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SUMMARY
Although it is widely recognized that the ancestors of Native Americans (NAs) primarily came fromSiberia, the
link between mitochondrial DNA (mtDNA) lineage D4h3a (typical of NAs) and D4h3b (found so far only in East
China and Thailand) raises the possibility that the ancestral sources for early NAs were more variegated than
hypothesized. Here, we analyze 216 contemporary (including 106 newly sequenced) D4h mitogenomes and
39 previously reported ancient D4h data. The results reveal two radiation events of D4h in northern coastal
China, one during the Last Glacial Maximum and the other within the last deglaciation, which facilitated
the dispersals of D4h sub-branches to different areas including the Americas and the Japanese archipelago.
The coastal distributions of the NA (D4h3a) and Japanese lineages (D4h1a and D4h2), in combination with the
Paleolithic archaeological similarities among Northern China, the Americas, and Japan, lend support to the
coastal dispersal scenario of early NAs.
INTRODUCTION

As the last continent settled by modern humans, the peopling of

the Americas and subsequent dispersals within the continent

have been the focus of intense interest by geneticists.1–6 Previ-

ous studies have shown that the ancestors of Indigenous Amer-

icans, also called Native Americans (NAs), originated in Asia,

most likely in the eastern part of Asia,3,6–9 and settled in the

Americas by means of multiple dispersals through Siberia/

Beringia10 via the coastal route and possibly the inland ice-free

corridor,11 followed by later divergence into sub-groups.12

The origin of early NAs, to date, has been attributed to a com-

plex process involving multiple dispersals from different source

places. As indicated by substantial investigations, besides the

widely recognized Siberian ancestry, ancestries from other pla-

ces, although limited, have also been identified, including North

Asia,6,9 East Asia,6,13 Southeast Asia,14 and even Australo-Mel-
This is an open access article under the CC BY-N
anesia.15 In agreement with these observations, evidence from

uniparental markers further indicates that the majority of NAs

show closer genetic affinity to Siberians, as manifested by NA

founder types, e.g., mitochondrial DNA (mtDNA) haplogroups

A2, B2, C1, C4c, D1, etc.,16–19 and Y chromosome haplogroups

Q-L54 (Q-Z780, Q-M848, and Q-M4303) and C-L1373

(C-MBP373),19–24 and thus may trace their ancestral sources in

Siberia. In contrast, a sister lineage of the NA matrilineal founder

D4h3a,25,26 viz., D4h3b, has been so far observed only in China25

and Thailand,27,28 suggesting that the ancestral maternal sour-

ces for early NAs were not restricted to Siberia but were from a

much wider Asian geographic range.

To address this issue, an investigation integrating all available

D4h data from a large-scale dataset covering the whole of Eura-

sia is needed. Given that D4h3 and its ancestor type D4h are

relatively rare in contemporary populations (�0.5%),29 we sur-

veyed a total of 101,319 Eurasian individuals and identified the
Cell Reports 42, 112413, May 30, 2023 ª 2023 The Author(s). 1
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Figure 1. Geographic sources of mtDNA data employed in this study

Circles: populations surveyed for HVS variation are in light blue, while those surveyed for the variation of the entire mitogenome are in yellow. Only data from

population surveys (99,722 samples from 1,135 populations) are shown. The remaining 1,597 mtDNAs are not shown on the map either because they were

sporadic samples or because geographic information was lacking. For more details concerning the 101,319 samples, see Tables S1 and S2. Triangles: D4h

samples, including published (hollow triangles) and newly sequenced samples (filled triangles). Ancient Asian samples harboring D4h mtDNAs were indicated by

arrows, with the information shown on the right. The ancient samples from the Americas (see Table S4) are not shown.
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mtDNAs belonging to D4h3 and its ancestral node D4h. These

included 60,979 samples for which partial sequence data, mainly

hypervariable segment (HVS) data (Table S1), were available and

40,340 samples with the complete (or almost complete) mitoge-

nome sequence (Table S2; Figure 1). This survey identified 110

mtDNAs that could be assigned unambiguously to haplogroup

D4h based on mitogenome information as well as 112 mtDNAs

likely belonging to D4h based on their HVS or genotyping data

(Table S3), whose complete sequencing revealed 106 additional

D4h mitogenomes (Figure S1). Furthermore, to reconstruct the

evolutionary history of D4h, we also searched this haplogroup

in 15,460 ancient samples compiled by indo-european.eu

(https://indo-european.eu/ancient-dna/),30 thus covering virtu-

ally all global reported ancient mtDNA data, as well as additional

232 recently reported ancient mtDNA data from East Asia.31,32

This survey yielded 39 ancient D4h samples (30 with the entire

mitogenome and nine with HVS data) (Figure 1; Tables S4 and

S5), which reflected the rarity of Dh4 in ancient times. Therefore,

we integrated these ancient and contemporary data of this rare

haplogroup to fully investigate its origin and expansion history.

