LTL Satisfiability Checking

Kristin Y. Rozief * and Moshe Y. Vardi

1 NASA Langley Research Center, Hampton, Virginia 2368iktin.Y.Rozier@nasa.gov
2 Rice University, Houston, Texas 7700&ydi@cs.rice.edu

Abstract. We report here on an experimental investigation of LTL $iatid-
ity checking via a reduction to model checking. By using éatJL formulas,
we offer challenging model-checking benchmarks to botHiex@and symbolic
model checkers. For symbolic model checking, we use botre@aEMV and
NuSMV. For explicit model checking, we use SPIN as the seangfine, and we
test essentially all publicly available LTL translatiomts. Our experiments result
in two major findings. First, most LTL translation tools aesearch prototypes
and cannot be considered industrial quality tools. Secohén it comes to LTL
satisfiability checking, the symbolic approach is cleadpevior to the explicit
approach.

1 Introduction

Model-checkingools are successfully used for checking whether systenesdesired
properties [11]. The application of model-checking toal€bmplex systems involves
a nontrivial step of creating a mathematical model of théesysand translating the de-
sired properties into a formal specification. When the mdadels not satisfy the speci-
fication, model-checking tools accompany this negativevansvith a counterexample,
which points to an inconsistency between the system andekieedl behaviors. It is
often the case, however, that there is an error in the systedehor in the formal spec-
ification. Such errors may not be detected when the answaeafibdel-checking tool
is positive: while a positive answer does guarantee thatrtbeéel satisfies the speci-
fication, the answer to the real question, namely, whettesystem has the intended
behavior, may be different.

The realization of this unfortunate situation has led todbeelopment of several
sanity check$or formal verification [29]. The goal of these checks is toeté errors in
the system model or the properties. Sanity checks in inidlisbiols are typically sim-
ple, ad hoc tests, such as checking for enabling condititatsatre never enabled [31].
Vacuity detectioprovides a more systematic approach. Intuitively, a spatifin is sat-
isfied vacuously in a model if it is satisfied in some non-iesting way. For example,
the linear temporal logic (LTL) specificatidn(req— {grant) (“every request is even-
tually followed by a grant”) is satisfied vacuously in a moudgth no requests. While

* Work contributing to this paper was completed at Rice Ursitgr Cambridge University, and
NASA Langley Research Center, and was supported in partéyibe Computational Re-
search Cluster (Ada), funded by NSF under Grant CNS-042&h0%a partnership between
Rice University, AMD and Cray.



vacuity checking cannot ensure that whenever a model satisfiormula, the model is
correct, it does identify certain positive results as vajincreasing the likelihood of
capturing modeling and specification errors. Several gapervacuity checking have
been published over the last few years [2, 3, 8, 27, 26, 3BA4and various industrial
model-checking tools support vacuity checking [2, 3, 8].

All vacuity-checking algorithms check whether a subforanaf the specification
does not affect the satisfaction of the specification in tloeleh In the example above,
the subformulareq does not affect satisfaction in a model with no requestsr&he
is, however, a possibility of a vacuous result that is nottwagsl by current vacuity-
checking approaches. If the specificationadid, that is, true irall models, then model
checking this specification always results in a positivensnsConsider for example
the specificatioril(b; — Oby), whereb; andb, are propositional formulas. i; and
b, are logically equivalent, then this specification is validlas satisfied by all mod-
els. Nevertheless, current vacuity-checking approachesotl catch this problem. We
propose a method for an additional sanity check to catchtigxds sort of oversight.

Writing formal specifications is a difficult task, which isgore to error just as im-
plementation development is error prone. However, formeafication tools offer little
help in debugging specifications other than standard wachicking. Clearly, if a for-
mal property is valid, then this is certainly due to an er&milarly, if a formal prop-
erty isunsatisfiablethat is, true imo model, then this is also certainly due to an error.
Even if each individual property written by the specifierasisfiable, their conjunction
may very well be unsatisfiable. Recall that a logical formpulia valid iff its negation
—¢ is not satisfiable. Thus, as a necessary sanity check forgdé@ima specification,
model-checking tools should ensure that both the spedditdt and its negation¢
are satisfiable. (For a different approach to debuggingipations, see [1].)

A basic observation underlying our work is that LTL satisili3pchecking can be
reduced to model checking. Consider a formpilaver a sefrop of atomic proposi-
tions. If a modeM is universal that is, it contains all possible traces oo p, thend
is satisfiable precisely when the modiéldoesnot satisfy—¢. Thus, it is easy to add a
satisfiability-checking feature to LTL model-checking lmo

LTL model checkers can be classifiedeagplicit or symbolic Explicit model check-
ers, such as SPIN [28] or SPOT [15], construct the stateespbthe model explicitly
and search for a trace falsifying the specification [12]. ¢mtcast, symbolic model
checkers, such as CadenceSMV [32], NuSMV [9], or VIS [5]resent the model and
analyze it symbolically using binary decision diagrams [Bp[7].

LTL model checkers follow the automata-theoretic apprddbh in which the com-
plemented LTL specification is explicitly or symbolicallahslated to a Buichi automa-
ton, which is then composed with the model under verificasee also [44]. The model
checker then searches for a trace of the model that is actbptthe automaton. All
symbolic model checkers use the symbolic translation desdin [10] and the anal-
ysis algorithm of [17], though CadenceSMV and VIS try to aptie further. There
has been extensive research over the past decade intoiekplislation of LTL to
automata[13, 14, 18, 19, 20, 25, 21, 24, 40, 38, 42], but itifficdlt to get a clear
sense of the state of the art from a review of the literatureaddiring the performance



of LTL satisfiability checking enables us to benchmark thégrenance of LTL model
checking tools, and, more specifically, of LTL translationls.

We report here on an experimental investigation of LTL $atidlity checking via
a reduction to model checking. By using large LTL formulag wffer challenging
model-checking benchmarks to both explicit and symbolidet@heckers. For sym-
bolic model checking, we use both CadenceSMV and NuSMV. Kpfi@t model
checking, we use SPIN as the search engine, and we testiabigatitpublicly avail-
able LTL translation tools. We use a wide variety of benchHoiarmulas, either gen-
erated randomly, as in [14], or using a scalable pattern,(&1; pi). LTL formulas
typically used for evaluating LTL translation tools are akytoo small to offer chal-
lenging benchmarks. Note that real specifications typicadinsist of many temporal
properties, whose conjunction ought to be satisfiable. ;Tstuslying satisfiability of
large LTL formulas is quite appropriate.

