
The 28th International Conference on Auditory Display (ICAD 2023) June 26 - July 1 2023, Norrköping, Sweden

SONECULES: A PYTHON SONIFICATION ARCHITECTURE

Dennis Reinsch

Ambient Intelligence Group
Faculty of Technology, Bielefeld University

Bielefeld, Germany
dreinsch@techfak.de

Thomas Hermann

Ambient Intelligence Group
Faculty of Technology, Bielefeld University

Bielefeld, Germany
thermann@uni-bielefeld.de

ABSTRACT

This paper introduces sonecules, a flexible, extensible, end-
user friendly and open-source Python sonification toolkit to bring
’sonification to the masses’. The package comes with a basic set
of what we define as sonecules which are sonification designs tai-
lored for a given class of data, a selected internal logic for soni-
fication and offering a set of functions to interact with data and
sonification controls. This is a design-once-use-many approach as
each sonecule can be reused on similarly structured data. The pri-
mary goal of sonecules is to enable novice users to rapidly get their
data audible – by scaffolding their first steps into auditory display.
All sonecules offer a description for the user as well as controls
which can be adjusted easily and interactively to the selected data.
Users are supported to get started as fast as possible using different
sonification designs and they can even mix and match sonecules to
create more complex aggregated sonecules. Advanced users are
enabled to extend/modify any sonification design and thereby cre-
ate new sonecules. The sonecules Python package is provided as
open-source software, which enables others to contribute their own
sonification designs as a sonecule – thus it seeds a growing/grow-
able library of well-documented and easy-to-reuse sonifications
designs. Sonecules is implemented in Python using mesonic [1] as
the sonification framework, which provides the path to rendering-
platform agnostic sonifications.

1. INTRODUCTION

Sonification is a highly interdisciplinary field and sonification de-
signers usually have to combine knowledge in data science, acous-
tics, sound computation, sound engineering, signal processing,
psychoacoustics & perception – and ideally ranging into music
and cognition. This makes it difficult to get started with sonifica-
tion, particularly for those in application domains who just heard
about it and want to try the method. While there are many toolk-
its available to enable specific sonification types such as audifica-
tion or auditory graphs, an easy-to-apply, flexible, reuse-optimzed,
community-accepted general library or framework to support all
available sonification methods is missing.

This paper aims at filling the gap with a new approach that
positions a sonification library in the center of a highly popular
Python community which already offers powerful data science li-

This work is licensed under Creative Commons Attribution –
Non Commercial 4.0 International License. The full terms of the License
are available at http://creativecommons.org/licenses/by-nc/4.0/

braries, visualization libraries, user interfaces (widgets) and a lan-
guage that is rather easy to learn and use. Instead of reinventing
wheels we aim at a modular system that focuses on the core of
the problem: the glue to interconnect available parts and filling
in suitable classes that provide both immediate utility and a scaf-
fold for own development / extension steps. Figure 1 depicts how
we see different tools interacting to enable our toolchain of high
reuse-potential.

Data Handling

pandas

User Interface

user

Sound

Transformation

Processed Data

Raw Data pyanumpy

Sonification Computing
and Sound Rendering

sc3nb
mesonic SuperCollidersc3nb

backends

matplotlib
IPython/Jupyter

ipywidgets

frontends

User Interface

...

...

Figure 1: Sonification toolchain: on the left side the single steps of
the sonification process are shown while on the right side relevant
tools are depicted grouped by usage.

We first review related work on systems to support either end
users or experts for creating, using and adapting sonifications.
We then state fundamental concepts for our sonecules system and
specify components to be employed in sonification design. To
make things more tangible (resp. audible), we then systematically
present a basic set of sonecules that both exemplify design and use
of the system. They should be understood as starting point for a
growing library of sonification tools that are as easily picked and

The 28th International Conference on Auditory Display (ICAD 2023) June 26 - July 1 2023, Norrköping, Sweden

used as one can plot data with today’s modern plotting packages
in the Python ecosystem. We then briefly describe the interface of
a sonecule and how it can be used. Finally we wrap up with an
extensive discussion of the goals we aim to solve with sonecules
and a call for feedback and contribution.

2. RELATED WORK

Many attempts at providing a sonification toolkit were made [2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28]. But still there is no universally accepted tool
that is directly aimed at general/flexible sonification that is used
across sonification experts. Especially for the layperson, there is
still no clear way to go about getting their data sonified. This is in
stark contrast to the visualization community, where within most
computer languages there are solid packages to just plot what you
need, e.g. think of matplotlib, Plotly, pyqtgraph, VTK, D3.js, to
name a few. Before diving into the reasons for this, let’s review
the state of the art in sonification tools. There are currently two
extremes in the sonification domain regarding available tools:

(i) open sound synthesis platforms high-jacked for sonifica-
tion: One often finds open platforms which allow to create new
sonifications from scratch, such as SuperCollider [29] or Pure-
Data [30], Max/MSP [31], Csound [32]. These require users to
first learn, i.e., acquire a certain prior minimum of knowledge con-
cerning sound synthesis to even get started. And while these tools
offer a very rich experience for experts in regards of sound cre-
ation these tools can be still cumbersome to work with, as often
these are mostly focused on providing sound synthesis tools and
less capable of handling data. For instance, SuperCollider even
lacks operator priorities making it difficult to code mathematical
operations, at least for those accustomed to languages such as
Python, Java, C/C++. As data handling is a highly crucial part
of the sonification process, users then would be forced to imple-
ment data processing functions, which introduces friction in the
developing process [16]. The history of SonEnvir [10, 33, 34, 35]
provides an example for the approach to anchor a sonification tool
directly into an ’originally-meant-for-sound-synthesis’-system.

