Q of X there is associated a real number 
d(P,Q), called distance from P to Q such that 

a) ( ) ( )d , 0  if  ,d , 0P Q P Q P P> ≠ = , 
b) ( ) ( )d , d ,P Q Q P= , and c) ( ) ( ) ( )d , d , d ,  for any  in P Q P R R Q R X≤ +  
One can verify that the transformation T defined in (2), (3), and (4) fails the 

postulate (a) of metric space, due to the case where ( ),T u v  can be negative 
definite. 

Thus as a conclusion T is not a Metric Space. 
II) Special Complex Geometrical Structure: The standard Euclidean inner 

product of two vectors in (2) and (3) can be defined by the following matrix 
form 

t I⋅ =u v u v                           (6) 

where, I is the identity matrix, 0 1 2 0 1 2, , , , , , , ,t n t nu u u u v v v v= =u v  , and 
superscript t represents the transpose of these vectors. 

To develop Minkowski space in (2) for k = 0, consider special coordinate for 
0 0 iu v ct= = , 

where the symbol i is the imaginary number i 1= − . The value c is assumed to 
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be a constant real number representing the speed of light. 
Thus the operator :T V V R× →  defined by the following 

( ) ( )( ) ( )2 2
1 1, i ik n k nk k k k

k kT u v u v ct ct u v c t= =

= =
= + = −∑ ∑          (7) 

is also a bilinear operator. The relation (7) for n = 3 is a four dimensional Min-
kowski space for events u and v and the transformation can be described by 

( ) ( )( )3 1 1 2 2 3 3 2 2
1, i ik k k

kT u v u v ct ct u v u v u v c t=

=
= + = + + −∑        (8) 

3. Properties of the Bilinear Operator 

i) The transformation :T V V R× →  generates Minkowski inner product 
space and  

( ) ( ) ( )
22 2

1, k n k
kT u u u ct=

=
= = −∑u                 (9) 

Proof: The transformation is indefinite if it is neither positive nor negative 
definite. 

Notice that the relations (2), (3), and (4) will demonstrate the four dimen-
sional Minkowski space. 

We can use the relation (8) to establish Minkowski Norm as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 22 2 23 1 2 3

1, k k
kT u u u ct u u u ct=

=
= = − = + + −∑u     (10) 

where the Euclidean norm in 3D real event: ( ) ( ) ( )2 2 22 1 2 2r u u u= + +  can change 
(10) into the following form of 

 ( ) ( )22 1 2 3 1 2 3
4 4, i , , , i , , ,T u u r ct ct u u u I ct u u u×= − =         (11) 

where I represents the identity matrix, as the identity matrix used in (6) 

4 4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

I ×

 
 
 =
 
 
 

. 

The Minkowski inner product by the transformation ( ),T u u  in (11) applied 
for event vector u may be positive definite, negative definite, or indefinite. 

Orthogonal Subspace:  
When the transformation ( ), 0T u v = , then two vectors u and v are said to be 

orthogonal. 
Assume a subspace S V⊂ , such that 

( ){ }: , 0  for all S v V T v w w Sε ε⊥ = =                (12) 

It can be concluded that the set S S⊥ ⊂  as a subset of S is also a subspace of 
S? 

In the next step we will explore the consistency of a two dimensional analogy 
of Minkowski-Hyperbolic system with Complex Matter space. 

Proposition (1): Let ( ),M x y  be a point on a hyperbola  

2 2 1x y− =                          (13) 
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For positive values of x there exists a unique value of u such that 

( ) ( )cosh   and  sinhx u y u= =                  (14) 

Proof: Let us take the transformation, ( )1sinh .u y−=  The result can be dem-
onstrated by the geometric property of the hyperbolic identity  

( )2 2 2 2cosh sinh 1x y u u− = − = .                (15) 

Notice that the relation (13) for (x, y) is a two dimensional example in a com-
plex plane when the transformation y = ct is described by  

( ) ( )22 2 2 2i 1 1x ct x c t+ = ⇔ − = . 

Pseudo-Euclidean Space: In our introduction it has been verified that the 
CMS transformation is not a metric space. We will show that this is a special 
pseudo Euclidean Space. 