RESULTS

Differentiation of D4h3 and D4h in Central and North
China
To shed light on the origin of the NA founder D4h3a, we

explored its ancestor D4h3. Our findings allowed an update
2 Cell Reports 42, 112413, May 30, 2023
of the D4h3 phylogeny and its branches (Figures 2A and S2).

Specifically, to avoid any confusion, we kept the names of

D4h3a and D4h3b and tentatively named their upstream nodes

‘‘pre-D4h3a’’ and ‘‘pre-D4h3b,’’ respectively. Different from the

NA founder D4h3a, the other branches of D4h3 are mainly

distributed in China. In detail, D4h3b1 (root type in Hebei Prov-

ince in North China) is found in North and Central China, while

D4h3b2 (root type in Hubei Province) is mainly distributed in

Central China. Coincidentally, among the reported ancient

mtDNA data from different locations in Eurasia, we found three

ancient samples belonging to D4h3 dated as early as 14–15 kilo

years ago (kya) in the Amur River Valley (located in northern

North China).33 One of these mtDNAs, sample NE-5 (�14

kya), derives from pre-D4h3a and is phylogenetically the

closest (six mutations apart; Figure S2) to the NA founder

D4h3a mitogenome. The remaining two, samples NE34 (�14

kya) and NE-18 (�7 kya), are both members of pre-D4h3b.

Overall these findings indicate that the ancestral homeland of

D4h3 is most likely Central and North China and that both

branches of D4h3 were there during the Paleolithic period.

These branches locate in Central/North China and reflect the

closest Asian matrilineal link to D4h3a, one of the founder

pan-American mtDNA haplogroups.25,26

We then shifted our attention to haplogroup D4h, the most

recent common ancestor of D4h3. Except for the NA D4h3a,

the other D4h mtDNAs were predominantly found in China,

mainly in North (48 out of 150 contemporary samples, discarding

https://indo-european.eu/ancient-dna/
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Figure 2. Phylogeography of haplogroup D4h and its sub-lineages

(A) Phylogenetic tree of D4h, with branch lengths proportional to number of variants. Circles: mitogenomes from this study; diamonds: previously published

mitogenomes; black outlines: present-day samples; red outlines: ancient samples. The different colors, consistent with those in (B), refer to the different

geographic source regions.

(B) Geographic sources of D4h mitogenomes in (A). Numbers on the map refer to the codes of samples and correspond to those in Figure 2A and Table S3.
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four with unknown geographic information) and Central China

(44 out of 150) (Table S4; Figure S3). A relatively small number

of D4h mtDNAs were also identified in Northwest China

(n = 14), Southwest China (n = 16), South China (n = 5), Japan

(n = 13), Southeast Asia (n = 7), and North Asia (n = 2)

(Table S4; Figure S3). Interestingly, the majority of the ancient

D4h sampleswere detected in the northern regions of China (Fig-

ure 1), supporting a similar D4h distribution in the past. Further

phylogeographic analyses revealed that the ancient and current

samples from the same geographic region tend to cluster

together in the same sub-branch, e.g., D4h1a, D4h1c, D4h1d,

and D4h3. Meanwhile, most sub-haplogroups of D4h are pre-

dominant in North/Central China (i.e., D4h1b, D4h1d, D4h1e,

and pre-D4h3b) or showed connections between North/Central

China and other regions, including western China (D4h1c and

D4h4), Japan (D4h1a), North Asia and Japan (D4h2), and even

the Americas (D4h3a) (Figures 2, 3A, and S4).Moreover, samples

from South China, Southwest China, Northwest China, South-

east Asia, and North Asia were sporadically distributed across

the whole D4h haplogroup and primarily located on the terminal

branches (Figures 2A andS2), most likely as a result of gene flow.

Finally, the peculiar distributions of certain lineages, for instance

D4h1a in Japan and D4h1c in Southwest China (Figures 2A, 3A,

and S2), likely indicate founder events.

Given that some of the mitogenome data from literature are

from phylogenetic rather than population studies, and given

the relative scarcity of mitogenomes from Siberia, which will

introduce bias to the phylogeographic analyses, we also

collected and analyzed mtDNA HVS data from population

studies (Table S1). Only few potential D4h samples were found

in North Asian samples (n = 4,176) (for example, two belonging

to D4h1d, which is defined by T16172C and C16174T, and one

belonging to D4h1e, which is defined by C16174T and

A16343G) (Figure S4), lending support to its rarity in North

Asia. Themedian-joining network based on HVS data (Figure S4)

revealed instead a much wider distribution range of D4h in Asia.