The counter point are (ii) complex all-in-one graphical sonifi-
cation design programs: in this case complete/self-contained pack-
ages are provided which often come with GUI, data import func-
tions, and one (or few) very specific sonification design(s). Exam-
ples for this include the Highcharts Sonification Studio [9], Rota-
tor [22] and the Sonification Workstation [24]. Such systems are
much more beginner-friendly as compared to the former discussed
class of approaches, but they are quite limited to their specific use
cases as they are hard (if not impossible) to extend – or even to be
adjusted concerning any parameter values or mappings, if devel-
opers did not already offer a control for it. This is because they
are custom created programs which often consist of a large code
base to integrate the implemented sonification design with specific
data loading and processing capabilities and in addition provide a
graphical user interface for all this.

To our opinion, both of these extremes create some kind of
walled garden which hinders the sonification community to share
their methods and grow. We believe that the walls can be teared
down by following the example of how computer graphics was
made available to users, even end-users that are little tech-savvy.
Models are matlab, R, and: the Python, as a sprouting ecosystem
for data science, and as a glue language that allows to tie in what is
needed. Python as an particularly easy-to-learn computer language

makes particular sense as it is highly popular, and comes already
with packages for the most frequent and relevant data types and
the data processing thereof, including time-series data, geospatial
data, unstructured feature bundles etc. – think of numpy, scipy,
pandas, scikit-learn, to name a few.

Starting from Python as anchor point for sonification systems
is not a novel idea: important references are SoniPy [36, 16], and
sc3nb [37]. The latter, however, largely focuses on providing a
lean interface to control SuperCollider as the backend-of-choice
for creating sonification programs within Python and thus only
eases the mixed and matched usage of SuperCollider and Python
necessary for sound computing and data processing. This flexibil-
ity to use the best of both worlds is welcome for proficient pro-
grammers but an obstacle for many end-users.

In an attempt to cut the knot, one aimed at developing a library
to simultaneously meet the needs of both these different groups
of users – and we failed: the problem is just too big to tackle in
one go. Instead, we identified elements shared by basically all
use cases, involving the wish of flexibility to operate a timeline,
to either sonify in real-time or non-real-time, also the need to ab-
stract from details of synthesis systems with the idea of coupling
sound computing to the system via backends. We have introduced
and published this mediating framework titled mesonic [1] else-
where and mesonic serves here as central piece in our sonification
toolchain.

So, with the sonecules package we try to avoid the extremes
by providing ready-to-use sonification designs which offer users
to easily try different kinds of sonification in a playful way, i.e.,
they can play with the easily adjustable parameters for the sin-
gle sonifications, compare sonifications, keep the lightweight code
(basically invocations of sonecules) as documentation and for later
reproduction, and so on. Of course, there are already other ap-
proaches to collect sonification designs [38, 39, 40], but they lack
the capability to actually use them directly and interchangeably
with different data – which is a key point of sonecules. At the
same time, each sonecule can, if needed, be modified down to
the roots by adapting the code and thus creating new sonecules
which are encouraged to be contributed to the sonecules library.
The usage of mesonic [1] allows us to keep the relevant code for
a sonification small and readable. The idea is to follow the UNIX
principle [41], ’do one thing but do it well’ – which is commonly
used in software engineering to create small and easy-to-maintain
building blocks that do one specific task well, which then can be
combined as needed to solve complex tasks.

With sc3nb, mesonic and now sonecules, we wish to seed a
rich ecosystem for using, sharing and coding auditory displays.

3. FUNDAMENTAL CONCEPTS

Sonifications are never monolithic, they are composites, consist-
ing of data, a transformation (e.g. mapping or model), interac-
tion (optionally), control parameters and their user interface, but
most importantly sound computation. Inspired by chemistry where
the properties of substances depend on their specific aggregation
(chemical bonds) and feature manifold characteristics depending
on their interconnection, we invented the word sonecules (remind-
ing of molecules) to echo this fact. This ties nicely into the use
of our mesonic framework - by which we mediate from high-level
control to the sound computing side. The name, however, contains
the elementary particle ’meson’, which indeed points at a level
of finer resolution. An accidental coincidence is that the primar-

The 28th International Conference on Auditory Display (ICAD 2023) June 26 - July 1 2023, Norrköping, Sweden

ily featured sound computing system is SuperCollider - the name
carrying the association of a particle accelerator, an apparatus to
study the smallest existing particles. Perhaps a single sample of a
sound signal might be that ultimate elementary particle of sound
and be the ultimately lowest level of sound, but let’s turn back to
the sonecules level.

The focus of this paper is the sonecule, a single coherent soni-
fication unit. A sonification design entails a concrete usage as in
an object-oriented interface. As a good example for a sonecule
we can take any specific Model-Based Sonification Design (aka
Sonification Model [42]) such as the Data Sonogram Sonifiation
model, because it is very clearly described how such a model is
constructed. There are several key elements that should be stated:

data we need data to listen to. A sonification is by definition
reusable with different data [43]. But it is obvious that we
cannot use any data set for a specific sonification technique
– for instance for Audification – as there are constraints re-
garding the kind of data and number of data points are re-
quired for a specific method. A sonification design should
always clearly state the usable data and the data constraints
for the user.

interaction we need to control the sonification. The amount of
control needed depends again on the specific sonification
design: most Model-Based Sonifications won’t even sound
without a user in the loop. Parameter Mapping Sonifica-
tions will often provide the need to adjust several different
mappings, and even the simple playback of data (as in au-
dification) requires to be started and thus to be embedded
in time. A sonification design should always state how the
user can interact with and control it.

algorithm a sonification is defined to be systematic and repro-
ducible [43], which means that each sonification follows
some sort of algorithm. The algorithm is the transforma-
tion from the data domain into the sound domain and can
be very direct as in Audification or very indirect as in some
Model-Based Sonifications. A sonification design should
always clearly state how data are transformed and how the
sound is generated.

purpose a sonification should objectively reflect properties or re-
lations in the input data [43], which means that it makes
sense to listen to sound as a way to gain understanding.
A specific sonification design should always state what are
possible use cases of the sonification.

