Probabilistic couplings for cryptography and privacy

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

Relational verification

- Two programs: relative correctness, program equivalence, translation validation...
- Two runs of the same program: stability, information flow security, truthfulness...

For security and privacy:

- Two programs: provable security
- Two runs of the same program: side-channel resistance, differential privacy

Programs are probabilistic

- S. Halevi: A plausible approach to computer-aided cryptographic proofs
- M. Bellare and P. Rogaway: Code-Based Game-Playing Proofs and the Security of Triple Encryption

Call for Papers CRYPTO 2011

General Information
Original papers on all technical aspects of cryptology are solicited for submission to CRYPTO 2011, the 31st Annual International Cryptology Conference. Besides the usual topics, submissions are also welcome on topics not routinely appearing at recent CRYPTOs, including cryptographic work in the style of the CHES workshop or CSF symposium. CRYPTO 2011 is sponsored by the International Association for Cryptologic Research (IACR), in cooperation with the Computer Science Department of the University of California, Santa Barbara.

Computer-aided cryptography

Develop tool-assisted methodologies for design, analysis, and implementation of cryptographic constructions (primitives and protocols)

Facets of computer-aided cryptography

- Symbolic security
- Provable security in computational model
- Side-channel resistance
- Verified implementations
- Automated synthesis of secure constructions
- Automated synthesis of physical attacks
- Automated analysis cryptographic of assumptions

Benefits

Formal methods for cryptography

- higher assurance
- smaller gap between provable security and crypto engineering
- new proof techniques

Cryptography for formal methods

- Many new and challenging examples
- New theories

Contents

- Couplings
- Probabilistic Relational Hoare Logic
- Provable security
- Approximate couplings
- Approximate Probabilistic Relational Hoare Logic
- Differential Privacy

Probabilistic couplings (Doeblin, 1938)

- Given: two distributions μ_{1} over A_{1} and μ_{2} over A_{2}
- Produce: distribution μ over $A_{1} \times A_{2}$ that captures the behavior of μ_{1} and μ_{2} (via marginals)
- Such that relation R is satisfied

Coupling fair coins: let μ_{1}, μ_{2} be u.i.d. over $\{0,1\}$.

- trivial coupling: $\mu(x, y)=\frac{1}{4}$
- equality coupling: $\mu(x, x)=\frac{1}{2}$ and $\mu(x, \neg x)=0$
- inequality coupling: $\mu(x, \neg x)=\frac{1}{2}$ and $\mu(x, x)=0$

One-dimensional random walk

- Start at initial position s
- Each iteration, flip a fair coin
- Heads: $p \leftarrow p+1$
- Tails: $p \leftarrow p-1$

Goal: show memorylessness, i.e. two random walks starting at s_{1} and s_{2} converge at the limit

Coupling the walks to meet

Assume $s_{2}-s_{1}=2 k$.

Case $p_{1}=p_{2}$: walks have met

- Arrange samplings $x_{1}=x_{2}$
- Continue to have $p_{1}=p_{2}$

Case $p_{1} \neq p_{2}$: walks have not met

- Arrange samplings $x_{1}=\neg x_{2}$
- Walks make mirror moves

Coupling the walks to meet

Assume $s_{2}-s_{1}=2 k$.

Case $p_{1}=p_{2}$: walks have met

- Arrange samplings $x_{1}=x_{2}$
- Continue to have $p_{1}=p_{2}$

Case $p_{1} \neq p_{2}$: walks have not met

- Arrange samplings $x_{1}=\neg x_{2}$
- Walks make mirror moves

Proving memorylessness

Invariant: $\left(\exists i \leq t . p_{1}(i)=p_{2}(i)\right) \Longrightarrow p_{1}(t)=p_{2}(t)$
Consequence: for every number of steps t and position x,

$$
\left|\operatorname{Pr}\left[p_{1}(t)=x\right]-\operatorname{Pr}\left[p_{2}(t)=x\right]\right| \leq \operatorname{Pr}\left[\exists i \leq t \cdot p_{1}(i)=s_{1}+k\right]
$$

(Question: why not $p_{1}(i)=p_{2}(i)$?)

Shift coupling: Dynkin's trick

- Input: position in $\{1, \ldots, 9\}$
- Repeat:
- Draw uniformly random card $\in\{1, \ldots, 9\}$
- Go forward that many steps
- Output last position before crossing 100

In pictures

In pictures

Output last position: 99

In pictures

Output last position: 99

In pictures

Output last position: 99

In pictures

an ine

Output last position: 99

Starting at a different position

How close are the two output distributions?

