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Relational verification

» Two programs: relative correctness, program equivalence,
translation validation. . .

» Two runs of the same program: stability, information flow
security, truthfulness. . .
For security and privacy:
» Two programs: provable security

» Two runs of the same program: side-channel resistance,
differential privacy

Programs are probabilistic




» S. Halevi: A plausible approach to computer-aided
cryptographic proofs

» M. Bellare and P. Rogaway: Code-Based Game-Playing
Proofs and the Security of Triple Encryption
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General Information

Original papers on all technical aspects of cryptology are solicited for submission to CRYPTO 2011, the 31st
Annual International Cryptology Conference. Besides the usual topics, submissions are also welcome on
topics not routinely appearing at recent CRYPTOs, including cryptographic work in the style of the CHES
workshop or CSF symposium. CRYPTO 2011 is sponsored by the International Association for Cryptologic
Research (IACR), in cooperation with the Computer Science Department of the University of California,
Santa Barbara.



Computer-aided cryptography

Develop tool-assisted methodologies for design, analysis, and
implementation of cryptographic constructions (primitives and
protocols)



Facets of computer-aided cryptography
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Symbolic security

Provable security in computational model
Side-channel resistance

Verified implementations

Automated synthesis of secure constructions
Automated synthesis of physical attacks
Automated analysis cryptographic of assumptions
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Benefits

Formal methods for cryptography
» higher assurance
» smaller gap between provable security and crypto
engineering
» new proof techniques
Cryptography for formal methods
» Many new and challenging examples
» New theories
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Probabilistic couplings (Doeblin, 1938)

» Given: two distributions ;.1 over A; and o over A,

» Produce: distribution 1. over Ay x A, that captures the
behavior of 111 and p» (via marginals)

» Such that relation R is satisfied

Coupling fair coins: let 11, 2 be u.i.d. over {0, 1}.
» trivial coupling: u(x,y) = &
» equality coupling: u(x, x) = 3 and u(x, ~x) =0
» inequality coupling: p(x, —x) = % and u(x,x) =0




One-dimensional random walk
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Start at initial position s
Each iteration, flip a fair coin
Heads: p < p + 1

Tails: p+ p—1
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Goal: show memorylessness, i.e. two random walks
starting at s; and s, converge at the limit




Coupling the walks to meet

Assume s, — 51 = 2K.

Case p; = po: walks have met
» Arrange samplings x; = xo
» Continue to have p; = p»




Coupling the walks to meet

Assume s, — 51 = 2K.

Case p; = po: walks have met
» Arrange samplings x; = xo
» Continue to have p; = p»

Case p; # p-: walks have not met
» Arrange samplings x; = —xo
» Walks make mirror moves




Proving memorylessness

Invariant: (3i < t. pi(i) = p2(i)) = p1(t) = po(t)
Consequence: for every number of steps t and position x,
IPr{ps (t) = x] — Pr[pa(t) = XI| < Pr[3i < t. py(i) = s1 + K]

(Question: why not py (i) = po(i)?)



Shift coupling: Dynkin’s trick

» Input: positionin {1,...,9}

» Repeat:
e Draw uniformly random card € {1,...,9}
e Go forward that many steps

» Output last position before crossing 100
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In pictures
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Output last position: 99




Starting at a different position
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Starting at a different position
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Starting at a different position
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Starting at a different position
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Starting at a different position

RN BEN R B
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How close are the two output distributions?




Combine first process and second process
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Combine first process and second process
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Combine first process and second process
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Combine first process and second process
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Combine first process and second process
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Combine first process and second process
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Combine first process and second process

\Y
SHUN-R B B B B
A\



Combine first process and second process
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Combine first process and second process
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Combine first process and second process
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Combine first process and second process
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Combine first process and second process
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Combine first process and second process
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Combine first process and second process
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Consequence: for every number of steps f and position x,

Prip:(t) = x] = Prlpz(t) = x]| < Pr(3i,j < t. p1(i) = p2(j)]

(where py and p» are taken from the coupled process)



Random walk over a circle

» Start at position s € {0,1,....n—1}
» Each iteration, flip a fair coin

e Heads: increment position (modulo n)
o Tails decrement position (modulo n)

» Return: last edge (r,r + 1) to be traversed



Random walk over a cycle
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Random walk over a cycle
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Random walk over a cycle
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Random walk over a cycle
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Random walk over a cycle
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Random walk over a cycle
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Random walk over a cycle

How is the returned edge distributed
relative to starting position s?