Indeed, the majority of Asian D4h mtDNAs are observed in

Central (58/228; 25.43%) and North (44/228; 21.05%) China,

followed by Southwest China (35/228; 15.35%), Northwest

China (15/228; 6.57%), Japan (29/228; 12.72%), Southeast

Asia (11/228; 4.82%), South China (6/228; 2.63%), and North

Asia (9/228; 3.94%). Moreover, the root types of the major

branches, e.g., D4h1b, D4h1c, D4h1d, D4h1e, and D4h3b, are

primarily found in Central and North China, while the terminal

branches mainly contain samples from other regions, e.g.,

Southwest China, Northwest China, Southeast Asia, South

Asia, and Central Asia. Finally, D4h1a and D4h2 are restricted

to Japan and its surroundings, lending support to the founder

events.

Taken together, these results indicate that the phylogenetic

differentiation of D4h occurred somewhere in Central or North

China, most likely in a region geographically close to the northern

coast of China. In fact, among the North/Central China samples,

more than half (64/92, 69.57%) were found in provinces along

(Hebei, Liaoning, Tianjin, Shandong, Jiangsu, Shanghai, and

Zhejiang) or near (Heilongjiang, Jilin, Beijing, Anhui, and Jiangxi)

the northern coast of China (Table S4). Therefore, we propose

that the northern coast of China might have played a critical
4 Cell Reports 42, 112413, May 30, 2023
role in the divergence and spread of D4h and its sub-

haplogroups.

Two radiation events from northern coastal China
contributed to NA and Japanese gene pools
Coalescent age estimations, updated by calibrated radiocarbon

dates of ancient DNA samples using tip dating in BEAST

(Tables 1 and S6), indicate that the radiations of D4h lineages

(aged 32.39 kya, 95% highest probability density [HPD], 24.04–

41.45 kya) occurred mainly within two time periods (Figure 3B).

The first period fell within the Last Glacial Maximum (LGM;

26.5–19.0 kya),34 during which D4h3 (26.39 kya, 95% HPD,

20.19–33.21 kya), pre-D4h3a (22.29 kya, 95% HPD, 17.24–

27.68 kya), pre-D4h3b (21.55 kya, 95% HPD, 16.18–27.94

kya), D4h1 (21.83 kya, 95% HPD, 15.56–29.08 kya), and D4h2

(20.05 kya, 95% HPD, 12.12–29.48 kya) (Tables 1 and S6) differ-

entiated into separate sub-haplogroups (Figure 3B). Among

these sub-haplogroups, D4h3a further dispersed and became

one of the pan-American haplogroup of NAs (Figure 4A). This ra-

diation echoes well with the divergence of basal American

branches from ancient eastern Asians 23–20 kya,3 which was

likely due to the LGM’s inhospitable climate in the northern re-

gions of Asia.35 During the last deglaciation (19.0–11.5 kya), after

the LGM, a second radiation of D4h occurred somewhere near

the northern coast of China, as documented by D4h4 (18.11

kya, 95% HPD, 12.67–24.28 kya), D4h1c (16.17 kya, 95%

HPD, 10.66–22.36 kya), D4h1a (15.59 kya, 95% HPD, 11.43–

20.92 kya), D4h3b (13.22 kya, 95% HPD, 7.55–19.93 kya),

D4h1c1 (12.77 kya, 95% HPD, 8.21–17.79 kya), and D4h1e

(12.10, 95% HPD, 7.16–17.50 kya) (Figure 4B). Concordant

with this phylogenetic radiation, a rapid increase in the effective

population size of D4h �15 kya was observed in the extended

Bayesian skyline plot (EBSP) (Figure 3C), probably due to the

post-LGM climate improvement. These results uncover two

waves of previously unknown population dispersals along the

northern coast of China during the LGM and last deglaciation,

which led to the origin and expansion of different D4h lineages

(Figure 4). The regions around the Bohai, Huanghai, and East

China Seas, which were still connected by land along the north-

ern coast before the Holocene,36 probably allowed these expan-

sions to occur.

Intriguingly, two haplogroups, D4h1a1 (12.24 kya, 95% HPD,

6.72–15.87 kya) and D4h2 (20.05 kya, 95% HPD, 12.12–29.48

kya), exhibited prevalent distributions in the Japanese Archipel-

ago (Figures 2, 3A, and S4), suggesting that the expansions from

the northern coast of China also exerted an influence in Japan.

