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Abstract. We report here on an experimental investigation
of LTL satisfiability checking via a reduction to model check-
ing. By using large LTL formulas, we offer challenging model-
checking benchmarks to both explicit and symbolic model
checkers. For symbolic model checking, we use CadenceSMV,
NuSMV, and SAL-SMC. For explicit model checking, we use
SPIN as the search engine, and we test essentially all pub-
licly available LTL translation tools. Our experiments result
in two major findings. First, most LTL translation tools are re-
search prototypes and cannot be considered industrial quality
tools. Second, when it comes to LTL satisfiability checking,
the symbolic approach is clearly superior to the explicit ap-
proach.

1 Introduction

Model-checkingtools are successfully used for checking
whether systems have desired properties [12]. The applica-
tion of model-checking tools to complex systems involves a
nontrivial step of creating a mathematical model of the sys-
tem and translating the desired properties into a formal spec-
ification. When the model does not satisfy the specification,
model-checking tools accompany this negative answer with
a counterexample, which points to an inconsistency between
the system and the desired behaviors. It is often the case, how-
ever, that there is an error in the system model or in the formal
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specification. Such errors may not be detected when the an-
swer of the model-checking tool is positive: while a positive
answer does guarantee that the model satisfies the specifica-
tion, the answer to the real question, namely, whether the sys-
tem has the intended behavior, may be different.

The realization of this unfortunate situation has led to the
development of severalsanity checksfor formal verification
[31]. The goal of these checks is to detect errors in the system
model or the properties. Sanity checks in industrial tools are
typically simple, ad hoc tests, such as checking for enabling
conditions that are never enabled [33].Vacuity detectionpro-
vides a more systematic approach. Intuitively, a specification
is satisfied vacuously in a model if it is satisfied in some
non-interesting way. For example, the linear temporal logic
(LTL) specification�(req→♦grant) (“every request is even-
tually followed by a grant”) is satisfied vacuously in a model
with no requests. While vacuity checking cannot ensure that
whenever a model satisfies a formula, the model is correct,
it does identify certain positive results as vacuous, increasing
the likelihood of capturing modeling and specification errors.
Several papers on vacuity checking have been published over
the last few years [2,3,9,29,28,32,36,39], and various indus-
trial model-checking tools support vacuity checking [2,3,9].

All vacuity-checking algorithms check whether a subfor-
mula of the specification does not affect the satisfaction of
the specification in the model. In the example above, the sub-
formula req does not affect satisfaction in a model with no
requests. There is, however, a possibility of a vacuous result
that is not captured by current vacuity-checking approaches.
If the specification isvalid, that is, true inall models, then
model checking this specification always results in a positive
answer. Consider for example the specification�(b1 →♦b2),
whereb1 andb2 are propositional formulas. Ifb1 andb2 are
logically equivalent, then this specification is valid and is sat-
isfied by all models. Nevertheless, current vacuity-checking
approaches do not catch this problem. We propose a method
for an additional sanity check to catch exactly this sort of
oversight.

Writing formal specifications is a difficult task, which is
prone to error just as implementation development is error
prone. However, formal verification tools offer little helpin
debugging specifications other than standard vacuity check-
ing. Clearly, if a formal property is valid, then this is certainly
due to an error. Similarly, if a formal property isunsatisfiable,
that is, true inno model, then this is also certainly due to an
error. Even if each individual property written by the speci-
fier is satisfiable, their conjunction may very well be unsatis-
fiable. Recall that a logical formulaϕ is valid iff its negation
¬ϕ is not satisfiable. Thus, as a necessary sanity check for de-
bugging a specification, model-checking tools should ensure
that both the specificationϕ and its negation¬ϕ are satisfi-
able. (For a different approach to debugging specifications,
see [1].)

A basic observation underlying our work is that LTL sat-
isfiability checking can be reduced to model checking. Con-
sider a formulaϕ over a setProp of atomic propositions. If
a modelM is universal, that is, it contains all possible traces
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overProp, thenϕ is satisfiable precisely when the modelM
doesnot satisfy¬ϕ. Thus, it is easy to add a satisfiability-
checking feature to LTL model-checking tools.

