Title

The locus C11orf30 increases susceptibility to poly-sensitisation

Authors

André F. S. Amaral ${ }^{\text {a,b }}, \mathrm{PhD}$, Cosetta Minellia ${ }^{\text {a }}$, PhD, Stefano Guerra ${ }^{\text {c,d }}$, MD, PhD, Matthias Wjst ${ }^{\mathrm{e}}$, PhD, Nicole Probst-Hensch ${ }^{\mathrm{f}, \mathrm{g}}, \mathrm{PhD}$, Isabelle Pin $^{\mathrm{h}}$, MD, PhD, Cecilie Svanes ${ }^{\mathrm{i}, \mathrm{j}}$, MD, PhD, Christer Janson ${ }^{\mathrm{k}}, \mathrm{MD}, \mathrm{PhD}$, Joachim Heinrich ${ }^{1, \mathrm{~m}}$, PhD, Deborah L. Jarvis ${ }^{\text {a,b }}$, MD

Affiliations

a. Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College, London, UK
b. MRC-PHE Centre for Environment \& Health, London, UK
c. Centre for Research in Environmental Epidemiology (CREAL), Universitat Pompeu Fabra, CIBERESP, Barcelona, Spain
d. Arizona Respiratory Center, University of Arizona, Tucson, AZ, USA
e. Molecular Genetics of Lung Diseases, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
f. Swiss Tropical and Public Health Institute, Basel, Switzerland
g. University of Basel, Basel, Switzerland
h. Pédiatrie, CHU de Grenoble, Institut Albert Bonniot, INSERM, Grenoble, France

Université Joseph Fourier, Grenoble, France
i. Bergen Respiratory Research Group, Institute of Medicine, University of Bergen, Bergen, Norway
j. Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway

26 k. Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala
27 University, Uppsala, Sweden

28

1. Institute of Epidemiology I, Helmholtz Zentrum, Munich, Germany m. Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital Munich, Ludwig Maximilian University of Munich, Germany

Corresponding author's details

André F. S. Amaral
Respiratory Epidemiology, Occupational Medicine and Public Health
National Heart and Lung Institute, Imperial College London
Emmanuel Kaye Building, 1B Manresa Road
London SW3 6LR (UK)
Tel: +44 (0) 2075947940
Email: a.amaral@imperial.ac.uk

Funding

This work was supported by a contract from the European Commission (018996), Fondo de Investigación Sanitaria (91/0016-060-05/E, 92/0319, 93/0393, 97/0035-01, 99/0034-01 and 99/0034-02), Hospital General de Albacete, Hospital General Juan Ramón Jiménez, Consejería de Sanidad del Principado de Asturias, CIRIT (1997 SGR 00079, 1999SGR 00241), and Servicio Andaluz de Salud, SEPAR, Public Health Service (R01 HL62633-01), RCESP (C03/09), Red RESPIRA (C03/011), Basque Health Department, Swiss National Science Foundation, Swiss Federal Office for Education and Science, Swiss National Accident Insurance Fund (SUVA), GSF-National Research Centre for Environment and

Health, Deutsche Forschungsgemeinschaft (DFG) (FR 1526/1-1), GSF-National Research Centre for Environment and Health, Deutsche Forschungsgemeinschaft (DFG) (MA 711/41), Programme Hospitalier de Recherche Clinique-DRC de Grenoble 2000 no. 2610, Ministry of Health, Direction de la Recherche Clinique, Ministere de l'Emploi et de la Solidarite, Direction Generale de la Sante, CHU de Grenoble, Comite des Maladies Respiratoires de l'Isere. UCB-Pharma (France), Aventis (France), Glaxo France. Estonian Science Foundation. AsthmaUK (formerly known as National Asthma Campaign UK).

Short title C11orf30 associates with poly-sensitisation Word count: 1081; Figures/tables: 3; References: 14

Abstract

A number of genetic variants have been associated with allergic sensitisation, but whether these are allergen-specific or increase susceptibility to poly-sensitisation is unknown. Using data from the large multicentre population-based European Community Respiratory Health Survey, we assessed the association between 10 loci and specific IgE and skin prick tests to individual allergens and poly-sensitisation. We found that the 10 loci associate with sensitisation to different allergens in a non-specific manner, and that one in particular, C11orf30-rs2155219, doubles the risk of poly-sensitisation (specific IgE/4 allergens: $\mathrm{OR}=1.81,95 \% \mathrm{CI} 0.80-4.24$; skin prick test/4+ allergens: $\mathrm{OR}=2.27,95 \% \mathrm{CI} 1.34-3.95)$. The association of rs2155219 with higher levels of expression of C1lorf30, which may be involved in transcription repression of interferon-stimulated genes, and its association with sensitisation to multiple allergens suggest that this locus is highly relevant for atopy.

