
LTL Satisfiability Checking

Kristin Y. Rozier1 ⋆ and Moshe Y. Vardi2

1 NASA Langley Research Center, Hampton, Virginia 23681.Kristin.Y.Rozier@nasa.gov
2 Rice University, Houston, Texas 77005,vardi@cs.rice.edu

Abstract. We report here on an experimental investigation of LTL satisfiabil-
ity checking via a reduction to model checking. By using large LTL formulas,
we offer challenging model-checking benchmarks to both explicit and symbolic
model checkers. For symbolic model checking, we use both CadenceSMV and
NuSMV. For explicit model checking, we use SPIN as the searchengine, and we
test essentially all publicly available LTL translation tools. Our experiments result
in two major findings. First, most LTL translation tools are research prototypes
and cannot be considered industrial quality tools. Second,when it comes to LTL
satisfiability checking, the symbolic approach is clearly superior to the explicit
approach.

1 Introduction

Model-checkingtools are successfully used for checking whether systems have desired
properties [11]. The application of model-checking tools to complex systems involves
a nontrivial step of creating a mathematical model of the system and translating the de-
sired properties into a formal specification. When the modeldoes not satisfy the speci-
fication, model-checking tools accompany this negative answer with a counterexample,
which points to an inconsistency between the system and the desired behaviors. It is
often the case, however, that there is an error in the system model or in the formal spec-
ification. Such errors may not be detected when the answer of the model-checking tool
is positive: while a positive answer does guarantee that themodel satisfies the speci-
fication, the answer to the real question, namely, whether the system has the intended
behavior, may be different.

The realization of this unfortunate situation has led to thedevelopment of several
sanity checksfor formal verification [29]. The goal of these checks is to detect errors in
the system model or the properties. Sanity checks in industrial tools are typically sim-
ple, ad hoc tests, such as checking for enabling conditions that are never enabled [31].
Vacuity detectionprovides a more systematic approach. Intuitively, a specification is sat-
isfied vacuously in a model if it is satisfied in some non-interesting way. For example,
the linear temporal logic (LTL) specification�(req→ ♦grant) (“every request is even-
tually followed by a grant”) is satisfied vacuously in a modelwith no requests. While

⋆ Work contributing to this paper was completed at Rice University, Cambridge University, and
NASA Langley Research Center, and was supported in part by the Rice Computational Re-
search Cluster (Ada), funded by NSF under Grant CNS-0421109and a partnership between
Rice University, AMD and Cray.

vacuity checking cannot ensure that whenever a model satisfies a formula, the model is
correct, it does identify certain positive results as vacuous, increasing the likelihood of
capturing modeling and specification errors. Several papers on vacuity checking have
been published over the last few years [2, 3, 8, 27, 26, 30, 34,37], and various industrial
model-checking tools support vacuity checking [2, 3, 8].

All vacuity-checking algorithms check whether a subformula of the specification
does not affect the satisfaction of the specification in the model. In the example above,
the subformulareq does not affect satisfaction in a model with no requests. There
is, however, a possibility of a vacuous result that is not captured by current vacuity-
checking approaches. If the specification isvalid, that is, true inall models, then model
checking this specification always results in a positive answer. Consider for example
the specification�(b1 → ♦b2), whereb1 andb2 are propositional formulas. Ifb1 and
b2 are logically equivalent, then this specification is valid and is satisfied by all mod-
els. Nevertheless, current vacuity-checking approaches do not catch this problem. We
propose a method for an additional sanity check to catch exactly this sort of oversight.

Writing formal specifications is a difficult task, which is prone to error just as im-
plementation development is error prone. However, formal verification tools offer little
help in debugging specifications other than standard vacuity checking. Clearly, if a for-
mal property is valid, then this is certainly due to an error.Similarly, if a formal prop-
erty isunsatisfiable, that is, true inno model, then this is also certainly due to an error.
Even if each individual property written by the specifier is satisfiable, their conjunction
may very well be unsatisfiable. Recall that a logical formulaϕ is valid iff its negation
¬ϕ is not satisfiable. Thus, as a necessary sanity check for debugging a specification,
model-checking tools should ensure that both the specification ϕ and its negation¬ϕ
are satisfiable. (For a different approach to debugging specifications, see [1].)

A basic observation underlying our work is that LTL satisfiability checking can be
reduced to model checking. Consider a formulaϕ over a setProp of atomic proposi-
tions. If a modelM is universal, that is, it contains all possible traces overProp, thenϕ
is satisfiable precisely when the modelM doesnot satisfy¬ϕ. Thus, it is easy to add a
satisfiability-checking feature to LTL model-checking tools.

LTL model checkers can be classified asexplicitor symbolic. Explicit model check-
ers, such as SPIN [28] or SPOT [15], construct the state-space of the model explicitly
and search for a trace falsifying the specification [12]. In contrast, symbolic model
checkers, such as CadenceSMV [32], NuSMV [9], or VIS [5], represent the model and
analyze it symbolically using binary decision diagrams (BDDs) [7].

LTL model checkers follow the automata-theoretic approach[45], in which the com-
plemented LTL specification is explicitly or symbolically translated to a Büchi automa-
ton, which is then composed with the model under verification; see also [44]. The model
checker then searches for a trace of the model that is accepted by the automaton. All
symbolic model checkers use the symbolic translation described in [10] and the anal-
ysis algorithm of [17], though CadenceSMV and VIS try to optimize further. There
has been extensive research over the past decade into explicit translation of LTL to
automata[13, 14, 18, 19, 20, 25, 21, 24, 40, 38, 42], but it is difficult to get a clear
sense of the state of the art from a review of the literature. Measuring the performance

2

of LTL satisfiability checking enables us to benchmark the performance of LTL model
checking tools, and, more specifically, of LTL translation tools.

We report here on an experimental investigation of LTL satisfiability checking via
a reduction to model checking. By using large LTL formulas, we offer challenging
model-checking benchmarks to both explicit and symbolic model checkers. For sym-
bolic model checking, we use both CadenceSMV and NuSMV. For explicit model
checking, we use SPIN as the search engine, and we test essentially all publicly avail-
able LTL translation tools. We use a wide variety of benchmark formulas, either gen-
erated randomly, as in [14], or using a scalable pattern (e.g.,

Vn
i=1 pi). LTL formulas

typically used for evaluating LTL translation tools are usually too small to offer chal-
lenging benchmarks. Note that real specifications typically consist of many temporal
properties, whose conjunction ought to be satisfiable. Thus, studying satisfiability of
large LTL formulas is quite appropriate.