LTL model checkers can be classified asexplicit or sym-
bolic. Explicit model checkers, such as SPIN [30] or SPOT
[17], construct the state-space of the model explicitly and
search for a trace falsifying the specification [13]. In con-
trast, symbolic model checkers, such as CadenceSMV [34],
NuSMV [10], and VIS [6], represent the model and analyze
it symbolically using binary decision diagrams (BDDs) [8].

LTL model checkers follow the automata-theoretic ap-
proach [47], in which the complemented LTL specification
is explicitly or symbolically translated to a Büchi automaton,
which is then composed with the model under verification;
see also [46]. The model checker then searches for a trace
of the model that is accepted by the automaton. All symbolic
model checkers use the symbolic translation described in [11]
and the analysis algorithm of [19], though CadenceSMV and
VIS try to optimize further. There has been extensive research
over the past decade into explicit translation of LTL to au-
tomata[14,15,20–22,27,23,26,42,40,44], but it is difficult to
get a clear sense of the state of the art from a review of the
literature. Measuring the performance of LTL satisfiability
checking enables us to benchmark the performance of LTL
model checking tools, and, more specifically, of LTL transla-
tion tools.

We report here on an experimental investigation of
LTL satisfiability checking via a reduction to model check-
ing. By using large LTL formulas, we offer challenging
model-checking benchmarks to both explicit and symbolic
model checkers. For symbolic model checking, we use Ca-
denceSMV, NuSMV, and SAL-SMC. For explicit model
checking, we use SPIN as the search engine, and we test es-
sentially all publicly available LTL translation tools. Weuse
a wide variety of benchmark formulas, either generated ran-
domly, as in [15], or using a scalable pattern (e.g.,

Vn
i=1 pi).

LTL formulas typically used for evaluating LTL translation
tools are usually too small to offer challenging benchmarks.
Note that real specifications typically consist of many tem-
poral properties, whose conjunction ought to be satisfiable.
Thus, studying satisfiability of large LTL formulas is quite
appropriate.

Our experiments resulted in two major findings. First,
most LTL translation tools are research prototypes and cannot
be considered industrial quality tools. Many of them are writ-
ten in scripting languages such as Perl or Python, which has
a drastic negative impact on their performance. Furthermore,
these tools generally degrade gracelessly, often yieldingin-
correct results with no warning. Among all the explicit tools
we tested, only SPOT can be considered an industrial quality
tool. Second, when it comes to LTL satisfiability checking,
the symbolic approach is clearly superior to the explicit ap-
proach. Even SPOT, the best explicit LTL translator in our
experiments, was rarely able to compete effectively against
the symbolic tools. This result is consistent with the compar-
ison of explicit and symbolic approaches to modal satisfiabil-

ity [37,38], but is somewhat surprising in the context of LTL
satisfiability in view of [41].

Related software, calledlbtt ,1 provides an LTL-to-
Büchi explicit translator testbench and environment for basic
profiling. Thelbtt tool performs simple consistency checks
on an explicit tool’s output automata, accompanied by sam-
ple data when inconsistencies in these automata are detected
[43]. Whereas the primary use oflbtt is to assist developers
of explicit LTL translators in debugging new tools or com-
paring a pair of tools, we compare performance with respect
to LTL satisfiability problems across a host of different tools,
both explicit and symbolic.

The structure of the paper is as follows. Section 2 pro-
vides the theoretical background for this work. In Section 3,
we describe the tools studied here. We define our experimen-
tal method in Section 4, and detail our results in Section 5.
We conclude with a discussion in Section 6.

2 Theoretical Background

Linear Temporal Logic (LTL) formulas are composed of a
finite setProp of atomic propositions, the Boolean connec-
tives¬, ∧, ∨, and→, and the temporal connectivesU (until),
R (release),X (also called# for “next time”),� (also called
G for “globally”) and ♦ (also calledF for “in the future”).
We define LTL formulas inductively:

Definition 1 For every p∈ Prop, p is a formula. Ifϕ andψ
are formulas, then so are:

¬ϕ ϕ∧ψ ϕ → ψ ϕ U ψ �ϕ
ϕ∨ψ X ϕ ϕ R ϕ ♦ϕ

LTL formulas describe the behavior of the variables inProp
over a linear series of time steps starting at time zero and
extending infinitely into the future. We satisfy such formu-
las overcomputations, which are functions that assign truth
values to the elements ofProp at each time instant [18].

