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Relational verification

I Two programs: relative correctness, program equivalence,
translation validation. . .

I Two runs of the same program: stability, information flow
security, truthfulness. . .

For security and privacy:
I Two programs: provable security
I Two runs of the same program: side-channel resistance,

differential privacy

Programs are probabilistic



I S. Halevi: A plausible approach to computer-aided
cryptographic proofs

I M. Bellare and P. Rogaway: Code-Based Game-Playing
Proofs and the Security of Triple Encryption



Computer-aided cryptography

Develop tool-assisted methodologies for design, analysis, and
implementation of cryptographic constructions (primitives and
protocols)



Facets of computer-aided cryptography

I Symbolic security
I Provable security in computational model
I Side-channel resistance
I Verified implementations
I Automated synthesis of secure constructions
I Automated synthesis of physical attacks
I Automated analysis cryptographic of assumptions



Benefits

Formal methods for cryptography
I higher assurance
I smaller gap between provable security and crypto

engineering
I new proof techniques

Cryptography for formal methods
I Many new and challenging examples
I New theories
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Probabilistic couplings (Doeblin, 1938)

I Given: two distributions µ1 over A1 and µ2 over A2

I Produce: distribution µ over A1 × A2 that captures the
behavior of µ1 and µ2 (via marginals)

I Such that relation R is satisfied

Coupling fair coins: let µ1, µ2 be u.i.d. over {0,1}.
I trivial coupling: µ(x , y) = 1

4

I equality coupling: µ(x , x) = 1
2 and µ(x ,¬x) = 0

I inequality coupling: µ(x ,¬x) = 1
2 and µ(x , x) = 0



One-dimensional random walk

I Start at initial position s
I Each iteration, flip a fair coin
I Heads: p ← p + 1
I Tails: p ← p − 1

Goal: show memorylessness, i.e. two random walks
starting at s1 and s2 converge at the limit



Coupling the walks to meet

Assume s2 − s1 = 2k .

Case p1 = p2: walks have met
I Arrange samplings x1 = x2

I Continue to have p1 = p2

Case p1 6= p2: walks have not met
I Arrange samplings x1 = ¬x2

I Walks make mirror moves
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Proving memorylessness

Invariant: (∃i ≤ t . p1(i) = p2(i)) =⇒ p1(t) = p2(t)

Consequence: for every number of steps t and position x ,

|Pr[p1(t) = x ]− Pr[p2(t) = x ]| ≤ Pr[∃i ≤ t . p1(i) = s1 + k ]

(Question: why not p1(i) = p2(i)?)



Shift coupling: Dynkin’s trick

I Input: position in {1, . . . ,9}
I Repeat:

Draw uniformly random card ∈ {1, . . . ,9}
Go forward that many steps

I Output last position before crossing 100
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Starting at a different position
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Combine first process and second process

Consequence: for every number of steps t and position x ,

|Pr[p1(t) = x ]− Pr[p2(t) = x ]| ≤ Pr[∃i , j ≤ t . p1(i) = p2(j)]

(where p1 and p2 are taken from the coupled process)
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Random walk over a circle

I Start at position s ∈ {0,1, . . . ,n − 1}
I Each iteration, flip a fair coin

Heads: increment position (modulo n)
Tails decrement position (modulo n)

I Return: last edge (r , r + 1) to be traversed
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Random walk over a cycle

How is the returned edge distributed
relative to starting position s?



Preliminaries

Discrete sub-distributions: Distr(A) is the set of functions
µ : A→ [0,1] s.t.

I supp(µ) = {a ∈ A | µ(a) > 0} of µ is discrete;
I |µ| =

∑
a∈A µ(a) of µ is defined and verifies |µ| ≤ 1.

Marginals: given µ ∈ Distr(A1 × A2) define π1(µ) ∈ Distr(A1)
and π2(µ) ∈ Distr(A2) by

π1(µ)(a1) =
∑

a2∈A2

µ(a1,a2) π2(µ)(a2) =
∑

a1∈A1

µ(a1,a2)



R-couplings

Let R ⊆ A1 × A2, and µ1 ∈ Distr(A1) and µ2 ∈ Distr(A2). Then
µ ∈ Distr(A1 × A2) is a R-coupling for (µ1, µ2) iff:

I marginals: π1(µ) = µ1 and π2(µ) = µ2

I support: supp(µ) ⊆ R
Notation: µ JR 〈µ1 & µ2〉, or JR 〈µ1 & µ2〉

Original definition
I does not include support condition (>-coupling)
I restricted to full distributions



(In)equality couplings

Let A1 = A2 = A.