Our experiments resulted in two major findings. First, moHt kranslation tools
are research prototypes and cannot be considered indgsiaiéy tools. Many of them
are written in scripting languages such as Perl or Pythonclwhas a drastic nega-
tive impact on their performance. Furthermore, these tgelserally degrade grace-
lessly, often yielding incorrect results with no warningndng all the explicit tools we
tested, only SPOT can be considered an industrial quality 8econd, when it comes
to LTL satisfiability checking, the symbolic approach isaslg superior to the explicit
approach. Even SPOT, the best explicit LTL translator in@yeriments, was rarely
able to compete effectively against the symbolic toolssTasult is consistent with the
comparison of explicit and symbolic approaches to modéafsalility [35, 36], but is
somewhat surprising in the context of LTL satisfiability iiew of [39].

Related software, callelitt 3 provides an LTL-to-Biichi explicit translator test-
bench and environment for basic profiling. Tt  tool performs simple consistency
checks on an explicit tool’s output automata, accompanyezshimple data when incon-
sistencies in these automata are detected [41]. Wheregsithary use ofbtt is to
assist developers of explicit LTL translators in debuggiew tools or comparing a pair
of tools, we compare performance with respect to LTL sahdftg problems across a
host of different tools, both explicit and symbolic.

The structure of the paper is as follows. Section 2 provitlestheoretical back-
ground for this work. In Section 3, we describe the tools isttichere. We define our
experimental method in Section 4, and detail our result&iti6n 5. We conclude with
a discussion in Section 6.

2 Theoretical Background

Linear Temporal Logic (LTL) formulas are composed of a finite detop of atomic
propositions, the Boolean connectivesh, Vv, and—, and the temporal connectives
(next time)u (until), ® (release) (also calledg for “globally”) and ¢ (also called
¥ for “in the future”). We define LTL formulas inductively:

3 www.tcs.hut.filSoftware/Ibtt/



Definition 1 For every pe Prop, p is a formula. Iy andy are formulas, then so are:
¢ oA d—U dulb 6o
ovy  x¢ oRO 7O

LTL formulas describe the behavior of the variablesPirop over a linear series of
time steps starting at time zero and extending infinitelg the future. We satisfy such
formulas ovecomputationswhich are functions that assign truth values to the element
of Prop at each time instant [16].

Definition 2 We interpret LTL formulas over computations of the farmw — 2P™P,
We definarti F ¢ (computationrt at time instant i€ w satisfies LTL formulap) as
follows:

i E p for pe Prop if pe m(i).

iEdAWIf LI F ¢ andTti F Y.

i E ¢ if i ¢.

miExdifmi+1F¢.

i FE¢uyif 3) > i, such thatrt j F Y andVk,i < k< j, we havertkF ¢.
miE R Pif Vj >i,if , j ¥ P, thenTk, i <k < j, such thatr, k E ¢.

We defind 7 ¢) as(true u¢) and (g ¢) as(—F —). We take mode($) to be the set
of computations that satisfyat time 0, i.e.{Tt: T,OF ¢ }.

In automata-theoretic model checking, we represent LTimfdas using Buchi au-
tomata.

Definition 3 A Biichi Automaton (BA) is a quintupl€Q, %, 9, qo, F) where:

Q is afinite set of states.

2 is a finite alphabet.

d:Qx I — 2Qis the transition relation.
Jo € Q is the initial state.

F C Qs a set of final states.

A run of a Bichi automaton over an infinite word=awg, wi,Ws, ... € Z is a sequence of
states @,01, 0z, . .. € Q such thavi > 0, 8(q;, W) = gi+1. An infinite word w is accepted
by the automaton if the run over w visits at least one stateimfiRitely often. We denote
the set of infinite words accepted by an automaton AL

A computation satisfying LTL formulé is an infinite word over the alphab®t= 2P™P,
The next theorem relates the expressive power of LTL to thBtiohi automata.

Theorem 1. [46] Given an LTL formula, we can construct a #chi automaton f=
(Q,%,8,00,F) such thatQ] is in 2°(¢1), = = 2PoP, and L,(Ay) is exactly modelg).

This theorem reduces LTL satisfiability checking to autaarifieoretic nonemptiness
checking, a® is satisfiable iffmodelg¢) # 0 iff L,(Ay) # 0.

We can now relate LTL satisfiability checking to LTL model cking. Suppose we
have auniversal modelM, that generates all computations over its atomic propossti
that is, we have thdt + w(M) = (2°™P)®, We now have thav doesnot satisfy—¢ if
and only if¢ is satisfiable. Thugj is satisfiable precisely when the model checker finds
a counterexample.



3 Tools Tested

In total, we tested eleven LTL compilation algorithms frotimenresearch tools. To
offer a broad, objective picture of the current state of thievee tested the algorithms
against several different sequences of benchmarks, camyparhere appropriate, the
size of generated automata in terms of numbers of statesransitions, translation
time, model-analysis time, and correctness of the output.

3.1 Explicit Tools

The explicit LTL model checker SPIN [28] accepts either LTioperties, which are
translated internally into Buichi automata, or Biichi anéda for complemented proper-
ties (“never claims”). We tested SPIN with Promela (PROddE$a LAnguage) never
claims produced by several LTL translation algorithms. $%3N’s built-in translator is
dominated by TMP, we do not show results for this translplidre algorithms studied
here represent all tools publicly available in 2006, as dlesd in the following table:

Explicit Automata Construction Tools

LTL2AUT .o (Danielettachiglia—Vardi)
Implementations (Java, Perl) ............. ..ol LTL2Buchi, Wring
LTL2BA () vttt et e (Oddoastin)
LTL2BUChI (JaVa) ..o oiiee e (Giannakopoulou—Lard
LTL — NBA (Python) .. ... .o (Fritz—Teegen)
Modella (C) ..o (Sebastidminetta)
SPOT(CH++) oo (Duret-Lutz—Poitrenaud—Rebiha—Baariarlihez)
TMP (SMLOFNJ) « oot e e e e e e e e (Etass)
WriNg (Perl) ..o (Somerigddsem)

We provide here short descriptions of the tools and theioritlyms, detailing as-
pects which may account for our results. We also note thacsmwf implementation
including programming language, memory management, aedtain to efficiency,
seem to have significant effects on tool performance.

