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We present a magic trick that can be performed anytime and without preparation. This trick may be

perform to one individual or to a whole audience, and involves the spectators counting through a pack of

cards until they reach a final chosen card. Yet, despite this seemingly random choice of cards, the magician

is still able to predict the spectator’s chosen card. The trick is known as ‘Kruskal’s Count’ and was invented

by the American mathematician and physicist, Martin Kruskal [R] [W] and described by Martin Gardner

[FG] [G]. Although this trick will not work everytime, we will show that the probability of success is around

85%.

The Trick

A spectator is invited to shuffle a pack of cards as many times as they like. The spectator is then asked

to secretly pick a number between 1 and 10 and to count along as cards from the deck are displayed. The

magician may choose to display the cards one at a time, or he may choose to display all 52 cards together.

The magician explains that the card in the position of the spectator’s secret number becomes the spectator’s

first chosen card. The spectator is then told to use the value of that chosen card as his new number, and

to repeat the process until the magician runs out of cards. Here, aces are worth 1; Jack, Queen, King are

worth 5; and all other cards take their face value.

Yet, despite this seemingly random path through a shuffled pack of cards, the magician is able to predict

the spectator’s last chosen card. Watch and interact with a video of the trick being performed here [Gr].

The Secret

How is this done? Well, unknown to the spectator, the magician also picks an initial number between 1 and

10, and proceeds to go through the same process. He might be doing this as he displays the cards. And

although the magician may not have picked the same number as the spectator, there is a high probability

they will land on the same final card. This is because, even though the magician and the spectator begin on

different paths, there will come a point, simply by coincidence, when the two players land on the same card.

And from that point on the two paths will become synchonised, meaning both players end on the same final

card.

Don’t believe me? Then I invite you to try this out for yourself. Grab a pack of cards and use a counter

to mark the position of each player, or try this online version [MF1]. You will find that, more often than

not, each player will land on the same final card.

In fact we will show that, if we assume the initial numbers are equally likely to be chosen, then the probability

of success is 84%. And we can increase that chance slightly, to 85%, if the magician chooses 1 as his initial

number.
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Furthermore, we will now show that, if N is the number of cards, and x is the mean average card value,

then the probability of success may be approximated with the simple formula

P(success) = 1−

(

x2 − 1

x2

)N

The Probability of Success

Calculating the probabilty of success is not an easy thing to do. So we will simplify the problem in a number

of ways. The following is based on [LRV].

First, we will assume the cards are labelled with a number from N
+ = {1, 2, 3, . . .}; and specifically for

Kruskal’s Count, from the numbers 1 to 10; and that these labels are written independently. This assumption

would not be true for a real deck of cards as the probability of a card’s label will depend on which cards

have already been revealed.

Secondly, we assume each card is labelled with values determined by a geometric distribution, and that

each player chooses their initial number with the same distribution. In other words, the probability that a

card is labelled with the number k is given by pk = (1 − p)pk−1, for some 0 6 p 6 1. If x is the expected

card value, it is a standard result for the geometric distribution that x = 1
1−p

. In other words, p = x−1
x

, and

we may now write pk = 1
x

(

x−1
x

)k−1
. For Kruskal’s Count, face cards are worth 5, so we have the average

card value of x = 70/13.

The use of the geometric distribution rather than the uniform distribution, as one might more reasonably

expect, simplifies calculation while still giving us an excellent approximation of the true probability. This

is due to the Law of Large Numbers and the fact that we are giving the geomettric distribution the same

expected value as the uniform distribution.

Now consider a deck of N cards. Let t be the ‘coupling time’, i.e. the position in the deck when

the paths of magician and spectator first coincide. For example, P[t = 1] is the probability that coupling

happens on the first card. This would be the probability that both players choose an initial value of 1, and

they would each do so with a geometric distribution, so;

P[t = 1] = p21 =
1

x2
.

Kruskal’s Count fails if the coupling time is greater than the number of cards. That means the proba-

bility of failure is P[t > N ], and;

P[t > N ] = P[t > N |t = 1]P[t = 1] + P[t > N |t 6= 1]P[t 6= 1]

=

(

0×
1

x2

)

+ P[t > N |t 6= 1]

(

1−
1

x2

)

= P[t > N − 1]

(

x2 − 1

x2

)

Here we use the fact that P[t > N |t = 1] = 0, and the memoryless property of a Markov chain of geometric

distributions which means P[t = k|t > l] = P[t = k − l].
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Continuing in this way we find P[t > N ] =
(

x2
−1
x2

)N

. In other words,

P(success) = 1−

(

x2 − 1

x2

)N

.