We define a general form of pseudo-Euclidean space as a finite dimensional 
n-space together with a quadratic form q. The quadratic form defined for any 
vector with a suitable choice of basis ( )1 2, , , ne e e  can be applied to a vector u 
giving (with 1 k n≤ < ) 

1 2
1 21

n k n
k nku u e u e u e u e

=
= = + + +∑                 (16) 

for a quadratic form 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 21 2 1k k nq u u u u u u+ = + + + − + +  
 

       (17) 

is called the magnitude of the vector u. When 1k n=  , then it is Euclidean 
Space. Notice that the superscripts k, for convenience, selected to be from 1 to n. 
This is slightly different from the transformation (2), (3), and (4). We will have 
the general Minkowski Space when k = 0. 

In a pseudo-Euclidean space, unlike in a Euclidean space, there exist vectors 
with negative magnitude. 

( ) ( ) ( ) ( ) ( )2 2 2 22 1 2 0nq u u u u u u= = + + + −            (18) 

for all positive integer k where, 0 .k n< ≤  
A very important pseudo-Euclidean space is Minkowski’s Space which is the 

mathematical setting in which Albert Einstein’s theory of special relativity is 
conveniently formulated. The following is another example of pseudo-Euclidean 
space using Minkowski space, n = 4 and k = 3 so that 

( ) 2 2 2 2
1 2 3 4q u u u u u= + + +                     (19) 

where assuming ( )u q u=  and 4 iu ct=  the above relation will be 

( ) ( )2 22 2 2 2 2 2
1 2 3 1 2 3iu u u u ct u u u ct= + + + = + + −          (20) 

The geometry associated with this pseudo-metric was investigated by Poincare 
and the rotation group is called Lorentz group. 

This magnitude is used in Lorentzian manifold which represents the flat 
space-time in R4 uses the coordinates (x, y, z, t) and the metric 
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[ ]2

1 0 0 0 i d
0 1 0 0 d

d i d d d d
0 0 1 0 d
0 0 0 1 d

c t
x

s c t x x y
y
z

   
   
   =
   
   
     

2
4 4d d 1 ds x xµ

ν×=  

( )22 2 2 2d i d d d ds c t x y z= + + +  

4. From Euclidean Rotation to Lorentz Transformation 

When we replace x2 symbolically for the sum of the squares of all real compo-
nents and ctu =0  in the relation (18) we will obtain the quadratic form  

( ) ( )22q u x ct= −  
Definition of Lorentz transformation Matrix: We also use the relations (14) 

to define the following transformation: 

( ) ( ) ( )
( ) ( )

cosh sinh
sinh cosh

u u
T

u u
 

=  
 

u                   (21) 

where ( )coshx u=  and ( )sinhy u=  imply that b ( )tanh yu
x

= .  

The transformation T in (21) acting on an event vector 
ζ
ι
 
 
 

 on a hyperbola 

2 2 kζ ι− =  such that 

( ) ( )
( ) ( )

cosh sinh
sinh cosh

u ut
u uz

τ
ζ

    
=     

      
will be converted into a new hyperbola 2 2z t k− =  and preserves Minkowski’s 
norm. 

The concept of space and time has been evolved and became paradoxical from 
the time of Descarts to Minkowskiin twentieth century. 

We are introducing the space-time coordinate ( ), , ,x y z t  such that it will 
transform into a new position point ( ), , ,x y z t′ ′ ′ ′ .  

The units on all components x, y, z can be considered real numbers but we 
assume that the unit for time as an imaginary unit “ic” such that i 1= −  and c 
the speed of light c. Thus the component for t can be demonstrated symbolically by 

ictτ =                            (22) 

To keep the concepts simple, assume y and z stay fixed and the coordinate 
( )&x τ  under a rotation angle theta θ= , then the new coordinate will be in 
the following form: 

( ) ( )
( ) ( )

cos sin
cos sin

x x
x

θ τ θ
τ τ θ θ

′ ′= −
′ ′= +  

or in the matrix form 

( ) ( )
( ) ( )

cos sin
sin cos

x xθ θ
θ θτ τ

′ −    
=     ′    

                 (23) 
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Let us call the initial reference frame ( ){ },S x C Rτ= ∈ ×  and  
( ){ },S x C Rτ′ ′ ′= ∈ ×  after rotation with angle theta. In this reference angle, the 

evolution on time axis is very interesting. The tau axis in the S will be evolved 
into ( )tau ′  in the S ′  system. Any point on the tau axis will be transformed 
into a new point ( )tau ′  in the equation when the angle theta is 90°. 