Our experiments resulted in two major findings. First, most LTL translation tools
are research prototypes and cannot be considered industrial quality tools. Many of them
are written in scripting languages such as Perl or Python, which has a drastic nega-
tive impact on their performance. Furthermore, these toolsgenerally degrade grace-
lessly, often yielding incorrect results with no warning. Among all the explicit tools we
tested, only SPOT can be considered an industrial quality tool. Second, when it comes
to LTL satisfiability checking, the symbolic approach is clearly superior to the explicit
approach. Even SPOT, the best explicit LTL translator in ourexperiments, was rarely
able to compete effectively against the symbolic tools. This result is consistent with the
comparison of explicit and symbolic approaches to modal satisfiability [35, 36], but is
somewhat surprising in the context of LTL satisfiability in view of [39].

Related software, calledlbtt ,3 provides an LTL-to-Büchi explicit translator test-
bench and environment for basic profiling. Thelbtt tool performs simple consistency
checks on an explicit tool’s output automata, accompanied by sample data when incon-
sistencies in these automata are detected [41]. Whereas theprimary use oflbtt is to
assist developers of explicit LTL translators in debuggingnew tools or comparing a pair
of tools, we compare performance with respect to LTL satisfiability problems across a
host of different tools, both explicit and symbolic.

The structure of the paper is as follows. Section 2 provides the theoretical back-
ground for this work. In Section 3, we describe the tools studied here. We define our
experimental method in Section 4, and detail our results in Section 5. We conclude with
a discussion in Section 6.

2 Theoretical Background

Linear Temporal Logic (LTL) formulas are composed of a finite setProp of atomic
propositions, the Boolean connectives¬, ∧, ∨, and→, and the temporal connectivesX
(next time)U (until), R (release),� (also calledG for “globally”) and ♦ (also called
F for “in the future”). We define LTL formulas inductively:

3 www.tcs.hut.fi/Software/lbtt/

3

Definition 1 For every p∈ Prop, p is a formula. Ifϕ andψ are formulas, then so are:
¬ϕ ϕ∧ψ ϕ → ψ ϕUψ G ϕ

ϕ∨ψ X ϕ ϕR ϕ F ϕ

LTL formulas describe the behavior of the variables inProp over a linear series of
time steps starting at time zero and extending infinitely into the future. We satisfy such
formulas overcomputations, which are functions that assign truth values to the elements
of Propat each time instant [16].

Definition 2 We interpret LTL formulas over computations of the formπ : ω → 2Prop.
We defineπ, i � ϕ (computationπ at time instant i∈ ω satisfies LTL formulaϕ) as
follows:

π, i � p for p∈ Prop if p∈ π(i).
π, i � ϕ∧ψ if π, i � ϕ andπ, i � ψ.
π, i � ¬ϕ if π, i 2 ϕ.
π, i � X ϕ if π, i +1� ϕ.
π, i � ϕUψ if ∃ j ≥ i, such thatπ, j � ψ and∀k, i ≤ k < j, we haveπ,k � ϕ.
π, i � ϕR ψ if ∀ j ≥ i, if π, j 2 ψ, then∃k, i ≤ k < j, such thatπ,k � ϕ.

We define(F ϕ) as(trueU ϕ) and(G ϕ) as(¬F ¬ϕ). We take models(ϕ) to be the set
of computations that satisfyϕ at time 0, i.e.,{π : π,0 � ϕ}.

In automata-theoretic model checking, we represent LTL formulas using Büchi au-
tomata.

Definition 3 A Büchi Automaton (BA) is a quintuple(Q,Σ,δ,q0,F) where:

Q is a finite set of states.
Σ is a finite alphabet.
δ : Q×Σ → 2Q is the transition relation.
q0 ∈ Q is the initial state.
F ⊆ Q is a set of final states.

A run of a B̈uchi automaton over an infinite word w= w0,w1,w2, . . .∈Σ is a sequence of
states q0,q1,q2, . . . ∈Q such that∀i ≥ 0, δ(qi ,wi) = qi+1. An infinite word w is accepted
by the automaton if the run over w visits at least one state in Finfinitely often. We denote
the set of infinite words accepted by an automaton A by Lω(A).

A computation satisfying LTL formulaϕ is an infinite word over the alphabetΣ = 2Prop.
The next theorem relates the expressive power of LTL to that of Büchi automata.

Theorem 1. [46] Given an LTL formulaϕ, we can construct a B̈uchi automaton Aϕ =
〈

Q,Σ,δ,q0,F
〉

such that|Q| is in 2O(|ϕ|), Σ = 2Prop, and Lω(Aϕ) is exactly models(ϕ).

This theorem reduces LTL satisfiability checking to automata-theoretic nonemptiness
checking, asϕ is satisfiable iffmodels(ϕ) 6= /0 iff Lω(Aϕ) 6= /0.

We can now relate LTL satisfiability checking to LTL model checking. Suppose we
have auniversal model, M, that generates all computations over its atomic propositions;
that is, we have thatL+ ω(M) = (2Prop)ω. We now have thatM doesnot satisfy¬ϕ if
and only ifϕ is satisfiable. Thus,ϕ is satisfiable precisely when the model checker finds
a counterexample.

4

3 Tools Tested

In total, we tested eleven LTL compilation algorithms from nine research tools. To
offer a broad, objective picture of the current state of the art, we tested the algorithms
against several different sequences of benchmarks, comparing, where appropriate, the
size of generated automata in terms of numbers of states and transitions, translation
time, model-analysis time, and correctness of the output.