These key elements should be stated for each sonification de-
sign in order to fulfill the requirements stated in the definition of
sonification [43]. This will emphasize the usability of sonifica-
tion as a scientific tool which follows an design-once-use-many
approach. Additionally it allows us to create a sonecule which
then is a manifestation of the sonification design in code. This
offers then a quick way to start experimenting with different soni-
fications as it becomes obvious – based on the data to be sonified
– which sonecules can be selected, how they transform the data
and what control capabilities this brings to the listener and what
purpose it serves.

This is a refined specification of the taxonomy of sonification
as sonecules are sonifications that are more detailed than sonifi-
cation techniques by directly specifying the underlying algorithm
and the possible sonification controls and constraints/requirements
for the data. A sonification technique is the abstraction of the soni-
fication design.

Note that a sonification can also consist of multiple sonecules
that work together to create a rich sound experience. An example
for this is the combination of simple (as we call them) standard
Parameter Mapping Sonifications (cf. Sec. 5.1) which can be used
together to create more complex Parameter Mapping Sonifications.

A requirement for using a set of sonecules together is that they
happen in the same context: if we look at the visualization domain
it is obvious that multiple single point marks combined in the same
space can construct a scatter plot. The shared context of a figure
– i.e., shared space – binds the individual points together and lets
the pattern of point clouds emerge. Likewise a shared time (or
timeline, or temporal canvas) serves as context for the domain of
sonification. This is in line with ideas from Enge et al. on time
as substrate of sonification [44]. An explicit structure for dealing
with and sharing/reusing time in sonecules is thus a logical and
important step.

mesonic offers an explicit model of the time in form of the
Timeline class and also implements the idea of the context as a
place where the sound objects live, which can also be found in
the Web Audio API [45]. This allows sound objects – which are
called Synths in mesonic – to place so-called Events into the same
Timeline. Events placed by the different Synths contain informa-
tion about the control of the sounds which are scheduled in time
through this. The actual sound generation is then triggered by
the Playback object which sends the different Events to the ac-
tual sound rendering backend of the Context. A more detailed de-
scription of the concepts of mesonic such as Timeline and Events
can be found in the introduction paper of mesonic [1]. The Time-
line and Playback provide the capabilities needed to mix different
sonecules and control the sonification by e.g. starting it at a certain
time or interrupting it. It furthermore allows us to alter the sonifi-
cation by temporarily disabling a certain sonecule, or by filtering
the Events depending on the sonecule which generated them.

4. CONSTRUCTION OF A SONECULE

The irreducible core of a sonecule is a sonecule ID for identifi-
cation and functions to temporarily filter or to remove all Events
of the sonecule from the Timeline. Both features enable users to
create two or more similar sonifications, listen to them separately
or together and to remove individual sonecules from the Time-
line object without traces. Furthermore, sonecules should check
the availability of the necessary Synths in the backend and pre-
pare them accordingly at construction. Additional service func-
tions could be defined, for instance to enable offline rendering of a
single sonecule.

Additionally many sonecules could offer further functions
such as scheduling of Events at a specific time. However this
requires that the required data are already present at the time of
scheduling and thus hinders sonecules to use stream data as of-
ten produced in biofeedback applications or interactive sonifica-
tion. To avoid any of alike artificial limitations, we have currently
established three different kinds of basic sonification designs or
sonecule types. Each type can be regarded as a software engineer-
ing pattern, which provides a template to define own sonification
designs as sonecule. The following section introduces these types
and describes their commonalities and differences. Please note
that this list is not meant to be exhaustive but rather focuses on
sonification designs that are commonly found.

Score-based Sonifications are sonifications which can be com-
puted ahead of time based on all the input data. Typical

The 28th International Conference on Auditory Display (ICAD 2023) June 26 - July 1 2023, Norrköping, Sweden

examples for this are Discrete and the Continuous Parame-
ter Mapping Sonifications [46] which based on data spawn
multiple (discrete) sound objects or alter an ongoing sound
stream (continuously) over time. These kinds of sonecules
typically allow the definition of a schedule function which
will create all Events in the Timeline ahead of time based
on the data to be sonified.

Buffer Synthesis Sonifications are sonifications which do make
use of buffers filled with data values to control parame-
ters or define sound signals directly, instead of controlling
a synthesis via Events by initiative of the Python process
running a sonecule. This is usually without alternative if
the control rate of the timeline is too low, or if manipu-
lations have to occur at audio rate directly. Many sound
computing backends distinguish between a control rate and
an audio rate – and shifting control from ’from the outside’
to ’inside the synthesis’ can simultaneously free resources
and increase precision. The most basic example to justify
Buffer Synthesis Sonification is Audification [47] – where
usually a data-derived signal is stored in a Buffer on the
backend for playback. For other examples think of many
parameter mapping sonifications, such as those using data
to modulate the instantaneous frequency of a sine wave (aka
FM synthesis).