Applying this result to Kruskal’s Count, where x = 70/13, and we find P(success) ≈ 83.88%.

If, instead of choosing an initial value randomly, the magician chooses an initial value of 1, a similar

calculation will show that;

P(success) = 1−

(

x− 1

x

)(

x2 − 1

x2

)N−1

;

which in the case of Kruskal’s Count would give P(success) ≈ 86.41%.

We can verify these results with a Monte Carlo simulation of a shuffled deck of cards. Imagine the

magician chooses the first card while the spectator picks their initial value uniformly between 1 and 10.

Then, for 106 trials, the proportion of decks where n/10 initial values end on the same card as the magician

is;

n Proportion

10 58.39%

9 7.98%

8 7.82%

7 6.95%

6 5.96%

5 4.95%

4 3.79%

3 2.64%

2 1.38%

1 0.14%

giving an average probability of success of 85.35%. A difference of 1.06% from the geometric distribution

approximation.

Note, this is a value of success averaged over all possible decks. In fact we can see some decks are

even more successful than this, with 58.39% of decks having every initial choice land on the same final card.

Which means, if you perform this trick to an audience, every single person in that audience will land on the

same card!

Expected Coupling Time

We may also calculated the expected coupling time; that is to say, the expected value of t. Under the

assumptions of a geometric distribution we showed that P[t > N ] =
(

x2
−1
x2

)N

. So now it is a simple matter
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to calculate the more specific probability P[t = k] to be;

P[t = k] = P[t > k − 1]− P[t > k]

=

(

1−
x2 − 1

x2

)(

x2 − 1

x2

)k−1

=
1

x2

(

x2 − 1

x2

)k−1

We use the standard result that
∑

∞

k=1 kq
k−1 = 1

(1−q)2 for 0 6 q 6 1, to calculate the expectation of t,

giving the following simple answer;

E[t] =

∞
∑

k=1

kP[t = k]

=
1

x2

∞
∑

k=1

k

(

x2 − 1

x2

)k−1

=
1

x2

(

1−
x2 − 1

x2

)

−2

= x2.

These calculations show that the coupling time t is also a geometric distribution with p = x2
−1
x2 and

expectation x2. So in Kruskal’s Count, with x = 70/13, we see that the expected coupling time E[t] ≈ 29.

How Many Final Cards

If we placed a counter on each of the ten initial starting positions, then followed Kruskal’s counting procedure

for each counter, how many final positions would we end up with? As we have seen by simulation, 58.39% of

decks have all ten initial cards end on the same final card. In fact, for a regular deck of cards, we may have

no more than six final placements. Here are the proportions of decks, from simulation, for each number of

final placements:

# Final Placements Proportion

1 58.39%

2 39.51%

3 2.10%

4 0.005%

5 0

6 0

As you can see by this simulation, 5 are more final cards becomes extremely rare.

It is easy to show that we may have no more than six final placements, as described by Pollard in

[P1]. Place a counter on one of the initial positions and start the counting procedure. Let the sum of the

card values on which it lands be the length of its path, this includes the final card which would move it
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beyond the end of the pack. For a regular deck of cards, the shortest possibly path length for each starting

position would be if the counter ended on card 53. And the shortest sum of seven path lengths would be

using starting positions 4 to 10. So, the shortest sum of seven path lengths is 322, but the total value of

the whole pack is only 280. This means some counters must land on the same card before reaching card 53,

meaning some of the seven counters become synchronised giving fewer than seven final positions.

For six piles, the shortest sum of six path lengths is 273, and there are arrangements that fit this value, with

the remaining four cards having a total value of 7. Like Pollard, we will leave these to the interested reader

to find.

The Final Card Placement

Clearly, the final chosen card will be one of the last ten cards. By simulation, the proportion of trials finishing

in each position were found to be;

Position Proportion

52 18.50%

51 17.15%

50 15.66%

49 14.25%

48 12.86%

47 7.15%

46 5.79%

45 4.31%

44 2.88%

43 1.43%

These figures can be approximated using Bayes’ Theorem as follows:

Let a be the label of the card; each card may be labelled semi-uniformly with probabilities; 1/13, 1/13,

1/13, 1/13, 4/13, 1/13, 1/13, 1/13, 1/13, 1/13. Let b be the placement of the card, numbering the card

placements from the end, with b = 1 being the last card. Assume b is chosen uniformly with probability

1/10.