3.1 Explicit Tools

The explicit LTL model checker SPIN [28] accepts either LTL properties, which are
translated internally into Büchi automata, or Büchi automata for complemented proper-
ties (“never claims”). We tested SPIN with Promela (PROcessMEta LAnguage) never
claims produced by several LTL translation algorithms. (AsSPIN’s built-in translator is
dominated by TMP, we do not show results for this translator.) The algorithms studied
here represent all tools publicly available in 2006, as described in the following table:

Explicit Automata Construction Tools

LTL2AUT . (Daniele–Guinchiglia–Vardi)
Implementations (Java, Perl) LTL2Buchi, Wring
LTL2BA (C) . (Oddoux–Gastin)
LTL2Buchi (Java) . (Giannakopoulou–Lerda)
LTL → NBA (Python) . (Fritz–Teegen)
Modella (C) . (Sebastiani–Tonetta)
SPOT (C++) (Duret-Lutz–Poitrenaud–Rebiha–Baarir–Martinez)
TMP (SML of NJ) . (Etessami)
Wring (Perl) . (Somenzi–Bloem)

We provide here short descriptions of the tools and their algorithms, detailing as-
pects which may account for our results. We also note that aspects of implementation
including programming language, memory management, and attention to efficiency,
seem to have significant effects on tool performance.

Classical AlgorithmsFollowing [46], the first optimized LTL translation algorithm was
described in [24]. The basic optimization ideas were: (1) generate states by demand
only, (2) use node labels rather than edge labels to simplifytranslation to Promela, and
(3) use ageneralized B̈uchi acceptance condition so eventualities can be handled one
at a time. The resulting generalized Büchi automaton (GBA)is then “degeneralized” or
translated to a BA.LTL2AUT improved further on this approach by using lightweight
propositional reasoning to generate fewer states [14]. We tested two implementations
of LTL2AUT, one included in the Java-based LTL2Buchi tool and one included in the
Perl-based Wring tool.

TMP4 [18] andWring 5 [40] each extend LTL2AUT with three kinds of additional
optimizations. First, in thepre-translation optimization, the input formula is simplified

4 www.bell-labs.com/project/TMP/
5 www.ist.tugraz.at/staff/bloem/wring.html

5

using Negation Normal Form (NNF) and extensive sets of rewrite rules. Second,mid-
translation optimizations tighten the LTL-to-GBA-to-BA translation algorithms. Third,
the resulting automata are minimized further duringpost-translation optimization. In
the end, TMP produces a BA whereas Wring halts translation with a GBA, which we
had to degeneralize.

LTL2Buchi 6 [25] optimizes the LTL2AUT algorithm by initially generating transition-
based generalized Büchi automata (TGBA) rather than node-labeled BA to allow for
more compaction based on equivalence classes, contradictions, and redundancies in the
state space. Special attention to efficiency is given duringthe ensuing translation to
node-labeled BA. The algorithm incorporates the formula rewriting and BA-reduction
optimizations of TMP and Wring.

Modella7 focuses on minimizing thenondeterminismof the property automaton in
an effort to minimize the size of the product of the property and system model automata
during verification [38]. If the property automaton is deterministic, then the number of
states in the product automaton will be at most the number of states in the system model.
Thus, reducing nondeterminism is a desirable goal. This is accomplished usingsemantic
branching, or branching on truth assignments, rather than thesyntactic branchingof
LTL2AUT. Modella also postpones branching when possible.

Alternating Automata ToolsInstead of the direct translation approach of [46], an alter-
native approach, based onalternating automata, was proposed in [43]. In this approach,
the LTL formula is first translated into an alternating Büchi automaton, which is then
translated to a nondeterministic Büchi automaton.

LTL2BA 8 [21] first translates the input formula into avery weakalternating au-
tomaton (VWAA). It then uses various heuristics to minimizethe VWAA, before trans-
lating it to GBA. The GBA in turn is minimized before being translated into a BA,
and finally the BA is minimized further. Thus, the algorithm’s central focus is on opti-
mization of intermediate representations through iterative simplifications and on-the-fly
constructions.

LTL →NBA9 follows a similar approach to that of LTL2BA [19]. Unlike theheuris-
tic minimization of VWAA used in LTL2BA, LTL→NBA uses a game-theoretic mini-
mization based on utilizing a delayed simulation relation for on-the-fly simplifications.

Back to ClassicsSPOT10 is the most recently developed LTL-to-Büchi optimized
translation tool [15]. It does not use alternating automata, but borrows ideas from all the
tools described above. It adds two important optimizations: (1) unlike all other tools, it
uses pre-branching states, rather than post-branching states (as introduced in [13]), and
(2) it uses BDDs ([6]) for propositional reasoning.

6 http://ase.arc.nasa.gov/people/dimitra/LTL2Buchi.ph p
7 http://www.science.unitn.it/˜stonetta/modella.html
8 http://www.liafa.jussieu.fr/˜oddoux/ltl2ba/
9 http://www.ti.informatik.uni-kiel.de/ABA-Simulation /ltl.cgi

10 http://spot.lip6.fr/wiki/SpotWiki

6

3.2 Symbolic Tools

Symbolic model checkers describe both the system model and property automaton sym-
bolically: states are viewed as truth assignments to Boolean state variables and the tran-
sition relation is defined as a conjunction of Boolean constraints on pairs of current
and next states [7]. The model checker uses a BDD-based fix-point algorithm to find a
fair path in the model-automaton product [17]. CadenceSMV11 [32] and NuSMV12 [9]
both evolved from the original Symbolic Model Verifier developed at CMU [33]. Both
tools support LTL model checking via the symbolic translation of LTL to automata de-
scribed in [10]. CadenceSMV additionally implements heuristics that attempt to further
optimize the reduction of LTL model checking to checking thenonemptiness of fair
transition systems, in some cases [4].

4 Experimental Methods

4.1 Performance Evaluation

We ran all tests on Ada, a Rice University Cray XD1 cluster.13 Ada is comprised of 158
nodes with 4 processors (cores) per node for a total of 632 CPUs in pairs of dual core
2.2 GHz AMD Opteron processors with 1 MB L2 cache. There are 2 GB of memory
per core or a total of 8 GB of RAM per node. The operating systemis SuSE Linux 9.0
with the 2.6.5 kernel. Each of our tests was run with exclusive access to one node and
was considered to time out after 4 hours of run time. We measured all timing data using
the Unix time command.