Trigger Sonifications are those usually event-like sonifications
that depend on a condition to trigger its playback. The most
straight-forward examples are alarms, warnings, the tech-
niques being Earcons, Musicons, Auditory Icons, Parame-
terized Auditory Icons, yet also designs at the intersection
to Parameter-Mapping Sonification, such as the AIB (au-
ditory information buckets), introduced in [48]. And also
Model-Based Sonifications [42] fall into this category as
they can be setup and then triggered by user interaction.

5. SONECULES - BASIC STANDARD LIBRARY

The following sections introduces selected sonecules. Each son-
ecule is briefly described in terms of the sonification design and
technique and the underlying requirements on the data.

5.1. Score-based Sonifications

Standard Discrete Parameter Mapping Sonification
(SDPMSon) are sonifications which belong to the Pa-
rameter Mapping Sonification (PMSon) technique. The
standard part of the name stems from the limitation of
using a single synth for the parameter domain and the
discrete part means that each data point (row of a data set in
table form for example) creates its own sound event where
individual parameters of the sound result from a mapping
function applied to the respective data point. This allows
users to sonify all kinds of high-dimensional data sets, i.e.
data tables with N rows and d columns.

Standard Continuous Parameter Mapping Sonification
(SCPMSon) are as well as SDPMSon sonifications which
belong to the PMSon technique. The difference here is
that only a single yet possibly multi-parameter continuous
sound stream is generated which is then updated via the
mapping from single data points along the playback. This
usually limits the usage to data sets that can be sorted along
a property such as time or location.

These two can be regarded as starting point for further more
specific sonification designs. It is also intended that multiple
instances of the aforementioned sonecules can be used together
to create more sophisticated Parameter Mapping Sonification de-
signs, which then could potentially be wrapped again into a new
even more complex sonecule.

Other sonecules to be included as Score-based Sonifications
that are more specific are the Vocal Mapping Sonification, a spe-
cial case of SCPMSon, using a formant-based synthesis model
[49]. And also the implementation of SingingFunctions sonifica-
tions which are another special case of SCPMSon that allow dis-
tinguishing function shapes as auditory gestalts by listening to the
properties being sonified [50].

5.2. Buffer Synthesis Sonifications

Simple Audification (SA) is a sonecule for the most basic aud-
ification of a univariate data set (resp. time series). The
sonecule offers a simple playback control (start, pause,
rate, . . .) and also allows certain signal conditioning capa-
bilities such as resampling and time-scale modification. As
always with Audification this requires sequence (e.g. time
series) data with enough samples to deliver sufficiently long
audio data.

Multivariate Audification is an extension of the SA sonecule
which allows to use multivariate time series data for audifi-
cation. It can be imagined as a bank of SA instances to play
the different channels simultaneously, one-shot or looped,
while allowing to toggle dimensions, mixing, and to set/-
manipulate loop properties such as begin & end or center &
width.

Interactive Audification is again an Audification but using Gran-
ular Synthesis, with, for instance, the TGrains UGen of-
fered by SuperCollider, to free Audification from automatic
time progression. This allows users to scan the plot and
probe the current underlying patterns interactively as they
control the time progression, e.g. by moving the Mouse
pointer along the x-axis. Here it could again make sense
to offer a simple (single channel) and multivariate (multi-
channel) version as sonecules to allow optimization in the
backend, as unfortunately the TGrains UGen in SuperCol-
lider only works with mono audio buffers.

Timbral Sonification is another sonecule of the Buffer Synthesis
Sonification category but as example for a Parameter Map-
ping Sonification: The Timbral Sonification is created by
mapping values of multivariate time series to correspond-
ing amplitudes of harmonics to a fundamental frequency so
that patterns manifest as timbre changes. The user can here
control the assignment order of the different data columns
to the fundamentals arbitrary or by assigning them based on
the amount of variance in the column.

Time-variant Oscillator Bank Mapping is again a sonecule for
multivariate time series. The idea here is that we create a
pitch mapping on a variable number of independent oscil-
lators. Mapping a data vector results in vector-component
depending pitch deviations from center notes for each oscil-
lator in the bank. Center pitches are set musically equidis-
tant between a minimal and maximal MIDI note number.
Possible controls are the assignment order of the different
data columns to the oscillators, as well as the de-/activation

The 28th International Conference on Auditory Display (ICAD 2023) June 26 - July 1 2023, Norrköping, Sweden

of additional features such as an excitatory mode, where
component value changes over time would drive (excite)
the amplitude, resulting in a sonification that accentuates
moments of variation.

5.3. Trigger-based Sonifications

Event-based Sonification is a sonecule that allows to specify a
condition function and a sound to be played when the con-
dition is met. Examples for these sounds are Auditory
Icons and Earcons which might be selected or parameter-
ized based on the condition result on the input data.

Data Sonogram Sonification Model is a sonecule representing a
basic example sonecule from the family of Model-Based
Sonifications. The Data Sonogram is an example for ex-
citatory sonification models where punctual, i.e., localized
and instantaneous, injection of energy initiates a process in
model space which – according to some dynamical laws –
yields acoustic reactions representing the sonification. In
case of the data sonogram, the excitation is the triggering
of a ’shock wave’ in data space which expands isotropi-
cally and causes distance-to-data-points related activation
of their acoustic contributions. Adjusting the shock wave
speed appropriately, a spatial scan may last few seconds,
allowing to quickly and intuitively tap and explore data in a
closed-loop discrete interaction pattern.
As sonecules are implemented using object-oriented pro-
gramming methods, the class hierarchy and inheritance
offers us to naturally create a Model-Based Sonification
sonecule class as it’s own pattern where derived sonecules
will be subclasses that share for example the triggering in-
terface or plotting function, but replace the inner model
logic to create for instance the GNG-Sonification or Data
Crystallization Sonification model [42] as their own and
novel sonecules.