Key words

Allergens; allergic sensitisation; genes for atopy; poly-sensitisation

Several studies have shown that genetic variants may play a role in allergic sensitisation [14], however the question of whether these are allergen-specific remains unanswered. Bonnelykke et al., in a study of over 30,000 European children and adults, identified ten loci with genome-wide significance for 'allergic sensitisation' heterogeneously defined as either positive skin prick tests (SPT) or positive serum specific $\operatorname{IgE}(\operatorname{ssIgE})$ to at least one of a range of measured indoor, outdoor, and food allergens [4]. However, they did not assess the associations between genetic variants and sensitisation to individual allergens. This report explores these associations in more detail in adults from the multi-centre European Community Respiratory Health Survey (ECRHS), examining associations of 1) ssIgE and 2) SPT to individual allergens with the 10 variants identified by Bonnelykke et al.

Methods

Adults of European descent were randomly recruited from community-based sampling frames in the ECRHS I (1992-1994) [5]. Serum total and specific IgE were measured using the Pharmacia CAP System (Pharmacia Diagnostics AB, Uppsala, Sweden) [6], and subjects considered sensitised if allergen-specific IgE concentration was $\geq 0.35 \mathrm{kU} / \mathrm{L}$. SPTs were conducted using Phazets (Pharmacia Diagnostics AB, Uppsala, Sweden), with a positive test being defined by a wheal diameter $>0 \mathrm{~mm}$ [6]. SsIgE, but not SPTs, to specific food allergens were measured at first follow-up (ECRHS II: 2000-2002). Genotyping, on blood samples collected in 2000-2002, was performed with the Illumina 610K array (Illumina, Inc., Sand Diego, CA, USA), and missing genotypes imputed (MaCH algorithm using HapMap phase II CEU panel). This analysis includes subjects with measures of IgE and SPT, who were selected at random for genotyping (i.e. this sample is not enriched with asthmatics). Ethical approval from local research ethics committees and written consent from subjects were obtained.

Logistic regression models adjusted for age and gender were used to examine associations of each of the 10 single nucleotide polymorphisms (SNPs), under the additive mode of inheritance, with ssIgE to four aeroallergens [house dust mite (HDM), Timothy grass, cat, and Cladosporium herbarum] (controls negative to all) and five mixes covering 25 common food allergens (fx5, fx6, epcx1, epcx2, epcx3 [7]; controls negative to all) (Supplementary Figure E1). To control for population stratification, models were further adjusted for study centre and the two most informative ancestry principal components as in previous published analyses [8]. Similar models were used to assess SNP associations with positive SPT to nine aeroallergens (HDM, Timothy grass, cat, Cladosporium herbarum, birch, olive tree, Alternaria alternata, ragweed, and Parietaria judaica) (controls negative to all). Associations with sensitisation to two, three or more allergens, and with log-transformed total IgE were also examined. Statistical analyses were performed using R.3.0.3, and results considered significant when $P \leq 0.005$ (corrected for 10 SNPs; two sided).