Explicit Tools Each test was performed in two steps. First, we applied the translation
tools to the negation of the input LTL formula and ran them with the standard flags
recommended by the tools’ authors, plus any additional flag needed to specify that the
output automaton should be in Promela. Second, each output automaton, in the form
of a Promelanever claim, was checked by SPIN. In this role, SPIN serves as a search
engine for each of the LTL translation tools; it takes a neverclaim and checks it for
nonemptiness in conjunction with an input model.14

In all tests, the model was auniversalPromela program, enumerating all possible
traces overProp. For example, whenProp= {A,B}, the Promela model is:

bool A,B;
/* define an active procedure to generate values for A and B */
active proctype generateValues()
{ do

:: atomic{ A = 0; B = 0; }
:: atomic{ A = 0; B = 1; }

11 http://www.cadence.com/company/cadence_labs_resea rch.html
12 http://nusmv.irst.itc.it/
13 http://rcsg.rice.edu/ada/
14 It would be interesting to use SPOT’s SCC-based search algorithm [23] as the underlying

search engine, rather than SPIN’s nested depth-first searchalgorithm [12].

7

:: atomic{ A = 1; B = 0; }
:: atomic{ A = 1; B = 1; }

od }

We use theatomic {} construct to ensure that the Boolean variables change valuein
one unbreakable step. Note that the size of this model is exponential in the number of
atomic propositions.

Symbolic ToolsWe compare the explicit tools with CadenceSMV and NuSMV. To
check whether a LTL formulaϕ is satisfiable, we model check¬ϕ against a universal
SMV model. For example, ifϕ = (X(a)), we provide the following input to NuSMV:

MODULE main
VAR

a : boolean;
b : boolean;
c : boolean;

LTLSPEC !(X(a=1))
FAIRNESS

1

SMV negates the specification,¬ϕ, symbolically compilesϕ into Aϕ, and conjoinsAϕ
with the universal model. If the automaton is not empty, thenSMV finds a fair path,
which satisfies the formulaϕ. In this way, SMV acts as both a symbolic compiler and a
search engine.

4.2 Input Formulas

We benchmarked the tools against three types of scalable formulas: random formulas,
counter formulas, and pattern formulas. Scalability played an important role in our ex-
periment, since the goal was to challenge the tools with large formulas and state spaces.
All tools were applied to the same formulas and the results (satisfiable or unsatisfiable)
were compared. The symbolic tools, which were always in agreement, were considered
as reference tools for checking correctness.

Random FormulasIn order to cover as much of the problem space as possible, we
tested sets of 250 randomly-generated formulas varying theformula length and number
of variables as in [14]. We randomly generated sets of 250 formulas varying the number
of variables,N, from 1 to 3, and the length of the formula,L, from 5 up to 65. We set
the probability of choosing a temporal operatorP = 0.5 to create formulas with both
a nontrivial temporal structure and a nontrivial Boolean structure. Other choices were
decided uniformly. We report median running times as the distribution of run times has
a high variance and contains many outliers. All formulas were generated prior to testing,
so each tool was run on thesameformulas. While we made sure that, when generating
a set of lengthL, every formula was exactly of lengthL and notup to L, we did find
that the formulas were frequently reducible. Tools with better initial formula reduction
algorithms performed well in these tests.

8

Counter FormulasPre-translation rewriting is highly effective for random formulas,
but ineffective for structured formulas [18, 40]. To measure performance on scalable,
non-random formulas we tested the tools on formulas that describen-bit binary counters
with increasing values ofn. These formulas are irreducible by pre-translation rewriting,
uniquely satisfiable, and represent a predictably-sized state space. Whereas our measure
of correctness for random formulas is a conservative check that the tools find satisfiable
formulas to be satisfiable, we check for precisely the uniquecounterexample for each
counter formula. We tested four constructions of binary counter formulas, varying two
factors: number of variables and nesting ofX ’s.

We can represent a binary counter using two variables: a counter variable and a
marker variable to designate the beginning of each new counter value. Alternatively, we
can use 3 variables, adding a variable to encode carry bits, which eliminates the need
for U -connectives in the formula. We can nestX ’s to provide more succinct formulas
or express the formulas using a conjunction of unnestedX -sub-formulas.

Let b be an atomic proposition. Then a computationπ overb is a word in(2{b})ω =
{0,1}ω. By dividing π into blocks of lengthn, we can viewπ as a sequence ofn-
bit values, denoting the sequence of values assumed by ann-bit counter starting at 0,
and incrementing successively by 1. To simplify the formulas, we represent each block
b0,b1, . . . ,bn−1 as having the most significant bit on the right and the least significant
bit on the left. For example, forn = 2 theb blocks cycle through the values 00, 10, 01,
and 11. For technical convenience, we use an atomic proposition m to mark the blocks.
That is, we intendm to hold at pointi precisely wheni = 0 modn.

Forπ to represent ann-bit counter, the following properties need to hold:

1) The marker consists of a repeated pattern of a 1 followed by n-1 0’s.
2) The first n bits are 0’s.
3) If the least significant bit is 0, then it is 1 n steps later

and the other bits do not change.
4) All of the bits before and including the first 0 in an n-bit b lock flip

their values in the next block; the other bits do not change.

Forn = 4, these properties are captured by the conjunction of the following formulas:

1. (m) && ([](m -> ((X(!m)) && (X(X(!m))) && (X(X(X(!m))))
&& X(X(X(X(m)))))))

2. (!b) && (X(!b)) && (X(X(!b))) && (X(X(X(!b))))
3. []((m && !b) ->

(X(X(X(X(b)))) &&
X (((!m) &&

(b -> X(X(X(X(b))))) &&
(!b -> X(X(X(X(!b)))))) U m)))

4. [] ((m && b) ->
(X(X(X(X(!b)))) &&

(X ((b && !m && X(X(X(X(!b))))) U
(m || (!m && !b && X(X(X(X(b)))) &&

X((!m && (b -> X(X(X(X(b))))) &&
(!b -> X(X(X(X(!b)))))) U m)))))))

Note that this encoding creates formulas of lengthO(n2). A more compact encoding
results in formulas of lengthO(n). For example, we can replace formula (2) above with:

9

2. ((!b) && X((!b) && X((!b) && X(!b))))

We can eliminate the use ofU -connectives in the formula by adding an atomic
propositionc representing the carry bit. The required properties of ann-bit counter with
carry are as follows:

1) The marker consists of a repeated pattern of a 1 followed by n-1 0’s.
2) The first n bits are 0’s.
3) If m is 1 and b is 0 then c is 0 and n steps later b is 1.
4) If m is 1 and b is 1 then c is 1 and n steps later b is 0.
5) If there is no carry, then the next bit stays the same n steps later.
6) If there is a carry, flip the next bit n steps later and adjus t the carry.