Definition 2 We interpret LTL formulas over computations
of the formπ : ω → 2Prop. We defineπ, i � ϕ (computationπ
at time instant i∈ ω satisfies LTL formulaϕ) as follows:

• π, i � p for p∈ Prop if p∈ π(i).
• π, i � ϕ∧ψ if π, i � ϕ andπ, i � ψ.
• π, i � ¬ϕ if π, i 2 ϕ.
• π, i � X ϕ if π, i +1 � ϕ.
• π, i � ϕUψ if ∃ j ≥ i, such thatπ, j � ψ and∀k, i ≤ k < j,

we haveπ,k � ϕ.
• π, i � ϕR ψ if ∀ j ≥ i, if π, j 2 ψ, then∃k, i ≤ k < j, such

thatπ,k � ϕ.
• π, i � ♦ϕ if ∃ j ≥ i, such thatπ, j � ϕ.
• π, i � �ϕ if ∀ j ≥ i, π, j � ϕ.

We take models(ϕ) to be the set of computations that satisfy
ϕ at time 0, i.e.,{π : π,0 � ϕ}.

In automata-theoretic model checking, we represent LTL for-
mulas using Büchi automata.

1 www.tcs.hut.fi/Software/lbtt/



Kristin Y. Rozier, Moshe Y. Vardi: LTL Satisfiability Checking 3

Definition 3 A Büchi Automaton (BA) is a quintuple
(Q,Σ,δ,q0,F) where:

• Q is a finite set of states.
• Σ is a finite alphabet.
• δ : Q×Σ → 2Q is the transition relation.
• q0 ∈ Q is the initial state.
• F ⊆ Q is a set of final states.

A run of a B̈uchi automaton over an infinite word w= w0,w1,

w2, . . . ∈ Σ is a sequence of states q0,q1,q2, . . . ∈ Q such that
∀i ≥ 0, δ(qi,wi) = qi+1. An infinite word w is accepted by
the automaton if the run over w visits at least one state in F
infinitely often. We denote the set of infinite words accepted
by an automaton A by Lω(A).

A computation satisfying LTL formulaϕ is an infinite word
over the alphabetΣ = 2Prop. The next theorem relates the ex-
pressive power of LTL to that of Büchi automata.

Theorem 1. [48] Given an LTL formulaϕ, we can construct
a Büchi automaton Aϕ =

〈

Q,Σ,δ,q0,F
〉

such that|Q| is in
2O(|ϕ|), Σ = 2Prop, and Lω(Aϕ) is exactly models(ϕ).

This theorem reduces LTL satisfiability checking to
automata-theoretic nonemptiness checking, asϕ is satisfiable
iff models(ϕ) 6= /0 iff Lω(Aϕ) 6= /0.

We can now relate LTL satisfiability checking to LTL
model checking. Suppose we have auniversal model Mthat
generates all computations over its atomic propositions; that
is, we have thatLω(M) = (2Prop)ω. We now have thatM does
notsatisfy¬ϕ if and only if ϕ is satisfiable. Thus,ϕ is satisfi-
able precisely when the model checker finds a counterexam-
ple.

3 Tools Tested

In total, we tested twelve LTL compilation algorithms from
ten research tools. To offer a broad, objective picture of the
current state of the art, we tested the algorithms against sev-
eral different sequences of benchmarks, comparing, where
appropriate, the size of generated automata in terms of num-
bers of states and transitions, translation time, model-analysis
time, and correctness of the output.

3.1 Explicit Tools

The explicit LTL model checker SPIN [30] accepts either
LTL properties, which are translated internally into Büchi
automata, or Büchi automata for complemented properties
(“never claims”). We tested SPIN with Promela (PROcess
MEta LAnguage) never claims produced by several LTL
translation algorithms. (As SPIN’s built-in translator isdomi-
nated by TMP, we do not show results for this translator.) The
algorithms studied here represent all tools publicly available
in 2006, as described in the following table:

Explicit Automata Construction Tools

LTL2AUT . . . . . . . . . . . . . . . (Daniele–Guinchiglia–Vardi)
Implementations (Java, Perl) . . . . . . . . . LTL2Buchi, Wring

