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Abstract 
This paper describes the main features of newest ver-

sion of the Proton-Carbon Ion Radiation Therapy Plan-
ning System (PIPLAN). The PIPLAN 2021 code was 
assigned for precise Monte Carlo treatment planning for 
heterogeneous areas, including lung, head and neck loca-
tion. Two various computer methods are used to modeling 
the interactions between the proton and carbon ion beam 
and the patient's anatomy to determine the spatial distri-
bution of the radiation physical and biological dose. The 
first algorithm is based on the use of the RTS&T 2021 
high precision radiation transport code system. The sec-
ond algorithm is based on the original Ulmer’s method 
for primary proton beam and adapted Ulmer’s algorithm 
designed for primary carbon ion beam with energy in the 
range 100-450 MeV/u.  

 
INTRODUCTION 

Today in Russia there are no heavy ion accelerators 
used in cancer therapy [1]. On the basis of SRC IHEP of 
NRC “Kurchatov institute” Accelerator Complex U-70 it 
is planned to create a Ion Beam Therapy Center using the 
200-450 MeV/u 12C6+ ion beams. Currently, a Radiobio-
logical Workbench (RBC) U-70 was created and success-
fully operated It is shown in Fig. 1. 

 
Figure 1: Layout of equipment in the RBC beam transfer 
line of the U-70 Accelerator Complex. 

One of the important areas is the creation of a Radio-
therapy Treatment Planning system. The purpose of Radi-
otherapy Treatment Planning systems is to estimate the 
dose absorbed by a patient in a radiotherapy session, so 

that tumors can be irradiated with the strictly necessary 
dose. Many publications have proved Monte Carlo tech-
niques as a highly accurate dose calculation tool, having 
the only limitation of computing time cost. Several Monte 
Carlo based treatment planning systems have been devel-
oped and tested at the IHEP U-70 facility for carbon ion 
therapy. The irradiation of the water phantom has been 
simulated with the RTS&T and PIPLAN codes. 

ION BEAM TREATMENT PLANNING 
SYSTEM (PIPLAN 2021) 

The PIPLAN 2021 Treatment Planning System consist 
2 independent methods to Monte Carlo simulation the 
spatial distribution of the radiation physical and biologi-
cal dose. 

The RTS&T 2021 Precision Simulation Algo-
rithm  

The RTS&T [2] code (Radiation Transport Simulation 
and Isotopes Transmutation Calculation) was assigned for 
detailed Monte Carlo simulation of many particle types 
(γ, e±, p, n, π±, K±, KL

0,, antinucleons, muons, ions and 
etc.) transport in a complex 3D geometry's with compo-
site materials in the energy range from a fraction eV to 20 
TeV and calculation of particle fluences, radiation field 
functionals and isotopes transmutation problem as well. A 
direct using of evaluated nuclear data libraries (data-
driven model) (ENDF/B, JENDL, ROSFOND, BROND, 
TENDL etc. - total 14 libraries) to N, d, t, 3He,4He parti-
cles transport and isotopes transmutation modeling in low 
and intermediate (E<200 MeV) energy regions is the idea 
of the RTS&T code construction. In general, this ap-
proach is limited by the available evaluated data to parti-
cle kinetic energies up to 20 MeV, with extensions up to 
30 MeV or 200 MeV. 

Adapted Ulmer’s Fast Simulation Algorithm  
The original Ulmer’s method that is designed for inci-

dent proton beam up to 400 MeV [3] was adapted for 
primary carbon ion beam up to 450 MeV/u. We have 
developed a model for carbon ion depth dose and lateral 
distributions based on Monte Carlo highly accurate calcu-
lations (RTS&T 2021 code). The model accounts for the 
transport of primary particles, the creation of recoil pro-
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tons, secondary protons and heavy nuclei as well as lat-
eral scattering of these contributions [4,5]. 

The RTS&T Geometry Module (New Version 
Announcement)   

The current version of the RTS&T geometry module 
included in the RTS&T 2021 code contains a “synthetic” 
(combinatorial-voxel) scheme for describing the geometry 
of the object with a choice of the boundary localization 
method (analytical, iterative, or their combination). The 
capabilities of the geometric module allow to visualize 
the geometry of complex material structures of an arbi-
trary degree of complexity and the distribution of calcu-
lated functionals in them. The example of volumetric 
image is shown in Fig. 2. The example of pixel imaging 
in Fig. 3. 

 

 
Figure 2: Volumetric image in toning mode of collimator 
with T-shaped profile. 

 
Figure 3: Pixel imaging of a collimator with a T-shaped 
profile. 

BIOLOGICAL MODELING 
The RTS&T 2021 code included a versions of the Mi-

crodosimetric Kinetic Model (MKM) [6] and Local Effect 
Model (LEM I-III) with 12 sets of input parameters for 
various lines of radiosensitive cells, that allows to calcu-
late: 

• averaged over the flow (trajectories) and absorbed 
dose of linear energy transfer (LET); 

• relative biological radiation efficiency (RBE) for dif-
ferent levels of cell structure survival (S,%); 

• biological dose. 

DOSE DISTRIBUTION VERIFICATION 
Figures 4-9 represent the results of measurements and 

Monte Carlo simulations of dose distribution in water 
phantom for monoenergetic carbon ion sources in the 
energy range of 200-430.1 MeV/u using the PIPLAN 
2021 and RTS&T 2021 codes. In the RTS&T simulation, 
the CASCADE 1.0 and JQMD 2.0 hadronic generators 
were used for inelastic hA- and AA-events simulation. 
The energy losses of incident 12C6+ ion were calculated 
using the ATIMA v.1.4.1 [7] code. 

 
Figure 4: The total absorbed dose versus depth inside 
water phantom at 200 MeV/u of incident 12C beam 
(Rcsda=8.575 g/cm2). 

 
Figure 5: The total absorbed dose versus depth inside 
water phantom at 250 MeV/u of incident 12C beam 
(Rcsda=12.527 g/cm2). 

Figure 4 corresponds to 12C beam energy equal 200 
MeV/u, Fig. 5 corresponds 250 MeV/u. Data for carbon 
ion beam energy of 300 MeV/u is presented in Fig. 6. 
Depth-dose distribution for 350 MeV/u energy is shown 
in Fig. 7. The same curve for 400 MeV/u energy is shown 
in Fig. 8. Maximum energy for experimental data was 
430.10 MeV/u, it is presented in Fig. 9. It can be seen 
from the figures presented above that the results of our 
calculations are in good agreement with the experimental 
data. 
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Figure 6: The total absorbed dose versus depth inside 
water phantom at 300 MeV/u of incident 12C beam 
(Rcsda=16.983 g/cm2). 

 
Figure 7: The total absorbed dose versus depth inside 
water phantom at 350 MeV/u of incident 12C beam 
(Rcsda=21.872 g/cm2). 

 
Figure 8: The total absorbed dose versus depth inside 
water phantom at 400 MeV/u of incident 12C beam 
(Rcsda=27.135 g/cm2). 

CONCLUSION 
The developed PIPLAN 2021 (Proton-Ion Therapy 

Treatment Planning System) can be implemented in 
hardware and software system of Carbon-Ion Therapy 
Center based on the IHEP Accelerator Complex. Models 
that are used in PIPLAN can be implemented in already 
existed Russian proton therapy complexes [8, 9]. 

 
Figure 9: The total absorbed dose versus depth inside 
water phantom at 430.10 MeV/u of incident 12C beam 
(Rcsda=30.463 g/cm2). 
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