Forn = 4, these properties are captured by the conjunction of the following formulas.

1. (m) && ([](m -> ((X(!m)) && (X(X(!m))) && (X(X(X(!m))))
&& (X(X(X(X(m))))))))

2. (!b) && (X(!b)) && (X(X(!b))) && (X(X(X(!b))))
3. [] ((m && !b) -> (!c && X(X(X(X(b))))))
4. [] ((m && b) -> (c && X(X(X(X(!b))))))
5. [] (!c && X(!m)) ->

(X(!c) && (X(b) -> X(X(X(X(X(b)))))) &&
(X(!b) -> X(X(X(X(X(!b)))))))

6. [] (c -> ((X(!b) ->
(X(!c) && X(X(X(X(X(b))))))) &&

(X(b) ->
(X(c) && X(X(X(X(X(!b)))))))))

Pattern Formulas We further investigated the problem space by testing the tools on
the eight classes of scalable formulas defined by [22] to evaluate the performance of
explicit state algorithms on temporally-complex formulas.

E(n) =
n̂

i=1

♦pi , U(n) = (. . .(p1 U p2) U . . .) U pn, R(n) =
n̂

i=1

(�♦pi ∨♦�pi+1).

U2(n) = p1 U (p2 U (. . . pn−1 U pn) . . .), C1(n) =
n

_

i=1

�♦pi , C2(n) =
n̂

i=1

�♦pi .

Q(n) =
^

(♦pi ∨�pi+1), S(n) =
n̂

i=1

�pi .

5 Experimental Results

Our experiments resulted in two major findings. First, most LTL translation tools are re-
search prototypes, not industrial quality tools. Second, the symbolic approach is clearly
superior to the explicit approach for LTL satisfiability checking.

10

5.1 The Scalability Challenge

When checking the satisfiability of specifications we need toconsider large LTL for-
mulas. Our experiments focus on challenging the tools with scalable formulas. Unfor-
tunately, most explicit tools do not rise to the challenge. In general, the performance of
explicit tools degrades substantially as the automata theygenerate grow beyond 1,000
states. This degradation is manifested in both timeouts (our timeout bound was 4 hours
per formula) and errors due to memory management. This should be contrasted with
BDD tools, which routinely handle hundreds of thousands andeven millions of nodes.

We illustrate this first with run-time results for counter formulas. We display each
tool’s total run time, which is a combination of the tool’s automaton generation time and
SPIN’s model-analysis time. We include only data points forwhich the tools provide
correct answers; we know all counter formulas are uniquely satisfiable. As is shown in
Figures 1 and 2,15 SPOT is the only explicit tool that is somewhat competitive with the
symbolic tools. Generally, the explicit tools time out or die before scaling ton = 10,
when the automata have only a few thousands states; only a fewtools passedn = 8.

Number of bits in binary counter

T
im

e
in

S
ec

on
ds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000

3500 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring
CadenceSMV
NuSMV

Total Processing Time on 2-variable Counter Formulas

Modella LTL->NBA

TMP

LTL2AUT(W)
Wring

CadenceSMV
NuSMV

Spot

Correct Results

Fig. 1. Performance Results: 2-Variable Coun-
ters

Number of bits in binary counter

T
im

e
in

S
ec

on
ds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2000

4000

6000

8000

10000 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring
CadenceSMV
NuSMV

Total Processing Time on 2-variable Linear Counter Formula s

Modella LTL->NBA

TMP

LTL2AUT(W)

Wring

CadenceSMV
NuSMV

Spot

Correct Results

Fig. 2. Performance Results: 2-Variable Linear
Counters

Figures 3 and 4 show median automata generation and model-analysis times for
random formulas. Most tools, with the exception of SPOT and LTL2BA, timeout or die
before scaling to formulas of length 60. The difference in performance between SPOT
and LTL2BA, on one hand, and the rest of the explicit tools is quite dramatic. Note that
up to length 60, model-analysis time is negligible. SPOT andLTL2BA can routinely
handle formulas of up to length 150, while the symbolic toolsscale past length 200,
with run times of a few seconds.

Figure 5 shows performance on theE-class formulas. Recall that¬E(n) is the for-
mula

Wn
i=1�¬pi . Since each formula�¬pi can be translated into an automaton with

a fixed number of states,¬E(n) can be translated into an automaton withO(n) states.
Nevertheless, most tools show an unnecessary exponential blow-up. CadenceSMV is
the only tool whose performance seems to scale linearly. (The evidence for NuSMV is
inconclusive.)

15 We recommend viewing all figures online, in color, and magnified.

11

Formula length

M
ed

ia
n

A
ut

om
at

a
G

en
er

at
io

n
T

im
e

(s
ec

)

25 50 75 100 125 150
0

1

2

3

4

5 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Average-Behavior Analysis: P = 0.5; N = 2

Spot

LTL2BA

Wring

LTL2AUT(W)

LTL2AUT(B)

LTL2Buchi

LTL->NBA

ModellaTMP

Fig. 3. Random Formulas – Automata Genera-
tion Times

Formula length

M
ed

ia
n

M
od

el
A

na
ly

si
s

T
im

e
in

S
pi

n/
S

M
V

(s
ec

)

25 50 75 100 125 150 175 200
0

1

2

3

4

5

6 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring
CadenceSMV
NuSMV

Random Formula Analysis: P = 0.5; N = 2

Spot

LTL2BA

CadenceSMV

NuSMV

Fig. 4. Random Formulas – Model Analysis
Times

Number of variables in formula

M
ed

ia
n

T
ot

al
R

un
T

im
e

(s
ec

)