LTL2BA (C) . . . . . . . . . . . . . . . . . . . . . . . (Oddoux–Gastin)
LTL2Buchi (Java) . . . . . . . . . . . (Giannakopoulou–Lerda)
LTL → NBA (Python) . . . . . . . . . . . . . . . . . (Fritz–Teegen)
Modella (C) . . . . . . . . . . . . . . . . . . . . . (Sebastiani–Tonetta)
SPOT (C++) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . (Duret-Lutz–Poitrenaud–Rebiha–Baarir–Martinez)
TMP (SML of NJ) . . . . . . . . . . . . . . . . . . . . . . . . . (Etessami)
Wring (Perl) . . . . . . . . . . . . . . . . . . . . . . . (Somenzi–Bloem)

We provide here short descriptions of the tools and their
algorithms, detailing aspects which may account for our re-
sults. We also note that aspects of implementation including
programming language, memory management, and attention
to efficiency, seem to have significant effects on tool perfor-
mance.

Classical AlgorithmsFollowing [48], the first optimized
LTL translation algorithm was described in [26]. The basic
optimization ideas were: (1) generate states by demand only,
(2) use node labels rather than edge labels to simplify trans-
lation to Promela, and (3) use ageneralized B̈uchiacceptance
condition so eventualities can be handled one at a time. The
resulting generalized Büchi automaton (GBA) is then “degen-
eralized” or translated to a BA.LTL2AUT improved further
on this approach by using lightweight propositional reasoning
to generate fewer states [15]. We tested two implementations
of LTL2AUT, one included in the Java-based LTL2Buchi tool
and one included in the Perl-based Wring tool.

TMP2 [20] andWring 3 [42] each extend LTL2AUT with
three kinds of additional optimizations. First, in thepre-
translation optimization, the input formula is simplified using
Negation Normal Form (NNF) and extensive sets of rewrite
rules, which differ between the two tools as TMP adds rules
for left-append and suffix closure. Second,mid-translation
optimizations tighten the LTL-to-automata translation algo-
rithms. TMP optimizes an LTL-to-GBA-to-BA translation,
while Wring performs an LTL-to-GBA translation utilizing
Boolean optimizations for finding minimally-sized covers.
Third, the resulting automata are minimized further during
post-translation optimization. TMP minimizes the resulting
BA by simplifying edge terms, removing “never accepting”
nodes and fixed-formula balls, and applying a fair simulation
reduction variant based on partial orders produced by itera-
tive color refinement. Wring uses forward and backward sim-
ulation to minimize transition- and state-counts, respectively,
merges states, and performs fair set reduction via strongly
connected components. Wring halts translation with a GBA,
which we had to degeneralize.

2 We used the binary distribution calledrun delayed trans 06
compilation.x86-linux . www.bell-labs.com/project/TMP/

3 Version 1.1.0, June 21, 2001.www.ist.tugraz.at/staff/bloem/
wring.html
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LTL2Buchi 4 [27] optimizes the LTL2AUT algorithm by
initially generating transition-based generalized Büchi auto-
mata (TGBA) rather than node-labeled BA, to allow for more
compaction based on equivalence classes, contradictions,and
redundancies in the state space. Special attention to efficiency
is given during the ensuing translation to node-labeled BA.
The algorithm incorporates the formula rewriting and BA-
reduction optimizations of TMP and Wring, producing au-
tomata with less than or equal to the number of states and
fewer transitions.

Modella5 focuses on minimizing thenondeterminismof
the property automaton in an effort to minimize the size of
the product of the property and system model automata dur-
ing verification [40]. If the property automaton is determin-
istic, then the number of states in the product automaton will
be at most the number of states in the system model. Thus,
reducing nondeterminism is a desirable goal. This is accom-
plished usingsemantic branching, or branching on truth as-
signments, rather than thesyntactic branchingof LTL2AUT.
Modella also postpones branching when possible.

Alternating Automata ToolsInstead of the direct translation
approach of [48], an alternative approach, based onalternat-
ing automata, was proposed in [45]. In this approach, the LTL
formula is first translated into an alternating Büchi automa-
ton, which is then translated to a nondeterministic Büchi au-
tomaton.

LTL2BA 6 [23] first translates the input formula into a
very weakalternating automaton (VWAA). It then uses vari-
ous heuristics to minimize the VWAA, before translating it to
GBA. The GBA in turn is minimized before being translated
into a BA, and finally the BA is minimized further. Thus, the
algorithm’s central focus is on optimization of intermediate
representations through iterative simplifications and on-the-
fly constructions.