Results and discussion

Characteristics of the 1554 subjects are presented in table 1. The prevalence of IgE sensitisation and positive SPT to at least one aeroallergen was 29.5% and 36.6%, respectively, and the prevalence of IgE sensitisation to at least one food allergen was 16.2%. As shown previously, the T allele (frequency 48%) of rs2155219, in C1lorf30, increased risk of sensitisation to any allergen (sIgE: $\mathrm{OR}=1.30,95 \% \mathrm{CI} 1.09-1.54, P=0.003$; SPT : $\mathrm{OR}=1.26$, 95% CI 1.04-1.52, $P=0.016$). Furthermore, it was associated with sensitisation to each individual allergen and poly-sensitisation (sIgE/4 allergens: OR=1.81, 95\%CI 0.80-4.24, $P=0.16$; SPT/4+ allergens: $\mathrm{OR}=2.27,95 \% \mathrm{CI} 1.34-3.95, P=0.003$; Figure 1). These patterns were observed irrespective of whether sensitisation was measured by ssIgE or SPT. In a
previous report of ECRHS, agreement (kappa) statistics between ssIgE and SPT were 0.66 , $0.56,0.69$, and 0.12 for HDM, cat, Timothy grass, and Cladosporium herbarum, respectively [9]. Adjusting the associations with sIgE for total IgE or using an SPT cut-off of 3 mm did not materially alter the effect estimates. We observed a strong and significant increased risk of sensitisation to cat, especially when considering mono-sensitisation to cat, as measured by $\operatorname{ssIgE}\left(P=3 \times 10^{-5}\right)$, but this was not seen as clearly with sensitisation defined by SPT. Associations of sensitisation to foods with C11orf30-rs2155219[T] were less clear, but data were suggestive of an increasing risk with sensitisation to an increasing number of food allergens (Table 2 and Supplementary Figure E11). Although associations of sensitisation to the remaining 9 SNPs (STAT6-rs1059513, SLC25A46-rs10056340, HLA-DQB1-rs6906021, ILIRLI/IL18R1-rs3771175, TLR1/TLR6/TLR10-rs17616434, LPP-rs9865818, MYC/PVT1rs4410871, IL2/ADAD1-rs17454584, HLA-B/MICA-rs6932730) did not always reach statistical significance (Table 2; Supplementary Figures E2-E20), effect estimates were, in general, in the same direction and of similar magnitude as those reported previously [4]. Using either ssIgE or SPT, these 9 SNPs associated with sensitisation to some individual allergens, but not consistently with increased susceptibility to poly-sensitisation. Finally, the magnitude of the associations between the 10 SNPs and total IgE was similar to that found for sensitisation to at least one allergen, with C11orf30-rs2155219[T] being the only one to show a statistically significant association with total IgE (Table 2). Excluding asthmatics from the analyses did not materially alter the effect estimates.

We show that C11orf30-rs2155219[T] increases susceptibility to poly-sensitisation, and that previously reported associations of 10 SNPs with 'allergic sensitisation' are unlikely to be allergen specific, are observed with sensitisation to common indoor, outdoor and food allergens, and are present irrespective of whether measures are made by ssIgE or SPT. We
also show that only two of these 10 loci may associate with total IgE, suggesting that genetic regulation of total IgE is distinct from that for sIgE. However, our findings should be replicated before firm conclusions are drawn. The strengths of this European study are the population-based nature of the sample, the careful standardisation of measurement of atopy using both ssIgE and SPT [6], and the number and representativeness across Europe of the allergens tested. One limitation is the sample size, but we observed effect estimates for ssIgE and positive SPT similar to those reported by Bonnelykke et al. [4], even when they failed to reach statistical significance. Although the function of C11orf30-rs2155219[T] is unknown, its strong association with the expression of C11orf30 [4], and its association with sensitisation to multiple allergens, whether measured by ssIgE or SPT, strengthen the evidence that this region is highly relevant for atopy. The protein encoded by C1lorf30, thought to act as a transcription repressor of interferon-stimulated genes [10], shows medium to high expression levels in several organs, including the skin and the lung [11]. Our findings plus reported associations of C11orf30 with other allergic and inflammatory diseases, such as atopic dermatitis [12], asthma [13], allergic rhinitis [2], and Crohn's disease [14], indicate that further elucidation of the biological function and regulation of this locus is warranted.

Author contributions

A.F.S.A. and D.L.J. designed the study, analysed the data, and drafted the manuscript. All authors critically revised the manuscript.