Stochastic dominance: Assume (A,≤) is a partial order.
Then the following are equivalent:

I J≤ 〈µ1 & µ2〉
I for every a, µ1({x ∈ Z | x ≥ a}) ≤ µ2({x ∈ Z | x ≥ a})

Equality couplings: Assume |µ1| = |µ2| = 1. Then the
following are equivalent:

I µ1 = µ2

I J= 〈µ1 & µ2〉
I for every a ∈ A, Jx1=a =⇒ x2=a 〈µ1 & µ2〉



Fundamental theorem of R-couplings

Let E1 ⊆ A1 and E2 ⊆ A2. Let R ⊆ A1 × A2 s.t. every
(a1,a2) ∈ A1 × A2,

(a1,a2) ∈ R ∧ a1 ∈ E1 =⇒ a2 ∈ E2

If JR 〈µ1 & µ2〉 then Prµ1 [E1] ≤ Prµ2 [E2].

I Bridging step: if (a1,a2) ∈ R ⇒ (a1 ∈ E1 ⇔ a2 ∈ E2), then

Prµ1 [E1] = Prµ2 [E2]

I Failure event: if (a1,a2) ∈ R ∧ a1 ∈ E1 ⇒ a2 ∈ E2 ∪ F , then

Prµ1 [E1]− Prµ2 [E2] ≤ Prµ2 [F ]



Existence of R-couplings (Strassen, 1965)

For every µ1 ∈ Distr(A1) and µ2 ∈ Distr(A2) s.t. |µ1| = |µ2| = 1,
the following are equivalent:

I JR 〈µ1 & µ2〉
I for every X ⊆ A1, µ1(X ) ≤ µ2(R(X ))



R-couplings and optimal transport

JR 〈µ1 & µ2〉 iff the maximum flow in the following network is 1:
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Sequential composition of R-couplings

Composition of probabilistic mappings
Let µ ∈ Distr(A) and M : A→ Distr(B); set Eµ[M] ∈ Distr(B)

Eµ[M](b)
4
=

∑
a∈supp(µ)

µ(a)M(a)(b)

Assume that:
I JR 〈µ1 & µ2〉
I JS 〈M1(a1) & M2(a2)〉 for every (a1,a2) ∈ R

Then JS 〈Eµ1 [M1] & Eµ2 [M2]〉 where:
I R ⊆ A1 × A2 and S ⊆ B1 × B2

I µ1 ∈ Distr(A1) and M1 : A1 → Distr(B1)

I µ2 ∈ Distr(A2), and M2 : A2 → Distr(B2)



Other properties of R-couplings

I Trivial couplings:
J> 〈µ1 & µ2〉 iff |µ1| = |µ2|

I Monotonicity:
if µ JR 〈µ1 & µ2〉 and R ⊆ S then µ JS 〈µ1 & µ2〉

I Closed under relation composition:
if JR 〈µ1 & µ2〉 and JS 〈µ2 & µ3〉 then JR◦S 〈µ1 & µ3〉

I Closed under convex combinations:
if JR 〈µ1,i & µ2,i〉 for every i ∈ I and

∑
i∈I pi ≤ 1 then

JR 〈
∑

i∈I piµ1,i &
∑

i∈I piµ2,i〉



Summary and outlook

I Relational verification matters
I Couplings naturally support relational reasoning
I Probabilities are hidden
I Some examples need more general notions of couplings



Programming language

c ::= abort abort
| skip noop
| x ← e deterministic assignment
| x $← d probabilistic assignment
| c; c sequencing
| if e then c else c conditional
| while e do c while loop
| x ← F(e) procedure call

Semantics: for every initial memory m ∈ Mem, compute output
sub-distribution of memories JsKm ∈ Distr(Mem)



Denotational semantics

JabortKm = 0
JskipKm = 1m

Jx ← eKm = 1m[x←JeKm]

Jx $← dKm = Ev∼JdKm
[1m[x←v ]]

Jc1; c2Km = Eξ∼Jc1K(m)[Jc2K(ξ)]

Jif e then c1 else c2Km =

{ Jc1Km if JeKm = >
Jc2Km if JeKm = ⊥

Jwhile e do cKm = lim
i∈N

(
Eξ∼J(if e then c)iKm

[Jif e then abortKξ]
)



pRHL judgments and validity

Judgment:
|= c1 ∼ c2 : Φ⇒ Ψ

where Φ,Ψ ⊆ Mem×Mem

Validity: for every (m1,m2) s.t. (m1,m2) ∈ Φ,

JΨ 〈Jc1Km1
& Jc2Km2

)〉

Proof rules:

I structural rules: apply to all programs
I 2-sided rules: both programs have the same specific shape
I 1-sided rules: one program has a specific shape