In other words let us replace 0x′ =  in the system (23) then 

( )
( )

sin
cos

x τ θ
τ τ θ

′= −
′=

                        (24) 

This is showing the transform of all of the points on the time axis. By dividing 
these two relations it will give us 

( )tan xθ
τ

= −                         (25) 

Replace tau from the relation (4.1) we will obtain  

( ) itan
i
x v
ct c

θ = − =                       (26) 

According to the relativity postulates, the time evolution is a function of the 
velocity. Thus we can find sine and cosine values of the angle theta using (26): 

( )
( )2 2 2

1 1 1cos
1 tan i1 1v v

c c

θ
θ

= = =
+    + −   

     

( ) ( ) ( )
2

i

sin cos tan

1

v
c

v
c

θ θ θ= =
 −  
   

Substitute in the system (23) 
i1

i 1

v
x xc

v
c

γ
τ τ

 −  ′   
=     ′    

  

                    (27) 

where gamma is equal to: 
2

1

1 v
c

γ =
 −  
 

. The relation (27) is the Lorentz 

transformation. In addition to these sine and cosine functional transformations, 
one can develop the additively property of rotations and velocity: 

( ) ( ) ( )
( ) ( )

tan tan
tan i

1 tan tan 1
v w

v w
θ φ

θ φ
θ φ
+ +

+ = =
− ⋅ − ⋅  

Minkowski investigated the Lorentz transformation as an Euclidean rotation. 
This can be achieved by finding ( ),x τ′ ′  from the system (23) and replacing 
(22) for tau. 

( ) ( )
( ) ( )

cos i sin
sin i cosi i

ctx x
ctct ct

θ θ
θ θ

′  ⋅    
=     ′ − ⋅    

               (28) 
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We also replace the angle theta by pure imaginary angle (iw) and using the 
following identities 

( ) ( ) ( ) ( ) ( ) ( )cos cos i cosh   and sin sin i i sinhw w w wθ θ= = = =     (29) 

Using these identities the hyperbolic version of the relation (28) will be  
( ) ( )
( ) ( )

cosh sinh

sinh cosh

ct ct w x w

x ct w x w

′ = ⋅ −
 ′ = − ⋅ +

 and the inverse  

( ) ( )
( ) ( )

cosh sinh

sinh cosh

ct ct w x w

x ct w x w

′ ′= ⋅ + ⋅
 ′ ′= ⋅ + ⋅

                 (30) 

These relations can be described by the following matrix form: 

( ) ( )
( ) ( )

cosh sinh
sinh cosh

w wx x
w wct ct

′  −    
=     ′ −      

and 

( ) ( )
( ) ( )

cosh sinh
sinh cosh

w wx x
w wct ct

′    
=     ′      

The hyperbolic systems in (30) explains the CMS with hyperbolic angle of ro-
tation w and rapidity 

( )tanh vw
c

=                         (31) 

Comparing the two tangent relationships of (26) and (31) we can discover 
many interesting connections between two spaces i) Minkowski Space and ii) 
CMS. 