The discovery of D4h1a in ancient samples dated �11 kya

from the Nenjiang River valley38 further supports its advent in re-

gions close to Japan at least 11 kya. Similarly, D4h2 has been

observed in ancient Jomons,39 who are considered the descen-

dants of Paleolithic settlers in the Japanese Archipelago.40 The

median-joining network (Table S5; Figure S4) showed that one

branch of D4h2 (namely D4h2a) in China and Southeast Asia,

while the other (D4h2b) is distributed in Siberians as well as the

Ainu population (indigenous Japanese, 3 of 50 samples) and

ancient Jomons. This further supports a genetic contribution

possibly from China to different populations including Southeast

Asians and ancient Japanese. Therefore, probably both D4h1a1



Figure 3. Geographic distribution and schematic tree of haplogroup D4h

(A) Geographic distributions of different branches of D4h. Each circle represents one sample, with geographic origin of samples shown by different colors,

consistent with those in Figure 2B. Contour maps display spatial frequency distributions of haplogroups (see Table S7). Circles without outlines represent da-

tasets from phylogenetic rather than population studies and thus were excluded in calculations of spatial frequencies.

(B) Bayesian age estimates using complete mitogenomes. Sizes of triangles are proportional to sub-haplogroup sample sizes. Colors represent different

geographic regions, consistent with Figure 2B. Ancient samples are indicated in red. Green and yellow diamonds show the divergences within the LGM and the

last deglaciation, respectively.

(C) Extended Bayesian skyline plot (EBSP) of D4h, showing effective population size changes through time.
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andD4h2 dispersed fromChina to Japan after the LGM, possibly

via the land bridges that connected China and the Japanese Ar-

chipelago until 12 kya.41,42
Potential supports from Y chromosome data
The origin of mtDNA D4h in northern coastal China of NAs

echoes well also with the differentiation of Y chromosome
Cell Reports 42, 112413, May 30, 2023 5



Table 1. Coalescent ages of D4h and its sublineages

Haplogroups/

sub-haplogroups

Number of

mitogenomesa
Age (mean

[95% HPD]) (kya)b

D4h 237 32.39 (24.04–41.45)

>D4h1 112 21.83 (15.56–29.08)

>>D4h1a 13 15.59 (11.43–20.92)

>>>D4h1a1 12 12.24 (6.72–15.87)

>>>>D4h1a1a 5 5.07 (1.83–8.56)

>>>>D4h1a1b 7 5.66 (2.87–8.87)

>>D4h1b 28 10.63 (6.26–15.53)

>>>D4h1b1 25 7.56 (4.41–11.06)

>>D4h1c 40 16.17 (10.66–22.36)

>>>D4h1c1 35 12.77 (8.21–17.79)

>>>>D4h1c1a 34 10.5 (7.01–14.61)

>>>D4h1c2 5 7.54 (3.43–12.46)

>>D4h1d 18 10.26 (6.47–14.26)

>>D4h1e 13 12.10 (7.16–17.50)

>D4h2 8 20.05 (12.12–29.48)

>>D4h2a 7 10.78 (6.57–15.46)

>D4h3 96 26.39 (20.19–33.21)

>>Pre-D4h3a 73 22.29 (17.24–27.68)

>>>D4h3a 71 19.40 (15.11–24.05)

>>Pre-D4h3b 24 21.55 (16.18–27.94)

>>>D4h3b 22 13.22 (7.55–19.93)

>>>>D4h3b1 3 1.93 (0.29–4.05)

>>>>D4h3b2 19 6.18 (3.31–9.56)

>D4h4 21 18.11 (12.67–24.28)
aAncient mitogenome data were included in coalescent age estimations.

Incomplete sequences were excluded from age estimations (see

Table S4 for details).
bThe mutation rate was recalibrated using the tip dating method. The

best-fitting model was evaluated as previously described.37
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haplogroup C2a-L1373 (ancestor to NA founder lineages