Classical AlgorithmsFollowing [46], the first optimized LTL translation algdmin was
described in [24]. The basic optimization ideas were: (I)egate states by demand
only, (2) use node labels rather than edge labels to simfpéfyslation to Promela, and
(3) use ageneralized Bchiacceptance condition so eventualities can be handled one
at atime. The resulting generalized Biichi automaton (GBA)en “degeneralized” or
translated to a BALTL2AUT improved further on this approach by using lightweight
propositional reasoning to generate fewer states [14]. a8kt two implementations
of LTL2AUT, one included in the Java-based LTL2Buchi tootame included in the
Perl-based Wring tool.

TMP#[18] andWring ° [40] each extend LTL2AUT with three kinds of additional
optimizations. First, in there-translation optimizationthe input formula is simplified

4 www.bell-labs.com/project/ TMP/
5 www.ist.tugraz.at/staff/bloem/wring.html



using Negation Normal Form (NNF) and extensive sets of tewriles. Secondnid-

translation optimizatioa tighten the LTL-to-GBA-to-BA translation algorithms. ifth,

the resulting automata are minimized further durpagt-translation optimizatiann

the end, TMP produces a BA whereas Wring halts translatidin &iGBA, which we
had to degeneralize.

LTL2Buchi ® [25] optimizes the LTL2AUT algorithm by initially generaij transition-
based generalized Biichi automata (TGBA) rather than taloieled BA to allow for
more compaction based on equivalence classes, contadicéind redundancies in the
state space. Special attention to efficiency is given duttregensuing translation to
node-labeled BA. The algorithm incorporates the formuleritthg and BA-reduction
optimizations of TMP and Wring.

Modella’ focuses on minimizing theondeterminisnof the property automaton in
an effort to minimize the size of the product of the propertgt aystem model automata
during verification [38]. If the property automaton is detémistic, then the number of
states in the product automaton will be at most the numbeatdsin the system model.
Thus, reducing nondeterminismis a desirable goal. Thisasmplished usingemantic
branching or branching on truth assignments, rather thansyrgactic branchingf
LTL2AUT. Modella also postpones branching when possible.

Alternating Automata Toolsnstead of the direct translation approach of [46], an alter
native approach, based alternating automatawas proposed in [43]. In this approach,
the LTL formula is first translated into an alternating Buiabtomaton, which is then
translated to a nondeterministic Biichi automaton.

LTL2BA 8 [21] first translates the input formula intowvery weakalternating au-
tomaton (VWAA). It then uses various heuristics to minimize VWAA, before trans-
lating it to GBA. The GBA in turn is minimized before being tislated into a BA,
and finally the BA is minimized further. Thus, the algoritleneentral focus is on opti-
mization of intermediate representations through iteeatimplifications and on-the-fly
constructions.

LTL —NBA? follows a similar approach to that of LTL2BA [19]. Unlike theuris-
tic minimization of VWAA used in LTL2BA, LTL—NBA uses a game-theoretic mini-
mization based on utilizing a delayed simulation relationdn-the-fly simplifications.

Back to ClassicsSPOT! is the most recently developed LTL-to-Biichi optimized
translation tool [15]. It does not use alternating automataborrows ideas from all the
tools described above. It adds two important optimizati¢hsunlike all other tools, it
uses pre-branching states, rather than post-branchiteg ¢t introduced in [13]), and
(2) it uses BDDs ([6]) for propositional reasoning.

6 http://ase.arc.nasa.gov/people/dimitra/L TL2Buchi.ph p

7 http://www.science.unitn.it/stonetta/modella.html

8 http://www.liafa.jussieu.froddoux/Itl2ba/

9 http://www.ti.informatik.uni- kiel.de/ABA- Simulation [itl.cgi
10 http://spot.lip6.friwiki/SpotWwiki



3.2 Symbolic Tools

Symbolic model checkers describe both the system modelrape gy automaton sym-
bolically: states are viewed as truth assignments to Bodd&ste variables and the tran-
sition relation is defined as a conjunction of Boolean caiists on pairs of current
and next states [7]. The model checker uses a BDD-based ifit-glgorithm to find a
fair pathin the model-automaton product [17]. CadenceS¥[32] and NuSM\A2 [9]
both evolved from the original Symbolic Model Verifier despéd at CMU [33]. Both
tools support LTL model checking via the symbolic translatof LTL to automata de-
scribed in [10]. CadenceSMV additionally implements hstios that attempt to further
optimize the reduction of LTL model checking to checking ttamemptiness of fair
transition systems, in some cases [4].

4 Experimental Methods

4.1 Performance Evaluation

We ran all tests on Ada, a Rice University Cray XD1 cludfehda is comprised of 158
nodes with 4 processors (cores) per node for a total of 632sGRpairs of dual core
2.2 GHz AMD Opteron processors with 1 MB L2 cache. There areB20Gmemory
per core or a total of 8 GB of RAM per node. The operating sysee8uSE Linux 9.0
with the 2.6.5 kernel. Each of our tests was run with exckisigcess to one node and
was considered to time out after 4 hours of run time. We meaisait timing data using
the Unixtime command.

Explicit Tools Each test was performed in two steps. First, we applied drestation
tools to the negation of the input LTL formula and ran themhwhe standard flags
recommended by the tools’ authors, plus any additional fesglad to specify that the
output automaton should be in Promela. Second, each outparnaton, in the form
of a Promelanever claimwas checked by SPIN. In this role, SPIN serves as a search
engine for each of the LTL translation tools; it takes a neslaim and checks it for
nonemptiness in conjunction with an input moétl.

In all tests, the model wasumiversalPromela program, enumerating all possible
traces oveProp. For example, wheRrop = {A, B}, the Promela model is:

bool A,B;
* define an active procedure to generate values for A and B */
active proctype generateValues()

{ do
o atomic{ A = 0; B =0; }
;atomic{ A=0;,B=1;}
11 http://www.cadence.com/company/cadence\_labs\_resea rch.html

12 http:/nusmv.irst.itc.it/

13 http:/frcsg.rice.edu/ada/

14|t would be interesting to use SPOT’s SCC-based searchidigof23] as the underlying
search engine, rather than SPIN’s nested depth-first salgohithm [12].



©oatomic{ A =1, B =0;}
coatomic{ A =1, B=1;}
od }

We use theatomic {} construct to ensure that the Boolean variables change imlue
one unbreakable step. Note that the size of this model isreq@l in the number of
atomic propositions.