Combine first process and second process

Consequence: for every number of steps t and position x,

(where p_{1} and p_{2} are taken from the coupled process)

Combine first process and second process

Consequence: for every number of steps t and position x,

(where p_{1} and p_{2} are taken from the coupled process)

Combine first process and second process

Consequence: for every number of steps t and position x,
(where p_{1} and p_{2} are taken from the coupled process)

Combine first process and second process

Consequence: for every number of steps t and position x,
(where p_{1} and p_{2} are taken from the coupled process)

Combine first process and second process

Consequence: for every number of steps t and position x,
(where p_{1} and p_{2} are taken from the coupled process)

Combine first process and second process

Consequence: for every number of steps t and position x,
(where p_{1} and p_{2} are taken from the coupled process)

Combine first process and second process

Consequence: for every number of steps t and position x,
(where p_{1} and p_{2} are taken from the coupled process)

Combine first process and second process

Consequence: for every number of steps t and position x,
(where p_{1} and p_{2} are taken from the coupled process)

Combine first process and second process

Consequence: for every number of steps t and position x,
(where p_{1} and p_{2} are taken from the coupled process)

Combine first process and second process

Consequence: for every number of steps t and position x,
(where p_{1} and p_{2} are taken from the coupled process)

Combine first process and second process

Consequence: for every number of steps t and position x,
(where p_{1} and p_{2} are taken from the coupled process)

Combine first process and second process

Consequence: for every number of steps t and position x,
(where p_{1} and p_{2} are taken from the coupled process)

Combine first process and second process

$$
\begin{array}{llllll}
3 & 1 & 2 & 1 & 1 & 7 \cdots 4 \\
4
\end{array}
$$

Consequence: for every number of steps t and position x,
(where p_{1} and p_{2} are taken from the coupled process)

Combine first process and second process

$$
3 \boxed{1} \boxed{1} \quad \boxed{1} \square \square \square \square
$$

Consequence: for every number of steps t and position x,

$$
\left|\operatorname{Pr}\left[p_{1}(t)=x\right]-\operatorname{Pr}\left[p_{2}(t)=x\right]\right| \leq \operatorname{Pr}\left[\exists i, j \leq t . p_{1}(i)=p_{2}(j)\right]
$$

(where p_{1} and p_{2} are taken from the coupled process)

Random walk over a circle

- Start at position $s \in\{0,1, \ldots, n-1\}$
- Each iteration, flip a fair coin
- Heads: increment position (modulo n)
- Tails decrement position (modulo n)
- Return: last edge $(r, r+1)$ to be traversed

Random walk over a cycle

Random walk over a cycle

How is the returned edge distributed relative to starting position s ?

Preliminaries

Discrete sub-distributions: $\operatorname{Distr}(A)$ is the set of functions $\mu: A \rightarrow[0,1]$ s.t.

- $\operatorname{supp}(\mu)=\{a \in A \mid \mu(a)>0\}$ of μ is discrete;
- $|\mu|=\sum_{a \in A} \mu(a)$ of μ is defined and verifies $|\mu| \leq 1$.

Marginals: given $\mu \in \operatorname{Distr}\left(A_{1} \times A_{2}\right)$ define $\pi_{1}(\mu) \in \operatorname{Distr}\left(A_{1}\right)$ and $\pi_{2}(\mu) \in \operatorname{Distr}\left(A_{2}\right)$ by

$$
\pi_{1}(\mu)\left(a_{1}\right)=\sum_{a_{2} \in A_{2}} \mu\left(a_{1}, a_{2}\right) \quad \pi_{2}(\mu)\left(a_{2}\right)=\sum_{a_{1} \in A_{1}} \mu\left(a_{1}, a_{2}\right)
$$

R-couplings

Let $R \subseteq A_{1} \times A_{2}$, and $\mu_{1} \in \operatorname{Distr}\left(A_{1}\right)$ and $\mu_{2} \in \operatorname{Distr}\left(A_{2}\right)$. Then $\mu \in \operatorname{Distr}\left(A_{1} \times A_{2}\right)$ is a R-coupling for $\left(\mu_{1}, \mu_{2}\right)$ iff:

- marginals: $\pi_{1}(\mu)=\mu_{1}$ and $\pi_{2}(\mu)=\mu_{2}$
- support: $\operatorname{supp}(\mu) \subseteq R$

Notation: $\mu ⿶_{R}\left\langle\mu_{1} \& \mu_{2}\right\rangle$, or $\boldsymbol{\iota}_{R}\left\langle\mu_{1} \& \mu_{2}\right\rangle$

Original definition

- does not include support condition (T-coupling)
- restricted to full distributions

(In)equality couplings

Let $A_{1}=A_{2}=A$.
Stochastic dominance: Assume (A, \leq) is a partial order. Then the following are equivalent:

- $4 \leq\left\langle\mu_{1} \& \mu_{2}\right\rangle$
- for every $a, \mu_{1}(\{x \in \mathbb{Z} \mid x \geq a\}) \leq \mu_{2}(\{x \in \mathbb{Z} \mid x \geq a\})$

Equality couplings: Assume $\left|\mu_{1}\right|=\left|\mu_{2}\right|=1$. Then the following are equivalent:

- $\mu_{1}=\mu_{2}$
- $\boldsymbol{4}=\left\langle\mu_{1} \& \mu_{2}\right\rangle$
- for every $a \in A, \quad \boldsymbol{x}_{x_{1}}=a \Longrightarrow x_{2}=a\left\langle\mu_{1} \& \mu_{2}\right\rangle$

Fundamental theorem of R-couplings

Let $E_{1} \subseteq A_{1}$ and $E_{2} \subseteq A_{2}$. Let $R \subseteq A_{1} \times A_{2}$ s.t. every $\left(a_{1}, a_{2}\right) \in A_{1} \times A_{2}$,

$$
\left(a_{1}, a_{2}\right) \in R \wedge a_{1} \in E_{1} \Longrightarrow a_{2} \in E_{2}
$$

If $\boldsymbol{u}_{R}\left\langle\mu_{1} \& \mu_{2}\right\rangle$ then $\operatorname{Pr}_{\mu_{1}}\left[E_{1}\right] \leq \operatorname{Pr}_{\mu_{2}}\left[E_{2}\right]$.

- Bridging step: if $\left(a_{1}, a_{2}\right) \in R \Rightarrow\left(a_{1} \in E_{1} \Leftrightarrow a_{2} \in E_{2}\right)$, then

$$
\operatorname{Pr}_{\mu_{1}}\left[E_{1}\right]=\operatorname{Pr}_{\mu_{2}}\left[E_{2}\right]
$$

- Failure event: if $\left(a_{1}, a_{2}\right) \in R \wedge a_{1} \in E_{1} \Rightarrow a_{2} \in E_{2} \cup F$, then

$$
\operatorname{Pr}_{\mu_{1}}\left[E_{1}\right]-\operatorname{Pr}_{\mu_{2}}\left[E_{2}\right] \leq \operatorname{Pr}_{\mu_{2}}[F]
$$

Existence of R-couplings (Strassen, 1965)

For every $\mu_{1} \in \operatorname{Distr}\left(A_{1}\right)$ and $\mu_{2} \in \operatorname{Distr}\left(A_{2}\right)$ s.t. $\left|\mu_{1}\right|=\left|\mu_{2}\right|=1$, the following are equivalent:

- $\iota_{R}\left\langle\mu_{1} \& \mu_{2}\right\rangle$
- for every $X \subseteq A_{1}, \mu_{1}(X) \leq \mu_{2}(R(X))$

R-couplings and optimal transport

$⿶_{R}\left\langle\mu_{1} \& \mu_{2}\right\rangle$ iff the maximum flow in the following network is 1 :

Sequential composition of R-couplings

Composition of probabilistic mappings
Let $\mu \in \operatorname{Distr}(A)$ and $M: A \rightarrow \operatorname{Distr}(B)$; set $\mathbb{E}_{\mu}[M] \in \operatorname{Distr}(B)$

$$
\mathbb{E}_{\mu}[M](b) \triangleq \sum_{a \in \operatorname{supp}(\mu)} \mu(a) M(a)(b)
$$

Assume that:

- $\boldsymbol{4}_{R}\left\langle\mu_{1} \& \mu_{2}\right\rangle$
- $\iota_{s}\left\langle M_{1}\left(a_{1}\right) \& M_{2}\left(a_{2}\right)\right\rangle$ for every $\left(a_{1}, a_{2}\right) \in R$