LTL →NBA7 follows a similar approach to that of LTL2
BA [21]. Unlike the heuristic minimization of VWAA used
in LTL2BA, LTL→NBA uses a game-theoretic minimization
based on utilizing a delayed simulation relation for on-the-fly
simplifications. The novel contribution is that the simulation
relation is computed from the VWAA, which is linear in the
size of the input LTL formula,beforethe exponential blow-up
incurred by the translation to a GBA. The simulation relation
is then used to optimize this translation.

Back to ClassicsSPOT8 is the most recently developed
LTL-to-Büchi optimized translation tool [17]. It does notuse

4 Original Version distributed from http://javapathfinder.
sourceforge.net/ ; description: http://ti.arc.nasa.gov/profile/
dimitra/projects-tools/\#LTL2Buchi

5 Version 1.5.8.1. http://www.science.unitn.it/˜stonetta/
modella.html

6 Version 1.0; October 2001.http://www.lsv.ens-cachan.fr/
˜gastin/ltl2ba/index.php

7 This original version is a prototype.http://www.ti.informatik.
uni-kiel.de/˜fritz/;download:http://www.ti.informat ik.
uni-kiel.de/˜fritz/LTL-NBA.zip

8 Version 0.3.http://spot.lip6.fr/wiki/SpotWiki

alternating automata, but borrows ideas from all the tools de-
scribed above, including reduction techniques, the use of TG-
BAs, minimizing non-determinism, and on-the-fly construc-
tions. It adds two important optimizations: (1) unlike all other
tools, it uses pre-branching states, rather than post-branching
states (as introduced in [14]), and (2) it uses BDDs [7] for
propositional reasoning.

3.2 Symbolic Tools

Symbolic model checkers describe both the system model
and property automaton symbolically: states are viewed as
truth assignments to Boolean state variables and the transition
relation is defined as a conjunction of Boolean constraints on
pairs of current and next states [8]. The model checker uses
a BDD-based fix-point algorithm to find afair path in the
model-automaton product [19].

CadenceSMV9 [34] and NuSMV10 [10] both evolved
from the original Symbolic Model Verifier developed at CMU
[35]. Both tools support LTL model checking via the sym-
bolic translation of LTL to transition systems with FAIR-
NESS constraints, as described in [11]. FAIRNESS con-
straints specify sets of states that must occur infinitely of-
ten in any path. They are necessary to ensure that the sub-
formula ψ holds in some time step for specifications of the
form ϕ U ψ and♦ψ. CadenceSMV additionally implements
heuristics that attempt to further optimize the reduction of
LTL model checking to checking nonemptiness of fair transi-
tion systems, in some cases [5].

SAL11 (Symbolic Analysis Laboratory), developed at
SRI, is a suite of tools combining a rich expression language
with a host of tools for several forms of mechanized formal
analysis of state machines [4]. SAL-SMC (Symbolic Model
Checker) uses LTL as its primary assertion language and di-
rectly translates LTL assertions into Büchi automata, which
are then represented, optimized, and analyzed as BDDs.
SAL-SMC also employs an extensive set of optimizations
during preprocessing and compilation, including partial eval-
uation, common subexpression elimination, slicing, compil-
ing arithmetic values and operators into bit vectors and binary
“circuits,” as well as optimizations during the direct transla-
tion of LTL assertions into Büchi automata [16].

4 Experimental Methods

4.1 Performance Evaluation

We ran all tests in the fall of 2006 on Ada, a Rice University
Cray XD1 cluster.12 Ada is comprised of 158 nodes with 4
processors (cores) per node for a total of 632 CPUs in pairs
of dual core 2.2 GHz AMD Opteron processors with 1 MB L2

9 Release 10-11-02p1.http://www.kenmcmil.com/smv.html
10 Version 2.4.3-zchaff.http://nusmv.irst.itc.it/
11 Version 2.4.http://sal.csl.sri.com
12 http://rcsg.rice.edu/ada/
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cache. There are 2 GB of memory per core or a total of 8 GB
of RAM per node. The operating system is SuSE Linux 9.0
with the 2.6.5 kernel. Each of our tests was run with exclusive
access to one node and was considered to time out after 4
hours of run time. We measured all timing data using the Unix
time command.