Preliminaries

Discrete sub-distributions: Distr(A) is the set of functions
p:A—[0,1] s.t.

» supp(p) ={aec Al u(a) > 0} of nis discrete;

> |u| = > ca (@) of 11 is defined and verifies || < 1.

Marginals: given ;. € Distr(Ay x Ay) define 71 (p) € Distr(Aq)
and m(p) € Distr(Az) by

mi(p)(a) = > wlaa)  ma(u)(a) = Y war,a)

arcAo aj €A,



R-couplings

Let R C Ay x Ay, and p4 € Distr(A¢) and pp € Distr(A2). Then
p € Distr(Ay x Az) is a R-coupling for (p1, i) iff:

» marginals: () = py and mo(p) = po
» support: supp(p) € R
Notation: 1 4 (111 & o), Or g (g & po)

Original definition
» does not include support condition (T-coupling)
» restricted to full distributions




(In)equality couplings

Let Ay = A, = A

Stochastic dominance: Assume (A, <) is a partial order.
Then the following are equivalent:

S ERVCRATY,

» forevery a, i({x € Z | x > a}) < up({x € Z | x > a})

Equality couplings: Assume || = |u2| = 1. Then the
following are equivalent:

> H1 = p2

> A= (g & op2)

» forevery ac A, x,—a— x,—a (111 & p2)



Fundamental theorem of ~R-couplings

Let E; CAjand E; C As. Let RC Ay x As s.t. every
(a1, a2) € A x Ag,

(al,a2) e Rhnai€e By = a e B

If <g (11 & pp) then Pr,, [Eq] < Pry,[Es].

» Bridging step: if (a1,a2) € R = (a; € Ey & a» € E»), then

Prm [E1] = Prﬂz[EZ]

» Failure event: if (a1,a) e RAay € Ey = a» € Eo U F, then

Prm [E1] - Prltz[Ez] < Prltz[F]




Existence of R-couplings (Strassen, 1965)

For every 111 € Distr(Ay) and i € Distr(Agz) s.t. |pq| = |pe| =1,
the following are equivalent:

> <R (1 & p2)

> forevery X C Ay, pu1(X) < p2(R(X))



R-couplings and optimal transport

< (11 & pp) iff the maximum flow in the following network is 1:




Sequential composition of R-couplings

Composition of probabilistic mappings
Let 1 € Distr(A) and M : A — Distr(B); set E,[M] € Distr(B)

Eu[MI(b) = > n(a)M(a)(b)

aesupp(p)

Assume that:

> g (U1 & p2)

> <«s (Mi(ar) & Mo(ao)) for every (a1, a2) € R
Then <5 (E,, [Mi] & E,,[M-]) where:

» RC A xAand SC By x By

» 11 € Distr(A¢) and M; : Ay — Distr(By)

» up € Distr(A2), and M, : Ao — Distr(B>)



Other properties of [-couplings

» Trivial couplings:
<1 (1 & p2) iff [pa| = [pz|
» Monotonicity:
if n 45 (11 & p2) and R C Sthen p «g (g & po)
» Closed under relation composition:
if «pg (11 & pz) and «s (u2 & p3) then <gos (1 & pa)
» Closed under convex combinations:
if g (11, & ;) foreveryicland ) ;. p; <1 then
<R (X Pitn,i & 3 i) Pitiz,i)



Summary and outlook

Relational verification matters

Couplings naturally support relational reasoning
Probabilities are hidden

» Some examples need more general notions of couplings
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Programming language

¢ ::= abort abort
| skip noop
| x e deterministic assignment
| x & d probabilistic assignment
| ¢ c sequencing
| if ethen c else ¢ conditional
| while edo ¢ while loop
| x < F(e) procedure call