Structural rules

|= c1 ∼ c2 : Φ′ ⇒ Ψ′ Φ =⇒ Φ′ Ψ′ =⇒ Ψ

|= c1 ∼ c2 : Φ⇒ Ψ
[CONSEQ]

|= c1 ∼ c2 : Φ⇒ Ψ
vars(Θ) ∩ (mod(c1)〈1〉 ∪mod(c2)〈2〉) = ∅

|= c1 ∼ c2 : Φ ∧Θ⇒ Ψ ∧Θ
[FRAME]

|= c1 ∼ c2 : Φ1 ⇒ Ψ |= c1 ∼ c2 : Φ2 ⇒ Ψ

|= c1 ∼ c2 : Φ1 ∨ Φ2 ⇒ Ψ
[CASE]



Two-sided rules

|= c1 ∼ c2 : Φ⇒ Θ |= c′1 ∼ c′2 : Θ⇒ Ψ

|= c1; c′1 ∼ c2; c′2 : Φ⇒ Ψ
[SEQ]

|= x1 ← e1 ∼ x2 ← e2 : Ψ[e1〈1〉/x1〈1〉][e2〈2〉/x2〈2〉]⇒ Ψ
[ASSN]

Φ =⇒ e1〈1〉 = e2〈2〉
|= c1 ∼ c2 : Φ ∧ e1〈1〉 ⇒ Ψ
|= c′1 ∼ c′2 : Φ ∧ ¬e1〈1〉 ⇒ Ψ

|= if e1 then c1 else c′1 ∼ if e2 then c2 else c′2 : Φ⇒ Ψ
[COND]

Θ =⇒ e1〈1〉 = e2〈2〉 |= c1 ∼ c2 : Θ ∧ e1〈1〉 ⇒ Θ

|= while e1 do c1 ∼ while e2 do c2 : Θ⇒ Θ ∧ ¬e1〈1〉
[WHILE]



One-sided rules

|= x1 ← e1 ∼ skip : Ψ[e1〈1〉/x1〈1〉]⇒ Ψ
[ASSG-L]

|= c1 ∼ c2 : Φ ∧ e1〈1〉 ⇒ Ψ
|= c′1 ∼ c2 : Φ ∧ ¬e1〈1〉 ⇒ Ψ

|= if e1 then c1 else c′1 ∼ c2 : Φ⇒ Ψ
[COND-L]

|= c1 ∼ skip : Θ ∧ e1〈1〉 ⇒ Θ ast(while e1 do c1)

|= while e1 do c1 ∼ skip : Θ⇒ Θ ∧ ¬e1〈1〉
[WHILE-L]



Random samplings

JΘ 〈Jµ1K & Jµ2K〉
Φ
4
= ∀v1 : T1, v2 : T2, Θ =⇒ Ψ[v1/x1〈1〉][v2/x2〈2〉]

|= x1 $← µ1 ∼ x2 $← µ2 : Φ⇒ Ψ
[RAND]

|= x1 $← d1 ∼ skip : ∀v1 ∈ supp(d1),Ψ[v1/x1〈1〉]⇒ Ψ
[RAND-L]



Examples

Optimistic sampling

|= x1 $← Zp; x1 = x1 ⊕ k ∼ x2 $← Zp : > ⇒ x1 = x2

Proof: by [ASS-L], must show

|= x1 $← Zp ∼ x2 $← Zp : > ⇒ x1 ⊕ k = x2

By [RAND] with µ(x1, x2) =
1x1⊕k=x2

p , must show

∀x1 x2, x1 ⊕ k = x2 =⇒ x1 ⊕ k = x2

Eager sampling |= c1 ∼ c2 : z1 = z2 ⇒ x1 = x2 where

c1
4
= x1 $← Zp; if z1 = 0 then z1 ← z1 + x1 else x1 ← z1

c2
4
= if z2 = 0 then x2 $← Zp; z2 ← z2 + x2 else x2 ← z2



Adversaries

[ADV]
∀F , y , z. |= y ← F(z) ∼ y ← F(z) : =z ∧Ψ⇒ =y ∧Ψ

|= x1 ← A(e1) ∼ x2 ← A(e2) : =e ∧Θ⇒ =x ∧Θ

where Θ
4
= Ψ ∧ eqmemA and =e

4
= z〈1〉 = z〈2〉.



Product programs

I Every proof in pRHL builds a product program
I Product programs can be maded explicit

|= c1 ∼ c2 : Φ⇒ Ψ; c

Example:

|= c1 ∼ c2 : Φ ∧ Φ′ ⇒ Ψ ; c
|= c1 ∼ c2 : Φ ∧ ¬Φ′ ⇒ Ψ ; c¬

|= c1 ∼ c2 : Φ⇒ Ψ ; if Φ′ then c× else c×¬

Application: Dynkin’s trick
I product program simulates two programs
I bound probability of coinciding in product program