Explicit Tools Each test was performed in two steps. First,
we applied the translation tools to the input LTL formula and
ran them with the standard flags recommended by the tools’
authors, plus any additional flag needed to specify that the
output automaton should be in Promela. Second, each out-
put automaton, in the form of a Promelanever claim, was
checked by SPIN. (SPIN never claims are descriptions of be-
haviors that should never happen.) In this role, SPIN serves
as a search engine for each of the LTL translation tools; it
takes a never claim and checks it for nonemptiness in con-
junction with an input model.13 In practice, this means we
call spin -a on the never claim and the universal model to
compile these two files into a C program, which is then com-
piled using gcc and executed to complete the verification run.

In all tests, the model was auniversal Promela pro-
gram, enumerating all possible traces overProp. For exam-
ple, whenProp= {A,B}, the Promela model is:

bool A,B;
/* define an active procedure

to generate values for A and B */
active proctype generateValues()
{ do

:: atomic{ A = 0; B = 0; }
:: atomic{ A = 0; B = 1; }
:: atomic{ A = 1; B = 0; }
:: atomic{ A = 1; B = 1; }

od }

We use theatomic {} construct to ensure that the Boolean
variables change value in one unbreakable step. When com-
bining formulas with this model, we also preceeded each for-
mula with anX -operator to skip SPIN’s assignment upon
declaration and achieve nondeterministic variable assign-
ments in the initial time steps of the test formulas. Note that
the size of this model is exponential in the number of atomic
propositions. It is also possible construct a model that is lin-
ear in the number of variables like this14:

bool A,B;
active proctype generateValues()
{ do

:: atomic{
if

:: true -> A = 0;
:: true -> A = 1;

fi;
if

:: true -> B = 0;
:: true -> B = 1;

fi;

13 An interesting alternative to SPIN’s nested depth-first search algorithm
[13] would be to use SPOT’s SCC-based search algorithm [25].

14 We thank Martin De Wulf for asking this question.

}
od }

However, in all of our random and counter formulas, there
never more than 3 variables. For these small numbers of vari-
ables, our (exponentially sized) model is more simple and
contains fewer lines of code than the equivalent linearly sized
model. When we did scale the number of variables for the
pattern formula benchmarks, we kept the same model for
consistency. The scalability of the universal model we chose
did not affect our results because all of the explicit tool tests
terminated early enough that the size of the universal model
was still reasonably small. (At 8 variables, our model has 300
lines of code, whereas the linearly sized model we show here
has 38.) Furthermore, the timeouts and errors we encountered
when testing the explicit-state tools occurred in the LTL-to-
automaton stage of the processing. All of these tools spent
considerably more time and memory on this stage, making
the choice of universal Promela model in the counter and pat-
tern formula benchmarks irrelevant: the tools consistently ter-
minated before the call to SPIN to combine their automata
with the Promela model.

SMV We compare the explicit tools with CadenceSMV and
NuSMV. To check whether a LTL formulaϕ is satisfiable, we
model check¬ϕ against a universal SMV model. For exam-
ple, if ϕ = (X (a U b)), we provide the following inputs to
NuSMV and CadenceSMV15:

NuSMV:

MODULE main
VAR

a : boolean;
b : boolean;

LTLSPEC !(X(a=1 U b=1))
FAIRNESS

1

CadenceSMV:

module main () {

a : boolean;
b : boolean;
assert !(X(a U b));
FAIR TRUE;

}

SMV negates the specification,¬ϕ, symbolically com-
piles ϕ into Aϕ, and conjoinsAϕ with the universal model.
If the automaton is not empty, then SMV finds a fair path,
which satisfies the formulaϕ. In this way, SMV acts as both
a symbolic compiler and a search engine.