1 2 3 4 5 6 7 8 9 10 11 12 13

10-2

10-1

100

101

102

103

104
LTL2AUT(B)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
CadenceSMV
NuSMV

Run Times for E-class Scaleable Formulas

LTL->NBAModella
LTL2AUT(B)
LTL2Buchi

Spot
LTL2BA

TMP

NuSMV

CadenceSMV

Number of variables in formula

N
um

be
ro

fS
ta

te
s

0 1 2 3 4 5 6 7 8 9 10
100

101

102

103
LTL2AUT(B)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP

Number of Automata States for E-class Scaleable Formulas

Fig. 5.E-class Formula Data

Graceless DegradationMost explicit tools do not behave robustly and die gracelessly.
When LTL2Buchi has difficulty processing a formula, it produces over 1,000 lines of
java.lang.StackOverflowError exceptions. LTL2BA periodically exits with “Com-
mand exited with non-zero status 1” and prints into the Promela file, “ltl2ba: releasing a
free block, saw ’end of formula’.” Python traceback errors hinder LTL→NBA. Modella
suffers from a variety of memory errors including*** glibc detected *** double
free or corruption (out): 0x55ff4008 *** . Sometimes Modella causes a seg-
mentation fault and other times Modella dies gracefully, reporting “full memory” before
exiting. When used purely as a LTL-to-automata translator,SPIN often runs for thou-
sands of seconds and then exits with non-zero status 1. TMP behaves similarly. Wring
often triggers Perl “”Use of freed value in iteration” errors. When the translation results
in large Promela models, SPIN frequently yields segmentation faults during its own
compilation. For example, SPOT translates the formulaE(8) to an automaton with 258
states and 6,817 transitions in 0.88 seconds. SPIN analyzesthe resulting Promela model
in 41.75 seconds. SPOT translates theE(9) formula to an automaton with 514 states and
20,195 transitions in 2.88 seconds, but SPIN segmentation faults when trying to com-

12

pile this model. SPOT and the SMV tools are the only tools thatconsistently degrade
gracefully; they either timeout or terminate with a succinct, descriptive message.

A more serious problem is that of incorrect results, i.e., reporting “satisfiable” for
an unsatisfiable formula or vice versa. Note, for example, inFigure 5, the size of the
automaton generated by TMP is independent ofn, which is an obvious error. The prob-
lem is particularly acute when the returned automatonAϕ is empty (no state). On one
hand, an empty automaton accepts the empty language. On the other hand, SPIN con-
joins the Promela model for the never claim with the model under verification, so an
empty automaton, when conjoined with a universal model, actually acts as a universal
model. The tools are not consistent in their handling of empty automata. Some, such
as LTL2Buchi and SPOT, return an explicit indication of an empty automaton, while
Modella and TMP just return an empty Promela model. We have taken an empty au-
tomaton to mean “unsatisfiable.” In Figure 6 we show an analysis of correctness for
random formulas. Here we counted “correct” as any verdict, either “satisfiable” or “un-
satisfiable,” that matched the verdict found by the two SMVs for the same formula as
the two SMVs always agree. We excluded data for any formulas that timed out or trig-
gered error messages. Many of the tools show degraded correctness as the formulas
scale in size.

Formula length

P
ro

po
rti

on
of

C
or

re
ct

C
la

im
s

5 10 15 20 25 30 35 40 45 50 55 60 65
0

0.5

1

1.5

2 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Random Formula Analysis: P = 0.5; N = 3

Fig. 6.Correctness Degradation

Does Size Matter?The focus of almost all LTL translation papers, starting with [24],
has been on minimizing automata size. It has already been noted that automata mini-
mization may not result in model checking performance improvement [18] and specific
attention has been given to minimizing the size of the product with the model [38, 22].
Our results show that size, in terms of both number of automaton states and transitions,
is not a reliable indicator of satisfiability checking run time. Intuitively, the smaller the
automaton, the easier it is to check for nonemptiness. This simplistic view, however,
ignores the effort required to minimize the automaton. It isoften the case that tools
spend more time constructing the formula automaton than constructing and analyzing
the product automaton. As an example, consider the performance of the tools on counter
formulas. We see in Figures 1 and 2 dramatic differences in the performance of the tools

13

on such formulas. In contrast, we see in Figures 7 and 8 that the tools do not differ sig-
nificantly in terms of the size of generated automata. Similarly, Figure 5 shows little
correlation between automata size and run time forE-class formulas.

Number of bits in binary counter

N
um

be
ro

fS
ta

te
s

0 1 2 3 4 5 6 7 8 9 10
100

101

102

103

104
LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Number of Automata States for 2-variable Counter Formulas

Fig. 7. Automata Size: 2-Variable Counters

Number of bits in binary counter
N

um
be

ro
fS

ta
te

s

0 1 2 3 4 5 6 7 8 9 10
100

101

102

103

104
LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Number of Automata States for 2-variable Linear Counter For mulas

Fig. 8.Automata Size: 2-Variable Linear Coun-
ters

Consider also the performance of the tools on random formulas. In Figure 9 we see
the performance in terms of size of generated automata. Performance in terms of run
time is plotted in Figure 11, where each tool was run until it timed out or reported an
error for more than 10% of the sampled formulas. SPOT and LTL2BA consistently have
the best performance in terms of run time, but they are average performers in terms of
automata size. LTL2Buchi consistently produces significantly more compact automata,
in terms of both states and transitions. It also incurs lowerSPIN model-analysis times
than SPOT and LTL2BA. Yet LTL2Buchi spends so much time generating the automata
that it does not scale nearly as well as SPOT and LTL2BA.

Formula Length

N
um

be
ro

fS
ta

te
s

5 10 15 20 25 30 35 40 45 50 55 60 65
0

50

100

150

200

250

300 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Number of Automata States for 3-variable Random Formulas
90% Correct or Better

Formula Length

N
um

be
ro

fT
ra

ns
iti

on
s

5 10 15 20 25 30 35 40 45 50 55 60 65
10-1

100

101

102

103

104
LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Number of Automata Transitions for 3-variable Random Formu las
90% Correct or Better

Fig. 9. State and Transition Counts for 3-Variable Random Formulas

14

5.2 Symbolic Approaches Outperform Explicit Approaches

Across the various classes of formulas, the symbolic tools outperformed the explicit
tools, demonstrating faster performance and increased scalability. (We measured only
combined automata-generation and model-analysis time forthe symbolic tools. The
translation to automata is symbolic and is very fast; it is linear in the size of the formula
[10].) We see this dominance with respect to counter formulas in Figures 1 and 2, for
random formulas in Figures 3, 4, and 11, and forE-class formulas in Figure 5. ForU-
class formulas, no explicit tools could handlen = 10, while the symbolic tools scale up
to n = 20; see Figure 10. The only exception to the dominance of the symbolic tools
occurs with 3-variable linear counter formulas, where SPOToutperforms both symbolic
tools. We ran the tools on many thousands of formulas and did not find a single case in
which either symbolic tool yielded an incorrect answer yet every explicit tool gave at
least one incorrect answer during our tests.