Proto-Sonification / Auditory Canvas is a family of sonecules
that can be used for providing context to the sonification
by allowing the auditory representation of begin/end mark-
ers and ticks as discrete sounds or by using for example a
continuous sound as a reference line. Even labels and the
title could be added as spoken descriptions of the sonecule.
These parts are useful extensions in general and in the case
of spoken descriptions especially aim to improve the soni-
fication for visually impaired persons. They can be differ-
entiated from the Event-based Sonifications as they are not
based on a specific data sample but depend on overall char-
acteristics of the sonification such as the duration.

6. THE SONECULE INTERFACE

The following section provides an overview of the object-oriented
interface of sonecules and how it can be used. Each sonecule is
a class. This enables to use inheritance of the basics from the
sonecule base class and also enables to define families of sonecules
which share common function such as for example Model-based
Sonification sonecules that can reuse the functions for integrating
the interaction into the sonifcation model.

The following properties and functions are part of the sonecule
interface:

construction enables the user to define the audio context and
therefore the timeline that is used for the sonification. If
no specific audio context is provided a default one will be
used. This allows adding multiple sonecules to the same
timeline and creating a complex sonification out of simpler
units. The construction of the sonecule also initializes the
necessary synths and buffer instances and allows the user
to provide first parameters like for example an overall am-
plitude factor of the sonification or a target domain for a
mapping.

sonecule ID each sonecule has a unique ID which allows to filter
events tagged with this ID from the sonecule temporarily
using the active property of the sonecule. Additionally a
sonecule offers a reset function to remove its events from
the timeline completely.

update the controls of a sonecules are accessible via the update
function which allows for example to specify updated map-
ping parameters, to change the selection of data for the soni-
fication or simply to alter the amplitude.

schedule allows to specify the time point where the sonification
should start and what data are used. Note that Trigger Soni-
fications typically can’t be scheduled as they depend on
real-time data – however if recordings of such interactions
are available, a sonecule could provide a schedule func-
tion were the recorded data can be provided to enable re-
listening these interaction while changing the controls of
the sonecule.

The following code demonstrates how sonecules can be used
in pseudo code where the single command lines are meant to be ex-
ecuted interactively in a Jupyter Notebook or using another REPL.

Create a sonecule using its constructor
sonecule1 = SoneculeXY(**sonecule1_controls)

Schedule it at the beginning of the timeline
sonecule1.schedule(0.0, data)

Listen to the sonfication using the playback
pb = sonecules.get_playback()
pb.start()

Update controls and re-listen
sonecule1.update({"amplitude": 0.4})
pb.start()

Create and schedule another sonecule
sonecule2 = SoneculeYX(**sonecule2_controls)
sonecule2.schedule(0.0, data, params)

We can now listen to both sonecules at once
pb.start()

Deactivate one sonecule temporarily
sonecule1.active = False
pb.start()

Reschedule sonecule1 after sonecule2
sonecule1.schedule(sonecule2.duration + 0.5, ...)
sonecule1.active = True

Listening to the sonecules one after the other
in a loop

pb.loop = True
pb.start()

The 28th International Conference on Auditory Display (ICAD 2023) June 26 - July 1 2023, Norrköping, Sweden

Stop listening using the playback
pb.stop()

A demonstration and media samples can be found online
in the supplementary material https://doi.org/10.4119/
unibi/2979096. Additionally we keep lots of details to the
Jupyter notebooks that illustrate how to use the sonecule, which
are provided on our GitHub1

7. DISCUSSION

In this paper we presented sonecules as well-defined sonifica-
tion designs packaged in Python to be quick-and-easy to use.
Sonecules is implemented in Python as it is a very user-friendly
ecosystem with great community support [51] and enables re-
searchers from diverse domains to use their favorite data process-
ing tools together with sonecules. It may look at first sight like
sonecules only targets users that are new to the domain of sonifica-
tion and are looking for a starting point to sonify their data. How-
ever we argue that also experts and the auditory display community
benefit from the ideas behind and the availability of sonecules, for
the following reasons:

(a) flexibility and portability: we have designed sonecules so
that it is platform- and backend-independent, which should enable
everyone to use it. sonecules rely on Python and (via mesonic) on
different backends so that it may run on most computer systems
(for sure the big OS Windows, MacOS and Linux, but also po-
tentially on embedded systems), and as the different backends are
capable of using the same sonecules this could make it straightfor-
ward to bring sonification to where ever it will be needed.

(b) availability and distribution: The distribution of sonifica-
tions is especially hard [17] as we are obviously not able to print
the sonifications and even audio files are limiting as they do not al-
low to use the sonification with compatible data sets and altered pa-
rameters. sonecules allow the distribution of sonification designs
as reusable package. Our goal is that the collection of sonecules
will continue to grow as other sonification researchers join us to
distribute their own sonification designs as sonecules, so that the
toolbox gets ever fuller for the benefit of all.

(c) reproducibility: relying on sonecules for sonification
would add the benefit of being able to better share the experience
and interaction (and not only the ideas and sounds as it is com-
monly done in papers). Anyone could more easily reproduce the
sonifications of others, as starting point for their own improve-
ments. But also other user groups such as lecturers and data jour-
nalists could use sonecules to quickly introduce students or readers
to the idea of sonification using data relevant to them. This could
help the sonification community to increase awareness.