Symbolic ToolsWe compare the explicit tools with CadenceSMV and NuSMV. To
check whether a LTL formula is satisfiable, we model checekdp against a universal
SMV model. For example, i) = (X(a)), we provide the following input to NuSMV:

MODULE main

VAR

a : boolean;

b : boolean;

¢ : boolean;
LTLSPEC !(X(a=1))
FAIRNESS

1

SMV negates the specificationd, symbolically compileg into Ay, and conjoinghy
with the universal model. If the automaton is not empty, tB&AV finds a fair path,
which satisfies the formuld. In this way, SMV acts as both a symbolic compiler and a
search engine.

4.2 Input Formulas

We benchmarked the tools against three types of scalabteufas: random formulas,
counter formulas, and pattern formulas. Scalability pthge important role in our ex-
periment, since the goal was to challenge the tools witrelésgmulas and state spaces.
All tools were applied to the same formulas and the resudtiisfgable or unsatisfiable)
were compared. The symbolic tools, which were always inegent, were considered
as reference tools for checking correctness.

Random Formulasin order to cover as much of the problem space as possible, we
tested sets of 250 randomly-generated formulas varyinfptineula length and number
of variables as in [14]. We randomly generated sets of 25@ditais varying the number
of variablesN, from 1 to 3, and the length of the formula, from 5 up to 65. We set
the probability of choosing a temporal operak= 0.5 to create formulas with both

a nontrivial temporal structure and a nontrivial Booleancure. Other choices were
decided uniformly. We report median running times as theitigtion of run times has

a high variance and contains many outliers. All formulasenganerated prior to testing,
so each tool was run on tlsameformulas. While we made sure that, when generating
a set of length., every formula was exactly of lengthand notup to L, we did find
that the formulas were frequently reducible. Tools withtideinitial formula reduction
algorithms performed well in these tests.



Counter FormulasPre-translation rewriting is highly effective for randowriulas,
but ineffective for structured formulas [18, 40]. To measperformance on scalable,
non-random formulas we tested the tools on formulas thaties-bit binary counters
with increasing values af. These formulas are irreducible by pre-translation rémgit
uniquely satisfiable, and represent a predictably-sizgd space. Whereas our measure
of correctness for random formulas is a conservative cheatithe tools find satisfiable
formulas to be satisfiable, we check for precisely the unmpenterexample for each
counter formula. We tested four constructions of binarynteuformulas, varying two
factors: number of variables and nestingxd$.

We can represent a binary counter using two variables: ateowariable and a
marker variable to designate the beginning of each new eouatue. Alternatively, we
can use 3 variables, adding a variable to encode carry Hiighveliminates the need
for w-connectives in the formula. We can ness$ to provide more succinct formulas
or express the formulas using a conjunction of unnestedib-formulas.

Letb be an atomic proposition. Then a computatiooverb is a word in(2{8})® =
{0,1}*. By dividing Tt into blocks of lengthn, we can viewrt as a sequence of
bit values, denoting the sequence of values assumed byb#rcounter starting at 0,
and incrementing successively by 1. To simplify the formsulae represent each block
bo,bs,...,byh—1 as having the most significant bit on the right and the leagtifitant
bit on the left. For example, far = 2 theb blocks cycle through the values 00, 10, 01,
and 11. For technical convenience, we use an atomic prém@ositto mark the blocks.
That is, we intendn to hold at poini precisely when = 0 modn.

ForTtto represent an-bit counter, the following properties need to hold:

1) The marker consists of a repeated pattern of a 1 followed by n-1 0's.
2) The first n bits are 0's.
3) If the least significant bit is 0, then it is 1 n steps later
and the other bits do not change.
4) All of the bits before and including the first 0 in an n-bit b lock flip
their values in the next block; the other bits do not change.

Forn = 4, these properties are captured by the conjunction of thaxfimg formulas:

1 (m) && ([ -> (X(m)) && (X(X(M))) && (X(XX('m)))
&& X(X(XX(m))))

—

X ( (b && 'm && X(X(X(X(b)))) U
m || (m && b && X(X (X( (0)) &
X(('m && (b > X(X(X(X(b ))))) &&
(b -> X(X( Xy ) um)))))))

Note that this encoding creates formulas of ler@th?). A more compact encoding
results in formulas of lengt®(n). For example, we can replace formula (2) above with:



2. ((1b) && X((Ib) && X((Ib) && X(1b))))

We can eliminate the use af-connectives in the formula by adding an atomic
propositionc representing the carry bit. The required properties of-ait counter with
carry are as follows:

1) The marker consists of a repeated pattern of a 1 followed by n-1 0's.

2) The first n bits are 0's.

3) If mis 1 and bis 0 then c is 0 and n steps later b is 1.

4) Ifmis1and bis 1 then ¢ is 1 and n steps later b is 0.

5) If there is no carry, then the next bit stays the same n steps later.

6) If there is a carry, flip the next hit n steps later and adjus t the carry.

Forn = 4, these properties are captured by the conjunction of thefimg formulas.

Lo(m) && (i(m -> ((X(m)) && (X(X('m))) && (XX(X('m))
&& (XXXX)M))

2. (Ib) && (X(b)) && (X(X(Ib) && (X(X(X(b))))
3.0 ((m&& h) > (c & XXX(X(®)) )
4.0 ((m&& b) > (c && X(X(X(X(1))) )
5. (Ic && X(m)) ->

( X(lc) && (X(b)

é)!C) && X(X(X(X(X( b)) ) ) &&
>
X( €) && XX(XXXL)M) ) ) )

Pattern Formulas We further investigated the problem space by testing thés too
the eight classes of scalable formulas defined by [22] touetalthe performance of
explicit state algorithms on temporally-complex formulas

n

E(n)=A0p, UM =(..(prup2) ¢ ...) u pn, RN) = A\(OOpi vVOOPpiy1).
i=1 i=1

Up()=pr @ (P2 U (... Pn—1 U Pn)-..), Ca(n) = \/ O0p;, Co(n) = A\ DOpi.
i=1 i=1

Q(n) = A(0p vOpi4a), SN = A Opi.
i=1

5 Experimental Results

Our experiments resulted in two major findings. First, m@st translation tools are re-
search prototypes, not industrial quality tools. Secamelsymbolic approach is clearly
superior to the explicit approach for LTL satisfiability ckéng.

