
Mocking With
Mockery

Ben Ramsey

Midwest PHP Conference

5 March 2016

HI, I’M BEN.
I’m a web craftsman, author, and speaker. I
build a platform for professional
photographers at ShootProof. I enjoy APIs,
open source software, organizing user
groups, good beer, and spending time with
my family. Nashville, TN is my home.

▸Zend PHP Certification
Study Guide

▸Nashville PHP & Atlanta
PHP user groups

▸array_column()

▸ ramsey/uuid

▸ league/oauth2-client

Introduction
to Mocking

INTRODUCTION TO MOCKING

What is a mock object?

▸ Mock objects are a form of test double

▸ Test doubles are “any kind of pretend object used in place of a real object for
testing purposes” (Martin Fowler)

▸ Mocks differ from other test doubles (like stubs) in that they are programmed
with expectations about the calls they should receive

▸ Mocks are used in unit tests to replace behaviors of objects, services, etc. that
are external to the current unit being tested but need to be called by it

INTRODUCTION TO MOCKING

Mockery vs. PHPUnit

▸ Mockery provides a better user experience for working with mock objects,
through an easy-to-use API

▸ Mockery provides abilities to mock things that PHPUnit can’t, like static methods
and hard dependencies

▸ Mockery may be used together with PHPUnit or with any other testing framework

Getting Started
With Mockery

GETTING STARTED

Installing Mockery

composer require mockery/mockery

composer require phpunit/phpunit

GETTING STARTED

namespace Ramsey\Talks;

class Temperature
{
 public function __construct($service)
 {
 $this->_service = $service;
 }

 public function average()
 {
 $total = 0;
 for ($i = 0; $i < 3; $i++) {
 $total += $this->_service->readTemp();
 }
 return $total / 3;
 }
}

GETTING STARTED

namespace Ramsey\Talks;

class Service
{
 public function readTemp()
 {
 // Communicate with an external service and return
 // the current temperature.
 }
}

GETTING STARTED

$service = new \Ramsey\Talks\Service($params);
$temperature = new \Ramsey\Talks\Temperature($service);

echo $temperature->average();

GETTING STARTED

namespace Ramsey\Talks\Test;

class TemperatureTest extends \PHPUnit_Framework_TestCase
{
 public function tearDown()
 {
 \Mockery::close();
 }

 public function testGetsAverageTemperature()
 {
 $service = \Mockery::mock('servicemock');
 $service->shouldReceive('readTemp')
 ->times(3)
 ->andReturn(10, 12, 14);

 $temperature = new \Ramsey\Talks\Temperature($service);

 $this->assertEquals(12, $temperature->average());
 }
}

GETTING STARTED

Review

▸ A mock replaces an object that is expected to make certain calls

▸ \Mockery::mock('servicemock') creates a \Mockery\Mock object and is
the loosest form of mock object

▸ Be sure to provide a tearDown() method in your tests that calls
\Mockery::close(), to avoid problems

Mock Object
Basics

MOCK OBJECT BASICS

$mock = \Mockery::mock(['foo' => 1, 'bar' => 2]);

$this->assertEquals(1, $mock->foo());
$this->assertEquals(2, $mock->bar());

MOCK OBJECT BASICS

namespace Ramsey\Talks;

class Temperature
{
 public function __construct(Service $service)
 {
 $this->_service = $service;
 }

 public function average()
 {
 $total = 0;
 for ($i = 0; $i < 3; $i++) {
 $total += $this->_service->readTemp();
 }
 return $total / 3;
 }
}

MOCK OBJECT BASICS

$service = \Mockery::mock('Ramsey\\Talks\\Service');

$service = \Mockery::mock('Ramsey\\Talks\\AbstractService');

$service = \Mockery::mock('Ramsey\\Talks\\ServiceInterface');

$service = \Mockery::mock(
 'Ramsey\\Talks\\ServiceInterface, Countable, RecursiveIterator'
);

MOCK OBJECT BASICS

$mock = \Mockery::mock('classname', [
 'methodOne' => 'some return value',
 'methodTwo' => 'another return value',
 'methodThree' => 'yet another return value',
]);