C-MPB373 and C-P39) in low-latitude regions of northern

Asia.43 To further evaluate the potential radiation center of

C2a-L1373, we assessed the frequencies of C2a-L1373 and its

sub-lineages in different provinces of China based on Y chromo-

some genotyping data from 23Mofang Biotechnology Co., Ltd

(totally 458,805 individuals, each with 33,000 Y chromosome

SNPs genotyped). We detected the root type (C2a-L1373*)

only in North China (including Beijing [0.020%], Tianjin

[0.031%], Henan [0.004%], Heilongjiang [0.030%], Jilin

[0.063%], Liaoning [0.071%], Shaanxi [0.035%]) and northwest

China (Gansu [0.016%]; Table S8). It is worth underscoring that

the highest C2a-L1373* frequencies were observed in Liaoning,

Jilin, Heilongjiang, Tianjin, and Beijing (Table S8), which are all

located close to northern coastal China. Moreover, the majority

of other C2a-L1373 sub-lineages, including C-FGC28903, which

is a sister branch of C-P39, harbor their highest frequencies in

North China (Table S8). Moreover, samples belonging to C2a-

L1373 in other places like South Asia, Central Asia, Europe,

etc., were sporadically found or mainly occupied the terminal

branches.43 This evidence strongly suggests that C2a-L1373
6 Cell Reports 42, 112413, May 30, 2023
differentiated in northern China, especially in the regions near

the coast, similarly to mtDNA D4h.

In addition, two ancient samples from Songnen Plain in north-

ern China, dated �14,000 years ago, were found to belong to

mtDNA D4h3 and Y chromosome C2a-L1373,33 thus revealing

the coexistence of both maternal and paternal ancestor lineages

of NAs in northern coastal China. Interestingly, C2-M217 (�39.3

[34.7–44.5] kya)22 and D4h (�32.39 [24.04–41.45] kya) had

similar coalescent ages, and the divergence time of C2a-L1373

(about 21.6 [19.1–24.4] kya)22 is similar to the time of the first

D4h radiation estimated in this study, making it likely that an

ancestral population from this region contributed to both the

maternal and paternal gene pools of NAs. In fact, besides line-

ages of mtDNA D4h and Y chromosome C2-M217, substantial

maternal and paternal lineages have also been observed in this

region, e.g., Y chromosome lineages C-F106744 and mtDNA

haplogroups A5, D4a, D4b, D4e, N9a, etc.,29 most of which

arose around the LGM.44,45 This lends support to the scenario

that this region was a differentiation center in East Asia after

the LGM, which probably facilitated the expansions of different

lineages including mtDNA D4h3 and Y chromosome C2a-

L1373. Meanwhile, Y chromosome haplogroup C2-M217 has

also been observed at a higher frequency in the Ainu (15%)

than in other Japanese (3%).46 Additionally, the coexistence of

mtDNA D4h3 and Y chromosome C2 had also been reported

in the same archaeological site in South America (�8 kya).12

These observations collectively suggest that an ancestral popu-

lation from northern China carrying mtDNA D4h and Y chromo-

some haplogroup C2 also spread into the Americas and the Jap-

anese Archipelago.

DISCUSSION

In this study, by integrating ancient and contemporary mitoge-

nomes of D4h from large-scale dataset covering virtually the

whole of Eurasia, we traced the ancestry of one rare NA founder

lineage (D4h3a) to a lower latitude region in northern coastal

China around the Bohai and Huanghai Seas. This region is

different from the geographical sources in Siberia hypothesized

so far by the common maternal components, including mtDNA

haplogroups A2, B2, C1, D4b1a2a1a, etc.7,17,19 Our study thus

uncovered an additional ancestral source for the ancestors of

NAs beyond Siberia from the matrilineal perspective. This

ancestry, although only contributed to a small proportion of the

mtDNA gene pool of NAs (D4h3a),25 would be important in com-

plementing thewhole picture of origination histories of early NAs.

Further support comes from the Y chromosome C2-M217,

which harbors an age (�40 kya) that is similar to the one of

mtDNAD4h and also probably radiated in northern coastal China

during the LGM (as indicated by C2a-L1373), when the first radi-

ation of D4h occurred. Interestingly, these uniparental ancestries

echo well with the ancient ancestry in eastern Asia (�35 kya) that

gave rise to East Asians, Siberians, and NAs at �26 kya.3 Mean-

while, it had also been inferred that about 40–23 kya, the ances-

tors of Jomons split from the ancient ancestry in eastern Asia.47

This evidence strongly supports the existence of an old ancestry

source, arising between 40 and 23 kya, that contributed to pop-

ulations including East Asians, Jomons, Eastern Siberians, and



Figure 4. Two subsequent population radia-

tions in the northern coastal regions of

China contributed to NA and Japanese

matrilineal ancestry

(A) The first radiation occurred during the LGM and

involved D4h3, pre-D4h3b, and pre-D4h3a (from

which D4h3a, typical of NAs, was derived).