10



5.1 The Scalability Challenge

When checking the satisfiability of specifications we needdosider large LTL for-
mulas. Our experiments focus on challenging the tools wdtiable formulas. Unfor-
tunately, most explicit tools do not rise to the challengegéneral, the performance of
explicit tools degrades substantially as the automatadeegrate grow beyond 1,000
states. This degradation is manifested in both timeoutst{imeout bound was 4 hours
per formula) and errors due to memory management. This dhmikontrasted with
BDD tools, which routinely handle hundreds of thousandserah millions of nodes.
We illustrate this first with run-time results for counterdaulas. We display each
tool’s total run time, which is a combination of the tool'samnaton generation time and
SPIN’s model-analysis time. We include only data pointsvitiich the tools provide
correct answers; we know all counter formulas are uniquaigfsable. As is shown in
Figures 1 and 2> SPOT is the only explicit tool that is somewhat competitiitwhe
symbolic tools. Generally, the explicit tools time out oe diefore scaling tm = 10,
when the automata have only a few thousands states; only m&dswassed = 8.

Total Processing Time on 2-variable Counter Formulas Total Processing Time on 2-variable Linear Counter Formula s
Correct Results Correct Results
10000 LTL2AUT(B)
CadenceSMV | LTL2AUT(W)
NusMv LTL2BA
B LTL2Buchi

LTL->NBA
Modella CadenceSMV
Spot Nusmv
T™MP
[ ——— wiing

CadenceSMV

LTL2AUT(B)
LTL2AUT(W)
LTL2BA

L LTL2Buchi
3000 LTL->NBA

3500 -

I 8000 [~
2500 |- TMP  LTL2AUT(W)

CadenceSMV/

@
<}
S
S)
T

2000
r T™P Wring

1500

Time in Seconds
P
]
3
3
T

Time in Seconds

1000
L I TMP
I 2000 |~

500 - Modella LTL->NBA

I Modella LTL->NBA
| [ -

Sy v g OUL%AUWW)

- 1 1 1 1 1 1 1
123456 7 8 91011121314151617 1819 20 1 2 3 4 5 6 7 10 11 12 13 14 15
Number of bits in binary counter Number of bits in binary counter

0

Fig. 1. Performance Results: 2-Variable Courig. 2. Performance Results: 2-Variable Linear
ters Counters

Figures 3 and 4 show median automata generation and modkisentimes for
random formulas. Most tools, with the exception of SPOT ahdaBA, timeout or die
before scaling to formulas of length 60. The difference irff@@anance between SPOT
and LTL2BA, on one hand, and the rest of the explicit toolsigegdramatic. Note that
up to length 60, model-analysis time is negligible. SPOT ERA2BA can routinely
handle formulas of up to length 150, while the symbolic tesdale past length 200,
with run times of a few seconds.

Figure 5 shows performance on theclass formulas. Recall thatE(n) is the for-
mula\/[_; O—-pi. Since each formulal-p; can be translated into an automaton with
a fixed number of states;E(n) can be translated into an automaton wiifn) states.
Nevertheless, most tools show an unnecessary exponelatialup. CadenceSMV is
the only tool whose performance seems to scale linearlye €Midence for NUSMV is
inconclusive.)

15 We recommend viewing all figures online, in color, and maguiifi

11



Average-Behavior Analysis: P = 0.5;N = 2 Random Formula Analysis: P = 0.5; N = 2
5~ ™P | Modella LTL2AUT(B) 6 LTL2AUT®) CadenceSMV
L | LTL2AUT(W) —~ LTL2AUT(W)
| LTL2BA 9 LTL2BA
< | ‘ LTL2Buchi o N LTL2Buchi Spot
@ . | LTL->NBA S sF LTL->NBA
L g4k | ‘ Modella s L Modella
> N | LTL>NBA Spot F Spot
£ F | // T™P = TMP
[= [ Wiing 2 4L wring
c L “ ‘// N 4 r CadenceSMV LTL2BA
2 3k | /{ c L NuSMV
I [ | - [
@ I | /] riesuen g [ Nusmv
S i I/ | LTL2auT(e) e 3r
o | / 0 [
© 0 L
g g 2}
e -
=} < r
g = [
< CHE
c o o
._‘g = 1F
3 LTL2BA B b
= Spot 3 <
. P T e e carill D) W I S S i S I S |
25 50 75 100 125 150 25 50 75 100 125 150 175 200
Formula length Formula length
Fig. 3. Random Formulas — Automata Gener&ig. 4. Random Formulas — Model Analysis
tion Times Times
Run Times for E-class Scaleable Formulas Number of Automata States for E-class Scaleable Formulas
LTL2AUT(8) Modell LTL->NBA -
10 LTL2BA odel LTL2AUT(B) 0°F ! LTL2AUT(E)
E LTL2Buchi LTL2Buchi F LTL2BA
E LTL->NBA F | LTL2Buchi
I Modell + | LTL>NBA
10° s:me : TMPI o 1 Modella
~ F ™P / | Spot
S F CadenceSHMV y 1 T™MP
o r Nus| / e 2
010° / 0n10°
£ E / Spot y i) E
c F '/ LTL2BA S s F
c [ / e o [
S10'F -
o E o B
s F g }
° [ £
0
210 E NuSMV S10'k
8 F
k=] = F
@ -
=107 H
L[ CadenceSMV |
10°
E__1 1 1 | 1 1 1 1 1 1 1 1 10° I I I | 1
2 3 10 11 12 13 1 2 9 10

3 4 5 6 7
Number of variables in formula

Fig. 5. E-class Formula Data

Graceless DegradatiomMost explicit tools do not behave robustly and die gracéjess
When LTL2Buchi has difficulty processing a formula, it praés over 1,000 lines of
java.lang.StackOverflowError exceptions. LTL2BA periodically exits with “Com-
mand exited with non-zero status 1” and prints into the Ptafile, “ItI2ba: releasing a
free block, saw 'end of formula’.” Python traceback errorgder LTL—NBA. Modella
suffers from a variety of memory errors includitiy glibc detected *** double

free or corruption (out): 0x55ff4008 *** . Sometimes Modella causes a seg-
mentation fault and other times Modella dies gracefullgorting “full memory” before
exiting. When used purely as a LTL-to-automata transl&@8iN often runs for thou-
sands of seconds and then exits with non-zero status 1. Tk&/be similarly. Wring
often triggers Perl “’"Use of freed value in iteration” ersoWWhen the translation results
in large Promela models, SPIN frequently yields segmemidtults during its own
compilation. For example, SPOT translates the forngi{) to an automaton with 258
states and 6,817 transitions in 0.88 seconds. SPIN anaheessulting Promela model
in 41.75 seconds. SPOT translatesH(8) formula to an automaton with 514 states and
20,195 transitions in 2.88 seconds, but SPIN segmentadigtsfwhen trying to com-

12



pile this model. SPOT and the SMV tools are the only tools tuasistently degrade
gracefully; they either timeout or terminate with a suctigescriptive message.