$this->assertEquals('some return value', $mock->methodOne());
$this->assertEquals('another return value', $mock->methodTwo());
$this->assertEquals('yet another return value', $mock->methodThree());

MOCK OBJECT BASICS

Review

▸ Mockery allows you to define a named or unnamed mock object, naming all its
methods and return values

▸ Mock objects can be type-hinted using a class, abstract class, or interface

▸ By default, any method called that is not defined will result in a
BadMethodCallException; to return null instead, use the
shouldIgnoreMissing() behavior modifier

Mock
Expectations

MOCK EXPECTATIONS

$service = \Mockery::mock('Ramsey\\Talks\\Service');
$service->shouldReceive('readTemp')
 ->times(3)
 ->andReturn(10, 12, 14);

$service = \Mockery::mock('Ramsey\\Talks\\Service', [
 'readTemp' => 10
]);

We could have defined it like this:

But then we couldn’t test the expectation that it should be called three times.

MOCK EXPECTATIONS

namespace Ramsey\Talks;

class Temperature
{
 public function __construct($service)
 {
 $this->_service = $service;
 }

 public function average()
 {
 $total = 0;
 for ($i = 0; $i < 3; $i++) {
 $total += $this->_service->readTemp();
 }
 return $total / 3;
 }
}

MOCK EXPECTATIONS

$service = \Mockery::mock('Ramsey\\Talks\\Service');
$service->shouldReceive('readTemp')
 ->times(3)
 ->andReturn(10, 12, 14);

MOCK EXPECTATIONS

$mock = \Mockery::mock('Foo');

$mock->shouldReceive('methodCall')
 ->with('method', 'arg', 'values')
 ->andReturn(true);

MOCK EXPECTATIONS

$mock->shouldReceive('methodCall')
 ->with('different', 'arg', 'values')
 ->andReturn(false);

MOCK EXPECTATIONS

$mock->shouldReceive('methodCall')
 ->withNoArgs()
 ->andReturn(123);

MOCK EXPECTATIONS

$this->assertFalse($mock->methodCall('different', 'arg', 'values'));
$this->assertTrue($mock->methodCall('method', 'arg', 'values'));
$this->assertEquals(123, $mock->methodCall());

MOCK EXPECTATIONS

$user = \Mockery::mock('User');

$user->shouldReceive('getFriendById')
 ->andReturnUsing(function ($id) {
 // Do some special handling with the arguments here.
 // For example:
 $friendStub = file_get_contents("tests/stubs/friend{$id}.json");
 return json_decode($friendStub);
 });

$friend = $user->getFriendById(1);

$this->assertEquals('Jane Doe', $friend->name);

MOCK EXPECTATIONS

/**
 * @expectedException RuntimeException
 * @expectedExceptionMessage An error occurred
 */
public function testServiceThrowsException()
{
 $service = \Mockery::mock('Ramsey\\Talks\\Service');
 $service->shouldReceive('readTemp')
 ->andThrow('RuntimeException', 'An error occurred');

 $temperature = new \Ramsey\Talks\Temperature($service);
 $average = $temperature->average();
}

MOCK EXPECTATIONS

Review

▸ Expectations on a mocked method affect its behavior depending on inputs and
number of times called

▸ We covered times(), with(), withNoArgs(), andReturn(),
andReturnUsing(), and andThrow(), but Mockery provides many more
options

Partial
Mocks

PARTIAL MOCKS

$service = \Mockery::mock('Ramsey\\Talks\\Service[readTemp]');

$service->shouldReceive('readTemp')
 ->times(3)
 ->andReturn(10, 12, 14);

$temperature = new \Ramsey\Talks\Temperature($service);

$this->assertEquals(12, $temperature->average());

PARTIAL MOCKS

$service = \Mockery::mock('Ramsey\\Talks\\Service[readTemp]', [
 $constructorArg1,
 $constructorArg2,
]);