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

1. Liu X, Beaty TH, Deindl P, Huang SK, Lau S, Sommerfeld C, et al. Associations between specific serum IgE response and 6 variants within the genes IL4, IL13, and IL4RA in German children: the German Multicenter Atopy Study. The Journal of allergy and clinical immunology 2004;113(3):489-95.
2. Ramasamy A, Curjuric I, Coin LJ, Kumar A, McArdle WL, Imboden M, et al. A genomewide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. The Journal of allergy and clinical immunology 2011;128(5):996-1005.
3. Li X, Ampleford EJ, Howard TD, Moore WC, Li H, Busse WW, et al. The C11orf30LRRC32 region is associated with total serum IgE levels in asthmatic patients. The Journal of allergy and clinical immunology 2012;129(2):575-8, 78 e1-9.
4. Bonnelykke K, Matheson MC, Pers TH, Granell R, Strachan DP, Alves AC, et al. Metaanalysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nature genetics 2013;45(8):902-6.
5. European Community Respiratory Health Survey IISC. The European Community Respiratory Health Survey II. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology 2002;20(5):1071-9.
6. Chinn S, Jarvis D, Luczynska C, Burney P. Individual allergens as risk factors for bronchial responsiveness in young adults. Thorax 1998;53(8):662-7.
7. Kummeling I, Mills EN, Clausen M, Dubakiene R, Perez CF, Fernandez-Rivas M, et al. The EuroPrevall surveys on the prevalence of food allergies in children and adults: background and study methodology. Allergy 2009;64(10):1493-7.
8. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, consortium-based genomewide association study of asthma. The New England journal of medicine 2010;363(13):1211-21.
9. Bousquet PJ, Chatzi L, Jarvis D, Burney P. Assessing skin prick tests reliability in ECRHS-I. Allergy 2008;63(3):341-6.
10. Ezell SA, Polytarchou C, Hatziapostolou M, Guo A, Sanidas I, Bihani T, et al. The protein kinase Akt1 regulates the interferon response through phosphorylation of the transcriptional repressor EMSY. Proceedings of the National Academy of Sciences of the United States of America 2012;109(10):E613-21.
11. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al. Towards a knowledge-based Human Protein Atlas. Nature biotechnology 2010;28(12):1248-50.
12. Esparza-Gordillo J, Weidinger S, Folster-Holst R, Bauerfeind A, Ruschendorf F, Patone G, et al. A common variant on chromosome 11 q 13 is associated with atopic dermatitis. Nature genetics 2009;41(5):596-601.
13. Ferreira MAR, Matheson MC, Duffy DL, Marks GB, Hui JN, Le Souef P, et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet 2011;378(9795):1006-14.
14. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nature genetics 2008;40(8):955-62.

Table 1. Characteristics of subjects from the random sample of the European Community Respiratory Health Survey with measures of specific IgE or skin prick tests and genotype data for the 10 single nucleotide polymorphisms* considered in the current analysis.

	N = 1554
Age in 1992 (years), median (interquartile range)	34.1 (27.9-40.1)
Sex (\%)	
Females	51.3\%
Males	48.7\%
Country (\%)	
Spain	21.0\%
France	16.9\%
Norway	14.7\%
Sweden	13.6\%
Switzerland	10.5\%
Germany	10.3\%
UK	9.5\%
Estonia	3.5\%
Physician diagnosed asthma, in 1992 (\%)	5.7\%
Hay fever or nasal allergies, in 1992 (\%) \dagger	24.6\%
Total serum IgE in 1992 (kU/L), median (interquartile range) \ddagger	28.1 (11.3-88.1)
Serum specific IgE to at least one aeroallergen, in 1992 (\%) \ddagger \$	29.5\%
Serum specific IgE to at least one food allergen, in 2002 (\%)£	16.2\%
Positive skin prick test to at least one aeroallergen, in 1992 (\%)¥	36.6\%
*rs2155219, rs1059513, rs10056340, rs6906021, rs3771175, rs17616434, rs9865818,	
rs4410871, rs17454584, rs6932730. \dagger Nine subjects had missing data for hay fever or nasal	
allergies. \ddagger One hundred and eighteen subjects did not provide serum. \$Four allergens	
considered: house dust mite, Timothy grass, cat, and Cladosporium herbarum. £Five hundred	
and five subjects were not tested for food allergen serum specific IgE. ¥Nine allergens	
considered: house dust mite, Timothy grass, cat, Cladosporium herbarum, birch, olive tree,	
Alternaria alternata, ragweed, and Parietaria judaica. Seventy four subjects did not perform	
skin prick tests.	

Table 2. Odds ratios (OR) and 95% confidence intervals (CI) for the association between ten single nucleotide polymorphisms (SNP) and IgE sensitisation, positive skin prick test, and total IgE.