Semantics: for every initial memory m € Mem, compute output
sub-distribution of memories [s],, € Distr(Mem)



Denotational semantics

[abort],,, =0
[[Skip]]m =1
[x < €elm = Limpxie],]

[x & d]]m - EVN[[d]]m[]lm[xev]]
[ers eal m = Eenfeyymyllc2] (€]
oy iflely=T

if e th I =
[if ethen ¢y else ¢3],, {[[Czﬂm it [e],, = L

[while edo c],,, = !lenlgI <E§~[[(if e then c)i],, [[if € then abort]}g])



pRHL judgments and validity

Judgment:
): Ci~C :d=V

where &, W C Mem x Mem

Validity: for every (mq, mo) s.t. (mq,my) € &,

< ([e1], & [c2]m,))

Proof rules:

» structural rules: apply to all programs
» 2-sided rules: both programs have the same specific shape
» 1-sided rules: one program has a specific shape



Structural rules

Eci~c:d =V ®—= ¢ V' — v

[CONSEQ]
1 d(c2)(2)) =
vars(©) N (mod(cy)(1) Umod(c2)(2)) ®[FRAME]
':C1NCQZ¢/\G:>\U/\6
L -~ : \U ~ :q) \U
Fci~c b= Foi~C:P= [CASE]

‘:C1NCQZ(D1\/(D2:>\U



Two-sided rules

Eci~C:9=>0 Ed~c:0=WV
Ecici~CouCy:d=V

[SEQ]

[AsSN]
= Xq €1 ~ Xp + 62 V[er(1)/xi(1)][e2(2) /x2(2)] = V
¢ = e(1) = e(2)
}:C1 NCgS¢/\61<1>:>W
Eci~ch:dA-e (1) =V
= if ey then ¢y else ¢} ~if exthencoelse ¢, : & = W

[CoND]

0 = e(1) =e(2) Eci~Cc:0MNe(1)=0
= while e do ¢y ~ while e do ¢, : © = © A —e¢(1)

[WHILE]



One-sided rules

= X1 ey ~ skip < Ve, (1)/x, (1)] = w o507 H]

Fci~C:dAe(1)=>V
Ecdi~c:dA-e(1)=V
=ifesthencielseci ~c: =

[COND-L]
U

Ecy~skip:©Ae (1) =0 ast(while ey do ¢)
= while e; do ¢y ~ skip: © = © A —e( (1)

[WHILE-L]



Random samplings

<o ([1] & [p2])
A
S =Vvq: T1, Vo . 7_27 0 — \U[V1/X1<1>][V2/X2<2>]
EXi &~ X & pp i ®=V

[RAND]

. [RAND-L]
= X1 & dy ~ sKip : Vvy € supp(dy), V[vi/x1(1)] = V¥



Examples
Optimistic sampling
EX1&EZpXi =X OK~Xo & Zp: T = X1 =X
Proof: by [Ass-L], must show
EX1&EZp~Xxo & Lp: T=X10Kk=x
By [RAND] with /u(x, xo) = M%, must show
VX1 Xo, X DK=Xo — X1 DK =Xo
Eager sampling = ¢ ~ ¢, : z; = 2o = x4 = xo where

C1
Co

Xy & Zp; it 2z = 0 then zy <— zy + x4 else xy + z
if z2 = 0 then Xo & Zip; Zo < Zo + Xo else xo + 2o

(> >



Adversaries

VIayvz- ):y%F(Z)Ny%F(Z)::Z/\Wj:y/\\U

[ADV]
‘: X{ < .A(61) ~ Xp 4— .A(eg) = NO = =, NO

where © = W A egmem , and == z(1) = z(2).



Product programs

» Every proof in pRHL builds a product program
» Product programs can be maded explicit

|:C1NCZZ(D:5\UMC
Example:

Ecoi~C: NP =V
‘:C1NC22¢/\ﬂq)/:>\UMCﬁ

Eci~C:® = WV~if d then c* else ¢

Application: Dynkin’s trick
» product program simulates two programs
» bound probability of coinciding in product program