(d) benchmarking, enhancing scientific standards and de-
velopment: comparing one’s own sonifications to the state-of-the-
art is currently practically impossible because to do so, all candi-
dates must be reimplemented, yet papers often lack critical details
to do so, let alone the resources to do it. Publishing sonification
designs as sonecules solves that problem and hopefully enhances
research practices as new researchers can start from others’ work.

(e) dissemination for decades we long for the ‘killer applica-
tion‘ which irrevocably kills any doubt against sonification. The

1sonecules GitHub https://github.com/
interactive-sonification/sonecules

number of such experiments could grow steeply, having a pack-
age that application-domain researchers in every walk of science
and industry could quickly and easily use, and thereby both the
acceptance of auditory display practices and the chances to collect
’killer applications’.

We provide sonecules as initial idea and as a collection of soni-
fication designs. We hope that the sonification community will use
these as starting point for many more sonification designs. We
are looking forward to further discussions on GitHub around each
sonecule and hope sonecules provides a platform for these discus-
sions, as it is a community effort to represent the complete sonifi-
cation domain and set suitable default parameters for sonification
designs.

In our ongoing work we will introduce more sonecules as well
as likely upstream improvements for the mesonic library. The in-
troduction of alternative sound synthesis backends seems to be a
crucial step towards the uptake as an open platform and it has the
potential to allow sonecules to be used in the web browser without
the need to re-implement the logic and data processing.

8. CONCLUSION

Sonecules provide multiple sonification designs in a single inter-
face that is more accessible than prior Python libaries such as
sc3nb [37] or mesonic [1], yet it still integrates very well into
the vast ecosystem that can be found in Python around data han-
dling and processing. The design-once-use-many approach aims to
scaffold method and application development and rapid prototyp-
ing of sonification experiments. This is beneficial for both, experts
and new users of sonification, as it follows the Unix principle and
focuses on providing sonifications as an clearly-defined interface
which is appealing for end-users who want to get started quickly.
Additionally, with sonecules we also introduce a new taxonomy
that goes deeper, i.e., is more specific than the already known tax-
onomy of sonification techniques, and it aims at providing soft-
ware engineering patterns for sonification. This should in turn
allow a more concise development of new sonification designs,
because a sonecule that facilitates its distribution will be quickly
reusable and reproducible by peers.

All in all, sonecules certainly needs time to mature and – as
always in open-source – the project’s success depends on the re-
ception and adoption of the community. sonecules is open to con-
tribution and aims to provide an exchange platform for sonification
designs with the potential to seed resp. grow into a standard library
of sonification.

9. REFERENCES

[1] D. Reinsch and T. Hermann, “Interacting with sonifications-
The mesonic framework for interactive auditory data sci-
ence,” in Proceedings of the 7th Interactive Sonification
Workshop (ISon 2022). Hanse Wissenschaftskolleg (HWK),
Delmenhorst, Germany: Zenodo, Jan. 2023, pp. 65–74, pub-
lisher: Zenodo.

[2] S. Barrass, “Personify: A Toolkit for Perceptually Meaning-
ful Sonification,” in Proceedings of the Australian Computer
Music Association Conference 1995, Melbourne, July 1995.

[3] C. M. Wilson and S. K. Lodha, “Listen: A Data Sonifica-
tion Toolkit,” in Proceedings of the 3rd International Con-

https://doi.org/10.4119/unibi/2979096
https://doi.org/10.4119/unibi/2979096
https://github.com/interactive-sonification/sonecules
https://github.com/interactive-sonification/sonecules

The 28th International Conference on Auditory Display (ICAD 2023) June 26 - July 1 2023, Norrköping, Sweden

ference on Auditory Display (ICAD 1996), Palo Alto, Cali-
fornia, USA, 1996.

[4] S. K. Lodha, J. Beahan, T. Heppe, A. Joseph, and B. Zane-
Ulman, “MUSE: A Musical Data Sonification Toolkit,” in
Proceedings of the 4th International Conference on Auditory
Display (ICAD 1997), Palo Alto, California, USA, 1997.

[5] A. J. Joseph and S. K. Lodha, “Musart: Musical audio trans-
fer function real-time toolkit,” in Proceedings of the 8th In-
ternational Conference on Auditory Display (ICAD 2002).
Kyoto, Japan: Georgia Institute of Technology, July 2002.

[6] O. Ben-Tal, J. Berger, B. Cook, M. Daniels, G. Scavone, and
P. Cook, “SonART: The Sonification Application Research
Toolbox,” in Proceedings of the 8th International Conference
on Auditory Display (ICAD 2002), Kyoto, Japan, 2002.

[7] J. A. Miele, “Smith-Kettlewell display tools: A sonification
toolkit for Matlab,” in Proceedings of the 9th International
Conference on Auditory Display (ICAD 2003), Boston, Mas-
sachusetts, USA, 2003, pp. 288–291.

[8] B. N. Walker and J. T. Cothran, “Sonification Sandbox: A
graphical toolkit for auditory graphs,” in Proceedings of the
9th International Conference on Auditory Display (ICAD
2003), Boston, Massachusetts, USA, 2003, pp. 161–163.

[9] S. J. Cantrell, B. N. Walker, and Ø. Moseng, “Highcharts
Sonification Studio: An Online, Open-Source, Extensible,
and Accessible Data Sonification Tool,” in Proceedings
of the 26th International Conference on Auditory Display
(ICAD 2021). virtual: International Community for Au-
ditory Display, June 2021, pp. 210–216.

[10] A. de Campo, C. Frauenberger, and R. Höldrich, “Designing
a Generalized Sonification Environment,” in Proceedings of
the 2004 International Computer Music Conference (ICMC
2004). Miami, Florida, USA: Michigan Publishing, 2004.