One is in the real world and another in the imaginary space. 
In the first we are dealing with Euclidean trigonometry and in the second with 

the hyperbolic trigonometry.  
It can be concluded that 

( )
( )( ) 22

1 1cosh
1 tanh 1

w
vw
c

γ= = =
 − −  
   

( ) ( ) ( )
2

sinh tanh cosh

1

v
cw w w

v
c

= ⋅ =
 −  
   

-Geometry of Complex Matter in Complex Plane: 
Assume a complex point z represents a particle iM m q= +  such that 

( ) ( ) ( ) ( ) ( )
( )

Im
Re and  a

Im
arg

e
r g

R
zqz m M z

m
z

z
z

z
= = = = = =     (32) 

In this case we need to consider two different cases in which that can happen: 
When andx y x y> <  
Case (I): If x y>  then 
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2 2r z x y= = ± −  

As a result: 
2 2 2 2

2 2 1x y x y
r r x y

−   − = =    −   
 

This statement describes the existence of an angle in Minkowskian Geometry 
such that 

( ) ( )
2 2

Re
cosh

zx m
r z m q

∅ = = =
+  

( ) ( )
2 2

Im
sinh

zy q
r z m q

∅ = = =
+  

( ) ( )
( )

( )
( )

sinh Im
tanh

cosh Re
zy q

x z m
∅

∅ = = = =
∅  

case (II): If x y<  then 
2 2r z y x= = ± −  

2 2 2 2

2 2 1y x y x
r r y x

−   − = =    −     
Consequently, there exists a unique number phi such that: 

( ) ( )
2 2

Re
sinh

zx m
r z m q

∅ = = =
+  

( ) ( )
2 2

Im
cosh

zy q
r z m q

∅ = = =
+  

( ) ( )
( )

( )
( )

sinh Re
tanh

cosh Im
zx

y z
∅

∅ = = =
∅  

As a result of this demonstration, we conclude that the complex number z in 
CMS can be described symbolically by 

( ) ( )( ) ( )
( ) ( )( ) ( )

cosh isinh *CISH   if 

sinh i cosh *SICH   if

z r r x y

z r r x y

 = ∅ + ∅ = ∅ >


= ∅ + ∅ = ∅ <
       (33) 

5. Relativistic and Minkowski Geometry in CMS 

The relations between Relativistic and Minkowski Geometry have been investi-
gated extensively by many in the twentieth century. In this paper we would like 
to clarify the geometric concept and consistency of the Complex Matter Space 
with these two mathematical landmarks of the century. 

By the relation (9) the Minkowski norm can be used to define an event vector 

[ ]1 2, , , np p p=p   

in the space-time nR C×  which is defined by 

( ) [ ]1 2, , , , , inE t p p p t=p                    (34) 

where Rn is real Euclidean space and C is complex space, for i 1.= −  
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Definition of CMS inner-product: For two event vectors,  
( ) ( ) ( ) ( )1 1 2 2,    and   ,E E t E E t= = = =p p q q  we define the CMS inner product 

by: 

( )( )1 2 1 21 i in
k kkE E p q t t

=
+⋅ = ∑                  (35) 

As we defined in (18) and (19), the CNS pseudo-norm can be rearranged by 

( ) ( ) ( ) ( )
2 2 22 221 2 2nE p p p t p t= + + + − = −           (36) 

This value can be positive, negative, or indefinite. Consequently, the vector 
event will be inside the time-like, light-like, or space-like. 

Lemma 5.1: Assume two vector events E1 and E2, the inner product for CMS 

( )1 2 1 2
tE E E JE=⋅                       (37) 

where J is the ( ) ( )1 1n n+ × +  identity matrix. 
Proof: By the definition: 

( )1 1 1, , iE T t t= =p p  
( )2 2 2, , iE E t t= =q q  

Using matrix multiplication, we can define 

( ) [ ] ( ) ( )

1

2

1 2 1 2 1 2 1 1 2

2

1 0
, , , , i , i , i

0 1
i

t t
n

n

q
q

E E E JE p p p t t J t
q
t

 
       = = =    

 

⋅

 
  

p q


    



 (38) 

where the superscript t represents the transpose of the matrix. 
In the next step, we will use the development that used for the future events 

described in “The Geometry of Spacetime ...” by James Callahan (2000) [13].  
We are targeting to apply for complex vector events which we need in the 

Complex Matter Space theory. 
Event Transformation in CMS: Affine transformation includes translation 

and rotation that have been studied both in Euclidean and Minkowski geome-
tries. 