A more serious problem is that of incorrect results, i.gppréng “satisfiable” for
an unsatisfiable formula or vice versa. Note, for exampl&igure 5, the size of the
automaton generated by TMP is independemt, afhich is an obvious error. The prob-
lem is particularly acute when the returned automaigris empty (no state). On one
hand, an empty automaton accepts the empty language. Othirehand, SPIN con-
joins the Promela model for the never claim with the modelarngtrification, so an
empty automaton, when conjoined with a universal modelyalst acts as a universal
model. The tools are not consistent in their handling of gnapttomata. Some, such
as LTL2Buchi and SPQOT, return an explicit indication of anpgyrautomaton, while
Modella and TMP just return an empty Promela model. We hakentan empty au-
tomaton to mean “unsatisfiable.” In Figure 6 we show an afglykcorrectness for
random formulas. Here we counted “correct” as any verdittiee “satisfiable” or “un-
satisfiable,” that matched the verdict found by the two SMbfsthe same formula as
the two SMVs always agree. We excluded data for any formulaistimed out or trig-
gered error messages. Many of the tools show degraded tmrsscas the formulas
scale in size.

Random Formula Analysis: P = 0.5;N = 3

LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella

[
n
T
7}
B
S

-
T T

Proportion of Correct Claims
o
@

0 1 1 1 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50 55 60 65
Formula length

Fig. 6. Correctness Degradation

Does Size Matter?The focus of almost all LTL translation papers, startingwR24],
has been on minimizing automata size. It has already beexdrtbat automata mini-
mization may not result in model checking performance impnoent [18] and specific
attention has been given to minimizing the size of the prodith the model [38, 22].
Our results show that size, in terms of both number of automstiates and transitions,
is not a reliable indicator of satisfiability checking rum@. Intuitively, the smaller the
automaton, the easier it is to check for nonemptiness. Tihiplistic view, however,
ignores the effort required to minimize the automaton. Iofien the case that tools
spend more time constructing the formula automaton thastogeting and analyzing
the product automaton. As an example, consider the perfurenaf the tools on counter
formulas. We see in Figures 1 and 2 dramatic differencesipénformance of the tools

13



on such formulas. In contrast, we see in Figures 7 and 8 teabtiis do not differ sig-
nificantly in terms of the size of generated automata. Sigjl&igure 5 shows little
correlation between automata size and run timesfalass formulas.

T™MP
Wing

T™MP
Wing

Number of Automata States for 2-variable Counter Formulas Number of Automata States for 2-variable Linear Counter For ~ mulas
" "
10 1 LTL2AUT(B) 10 1 LTL2AUT(B)
E 1 LTL2AUT(W) E 1 LTL2AUT(W)
r 1 LTL2BA F 1 LTL2BA
o ] LTL2Buchi o | LTL2Buchi
- I LTL>NBA - I LTL>NBA
| Modela | Modela
10° Spot 10° Spot
I I
1 1

T

Number of States
g

T

Number of States
s
5]

8 9 10 9 10

2 3 4 5 2 3 4 5 6 7
Number of bits in binary counter Number of bits in binary counter
Fig. 7. Automata Size: 2-Variable Counters Fig. 8. Automata Size: 2-Variable Linear Coun-

ters

Consider also the performance of the tools on random forsnldaFigure 9 we see
the performance in terms of size of generated automataoeahce in terms of run
time is plotted in Figure 11, where each tool was run untinitetd out or reported an
error for more than 10% of the sampled formulas. SPOT and BAL.@onsistently have
the best performance in terms of run time, but they are aegpagformers in terms of
automata size. LTL2Buchi consistently produces signifiganore compact automata,
in terms of both states and transitions. It also incurs I08RMIN model-analysis times
than SPOT and LTL2BA. Yet LTL2Buchi spends so much time gatieg the automata
that it does not scale nearly as well as SPOT and LTL2BA.

Number of Automata States for 3-variable Random Formulas Number of Automata Transitions for 3-variable Random Formu las
90% Correct or Better " 90% Correct or Better
300~ 1 LTL2AUT(B) 10 1 LTL2AUT(B)
[ 1 LTL2AUT(W) E 1 LTL2AUT(W)
[ I LTL2BA F | LTL2BA
F ] LTL2Buchi - I LTL2Buchi
250 |- 1 LTL->NBA N 1 LTL->NBA
r I Modella 10°F I Modella
I Spot F Spot
[ 1 T™P @ F 1 T™P
$200 |- | Wring s - I Wring
L S
s G 10°F
g 27F
- S F
5150 o r
5 sl
o 10"
5 £
2100 g
z
3 10°
50
ol L | 100
5 10 15 20 25 30 35 40 45 50 55 60 5 5 10 15 20 25 30 35 40 45 0 55 0 5
Formula Length Formula Length

=

g. 9. State and Transition Counts for 3-Variable Random Formulas

14



5.2 Symbolic Approaches Outperform Explicit Approaches

Across the various classes of formulas, the symbolic tootperformed the explicit
tools, demonstrating faster performance and increasdalsity. (We measured only
combined automata-generation and model-analysis timéhfoisymbolic tools. The
translation to automata is symbolic and is very fast; itngédir in the size of the formula
[10].) We see this dominance with respect to counter forsiifidigures 1 and 2, for
random formulas in Figures 3, 4, and 11, andEeclass formulas in Figure 5. Far-
class formulas, no explicit tools could handle- 10, while the symbolic tools scale up
to n = 20; see Figure 10. The only exception to the dominance ofythebslic tools
occurs with 3-variable linear counter formulas, where SB0Operforms both symbolic
tools. We ran the tools on many thousands of formulas andatifind a single case in
which either symbolic tool yielded an incorrect answer ywedrg explicit tool gave at
least one incorrect answer during our tests.