				Bonnelykke et al.	Present study								
SNP	Effect/ Alternative alleles	Effect allele frequency	Nearest gene	$\begin{gathered} \text { Allergic } \\ \text { sensitisation* } \\ \text { OR } \\ (95 \% \text { CI) } \end{gathered}$	Specific IgE to at least 1 aeroallergen \dagger OR ($95 \% \mathrm{CI}$)	\boldsymbol{P}		\boldsymbol{P}	Specific IgE to at least 1 mix of food allergens\\| OR (95\% CI)	\boldsymbol{P}	$\begin{gathered} \text { Total IgE } \\ \beta \# \\ (95 \% \mathrm{CI}) \end{gathered}$	\boldsymbol{P}	
rs2155219	T/G	0.48	C11orf30	$\begin{gathered} 1.18 \\ (1.13-1.22) \end{gathered}$	$\begin{gathered} \hline 1.30 \\ (1.09-1.54) \end{gathered}$	0.003	$\begin{gathered} 1.26 \\ (1.04-1.52) \end{gathered}$	0.016	$\begin{gathered} 1.17 \\ (0.90-1.51) \end{gathered}$	0.249	$\begin{gathered} \hline 0.08 \\ (0.03,0.12) \end{gathered}$	0.002	
rs1059513	T/C	0.89	STAT6	$\begin{gathered} 1.30 \\ (1.21-1.39) \end{gathered}$	$\begin{gathered} 1.34 \\ (1.03-1.77) \end{gathered}$	0.035	$\begin{gathered} 1.29 \\ (0.97-1.74) \end{gathered}$	0.081	$\begin{gathered} 1.26 \\ (0.83-1.98) \end{gathered}$	0.290	$\begin{gathered} 0.10 \\ (0.02,0.17) \end{gathered}$	0.011	
rs10056340	T/G	0.81	SLC25A46	$\begin{gathered} 0.83 \\ (0.78-0.87) \end{gathered}$	$\begin{gathered} 0.77 \\ (0.62-0.95) \end{gathered}$	0.015	$\begin{gathered} 0.84 \\ (0.66-1.06) \end{gathered}$	0.134	$\begin{gathered} 0.79 \\ (0.57-1.09) \end{gathered}$	0.148	$\begin{gathered} -0.03 \\ (-0.09,0.03) \end{gathered}$	0.347	
rs6906021	T/C	0.53	$\begin{aligned} & H L A- \\ & D Q B 1 \end{aligned}$	$\begin{gathered} 0.87 \\ (0.83-0.90) \end{gathered}$	$\begin{gathered} 0.86 \\ (0.73-1.03) \end{gathered}$	0.102	$\begin{gathered} 0.90 \\ (0.74-1.09) \end{gathered}$	0.287	$\begin{gathered} 1.01 \\ (0.78-1.32) \end{gathered}$	0.920	$\begin{gathered} -0.02 \\ (-0.07,0.03) \end{gathered}$	0.360	
rs3771175	A/T	0.14	IL1RL1/ IL18R1	$\begin{gathered} 0.83 \\ (0.78-0.88) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.70-1.14) \end{gathered}$	0.384	$\begin{gathered} 0.73 \\ (0.55-0.97) \end{gathered}$	0.032	$\begin{gathered} 0.91 \\ (0.61-1.33) \end{gathered}$	0.646	$\begin{gathered} 0.00 \\ (-0.07,0.07) \end{gathered}$	0.956	
rs17616434	T/C	0.71	TLR1/TLR 6/TLR10	$\begin{gathered} 1.23 \\ (1.18-1.29) \end{gathered}$	$\begin{gathered} 0.99 \\ (0.82-1.21) \end{gathered}$	0.942	$\begin{gathered} 1.01 \\ (0.81-1.25) \end{gathered}$	0.959	$\begin{gathered} 0.88 \\ (0.66-1.19) \end{gathered}$	0.410	$\begin{gathered} 0.00 \\ (-0.05,0.06) \end{gathered}$	0.928	
rs9865818	A/G	0.56	LPP	$\begin{gathered} 0.89 \\ (0.86-0.92) \end{gathered}$	$\begin{gathered} 0.83 \\ (0.70-0.99) \end{gathered}$	0.033	$\begin{gathered} 0.80 \\ (0.66-0.96) \end{gathered}$	0.015	$\begin{gathered} 0.92 \\ (0.61-1.20) \end{gathered}$	0.548	$\begin{gathered} -0.03 \\ (-0.08,0.02) \end{gathered}$	0.251	
rs4410871	T/C	0.28	$\begin{gathered} M Y C / P V T \\ 1 \end{gathered}$	$\begin{gathered} 1.14 \\ (1.09-1.19) \end{gathered}$	$\begin{gathered} 0.95 \\ (0.79-1.14) \end{gathered}$	0.599	$\begin{gathered} 0.88 \\ (0.72-1.08) \end{gathered}$	0.226	$\begin{gathered} 0.82 \\ (0.61-1.08) \end{gathered}$	0.165	$\begin{gathered} 0.00 \\ (-0.05,0.05) \end{gathered}$	0.981	
rs17454584	A/G	0.77	$\begin{gathered} I L 2 / A D A D \\ 1 \end{gathered}$	$\begin{gathered} 0.87 \\ (0.83-0.91) \end{gathered}$	$\begin{gathered} 0.82 \\ (0.67-1.00) \end{gathered}$	0.048	$\begin{gathered} 0.78 \\ (0.63-0.96) \end{gathered}$	0.022	$\begin{gathered} 0.75 \\ (0.56-1.00) \end{gathered}$	0.051	$\begin{gathered} 0.04 \\ (-0.01,0.10) \end{gathered}$	0.133	
rs6932730	T/C	0.83	HLA-B/ MICA	$\begin{gathered} 1.14 \\ (1.09-1.20) \end{gathered}$	$\begin{gathered} 1.06 \\ (0.85-1.32) \end{gathered}$	0.607	$\begin{gathered} 1.06 \\ (0.83-1.35) \end{gathered}$	0.660	$\begin{gathered} 1.34 \\ (0.95-1.92) \end{gathered}$	0.107	$\begin{gathered} 0.00 \\ (-0.07,0.06) \end{gathered}$	0.898	