Let us denote the transformation of the, vector event = r  by  

( )T Aθ =r r  
where A is a matrix: 

( ) ( )
( ) ( )

cosh sinh
sinh cosh

A
θ θ
θ θ

 
=  
 

                   (39) 

With a little algebra one can verify the following inverse transform: 

( ) ( )
( ) ( ) ( )( ) 11 cosh sinh

sinh cosh
A Tθ

θ θ
θ θ

−−  − 
= = − 

r             (40) 

The angle θ  of hyperbolic rotation in this transformation of the future vec-
tor r  can be measured by hyperbolic radians. 
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Lemma 5.1: The hyperbolic transformation T has additive property on the 
rotation angle. That is 

( )T T Tθ α θ α+≡                         (41) 

Proof: Assume a point P is the initial position on a unit hyperbola representing 

the event ( )
( )

cosh
sinh

E
α
α

 
= =  

 
OP , such that the vector  

( ) ( )( )cosh ,sinhP α α=  

Thus using the definition, 

( ) ( )
( )

( ) ( )
( ) ( )

( )
( )

cosh cosh sinh cosh
sinh sinh cosh sinh

T E Tθ θ

α θ θ α
α θ θ α

     
= =     

       
By using algebra of multiplication of two matrices, we conclude that 

( ) ( )
( )

cosh
sinh

T Eθ

θ α
θ α

 + 
=  + 

                    (42) 

The new position is a new point E′  on the hyperbola with the angle rotation 
alpha and the initial hyperbolic angle theta. That is ( )T E Eθ ′= . 

Proposition 5.1: The Hyperbolic transformation in (39) preserves the CMS 
inner-product (40). 

Proof: Assume two vector events [ ]1 1 1,  tE P t=  and [ ]2 2 2, tE P t= . Using de-
finition (37)  

( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 2 1 2

1 2

1 2

1 2 1 2

cosh sinh cosh sinh1 0
sinh cosh sinh cosh0 1

t

t t

t

t

T E T E T E JT E

E T JT E

E E

E JE E E

θ θ θ θ

θ θ

θ θ θ θ
θ θ θ θ

⋅ =   
 =  

    
= ⋅    −    
= =

⋅

⋅

⋅  
Proposition 5.2: Assume two vector events  

( ) [ ]1 1 1 2 1, , , , , it
nE E t p p p t= = ⋅p  , and ( ) [ ]2 2 1 2 2, , , , , it

nE E t q q q t= = ⋅q   with 
a hyperbolic angle between the two event vectors 1 2E E β< =  then 

( )1 2 1 2 cosh β=⋅E E E E                   (43) 

or equivalently; the angle between two hyperbolic events can be described by: 

1 1 2

1 2

coshβ −  
=   

 

⋅E E
E E

                    (44) 

Proof: Let us assume the following two unit vectors for only two events: 

     for    1, 2iι
ι

ι

= =
E

U
E  

where the angle between the two unit vectors have the same direction as the 
event vectors  

1 2 1 2E E β= =U U   

Select the transformation T with initial hyperbolic angle theta such that 
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( )1

1
0

Tθ
 

=  
 

U
 

to calculate the transformation of the second unit vector using the conclusion of 
(42): 

( ) ( )
( )

( )
( )2

cosh cosh
sinh sinh

Tθ
θ β β
θ β β

 +   
= =   +   

U
 

Since the unit vector is in the direction of the horizontal axis when theta is 
zero we will find the second unit vector such that the hyperbolic rotation pre-
serves the Minkowski inner product. That is 

( ) ( )1 2 1 2T Tθ θ ⋅⋅ =U U U U  

( )
( ) 1 2

cosh1
sinh0

t β
β

  
=  

   
⋅U U

 

( ) ( ) 1 2
1 2

1 2

cosh cosh .β β⋅= => =
E EU U
E E  

Consequently we can have the final result: 

( )1 2 1 2 cosh β=⋅E E E E                    (45) 

Proposition 5.3: Hyperbolic Triangular Inequality: 
In every triangle OE1E2 when 1E  and 2E  are two event vectors with the 

angle between two vectors is 1 2E E β=  then 
i) 

( )2 2 2
1 2 1 2 1 22 cosh β− −= +E E E E E E           (46) 

ii) The arc length connecting two points E1 and E2: 