Run Times for U-class Scaleable Formulas Number of Automata States for U-class Scaleable Formulas

g
10°F Htgﬁﬁﬁsj) 10°F I LTL2AUT(B)
E o LTL2AUT(W)
LTL LTL2BA
LTL2Buchi

r LTL2Buchi

10°L LTL->NBA
E Modella

Spot

T™P

I

1 LTL->NBA
1 Modella
I

1

Spot
T™P
Wring

H
<
I

b
2
T

Wing
CadencesMV
NuSMV

H
2
T

H
=
w
Number of States

H
<
o
A
U

Median Total Run Time (sec)

N
e
T

8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 3

4 5 6
umber of variables in formula Number of variables in formula

N
=)
=
15}

z

Fig. 10.U-class Formula Data

The dominance of the symbolic approach is consistent wiHittdings in [35, 36],
which reported on the superiority of a symbolic approacthwéspect to an explicit
approach for satisfiability checking for the modal logicln contrast, [39] compared
explicit and symbolic translations of LTL to automata in tteatext of symbolic model
checking and found that explicit translation performs dreth that context. Conse-
quently, they advocate laybrid approach, combining symbolic systems and explicit
automata. Note, however, that not only is the context in B®rent than here (model
checking rather than satisfiability checking), but alsofthieulas studied there are gen-
erally small and translation time is negligible, in sharptrast to the study we present
here. We return to the topic of model checking in the conclgdiiscussion.

Figures 3, 4, and 11 reveal why the explicit tools generadisigom poorly. We see
in the figures that for most explicit tools automata-genenatimes by far dominate
model-analysis times, which calls into question the focuthe literature on minimiz-
ing automata size. Among the explicit tools, only SPOT anti2BA seem to have
been designed with execution speed in mind. Note that, dtlagrModella, SPOT and
LTL2BA are the only tools implemented in C/C++.

15



Random Formula Analysis: P = 0.5;N =3 Random Formula Analysis: P = 0.5;N = 3
90% Correct or Better 90% Correct or Better
10 LTL2AUT(B) iy 14 LTL2AUT(B)
F LTL2AUT(W) | F LTL2AUT(W)

9F LTL2BA [ 13F LTL2BA
) F LTL2Buchi 12 = LTL2Buchi
Q E LTL->NBA “E LTL->NBA /
2 8F Modella T 11 Modella /
o E Spot 2 E Spot /
E TF ™P ~ 1F T™P ~/
= F Wring g ook Wring -
= E £ 09F CadenceSMV —
2 SF = E NUSMV _
© F % 08F _—
S 5 E y
2 F 2 07f
@ F E E
O 4F < 06F
< E @ E
g 3F g osF
S E S 04F
5 2F c ;/ o
< F 8 03—
c L o F
s 1F L 02F
s f = °F
2 o 01f

) ST R T YT Y Y Y N OF vy

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 5 10 15 20 25 30 35 40 45 50 55 60 65
Formula length Formula length

Fig. 11. Automata generation and SPIN Analysis Times for 3-Varidgd@adom Formulas

6 Discussion

Too little attention has been given in the formal verificatlderature to the issue of
debugging specifications. We argued here for the adoptiarbafsic sanity check: sat-
isfiability checking for both the specification and the coempénted specification. We
showed that LTL satisfiability checking can be done via a o#ida to checking univer-
sal models and benchmarked a large array of tools with régpeatisfiability checking
of scalable LTL formulas.

We found that the existing literature on LTL-to-automatmslation provides little
information on actual tool performance. We showed that md&t translation tools,
with the exception of SPOT, are research prototypes, whacmaet be considered in-
dustrial quality tools. The focus in the literature has beeminimizing automata size,
rather than evaluating overall performance. Focusing @aralvperformance reveals a
large difference between LTL translation tools. In parftcuwe showed that symbolic
tools have a clear edge over explicit tools with respect tb &atisfiability checking.

While the focus of our study was on LTL satisfiability cheakirthere are a cou-
ple of conclusions that apply to model checking in generiggt A TL translation tools
need to be fast and robust. In our judgment, this rules outeimentations in languages
such as Perl or Python and favors C or C++ implementationsh&umore, attention
needs to be given to graceful degradation. In our experjeict errors are invari-
ably the result of graceless degradation due to poor memanagement. Second, tool
developers should focus on overall performance insteaditgfud size. It has already
been noted that automata minimization may not result in ihduecking performance
improvement [18] and specific attention has been given tamiaing the size of the
product with the model [38]. Still, no previous study of LTHanslation has focused on
model checking performance, leaving a glaring gap in ouewstdnding of LTL model
checking.

16



References

[1] G. Ammons, D. Mandelin, R. Bodik, and J.R. Larus. Debuggiemporal specifications
with concept analysis. IRLDI, Proc. ACM Conf.pages 182—-195, 2003.

[2] R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Pitermah, Tiemeyer, and M.Y. Vardi.
Enhanced vacuity detection for linear temporal logicCHV, Proc 15th Int'l ConfSpringer,
2003.

[3] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficieatettion of vacuity in ACTL
formulas.Formal Methods in System Desigi8(2):141-162, 2001.

[4] R. Bloem, K. Ravi, and F. Somenzi. Efficient decision prdares for model checking of
linear time logic properties. IGAV, Proc 11th Int'l Confvolume 1633 of_ecture Notes in
Computer Sciencgages 222—-235. Springer, 1999.

[5] R.K.Brayton, G.D. Hachtel, A. Sangiovanni-Vincenigh. Somenzi, A. Aziz, S.-T. Cheng,
S. Edwards, S. Khatri, T. Kukimoto, A. Pardo, S. Qadeer, RRKnjan, S. Sarwary, T.R.
Shiple, G. Swamy, and T. Villa. VIS: a system for verificatiand synthesis. [ICAV,
Proc. 8th Int'l Conf volume 1102 oL ecture Notes in Computer Sciengages 428-432.
Springer, 1996.

[6] R.E. Bryant. Graph-based algorithms for Boolean-fiorcmanipulation.|EEE Trans. on
ComputersC-35(8):677-691, 1986.

[7] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and ). Hwang. Symbolic model
checking: 189 states and beyonthformation and Computatiqrd8(2):142—170, Jun 1992.

[8] D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, and&.Wardi. Regular vacuity. In
CHARME volume 3725 oLLNCS pages 191-206. Springer, 2005.

[9] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. U$MV: a new symbolic model
checker.It'l J. on Software Tools for Tech. Transfet(4):410-425, 2000.

[10] E. M. Clarke, O. Grumberg, and K. Hamaguchi. Anotherkl@ LTL model checking.
Formal Methods in System Desigk0(1):47-71, 1997.

[11] E.M. Clarke, O. Grumberg, and D. Pelddodel CheckingMIT Press, 1999.

[12] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. YannalsakMemory efficient algorithms
for the verification of temporal propertieformal Methods in System Desjgh275-288,
1992.

[13] J-M. Couvreur. On-the-fly verification of linear tempbtogic. InProc. FM, pages 253—
271, 1999.