Then $\iota_{s}\left\langle\mathbb{E}_{\mu_{1}}\left[M_{1}\right] \& \mathbb{E}_{\mu_{2}}\left[M_{2}\right]\right\rangle$ where:

- $R \subseteq A_{1} \times A_{2}$ and $S \subseteq B_{1} \times B_{2}$
- $\mu_{1} \in \operatorname{Distr}\left(A_{1}\right)$ and $M_{1}: A_{1} \rightarrow \operatorname{Distr}\left(B_{1}\right)$
- $\mu_{2} \in \operatorname{Distr}\left(A_{2}\right)$, and $M_{2}: A_{2} \rightarrow \operatorname{Distr}\left(B_{2}\right)$

Other properties of R－couplings

－Trivial couplings：

$$
\measuredangle \top\left\langle\mu_{1} \& \mu_{2}\right\rangle \text { iff }\left|\mu_{1}\right|=\left|\mu_{2}\right|
$$

－Monotonicity： if $\mu \triangleleft_{R}\left\langle\mu_{1} \& \mu_{2}\right\rangle$ and $R \subseteq S$ then $\mu \triangleleft S\left\langle\mu_{1} \& \mu_{2}\right\rangle$
－Closed under relation composition： if $⿶_{R}\left\langle\mu_{1} \& \mu_{2}\right\rangle$ and $⿶_{S}\left\langle\mu_{2} \& \mu_{3}\right\rangle$ then $⿶_{R \circ S}\left\langle\mu_{1} \& \mu_{3}\right\rangle$
－Closed under convex combinations：

$$
\begin{aligned}
& \text { if } \iota_{R}\left\langle\mu_{1, i} \& \mu_{2, i}\right\rangle \text { for every } i \in I \text { and } \sum_{i \in I} p_{i} \leq 1 \text { then } \\
& \iota_{R}\left\langle\sum_{i \in I} p_{i} \mu_{1, i} \& \sum_{i \in I} p_{i} \mu_{2, i}\right\rangle
\end{aligned}
$$

Summary and outlook

- Relational verification matters
- Couplings naturally support relational reasoning
- Probabilities are hidden
- Some examples need more general notions of couplings

Programming language

$c::=$	abort		abort
	\mid skip		noop
	$x \leftarrow e$		deterministic assignment
	$x \leftarrow d$		probabilistic assignment
$c ; c$		sequencing	
	if e then c else c	conditional	
	while e do c		while loop
	$x \leftarrow \mathcal{F}(e)$		procedure call

Semantics: for every initial memory $m \in$ Mem, compute output sub-distribution of memories $\llbracket s \rrbracket_{m} \in \operatorname{Distr}($ Mem $)$

Denotational semantics

$$
\begin{aligned}
\llbracket \text { abort } \rrbracket_{m} & =\mathbf{0} \\
\llbracket \text { skip } \rrbracket_{m} & =\mathbb{1}_{m} \\
\llbracket x \leftarrow e \rrbracket_{m} & =\mathbb{1}_{m\left[x \leftarrow \llbracket e \rrbracket_{m}\right]} \\
\llbracket x \nLeftarrow d \rrbracket_{m} & \left.=\mathbf{E}_{v \sim \llbracket d \rrbracket_{m}} \mathbb{1}_{m[x \leftarrow v]}\right] \\
\llbracket c_{1} ; c_{2} \rrbracket_{m} & =\mathbf{E}_{\xi \sim \llbracket c_{1} \rrbracket(m)}\left[\llbracket c_{2} \rrbracket(\xi)\right] \\
\llbracket \text { if } e \text { then } c_{1} \text { else } c_{2} \rrbracket_{m} & = \begin{cases}\llbracket c_{1} \rrbracket_{m} & \text { if } \llbracket e \rrbracket_{m}=\top \\
\llbracket c_{2} \rrbracket_{m} & \text { if } \llbracket e \rrbracket_{m}=\perp\end{cases}
\end{aligned}
$$