Mocking
Final Classes

MOCKING FINAL CLASSES

$staticUuid = 'dd39edd7-bb9c-414d-a7a0-78bd41edb4fb';

$uuid = \Mockery::mock('Ramsey\\Talks\\Uuid');
$uuid->shouldReceive('uuid4')
 ->andReturn($staticUuid);

$this->assertEquals($staticUuid, $uuid->uuid4());

MOCKING FINAL CLASSES

1) Ramsey\Talks\Test\UserTest::testUuid

Mockery\Exception: The class \Ramsey\Talks\Uuid is marked final
and its methods cannot be replaced. Classes marked final can be
passed in to \Mockery::mock() as instantiated objects to create a
partial mock, but only if the mock is not subject to type hinting
checks.

MOCKING FINAL CLASSES

$staticUuid = 'dd39edd7-bb9c-414d-a7a0-78bd41edb4fb';

$uuidInstance = new \Ramsey\Talks\Uuid();

$uuid = \Mockery::mock($uuidInstance);
$uuid->shouldReceive('uuid4')
 ->andReturn($staticUuid);

$this->assertEquals($staticUuid, $uuid->uuid4());

This is referred to as a “proxied partial” mock.

Mocking Public
Properties

MOCKING PUBLIC PROPERTIES

$mock = \Mockery::mock('Foo');
$mock->publicProperty = 123;

$this->assertEquals(123, $mock->publicProperty);

MOCKING PUBLIC PROPERTIES

$mock = \Mockery::mock('Foo');
$mock->shouldReceive('methodCall')
 ->andSet('publicProperty', 123)
 ->andReturn(true);

$this->assertTrue($mock->methodCall());
$this->assertEquals(123, $mock->publicProperty);

Mocking Fluent
Interfaces

MOCKING FLUENT INTERFACES

namespace Ramsey\Talks;

class Bar
{
 public function getSomething(Foo $foo)
 {
 $result = $foo->bar()->baz()->qux()->quux();

 return "Now, we're {$result}";
 }
}

MOCKING FLUENT INTERFACES

$mock = \Mockery::mock('Ramsey\\Talks\\Foo');
$mock->shouldReceive('bar->baz->qux->quux')
 ->andReturn('done!');

$bar = new \Ramsey\Talks\Bar;

$this->assertEquals("Now, we're done!", $bar->getSomething($mock));

Mocking Static
Methods

MOCKING STATIC METHODS

namespace Ramsey\Talks;

class User
{
 public $addressId;

 public function getAddress()
 {
 return Address::getById($this->addressId);
 }
}

MOCKING STATIC METHODS

/**
 * @runInSeparateProcess
 * @preserveGlobalState disabled
 */
public function testGetAddress()
{
 $address = \Mockery::mock('alias:Ramsey\\Talks\\Address');
 $address->shouldReceive('getById')
 ->andReturn(new \Ramsey\Talks\Address());

 $user = new \Ramsey\Talks\User();

 $this->assertInstanceOf(
 'Ramsey\\Talks\\Address',
 $user->getAddress()
);
}

MOCKING STATIC METHODS

1) Ramsey\Talks\Test\UserTest::testGetAddress

Mockery\Exception\RuntimeException: Could not load mock
Ramsey\Talks\Address, class already exists

MOCKING STATIC METHODS

/**
 * @runInSeparateProcess
 * @preserveGlobalState disabled
 */
public function testGetAddress()
{
 $address = \Mockery::mock('alias:Ramsey\\Talks\\Address');
 $address->shouldReceive('getById')
 ->andReturn(new \Ramsey\Talks\Address());

 $user = new \Ramsey\Talks\User();

 $this->assertInstanceOf(
 'Ramsey\\Talks\\Address',
 $user->getAddress()
);
}

Mocking Hard
Dependencies

MOCKING HARD DEPENDENCIES

namespace Ramsey\Talks;

class User
{
 public $addressId;

 public function getAddress()
 {
 return new Address($this->addressId);
 }
}

MOCKING HARD DEPENDENCIES

/**
 * @runInSeparateProcess
 * @preserveGlobalState disabled
 */
public function testGetAddress()
{
 $address = \Mockery::mock('overload:Ramsey\\Talks\\Address');