[14] N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improvedtamata generation for linear tem-
poral logic. InCAV, Proc. 11th Int'l Confvolume 1633 ofNCS pages 249-260. Springer,
1999.

[15] A. Duret-Lutz and D. Poitrenaud. SPOT: An extensibledelochecking library using
transition-based generalized Bichi automata.MIRSCOTS, Proc. 12th Int'l Workshop
pages 76—83. IEEE Computer Society, 2004.

[16] E.A. Emerson. Temporal and modal logic. In J. Van Leeuveslitor,Handbook of The-

oretical Computer Scienceolume B, chapter 16, pages 997-1072. Elsevier, MIT Press,

1990.

[17] E.A. Emerson and C.L. Lei. Efficient model checking iadments of the propositional
p-calculus. InLICS, 1st Symppages 267-278, Cambridge, Jun 1986.

[18] K. Etessami and G.J. Holzmann. Optimizing Biichi auatem InCONCUR, Proc. 11th
Int'l Conf., Lecture Notes in CS 1877, pages 153-167. Springer, 2000.

[19] C. Fritz. Constructing Buchi automata from linear f@ral logic using simulation relations
for alternating Biichi automata. Proc. 8th Intl. CIAA number 2759 in Lecture Notes in
Computer Science, pages 35-48. Springer, 2003.

17



(20]
(21]

(22]

(23]

(24]

(25]
(26]
(27]
(28]
(29]
(30]
(31]
(32]
(33]
(34]
(35]
(36]
(37]
(38]

(39]

[40]
[41]
[42]

(43]

C. Fritz. Concepts of automata construction from LTIn LIPAR, Proc. 12th Int'| Conf.
Lecture Notes in Computer Science 3835, pages 728-74dg&pr2005.

P. Gastin and D. Oddoux. Fast LTL to Buchi automatadtation. InCAV, Proc. 13th Int'l
Conf volume 2102 oL NCS pages 53-65. Springer, 2001.

J. Geldenhuys and H. Hansen. Larger automata and lessferd_TL model checking. In
Model Checking Software, 13th Int'l SPIN Worksheplume 3925 of NCS pages 53-70.
Springer, 2006.

J. Geldenhuys and A. Valmari. Tarjan’s algorithm makasthe-fly LTL verification more
efficient. InProc. 10th Int’l Conf. on Tools and Algorithms for the Constiion and Anal-
ysis of Systemsecture Notes in Computer Science 2988, pages 205-21gepr2004.
R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simpletbe-fly automatic verification of
linear temporal logic. In P. Dembiski and M. Sredniawa, @gitProtocol Specification,
Testing, and Verificatigrpages 3—-18. Chapman & Hall, Aug 1995.

D. Giannakopoulou and F. Lerda. From states to traomstiImproving translation of LTL
formulae to Blichi automata. RORTE, Proc of 22 IFIP Int’l ConfNov 2002.

A. Gurfinkel and M. Chechik. Extending extended vacuitpn FMCAD, 5th Int'l Conf
volume 3312 ol ecture Notes in Comp S@ages 306—-321. Springer, 2004.

A. Gurfinkel and M. Chechik. How vacuous is vacuousTACAS, 10th Int'| Confvolume
2988 ofLecture Notes in Computer Scienpages 451-466. Springer, 2004.

G.J. Holzmann. The model checker SPINIEEE Trans. on Software Engineering
23(5):279-295, May 1997. Special issue on Formal Metho@oftware Practice.

O. Kupferman. Sanity checks in formal verification. @®®NCUR, Proc. 17th Int'l Conf.
volume 4137 oLecture Notes in Comp S@ages 37-51. Springer, 2006.

O. Kupferman and M.Y. Vardi. Vacuity detection in termabmodel checking.J. on Soft-
ware Tools For Technology Transfel(2):224-233, Feb 2003.

R.P. KurshanFormalCheck User’'s ManualCadence Design, Inc., 1998.

K. McMillan. The SMV language. Technical report, CaderBerkeley Lab, 1999.

K.L. McMillan. Symbolic Model Checkindluwer Academic Publishers, 1993.

K.S. Namjoshi. An efficiently checkable, proof-basestnfiulation of vacuity in model
checking. In16th CAV volume 3114 o£.NCS pages 57-69. Springer, 04.

G. Pan, U. Sattler, and M.Y. Vardi. BDD-based decisioogedures for K. IrProc. 18th
Int'l CADE, LNCS 2392, pages 16—30. Springer, 2002.

N. Piterman and M.Y. Vardi. From bidirectionality totatnation. Theoretical Computer
Science295(1-3):295-321, Feb 2003.

M. Purandare and F. Somenzi. Vacuum cleaning CTL foamulnCAV, Proc. 14th Conf
Lecture Notes in Computer Science, pages 485-499. Sprihge002.

R. Sebastiani and S. Tonetta. “more deterministic™smaller” Biichi automata for effi-
cient LTL model checking. I€HARME pages 126-140. Springer, 2003.

R. Sebastiani, S. Tonetta, and M.Y. Vardi. Symbolicteyss, explicit properties: on hybrid
approaches for LTL symbolic model checking.GAV, Proc. 17th Int'l Conf.Lecture Notes
in Computer Science 3576, pages 350-373. Springer, 2005.

F. Somenzi and R. Bloem. Efficient Buichi automata frof formulae. InCAV, Proc. 12th
Int’l Conf, volume 1855 oL NCS pages 248-263. Springer, 2000.

H. Tauriainen and K. Heljanko. Testing LTL formula tsdation into Biichi automat&TTT
- Int'l J. on Software Tools for Tech. Transfei(1):57-70, 2002.

X. Thirioux. Simple and efficient translation from LTbifmulas to Biichi automat&lectr.
Notes Theor. Comput. Scf6(2):145-159, 2002.

M.Y. Vardi. Nontraditional applications of automataebry. INSTACS, Proc. Int/lvolume
789, pages 575-597. LNCS, Springer-Verlag, 1994.

18



[44] M.Y. Vardi. Automata-theoretic model checking retsl. InProc. 7th Int'l Conf. on
Verification, Model Checking, and Abstract Interpretatimolume 4349 ofLNCS pages
137-150. Springer, 2007.

[45] M.Y. Vardi and P. Wolper. An automata-theoretic apmoéo automatic program verifica-
tion. InProc. 1st LICSpages 332—-344, Cambridge, Jun 1986.

[46] M.Y. Vardi and P. Wolper. Reasoning about infinite congtions. Information and Com-
putation 115(1):1-37, Nov 1994.

19