( )2 2 2
1 2 1 2 1 2 cosh2 β−= +E E E E E E            (47) 

Proof: (i) To prove the first relation (i), it would be helpful to see event vec-
tors 1 2−E E  as a complex valued and their complex conjugates 1 2−E E  or 
( )*1 2−E E  

( ) ( )
( ) ( )

2 *
1 2 1 2 1 2

* *
1 2 1 2

* * * *
1 1 1 2 2 1 2 2

2 2 *
1 2 1 22

⋅

− = − ⋅ −

= − ⋅ −

⋅= − − +

= + −

E E E E E E

E E E E

E E E E E E E E

E E E E  
Substitute the conclusion in (45)  

( )2 2 2 2
1 2 1 2 1 2 1 22 2 cosh β+ ⋅− = + −E E E E E E E E . 

ii) For the proof of the second part, consider 1 2E E  is the hyperbolic dis-
tance between two event vectors E1 and E2. The relation (47) is a direct conclu-
sion of the 

1 2 1 2 .=−E E E E  
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6. Concluding Remarks 

The Beltrami-Klein Model: It is helpful, first to try redefining the primitive terms 
like “point” “line”, “lies on”, and “between”. 

The Beltrami-Klein space is the set of all interior points of a circle which is 
called point in hyperbolic plane. Two points A and B inside a circle and a chord 
passing through these two points are imagined. The line is defined by an open 
chord joining these two points, which is called a hyperbolic line. 

There exists an isomorphism between the Klein and Poincare models. That 
means there is a one-to-one correspondence can be set up between points and 
lines in one model and those in the others which preserve incidence, congru-
ence, and betweenness. 

By accepting the fifth postulate in Euclidean geometry, we can prove existence 
of a rectangle (quadrilateral with four right angles). Denying or having an alter-
native to the parallel postulate, particularly in hyperbolic geometry, one can 
prove that a triangle with angle sum equivalent to 2π  radians or quadrilateral 
with four right angles does not exist (see Figures 1-3).  

Thus a quadrilateral with three right angles is called a Lambert Quadrilateral 
(see Figure 4).  

Using the definition of hyperbolic tangent, it can be verified that the mapping 
( )tanhu u− − >  is a one-to-one mapping from the real line into the interval 

(−1, 1). 
Notice that a free online software Geogebra used to draw the following graphs 

[14]. 
With a new advanced proposed postulate for a better unified approach in 

matter, energy, and momentum, we are challenged to connect the Complex Mat-
ter Theory to the two historical approaches of Relativity and Hyperbolic Geo-
metry.  

 

 
Figure 1. Hyperbolic right triangle with limiting angle of parallelism. 
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Figure 2. A point ( ),A x y  is moving on a right branch of a unit hyperbola 2 2  1x y− = , 

with a hyperbolic triangle ABC. 
 

 
Figure 3. Two points P1 and P2 on the hyperbolic plane. 

 

 
Figure 4. Lambert quadrilateral. 
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In this work, we conclude that in the new complex matter approach, not only 
it is a new theory consistent with others, but it describes all shadows and unclear 
relations by a very beautiful method. 
• Matter is redefined with two components of mass and charge which are the 

intrinsic part of the matter. 
• Complex Matter Space Theory: all three space-time regions are space-like, 

time-like, and light-like. A particle like moving faster than the speed of light 
can be described by an imaginary mass and a particle-like with imaginary 
mass can travel faster than the speed of light. 

• The geometry of the Complex Matter Space is consistent with the Lorentz 
transformation, Minkowski, and hyperbolic geometry. 

• Given two vector events 1E  and 2E , the angle between two events can be  

described by a known formula ( ) 1 2

1 2

cosh β
⋅

=
E E
E E

 in hyperbolic geome-

try. 
• In every triangle OE1E2 when 1E  and 2E  are two event vectors with the 

angle that between two vectors is 1 2E E β=  then 

( )2 2 2
1 2 1 2 1 22 cosh β−− = +E E E E E E  

To compare these results with Euclidean space, one can see Greenberg (1980) 
[15] and Kay (2001) [16]. 
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