Number of variables in formula

M
ed

ia
n

T
ot

al
R

un
T

im
e

(s
ec

)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
10-2

10-1

100

101

102

103

104

105 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring
CadenceSMV
NuSMV

Run Times for U-class Scaleable Formulas

Number of variables in formula

N
um

be
ro

fS
ta

te
s

2 3 4 5 6 7 8 9
100

101

102

103
LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Number of Automata States for U-class Scaleable Formulas

Fig. 10.U-class Formula Data

The dominance of the symbolic approach is consistent with the findings in [35, 36],
which reported on the superiority of a symbolic approach with respect to an explicit
approach for satisfiability checking for the modal logicK. In contrast, [39] compared
explicit and symbolic translations of LTL to automata in thecontext of symbolic model
checking and found that explicit translation performs better in that context. Conse-
quently, they advocate ahybrid approach, combining symbolic systems and explicit
automata. Note, however, that not only is the context in [39]different than here (model
checking rather than satisfiability checking), but also theformulas studied there are gen-
erally small and translation time is negligible, in sharp contrast to the study we present
here. We return to the topic of model checking in the concluding discussion.

Figures 3, 4, and 11 reveal why the explicit tools generally perform poorly. We see
in the figures that for most explicit tools automata-generation times by far dominate
model-analysis times, which calls into question the focus in the literature on minimiz-
ing automata size. Among the explicit tools, only SPOT and LTL2BA seem to have
been designed with execution speed in mind. Note that, otherthan Modella, SPOT and
LTL2BA are the only tools implemented in C/C++.

15

Formula length

M
ed

ia
n

A
ut

om
at

a
G

en
er

at
io

n
T

im
e

(s
ec

)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
-1

0

1

2

3

4

5

6

7

8

9

10 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring

Random Formula Analysis: P = 0.5; N = 3

90% Correct or Better

Formula length

M
ed

ia
n

M
od

el
A

na
ly

si
s

T
im

e
(s

ec
)

5 10 15 20 25 30 35 40 45 50 55 60 65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4 LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella
Spot
TMP
Wring
CadenceSMV
NuSMV

Random Formula Analysis: P = 0.5; N = 3

90% Correct or Better

Fig. 11.Automata generation and SPIN Analysis Times for 3-VariableRandom Formulas

6 Discussion

Too little attention has been given in the formal verification literature to the issue of
debugging specifications. We argued here for the adoption ofa basic sanity check: sat-
isfiability checking for both the specification and the complemented specification. We
showed that LTL satisfiability checking can be done via a reduction to checking univer-
sal models and benchmarked a large array of tools with respect to satisfiability checking
of scalable LTL formulas.

We found that the existing literature on LTL-to-automata translation provides little
information on actual tool performance. We showed that mostLTL translation tools,
with the exception of SPOT, are research prototypes, which cannot be considered in-
dustrial quality tools. The focus in the literature has beenon minimizing automata size,
rather than evaluating overall performance. Focusing on overall performance reveals a
large difference between LTL translation tools. In particular, we showed that symbolic
tools have a clear edge over explicit tools with respect to LTL satisfiability checking.

While the focus of our study was on LTL satisfiability checking, there are a cou-
ple of conclusions that apply to model checking in general. First, LTL translation tools
need to be fast and robust. In our judgment, this rules out implementations in languages
such as Perl or Python and favors C or C++ implementations. Furthermore, attention
needs to be given to graceful degradation. In our experience, tool errors are invari-
ably the result of graceless degradation due to poor memory management. Second, tool
developers should focus on overall performance instead of output size. It has already
been noted that automata minimization may not result in model checking performance
improvement [18] and specific attention has been given to minimizing the size of the
product with the model [38]. Still, no previous study of LTL translation has focused on
model checking performance, leaving a glaring gap in our understanding of LTL model
checking.

16

References

[1] G. Ammons, D. Mandelin, R. Bodik, and J.R. Larus. Debugging temporal specifications
with concept analysis. InPLDI, Proc. ACM Conf., pages 182–195, 2003.

[2] R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman,A. Tiemeyer, and M.Y. Vardi.
Enhanced vacuity detection for linear temporal logic. InCAV, Proc 15th Int’l Conf. Springer,
2003.

[3] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in ACTL
formulas.Formal Methods in System Design, 18(2):141–162, 2001.

[4] R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for model checking of
linear time logic properties. InCAV, Proc 11th Int’l Conf, volume 1633 ofLecture Notes in
Computer Science, pages 222–235. Springer, 1999.

[5] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng,
S. Edwards, S. Khatri, T. Kukimoto, A. Pardo, S. Qadeer, R.K.Ranjan, S. Sarwary, T.R.
Shiple, G. Swamy, and T. Villa. VIS: a system for verificationand synthesis. InCAV,
Proc. 8th Int’l Conf, volume 1102 ofLecture Notes in Computer Science, pages 428–432.
Springer, 1996.

[6] R.E. Bryant. Graph-based algorithms for Boolean-function manipulation.IEEE Trans. on
Computers, C-35(8):677–691, 1986.

[7] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 1020 states and beyond.Information and Computation, 98(2):142–170, Jun 1992.

[8] D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, and M.Y. Vardi. Regular vacuity. In
CHARME, volume 3725 ofLNCS, pages 191–206. Springer, 2005.

[9] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic model
checker.It’l J. on Software Tools for Tech. Transfer, 2(4):410–425, 2000.

[10] E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking.
Formal Methods in System Design, 10(1):47–71, 1997.

[11] E.M. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.
[12] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms

for the verification of temporal properties.Formal Methods in System Design, 1:275–288,
1992.

[13] J-M. Couvreur. On-the-fly verification of linear temporal logic. In Proc. FM, pages 253–
271, 1999.