 $user = new \Ramsey\Talks\User();
 $user->addressId = 123;

 $this->assertInstanceOf(
 'Ramsey\\Talks\\Address',
 $user->getAddress()
);
}

Wrapping
Up

WRAPPING UP

$foo = \Mockery::mock('Ramsey\\Talks\\Foo');

/* ... */

if ($foo instanceof \Mockery\MockInterface) {
 /* ... */
}

WRAPPING UP

Review

▸ Mock objects are used to replace real objects in tests

▸ Mockery lets us create dumb mocks, mocks inherited from classes and
interfaces, partial mocks, and aliases

▸ We saw how to use proxied partial mocks to mock final classes and methods

▸ We mocked public properties and fluent interfaces

▸ We created an aliased mock to mock a static method and an overloaded mock
to instantiate instance mocks with the new keyword

THANK YOU.
ANY QUESTIONS?

If you want to talk more, feel free to
contact me.

benramsey.com!

" @ramsey

github.com/ramsey

$ ben@benramsey.com

Mocking With Mockery

Copyright © 2016 Ben Ramsey

This work is licensed under Creative Commons Attribution-
ShareAlike 4.0 International. For uses not covered under this
license, please contact the author.

Ramsey, Ben. “Mocking With Mockery.” Midwest PHP Conference. Hilton
Minneapolis, Minneapolis. 5 Mar. 2016. Conference presentation.

This presentation was created using Keynote. The text is set in
Chunk Five and Helvetica Neue. The source code is set in Menlo.
The iconography is provided by Font Awesome.

Unless otherwise noted, all photographs are used by permission
under a Creative Commons license. Please refer to the Photo
Credits slide for more information.

joind.in/talk/e85df%

http://benramsey.com
https://twitter.com/ramsey
http://github.com/ramsey
mailto:ben@benramsey.com?subject=
http://creativecommons.org/licenses/by-sa/4.0/
https://www.theleagueofmoveabletype.com/chunk
https://en.wikipedia.org/wiki/Menlo_(typeface)
http://fontawesome.io/
https://joind.in/talk/e85df

PHOTO CREDITS
1. “Mockingbird Silhouette” by Jim Mullhaupt
2. Untitled by Eli White
3. “Northern Mockingbird” by Kelly Colgan Azar
4. “Burla” by Daniel Lobo
5. “Mockingbird” by Neal Simpson
6. “Tropical Mockingbird” by hjhipster
7. “Mockingbird” by Henry T. McLin
8. “Northern Mockingbird (Cape May Point SP)” by Brian Henderson

9. “Northern Mockingbird” by Sandy/Chuck Harris
10.“Northern Mockingbird (Mimus polyglottos)” by Nicole Beaulac
11.“mockingbird in spring” by Melinda Shelton
12.“Mockingbird” by magpie_drain
13.“Mockingbird” by Kerry Lannert
14.“Northern Mockingbird” by Kelly Colgan Azar

1

2

3

4

5

6

7

8

9

10

11

12

13

14

https://www.flickr.com/photos/jimpic/20138722004/
https://www.flickr.com/photos/eliw/19118378358/
https://www.flickr.com/photos/puttefin/16045398937/
https://www.flickr.com/photos/daquellamanera/5014834226/
https://www.flickr.com/photos/nohrmal/14017830817/
https://www.flickr.com/photos/albertovo5/4184356414/
https://www.flickr.com/photos/hmclin/2567885095/
https://www.flickr.com/photos/stinkenroboter/8098561121/
https://www.flickr.com/photos/27784972@N07/4311839757/
https://www.flickr.com/photos/nicolebeaulac/8573435772/
https://www.flickr.com/photos/melindashelton/3377223169/
https://www.flickr.com/photos/magpie_drain/2699717470/
https://www.flickr.com/photos/stirwise/2611687128/
https://www.flickr.com/photos/puttefin/8435936685/