\llbracket while e do $c \rrbracket_{m}=\lim _{i \in \mathbb{N}}\left(\mathbf{E}_{\xi \sim \llbracket(\text { if } e \text { then } c)^{i} \rrbracket_{m}}\left[\llbracket\right.\right.$ if e then abort $\left.\left.\rrbracket_{\xi}\right]\right)$

pRHL judgments and validity

Judgment:

$$
\vDash c_{1} \sim c_{2}: \Phi \Rightarrow \Psi
$$

where $\Phi, \Psi \subseteq$ Mem \times Mem
Validity: for every $\left(m_{1}, m_{2}\right)$ s.t. $\left(m_{1}, m_{2}\right) \in \Phi$,

$$
\left.\triangleleft \psi\left\langle\llbracket c_{1} \rrbracket_{m_{1}} \& \llbracket c_{2} \rrbracket_{m_{2}}\right)\right\rangle
$$

Proof rules:

- structural rules: apply to all programs
- 2-sided rules: both programs have the same specific shape
- 1-sided rules: one program has a specific shape

Structural rules

$$
\begin{gathered}
\models c_{1} \sim c_{2}: \Phi^{\prime} \Rightarrow \Psi^{\prime} \quad \Phi \Longrightarrow \Phi^{\prime} \quad \Psi^{\prime} \Longrightarrow \Psi \\
\models c_{1} \sim c_{2}: \Phi \Rightarrow \Psi \\
\models c_{1} \sim c_{2}: \Phi \Rightarrow \Psi \\
\frac{\operatorname{vars}(\Theta) \cap\left(\bmod \left(c_{1}\right)\langle 1\rangle \cup \bmod \left(c_{2}\right)\langle 2\rangle\right)=\emptyset}{\models c_{1} \sim c_{2}: \Phi \wedge \Theta \Rightarrow \Psi \wedge \Theta} \text { [FRAME] } \\
\frac{\models c_{1} \sim c_{2}: \Phi_{1} \Rightarrow \Psi \quad \models c_{1} \sim c_{2}: \Phi_{2} \Rightarrow \Psi}{\models c_{1} \sim c_{2}: \Phi_{1} \vee \Phi_{2} \Rightarrow \Psi} \text { [CASE] }
\end{gathered}
$$

Two-sided rules

$$
\frac{\models c_{1} \sim c_{2}: \Phi \Rightarrow \Theta \quad \models c_{1}^{\prime} \sim c_{2}^{\prime}: \Theta \Rightarrow \Psi}{\models c_{1} ; c_{1}^{\prime} \sim c_{2} ; c_{2}^{\prime}: \Phi \Rightarrow \Psi}[\mathrm{SEQ}]
$$

$\overline{\mid=x_{1} \leftarrow e_{1} \sim x_{2} \leftarrow e_{2}: \Psi\left[e_{1}\langle 1\rangle / x_{1}\langle 1\rangle\right]\left[e_{2}\langle 2\rangle / x_{2}\langle 2\rangle\right] \Rightarrow \psi}[$ AssN $]$

$$
\begin{gathered}
\Phi \Longrightarrow e_{1}\langle 1\rangle=e_{2}\langle 2\rangle \\
\models c_{1} \sim c_{2}: \Phi \wedge e_{1}\langle 1\rangle \Rightarrow \psi \\
\models c_{1}^{\prime} \sim c_{2}^{\prime}: \Phi \wedge \neg e_{1}\langle 1\rangle \Rightarrow \psi
\end{gathered}
$$

$\Theta \Longrightarrow e_{1}\langle 1\rangle=e_{2}\langle 2\rangle \quad \vDash c_{1} \sim c_{2}: \Theta \wedge e_{1}\langle 1\rangle \Rightarrow \Theta$
[WHILE]
$\mid=$ while e_{1} do $c_{1} \sim$ while e_{2} do $c_{2}: \Theta \Rightarrow \Theta \wedge \neg e_{1}\langle 1\rangle$

One-sided rules

$$
\begin{gathered}
\not \models x_{1} \leftarrow e_{1} \sim \text { skip }: \Psi\left[e_{1}\langle 1\rangle / x_{1}\langle 1\rangle\right] \Rightarrow \psi \\
\models c_{1} \sim c_{2}: \Phi \wedge e_{1}\langle 1\rangle \Rightarrow \psi \\
\frac{\models c_{1}^{\prime} \sim c_{2}: \Phi \wedge \neg e_{1}\langle 1\rangle \Rightarrow \psi}{\models \text { if } e_{1} \text { then } c_{1} \text { else } c_{1}^{\prime} \sim c_{2}: \Phi \Rightarrow \Psi}[\text { Cond-L] } \\
\frac{\models c_{1} \sim \text { skip }: \Theta \wedge e_{1}\langle 1\rangle \Rightarrow \Theta \quad \text { ast }\left(\text { while } e_{1} \text { do } c_{1}\right)}{\models \text { while } e_{1} \text { do } c_{1} \sim \text { skip }: \Theta \Rightarrow \Theta \wedge \neg e_{1}\langle 1\rangle} \text { [WHILE-L] }
\end{gathered}
$$