[14] N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved automata generation for linear tem-
poral logic. InCAV, Proc. 11th Int’l Conf, volume 1633 ofLNCS, pages 249–260. Springer,
1999.

[15] A. Duret-Lutz and D. Poitrenaud. SPOT: An extensible model checking library using
transition-based generalized Büchi automata. InMASCOTS, Proc. 12th Int’l Workshop,
pages 76–83. IEEE Computer Society, 2004.

[16] E.A. Emerson. Temporal and modal logic. In J. Van Leeuwen, editor,Handbook of The-
oretical Computer Science, volume B, chapter 16, pages 997–1072. Elsevier, MIT Press,
1990.

[17] E.A. Emerson and C.L. Lei. Efficient model checking in fragments of the propositional
µ-calculus. InLICS, 1st Symp., pages 267–278, Cambridge, Jun 1986.

[18] K. Etessami and G.J. Holzmann. Optimizing Büchi automata. InCONCUR, Proc. 11th
Int’l Conf., Lecture Notes in CS 1877, pages 153–167. Springer, 2000.

[19] C. Fritz. Constructing Büchi automata from linear temporal logic using simulation relations
for alternating Büchi automata. InProc. 8th Intl. CIAA, number 2759 in Lecture Notes in
Computer Science, pages 35–48. Springer, 2003.

17

[20] C. Fritz. Concepts of automata construction from LTL. In LPAR, Proc. 12th Int’l Conf.,
Lecture Notes in Computer Science 3835, pages 728–742. Springer, 2005.

[21] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. InCAV, Proc. 13th Int’l
Conf, volume 2102 ofLNCS, pages 53–65. Springer, 2001.

[22] J. Geldenhuys and H. Hansen. Larger automata and less work for LTL model checking. In
Model Checking Software, 13th Int’l SPIN Workshop, volume 3925 ofLNCS, pages 53–70.
Springer, 2006.

[23] J. Geldenhuys and A. Valmari. Tarjan’s algorithm makeson-the-fly LTL verification more
efficient. InProc. 10th Int’l Conf. on Tools and Algorithms for the Construction and Anal-
ysis of Systems, Lecture Notes in Computer Science 2988, pages 205–219. Springer, 2004.

[24] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
linear temporal logic. In P. Dembiski and M. Sredniawa, editors, Protocol Specification,
Testing, and Verification, pages 3–18. Chapman & Hall, Aug 1995.

[25] D. Giannakopoulou and F. Lerda. From states to transitions: Improving translation of LTL
formulae to Büchi automata. InFORTE, Proc of 22 IFIP Int’l Conf, Nov 2002.

[26] A. Gurfinkel and M. Chechik. Extending extended vacuity. In FMCAD, 5th Int’l Conf,
volume 3312 ofLecture Notes in Comp Sci, pages 306–321. Springer, 2004.

[27] A. Gurfinkel and M. Chechik. How vacuous is vacuous. InTACAS, 10th Int’l Conf, volume
2988 ofLecture Notes in Computer Science, pages 451–466. Springer, 2004.

[28] G.J. Holzmann. The model checker SPIN.IEEE Trans. on Software Engineering,
23(5):279–295, May 1997. Special issue on Formal Methods inSoftware Practice.

[29] O. Kupferman. Sanity checks in formal verification. InCONCUR, Proc. 17th Int’l Conf.,
volume 4137 ofLecture Notes in Comp Sci, pages 37–51. Springer, 2006.

[30] O. Kupferman and M.Y. Vardi. Vacuity detection in temporal model checking.J. on Soft-
ware Tools For Technology Transfer, 4(2):224–233, Feb 2003.

[31] R.P. Kurshan.FormalCheck User’s Manual. Cadence Design, Inc., 1998.
[32] K. McMillan. The SMV language. Technical report, Cadence Berkeley Lab, 1999.
[33] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
[34] K.S. Namjoshi. An efficiently checkable, proof-based formulation of vacuity in model

checking. In16th CAV, volume 3114 ofLNCS, pages 57–69. Springer, 04.
[35] G. Pan, U. Sattler, and M.Y. Vardi. BDD-based decision procedures for K. InProc. 18th

Int’l CADE, LNCS 2392, pages 16–30. Springer, 2002.
[36] N. Piterman and M.Y. Vardi. From bidirectionality to alternation. Theoretical Computer

Science, 295(1–3):295–321, Feb 2003.
[37] M. Purandare and F. Somenzi. Vacuum cleaning CTL formulae. InCAV, Proc. 14th Conf,

Lecture Notes in Computer Science, pages 485–499. Springer, Jul 2002.
[38] R. Sebastiani and S. Tonetta. “more deterministic” vs.“smaller” Büchi automata for effi-

cient LTL model checking. InCHARME, pages 126–140. Springer, 2003.
[39] R. Sebastiani, S. Tonetta, and M.Y. Vardi. Symbolic systems, explicit properties: on hybrid

approaches for LTL symbolic model checking. InCAV, Proc. 17th Int’l Conf., Lecture Notes
in Computer Science 3576, pages 350–373. Springer, 2005.

[40] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. InCAV, Proc. 12th
Int’l Conf, volume 1855 ofLNCS, pages 248–263. Springer, 2000.

[41] H. Tauriainen and K. Heljanko. Testing LTL formula translation into Büchi automata.STTT
- Int’l J. on Software Tools for Tech. Transfer, 4(1):57–70, 2002.

[42] X. Thirioux. Simple and efficient translation from LTL formulas to Büchi automata.Electr.
Notes Theor. Comput. Sci., 66(2):145–159, 2002.

[43] M.Y. Vardi. Nontraditional applications of automata theory. InSTACS, Proc. Int’l, volume
789, pages 575–597. LNCS, Springer-Verlag, 1994.

18

[44] M.Y. Vardi. Automata-theoretic model checking revisited. In Proc. 7th Int’l Conf. on
Verification, Model Checking, and Abstract Interpretation, volume 4349 ofLNCS, pages
137–150. Springer, 2007.

[45] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifica-
tion. In Proc. 1st LICS, pages 332–344, Cambridge, Jun 1986.

[46] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Com-
putation, 115(1):1–37, Nov 1994.

19