(B) A later population expansion in the same gen-

eral geographic area occurred in the deglaciation

period and involved D4h1a1 and D4h2, whose

derivatives are found in modern Japanese and

ancient Jomons.
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NAs (Figure S5). We propose that mtDNA D4h was one of the

matrilineal lineages that witnessed these population splits and

expansions. However, different from this East Asian ancestry

contributing substantially to eastern Siberia,47 D4h has been

rarely found in this area. One explanation would be the loss of

D4h during the expansions by genetic drift or matrilineal replace-

ment.48 More mtDNA data from Siberia will be of help to further

assess this expansion process.

In addition, this genetic connection among China, the Ameri-

cas, and Japan during the Pleistocene period parallels archaeo-

logical similarities, as early as Pleistocene period, among these

regions. For instance, in the terminal Pleistocene period, Japa-

nese microblades (18–17 kya), which exhibit similarities to those

in Northeast Asia (including North China), display commonalities

with contemporaneous stemmed points from incipient Jomon

sites (�15.5 kya).49 Importantly, stemmed points were well

distributed around the Pacific rim from Japan to South America

with close affinities with each other.50 Recent findings on
stemmed projectile points in North Amer-

ica (Cooper’s Ferry site, �15–16 kya)

show closer affinity to the nonfluted pro-

jectile points in Japan than to those in

North Asia.51 We attribute this similarity

in Paleolithic technology, as well as the

phylogenetic relationships of D4h sub-lin-

eages in China, the Americas, and Japan,

to a probable Pleistocene connection

among these regions (Figure 4B).

Our results also shed important light on

the dispersal route of early NAs into the

Americas. Given that mtDNA D4h radiated

from northern coastal China, which is

geographically close to Pacific coastal

rim, we speculate that D4h would have

documented LGM and post-LGM dis-

persals along the eastern Pacific coast.

This echoes well with the dispersal D4h3a

along the Pacific coastal path25 when the

ice-free corridor was closed.11,52 Similarly,

Y chromosome C-L1373, which probably

radiated in parallel with mtDNA D4h, has

also been reported in South Koreans

(http://koreangenome.org/) and the

Nivkh,53 thus lending support to a coastal
population expansion scenario initiated from northern coastal

China. This, together with the Paleolithic cultural affinities along

the Pacific, e.g., stemmed points,51 and the palaeoecological

feasibility of maritime dispersals (e.g., kelp highway hypothesis)54

lends further support to the coastal route hypothesis of

early NAs.50,51,55

Limitations of the study
By dissecting the origin of a rare NA founder lineage, our

study revealed an ancestral root of both NAs and the Japa-

nese in northern coastal China. However, some detailed ex-

pansions from this region into the Americas need to be further

dissected. First, more data concerning mtDNA D4h from both

ancient and contemporary samples are needed to elucidate

the detailed expansion history of this lineage, especially

from Siberia, where a relatively low number of mitogenomes

have been assessed. Second, high-resolution Y chromosome

data of C-L1373 from large-scale population dataset will help
Cell Reports 42, 112413, May 30, 2023 7
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to verify this radiation from paternal perspective. Third, inves-

tigations integrating mitogenomes, the Y chromosome, and

autosomal genomes are also essential to explore whether

there are differences between maternal, paternal, and auto-

somal markers and thus complement the whole picture of

origination history of NAs.
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I2263 ancient mitochondrial genome Nakatsuka et al.4 https://reichdata.hms.harvard.edu/pub/datasets/

amh_repo/curated_releases/V52/V52.2/SHARE/

public.dir/index_v52.2_MT.html

MHper11 ancient mitochondrial genome Maár et al.61 N/A

NE34,NE-5,NE36,NE-18 ancient

mitochondrial genomes

Mao et al.33 NGDC:PRJCA003699

https://bigd.big.ac.cn/gwh/

BQ-M2-F and XZ-M149 ancient

mitochondrial genomes

Liu et al.62 NGDC:PRJCA002947

https://bigd.big.ac.cn/gwh/

I7021 ancient mitochondrial genome Wang et al.63 https://reichdata.hms.harvard.edu/pub/datasets/

amh_repo/curated_releases/V52/V52.2/SHARE/

public.dir/index_v52.2_MT.html

HT-M45 ancient mitochondrial genome Ning et al.38 N/A

L3159 ancient mitochondrial genome Ding et al.64 NGDC:PRJCA002243

https://bigd.big.ac.cn/gwh/

QT_T0601M64_2 ancient

mitochondrial genome

Miao et al.32 NGDC:PRJCA004284

https://bigd.big.ac.cn/gwh/

Shimao_HJGD_M17 and ZS_M4O ancient

mitochondrial genomes

Xue et al.31 NGDC:PRJCA009290

https://bigd.big.ac.cn/gwh/

Ancient Y-DNA and mtDNA all-ancient-dna-2-07-7330 indo-european.eu (https://indo-european.eu/ancient-dna/)