[11] F. C. Ciardi, “sMax: A Multimodal Toolkit for Stock Market
Sonification,” in Proceedings of the 10th International Con-
ference on Auditory Display (ICAD 2004). Sydney, Aus-
tralia: Georgia Institute of Technology, 2004.

[12] S. Pauletto and A. Hunt, “A Toolkit for Interactive Sonifi-
cation,” in Proceedings of the 10th International Conference
on Auditory Display (ICAD 2004), S. Barrass and P. Vick-
ers, Eds. Sydney, Australia: International Community for
Auditory Display, 2004.

[13] J. W. Bruce and N. T. Palmer, “SIFT: Sonification Integrable
Flexible Toolkit,” in Proceedings of the 11th International
Conference on Auditory Display (ICAD 2005), Limerick, Ire-
land, 2005, pp. 256–259.

[14] R. M. Candey, A. M. Schertenleib, and Wanda L. Diaz
Merced, “xSonify Sonification Tool for Space Physics,” in
Proceedings of the 12th International Conference on Audi-
tory Display (ICAD 2006), London, UK, 2006, pp. 289–290.

[15] B. Garcia, W. Diaz-Merced, J. Casado, and A. Can-
cio, “Evolving from xSonify: A new digital platform for
sonorization,” EPJ Web of Conferences, vol. 200, p. 01013,
2019.

[16] D. Worrall, “Overcoming software inertia in data sonification
research using the SoniPy framework,” in Proceedings of the
International Conference on Music Communication Science
(ICoMCS). Sydney, Australia: Citeseer, 2007, p. 180.

[17] F. Dombois, O. Brodwolf, O. Friedli, I. Rennert, and
T. Koenig, “SONIFYER: A Concept, a Software, a Plat-
form,” in Proceedings of the 14th International Conference
on Auditory Display (ICAD 2008), Paris, France, 2008.

[18] K. A. Beilharz and S. Ferguson, “An Interface and Frame-
work Design for Interactive Aesthetic Sonification,” in Pro-
ceedings of the 15th International Conference on Auditory
Display (ICAD 2009). Copenhagen, Denmark: Re:New
Digital Arts Forum, 2009.

[19] J. W. Walker, M. T. Smith, and M. Jeon, “Interactive Sonifi-
cation Markup Language (ISML) for Efficient Motion-Sound
Mappings,” in Human-Computer Interaction: Interaction
Technologies - 17th International Conference, ser. Lecture
Notes in Computer Science, M. Kurosu, Ed., vol. 9170. Los
Angeles, CA, USA: Springer, 2015, pp. 385–394.

[20] M. Jeon, M. T. Smith, J. W. Walker, and S. A. Kuhl, “Con-
structing the Immersive Interactive Sonification Platform
(iISoP),” in Distributed, Ambient, and Pervasive Interac-
tions, ser. Lecture Notes in Computer Science, N. Streitz and
P. Markopoulos, Eds. Cham: Springer International Pub-
lishing, 2014, pp. 337–348.

[21] S. Landry, M. Jeon, and J. Ryan, “A broad spectrum of
sonic interactions at immersive interactive sonification plat-
form (iISoP),” in Proceedings of the 21th IEEE Virtual Re-
ality Conference (Workshop in Sonic Interactions in Virtual
Environments), Minneapolis, Minnesota, USA, 2014.

[22] J. M. Cherston, “Auditory display for maximizing engage-
ment and attentive capacity,” Thesis, Massachusetts Institute
of Technology, 2016.

[23] J. Cherston and J. A. Paradiso, “Rotator: Flexible Distribu-
tion of Data Across Sensory Channels,” in Proceedings of the
23rd International Conference on Auditory Display (ICAD
2017). State College, Pennsylvania, USA: The International
Community for Auditory Display, June 2017, pp. 86–93.

[24] S. Phillips and A. Cabrera, “Sonification Workstation,” in
Proceedings of the 25th International Conference on Audi-
tory Display (ICAD 2019). Newcastle upon Tyne: Depart-
ment of Computer and Information Sciences, Northumbria
University, June 2019, pp. 184–190.

[25] H. Lindetorp and K. Falkenberg, “Sonification for Everyone
Everywhere - Evaluating the WebAudioXML Sonification
Toolkit for Browsers,” in Proceedings of the 26th Interna-
tional Conference on Auditory Display (ICAD 2021). vir-
tual: International Community for Auditory Display, 2021,
pp. 15–21.

[26] H. Lindetorp and K. Falkenberg, “WebAudioXML: Propos-
ing a new standard for structuring web audio,” in Proceed-
ings of the 17th Sound and Music Computing Conference.
Torino, Italy: Zenodo, June 2020, pp. 25–31.

[27] H. Lindetorp and K. Falkenberg, “Audio Parameter Mapping
Made Explicit Using WebAudioXML,” in Proceedings of the
18th Sound and Music Computing Conference, 2021.

[28] H. Lindetorp and K. Falkenberg, “Putting Web Audio API to
the test: Introducing WebAudioXML as a pedagogical plat-
form,” in Proceedings of the International Web Audio Con-
ference, ser. WAC ’21, L. Joglar-Ongay, X. Serra, F. Font,
P. Tovstogan, A. Stolfi, A. A. Correya, A. Ramires, D. Bog-
danov, A. Faraldo, and X. Favory, Eds. Barcelona, Spain:
UPF, July 2021.

The 28th International Conference on Auditory Display (ICAD 2023) June 26 - July 1 2023, Norrköping, Sweden

[29] J. McCartney, “SuperCollider: A new real time synthesis lan-
guage,” in Proceedings of the 1996 International Computer
Music Conference (ICMC 1996). Hong Kong: Michigan
Publishing, 1996, pp. 257–258.