*allergic sensitisation defined as IgE sensitisation and/or positive skin prick test to at least one allergen. Bonnelykke et al. Nature Genetics 2013;45(8):902-6.
\dagger taeroallergens: house dust mite, Timothy grass, cat, and Cladosporium herbarum. $\operatorname{IgE}<0.35 \mathrm{kU} / \mathrm{L}(\mathrm{n}=1011)$ vs $\operatorname{IgE} \geq 0.35 \mathrm{kU} / \mathrm{L}(\mathrm{n}=424)$.
\ddagger aeroallergens: house dust mite, Timothy grass, cat, Cladosporium herbarum, birch, olive tree, Alternaria alternata, ragweed, and Parietaria judaica. Wheal diameter $=0$ $\mathrm{mm}(\mathrm{n}=796)$ vs wheal diameter $>0 \mathrm{~mm}(\mathrm{n}=460)$.
$\| f o o d$ allergens: fx5, fx6, epcx1, epcx2, epcx3. fx5: cow's milk, egg white, fish, soya bean, peanut, wheat; fx6: sesame, buckwheat, corn, rice; epcx1: hazelnut, walnut, celery, tomato, carrot; epcx2: mustard, shrimp, sunflower seed, poppy seed, lentil; epcx3: banana, kiwi, apple, peach, melon. IgE $<0.35 \mathrm{kU} / \mathrm{L}(\mathrm{n}=803) \mathrm{vs} \operatorname{IgE} \geq 0.35 \mathrm{kU} / \mathrm{L}(\mathrm{n}=156)$. \#log-transformed total IgE, $\mathrm{n}=1436$.

Figure legend

Figure 1. Odds ratios (OR) and 95\% confidence intervals for the association between C11orf30-rs2155219[T] and: A) serum specific IgE to at least one of four common allergens (house dust mite, Timothy grass, cat, and Cladosporium herbarum); B) positive skin prick test to at least one of nine common allergens (house dust mite, Timothy grass, cat, Cladosporium herbarum, birch, olive tree, Alternaria alternate, ragweed, and Parietaria judaica. Numbers on the X axis correspond to number of sensitised participants.

Figure 1. Odds ratios (OR) and 95\% confidence intervals for the association between C11orf30rs2155219[T] and: A) serum specific IgE to at least one of four common allergens (house dust mite, Timothy grass, cat, and Cladosporium herbarum). B) positive skin prick test to at least one of nine common allergens (house dust mite, Timothy grass, cat, Cladosporium herbarum, birch, olive tree, Alternaria alternata, ragweed, and Parietaria judaica). Numbers on the X axis correspond to number of sensitised participants.