Software and algorithms

Cutadapt v1.16 Martin65 RRID:SCR_011841

leeHom v1.2.16 Renaud et al.66 RRID:SCR_002710

BWA v0.7.8 Li and Durbin67 RRID:SCR_010910

Samtools v1.13 Li et al.68 RRID:SCR_002105

schmutzi v1.5.6 Renaud et al.69 https://bioinf.eva.mpg.de/schmutzi/

GATK v4.2.2 McKenna et al.70 RRID:SCR_001876

BEAST 2.6.6 Bouckaert et al.71 RRID:SCR_010228

Surfer v8.0 N/A https://www.goldensoftware.com/products/surfer

bmodeltest package Bouckaert and Drummond72 https://taming-the-beast.org/

NS package Russel et al.73 https://taming-the-beast.org/

Tracer v1.7.2 Rambaut et al.74 RRID:SCR_019121

FigTree v1.4.4 N/A RRID:SCR_008515

R v4.1.2 R Core Team 2021 https://www.R-project.org/
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Qing-Peng

Kong (kongqp@mail.kiz.ac.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Complete mitogenome sequencing data (fasta format) of the 106 newly sequenced individuals have been deposited in the Genome

Warehouse in the National Genomics Data Center (https://bigd.big.ac.cn/gwh/; NGDC: PRJCA006291). This paper does not report

original code. Any additional information required to reanalyze the data reported in this work paper is available from the lead contact

upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Completemitogenomes of 106 samples belonging to D4hwere sequenced in this study. The information of the subjects including the

geographical origin, gender and age are shown in Table S3. The sample collection and experimental protocol were approved by the

Ethics Committee at the Kunming Institute of Zoology, Chinese Academy of Sciences (Approval No. KIZRKX-2021-011), as well as by

the Office of Human Genetic Resource Administration (OHGRA), The Ministry of Science and Technology (MOST), China (Approval

No. 2022SLCJ0017). Informed consent was obtained from each individual before the study. For the genotyping data from 23Mofang

Inc., we only used Y chromosome data from customers who had signed the informed consents online to participate in this study and

agree to share their genotyping information.

METHOD DETAILS

Screening of D4h mitogenomes from dataset
To unravel the evolutionary history of this haplogroup and the expansion of its sublineage pre-D4h3a into the Americas, we performed

a search of D4h mtDNAs in a large-scale dataset: 101,319 Eurasian individuals, including 60,979 for which only hypervariable

segment (HVS) data (Table S1) were available, and 40,340 samples with whole mtDNA (sequencing and genotyping) (Table S2).

For the HVS and genotyping data, the motif-search strategy75 was adopted to identify mtDNAs harboring diagnostic variants of

D4h and its sublineages. This allowed the identification of 112 potential D4h mtDNAs (Table S3), which after complete mitogenome

sequencing revealed 106 new Asian D4h mitogenomes (see below). These were added to 110 previously published D4h mitoge-

nomes from contemporary populations and 30 D4h mitogenomes (Table S4) screened out from ancient samples for further phylo-

genetic analyses and coalescent age estimations.

DNA extraction, library construction, sequencing, and quality control
Total genomic DNAwas isolated by using the genomic DNA extraction kit (Axygen). DNA yield and purity weremeasured via UV spec-

troscopy. Libraries were prepared with a standard library kit (MyGenostics Inc., Beijing, China). Sequencing was carried out using

an Illumina HiSeq X Ten platform at MyGenostics, with sequencing depths ranging from 3 823.633 to 15 727.023 (average of

7 359.763; Figure S1). The Cutadapt software65 was used to trim adapters and to filter low quality sequences (including short reads,

and reads with lowmean quality score andmany ambiguous (N) bases in fastq files. Reads were then aligned to the human reference

genome version GRCH38 (which has the revised Cambridge Reference Sequence (rCRS)76 as mtDNA reference) by ‘‘bwa mem’’

(v0.7.10) (http://bio-bwa.sourceforge.net/). Duplications were detected and removed using the MarkDuplicates module of

GenomeAnalysisTK (GATK) and the GATK HaplotypeCaller module was employed to generate the variant file (vcf) using standard

parameters. The final variants of each sample relative to the revised rCRS were recorded (Table S3).