A card will be a final card if its label exceeds its placement, i.e. a > b. The probability of this condition will

be;

P(a > b) =
10
∑

k=1

P(a > k)P(b = k)

=
1

10

(

1 +
12

13
+

11

13
+

10

13
+

9

13
+

5

13
+

4

13
+

3

13
+

2

13
+

1

13

)

=
7

13
.
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By Bayes’ Theorem:

P(b = n|a > b) =
P(a > b|b = n)P(b = n)

P(a > b)
,

where

P(a > b|b = n) =

10
∑

k=n

P(a = k);

giving;

P(b = 1|a > b) = (1/10)/(7/13) = 13/70 = 18.57%;

P(b = 2|a > b) = (12/130)/(7/13) = 12/70 = 17.14%;

P(b = 3|a > b) = (11/130)/(7/13) = 11/70 = 15.71%;

P(b = 4|a > b) = (10/130)/(7/13) = 10/70 = 14.29%;

P(b = 5|a > b) = (9/130)/(7/13) = 9/70 = 12.86%;

P(b = 6|a > b) = (5/130)/(7/13) = 5/70 = 7.14%;

P(b− 7|a > b) = (4/130)/(7/13) = 4/70 = 5.71%;

P(b = 8|a > b) = (3/130)/(7/13) = 3/70 = 4.29%;

P(b = 9|a > b) = (2/130)/(7/13) = 2/70 = 2.86%;

P(b = 10|a > b) = (1/130)/(7/13) = 1/70 = 1.43%;

as expected.

Some Variations

Our formula for approximating the probability of success of Kruskal’s Count was reasonably accurate, being

within 1.06% of simulation. So let’s consider some variations of the main trick.

In the standard version of Kruskal’s Count, face cards were given a value of 5. If face cards were given

a value of 10 instead, then the average card value is x = 85/13. And if the magician picks the first card,

our formula will give the probability of success as 74.67% - a much lower probability of success. Simulation

gives this value as 72.21%, a difference of 2.46%.

If the three face cards had values 11, 12 and 13 then x = 7. Assuming the magician picks the first card, our

formula will give the probability of success as 70.05%. Simulation gives this value as 68.48%, a difference of

1.57%.

A variant with a much higher probability of success would be if we spelled out the names of the cards,

so now an ‘ace’ would have a value of 3 as we spelled out A-C-E. ‘Jack’ would have a value of 4, ‘three’

would have a value of 5 and so on. In that case, the average card value is now 4. Assuming the magician

picks first, our formula gives a probability of success of 97.21%. Simulation gives this value as 95.66%, a

difference of 1.55%.

Note that these simulations work under the assumption that the spectator chooses his initial value with

uniform probability. In real-life this would clearly not be the case, and when asked to pick a number between
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1 and 10 the most common choice is 7. Which means, if the magician picks 7 as his initial value, he can

increase his chances of success even more!

Another fun variation is to use a piece of text instead of cards. For example, pick a word from the first

sentence from this piece of text from the hitch-hiker’s guide to the galaxy:

‘It is known that there are an infinite number of worlds, simply because there is an infinite amount

of space for them to be in it. However, not every one of them is inhabited. Therefore, there must

be a finite number of inhabited worlds. Any finite number divided by infinity is as near to nothing

as makes no odds, so the average population of all the planets in the Universe can be said to be

zero. From this it follows that the population of the whole Universe is also zero, and that any

people you may meet from time to time are merely the products of a deranged imagination.’

Use the length of the word as your value. Count through the paragraph until you reach your next word,

and repeat until you reach your final chosen word. In this case, your final chosen word would be ‘products ’.

Finally, more serious applications of these methods are found in cryptography, such as Pollard’s rho

Factorization Method [P2] and ‘Kangaroo’ (or ‘lambda’) method for solving the Discrete Logarithm problem:

given the generator g of a cyclic group G, and an element h ∈ G, find x such that gx = h. Here x is a secret

message and h is the encrypted message, [MT]. The essential idea being; if we know the total of the jumps

made by each participant, we can deduce the other participant’s starting point. An online demonstration of

this method can be found at [MF2].

With thanks to Colin Wright and Mathieu Nogaret for helping me with the simulations, and for their

constructive conversations.
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