Random samplings

$$
\frac{\Phi \ominus \ominus\left\langle\llbracket \mu_{1} \rrbracket \& \llbracket \mu_{2} \rrbracket\right\rangle}{\models v_{1}: T_{1}, v_{2}: T_{2}, \Theta \Longrightarrow \Psi\left[v_{1} / x_{1}\langle 1\rangle\right]\left[v_{2} / x_{2}\langle 2\rangle\right]} \text { [RAND] }
$$

$$
\overline{\models x_{1}{ }^{\S} d_{1} \sim \operatorname{skip}: \forall v_{1} \in \operatorname{supp}\left(d_{1}\right), \Psi\left[v_{1} / x_{1}\langle 1\rangle\right] \Rightarrow \Psi}[\text { RAND-L] }
$$

Examples

Optimistic sampling

$$
\mid=x_{1} \stackrel{\$ \mathbb{Z}_{p} ; x_{1}=x_{1} \oplus k \sim x_{2}{ }^{\$} \mathbb{Z}_{p}: \top \Rightarrow x_{1}=x_{2} .}{ }
$$

Proof: by [Ass-L], must show

$$
\models x_{1} \mathbb{Z}_{p} \sim x_{2} \mathbb{Z}_{p}: \top \Rightarrow x_{1} \oplus k=x_{2}
$$

By [RAND] with $\mu\left(x_{1}, x_{2}\right)=\frac{\mathbb{1}_{x_{1} \oplus k=x_{2}}}{p}$, must show

$$
\forall x_{1} x_{2}, x_{1} \oplus k=x_{2} \Longrightarrow x_{1} \oplus k=x_{2}
$$

Eager sampling $\models c_{1} \sim c_{2}: z_{1}=z_{2} \Rightarrow x_{1}=x_{2}$ where

$$
c_{1} \triangleq x_{1} \leftarrow \mathbb{Z}_{p} \text {; if } z_{1}=0 \text { then } z_{1} \leftarrow z_{1}+x_{1} \text { else } x_{1} \leftarrow z_{1}
$$

$$
c_{2} \triangleq \text { if } z_{2}=0 \text { then } x_{2} \leftarrow \mathbb{Z}_{p} ; z_{2} \leftarrow z_{2}+x_{2} \text { else } x_{2} \leftarrow z_{2}
$$

Adversaries

[ADv] $\frac{\forall \mathcal{F}, y, z . \models y \leftarrow \mathcal{F}(z) \sim y \leftarrow \mathcal{F}(z):=z \wedge \psi \Rightarrow=y \wedge \psi}{\models x_{1} \leftarrow \mathcal{A}\left(e_{1}\right) \sim x_{2} \leftarrow \mathcal{A}\left(e_{2}\right):==_{e} \wedge \Theta \Rightarrow=_{x} \wedge \Theta}$ where $\Theta \triangleq \psi \wedge$ eqmem $_{\mathcal{A}}$ and $=e \triangleq z\langle 1\rangle=z\langle 2\rangle$.

Product programs

- Every proof in pRHL builds a product program
- Product programs can be maded explicit

$$
\models c_{1} \sim c_{2}: \Phi \Rightarrow \Psi \sim c
$$

Example:

$$
\begin{gathered}
\models c_{1} \sim c_{2}: \Phi \wedge \Phi^{\prime} \Rightarrow \Psi \leadsto c \\
\models c_{1} \sim c_{2}: \Phi \wedge \neg \Phi^{\prime} \Rightarrow \Psi \sim c_{\neg} \\
\equiv c_{1} \sim c_{2}: \Phi \Rightarrow \Psi \sim \text { if } \Phi^{\prime} \text { then } c^{\times} \text {else } c_{\neg}^{\times}
\end{gathered}
$$

Application: Dynkin's trick

- product program simulates two programs
- bound probability of coinciding in product program