Ancient mtDNA acquisition
Fasta files of ancient mtDNA sequences were downloaded from the literature or public database, with the exception of the mtDNA

sequence of I4012,77 which was extracted from the whole genome sequencing data of that sample. In detail, we downloaded raw

fastqof I4012 from ENA (European Nucleotide Archive) and then trimed adapters using leeHom v1.2.1666 and aligned to rCRS by us-

ing aln and samse commands of BWA v0.7.867 with parameters -n 0.01, -o 2, and -l 16500. Reads with mapping quality score (<30)

were filtered by samtools v1.13.68 Finally, we obtained endogenous mtDNA fasta file and allocated it to haplogroup D4h1c according

to the variants. However, due to the contamination rate of about 0.99 (calculated by schmutzi v1.5.6),69 we removed this sample in the

subsequent analyses.
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Haplogroup affiliations and phylogenetic updates based on newly obtained and previously published data
Haplogroup affiliation of each sample was carried out according to mtDNA tree Build 17 (http://phylotree.org/).78 The phylogeny of

D4h was reconstructed manually and checked using mtPhyl v5.003 (https://sites.google.com/site/mtphyl/). Many previously classi-

fied branches were confirmed, including D4h4, D4h1, D4h1a, and D4h1b, while others were updated, including D4h1c, D4h1c1,

D4h1d, and pre-D4h3b. In addition, several novel branches were also defined, e.g., D4h3b1, D4h3b2, D4h1c2, and D4h1e

(Figure S2).

Coalescent age estimations
Modern and ancient sequences (Table S4) were aligned using MUSCLE v3.8.379 in MEGA6.80 Mutations including 309.1C(C),

315.1C(C), AC indels at 515–522, A16182C, A16183C, 16193.1C(C) and C16519T/T16519C were excluded in age estimations. bMo-

delTest72 package implemented in BEAST 2.6.6 was used to select the most appropriate substitution model for our data. As a result,

TN93 model (121,131) with gamma rate heterogeneity (G) and proportion of invariant sites (I) was supported through visualization

output in Tracer v1.7.2. The Bayes Factor (logBF = 15) computed byBEASTNSpackage (32 particles) indicated the strict clockmodel

is suitable for our data than the uncorrelated lognormal relaxed clock model. The midpoints of calibrated radiocarbon dates or

archaeological periods of the ancient samples (Table S4) were used as the tip date.81 A date-randomization test82 using BEAST

2.6.6 showed the clockRate parameter from the original dataset of 95% HPD intervals (highest posterior distribution) did not overlap

the date-randomized datasets, indicating there was sufficient tip date signal to calibrate the clock rate. The Chain Monte Carlo

(MCMC) runs of 100,000,000 steps were performed with a sampling of parameters every 10,000 steps and the initial 10% steps

were discarded as burn-in. Coalescent Constant Population was adopted as tree Prior.37 BEAUti within the package of BEAST

was used to set the model and parameters. The convergences of MCMC were evaluated according to the effective sample size

(ESS) by Tracer v1.7.2 (with ESS >200 as acceptable). As a result, whole mitogenomes without partitions into codon positions

were adopted due to general higher ESS values (with only two ESS values between 100 and 200). The 95% HPD intervals of coales-

cent age estimates were recorded in FigTree v1.4.4.

In addition, Rho (r) statistics,83,84 which provides unbiased and overlapping estimates of coalescent ages,85 was also used to eval-

uate the coalescent ages of each clade in haplogroup D4h (Table S6).

Spatial geographic distribution
Geographic locations of mtDNAs belonging to D4h and its sublineages were plotted using Surfer v8.0 (Golden Software Inc. Golden,

Colorado, USA). Contour maps of spatial frequencies were constructed using the Kriging algorithm in Surfer v8.0. Samples non-

deriving from population studies were excluded.

Extended Bayesian skyline plots
An Extended Bayesian Skyline plot (EBSP)86 for effective population size (Nef) through timewas reconstructed using BEAST v2.6.6,71

as described elsewhere.87,88 The midpoints of calibrated radiocarbon dates or archaeological periods of the ancient samples

(Table S4) were used as tip dates,81 assuming 25 years for one generation. Each Markov Chain Monte Carlo (MCMC) simulation

was run for 500,000,000 generations and sampled every 5,000 generations, with the first 50,000,000 generations discarded as

burn-in. The EBSPs were reconstructed using EBSPAnalyser (10% buin-in) and visualized using an in-house R script.

Median-joining network reconstruction
A dataset of D4h HVS sequences (n = 62), which encompasses 53 mtDNAs from contemporary populations and nine from ancient

samples (Table S5), together with the corresponding HVS sequences extracted from the complete mitogenomes, was used to recon-

struct a D4h median-joining network (Figure S4). The median-joining network was firstly constructed by Network 4.510 (http://www.

fluxus-engineering.com/sharenet.htm) and then checked and reconstructed manually.89
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