[30] M. Puckette, “Pure Data: Another integrated computer mu-
sic environment,” in Proceedings of the Second Intercollege
Computer Music Concerts, Feb. 1970, pp. 37–41.

[31] M. Puckette, “Combining Event and Signal Processing in
the MAX Graphical Programming Environment,” Computer
Music Journal, vol. 15, no. 3, pp. 68–77, 1991.

[32] B. Vercoe, “Csound: A manual for the audio processing sys-
tem and supporting programs,” Technical report, MIT Media
Lab, Tech. Rep., 1986.

[33] A. de Campo, C. Frauenberger, and R. Höldrich, “SonEnvir -
a Progress Report,” in Proceedings of the 2005 International
Computer Music Conference (ICMC 2005). Barcelona,
Spain: Michigan Publishing, 2005.

[34] A. de Campo, C. Dayé, C. Frauenberger, K. Vogt, A. Wal-
lisch, and G. Eckel, “Sonification as an Interdisciplinary
Working Process,” in Proceedings of the 12th International
Conference on Auditory Display (ICAD 2006), London, UK,
2006, pp. 28–35.

[35] A. de Campo, “An Interdisciplinary Approach to Sonification
of Scientific Data,” Ph.D. dissertation, 2009.

[36] David Worrall, Michael Bylstra, Stephen Barrass, and Roger
Dean, “SoniPy: The Design of an Extendable Software
Framework for Sonification Research and Auditory Display,”
in Proceedings of the 13th International Conference on Au-
ditory Display (ICAD 2007), Montréal, Canada, 2007, pp.
445–452.

[37] T. Hermann and D. Reinsch, “Sc3nb: A Python-
SuperCollider Interface for Auditory Data Science,” in Pro-
ceedings of the 16th International Audio Mostly Conference
(AM ’21). virtual/Trento Italy: ACM, Sept. 2021, pp. 208–
215.

[38] S. Lenzi, P. Ciuccarelli, H. Liu, and Y. Hua, “Data sonifica-
tion archive,” http://www.sonification.design, 2020.

[39] S. Barrass, “EarBenders: Using stories about listening to de-
sign auditory interfaces,” in Proceedings of the First Asia-
Pacific Conference on Human Computer Interaction APCHI,
vol. 96, 1996.

[40] S. Barrass, “Sonification Design Patterns,” in Proceedings of
the 9th International Conference on Auditory Display (ICAD
2003), Boston, Massachusetts, USA, 2003, pp. 170–175.

[41] O. M. Ritchie and K. Thompson, “The UNIX time-sharing
system,” The Bell System Technical Journal, vol. 57, no. 6,
pp. 1905–1929, July 1978.

[42] T. Hermann, “Model-based sonification,” in The Sonification
Handbook, T. Hermann, A. Hunt, and J. G. Neuhoff, Eds.
Berlin, Germany: Logos Publishing House, 2011, ch. 16, pp.
399–427.

[43] T. Hermann, “Taxonomy and Definitions for Sonification and
Auditory Display,” in Proceedings of the 14th International
Conference on Auditory Display (ICAD 2008), Paris, France,
2008.

[44] K. Enge, A. Rind, M. Iber, R. Höldrich, and W. Aigner, “It’s
about Time: Adopting Theoretical Constructs from Visual-
ization for Sonification,” in Proceedings of the 16th Inter-
national Audio Mostly Conference (AM ’21), ser. AM ’21.
New York, NY, USA: Association for Computing Machin-
ery, Oct. 2021, pp. 64–71.

[45] “Web Audio API,” https://www.w3.org/TR/webaudio/, 2021.

[46] F. Grond and J. Berger, “Parameter mapping sonification,” in
The Sonification Handbook, T. Hermann, A. Hunt, and J. G.
Neuhoff, Eds. Berlin, Germany: Logos Publishing House,
2011, ch. 15, pp. 363–397.

[47] F. Dombois and G. Eckel, “Audification,” in The Sonification
Handbook, T. Hermann, A. Hunt, and J. G. Neuhoff, Eds.
Berlin, Germany: Logos Publishing House, 2011, ch. 12, pp.
301–324.

[48] T. Hermann, M. H. Hansen, and H. Ritter, “Sonification of
Markov Chain Monte Carlo Simulations,” in Proceedings of
the 7th International Conference on Auditory Display (ICAD
2001), Espoo, Finland, 2001, pp. 208–216.

[49] T. Hermann, G. Baier, U. Stephani, and H. Ritter, “Kernel
Regression Mapping for Vocal EEG Sonification,” in Pro-
ceedings of the 14th International Conference on Auditory
Display (ICAD 2008), Paris, France, 2008.

[50] F. Grond and T. Hermann, “Singing Function: Exploring Au-
ditory Graphs with a Vowel Based Sonification,” Journal on
Multimodal User Interfaces, vol. 5, no. 3-4, pp. 87–95, May
2011.

[51] J. M. Perkel, “Programming: Pick up Python,” Nature, vol.
518, no. 7537, pp. 125–126, Feb. 2015.

http://www.sonification.design
https://www.w3.org/TR/webaudio/

	 Introduction
	 Related Work
	 Fundamental concepts
	 Construction of a Sonecule
	 Sonecules - Basic Standard Library
	 Score-based Sonifications
	 Buffer Synthesis Sonifications
	 Trigger-based Sonifications

	 The sonecule interface
	 Discussion
	 Conclusion
	 References