SAL-SMC We also chose SAL-SMC to compare to the ex-
plicit tools. We used a universal model similar to those for
CadenceSMV and NuSMV. (In SAL-SMC, primes are used
to indicate the values of variables in the next state.)

temp: CONTEXT =
BEGIN

main: MODULE =
BEGIN

OUTPUT
a : boolean,
b : boolean

15 In our experiments we used FAIRNESS to guarantee that the model
checker returns a representation of an infinite trace as counterexample.
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INITIALIZATION
a IN {TRUE,FALSE};
b IN {TRUE,FALSE};

TRANSITION
[ TRUE -->

a’ IN {TRUE,FALSE};
%next time a is in true or false

b’ IN {TRUE,FALSE};
%next time b is in true or false

]

END; %MODULE

formula: THEOREM main |- ((((G(F(TRUE)))))
=> (NOT( U(a,b) )));

END %CONTEXT

SAL-SMC negates the specification,¬ϕ, directly trans-
latesϕ into Aϕ, and conjoinsAϕ with the universal model.
Like the SMVs, SAL-SMC then searches for a counterexam-
ple in the form of a path in the resulting model. There is not
a separate command to ensure fairness in SAL models like
those which appear in the SMV models above.16 Therefore,
we ensure SAL-SMC checks for an infinite counterexample
by specifying our theorem as� ♦(true) →¬ϕ.

4.2 Input Formulas

We benchmarked the tools against three types of scalable for-
mulas: random formulas, counter formulas, and pattern for-
mulas. Scalability played an important role in our experiment,
since the goal was to challenge the tools with large formulas
and state spaces. All tools were applied to the same formulas
and the results (satisfiable or unsatisfiable) were compared.
The symbolic tools, which were always in agreement, were
considered as reference tools for checking correctness.

Random FormulasIn order to cover as much of the problem
space as possible, we tested sets of 250 randomly-generated
formulas varying the formula length and number of variables
as in [15]. We randomly generated sets of 250 formulas vary-
ing the number of variables,N, from 1 to 3, and the length
of the formula,L, from 5 up to 65. We set the probability of
choosing a temporal operatorP= 0.5 to create formulas with
both a nontrivial temporal structure and a nontrivial Boolean
structure. Other choices were decided uniformly. We report
median running times as the distribution of run times has a
high variance and contains many outliers. All formulas were
generated prior to testing, so each tool was run on thesame
formulas. While we made sure that, when generating a set
of lengthL, every formula was exactly of lengthL and not
up to L, we did find that the formulas were frequently re-
ducible. Conversely, subformulas of the formϕ R ψ had to

16 http://sal-wiki.csl.sri.com/index.php/FAQ#DoesSAL haveconstructs
for fairness.3F
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be expanded to¬(¬ϕ U ¬ψ) since most of the tools do not
implement theR operator directly. Tools with better initial
formula reduction algorithms performed well in these tests.
Our experiments showed that most of the formulas of every
length we generated were satisfiable. Figure 1 demonstrates
the distribution of satisfiability for the case of 2-variable ran-
dom formulas.

Counter FormulasPre-translation rewriting is highly effec-
tive for random formulas, but ineffective for structured for-
mulas [20,42]. To measure performance on scalable, non-
random formulas we tested the tools on formulas that de-
scribe n-bit binary counters with increasing values ofn.
These formulas are irreducible by pre-translation rewriting,
uniquely satisfiable, and represent a predictably-sized state
space. Whereas our measure of correctness for random for-
mulas is a conservative check that the tools find satisfiable
formulas to be satisfiable, we check for precisely the unique
counterexample for each counter formula. We tested four
constructions of binary counter formulas, varying two fac-
tors: number of variables and nesting ofX ’s.

We can represent a binary counter using two variables: a
counter variable and a marker variable to designate the begin-
ning of each new counter value. Alternatively, we can use 3
variables, adding a variable to encode carry bits, which elimi-
nates the need forU -connectives in the formula. We can nest
X ’s to provide more succinct formulas or express the formu-
las using a conjunction of unnestedX -sub-formulas.

Let b be an atomic proposition. Then a computationπ
over b is a word in (2{b})ω = {0,1}ω. By dividing π into
blocks of lengthn, we can viewπ as a sequence ofn-
bit values, denoting the sequence of values assumed by an
n-bit counter starting at 0, and incrementing successively
by 1. To simplify the formulas, we represent each block
b0,b1, . . . ,bn−1 as having the most significant bit on the right
and the least significant bit on the left. For example, forn= 2
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a = 1 & b = 0 a = 0 & b = 0 a = 1 & b = 1 a = 0 & b = 0

a = 1 & b = 0

a = 0 & b = 1a = 1 & b = 1a = 0 & b = 1

a = 1 & b = 0

Fig. 2.Example: 2-bit Binary Counter Automaton (a = marker; b = counter)

theb blocks cycle through the values 00, 10, 01, and 11. Fig-
ure 2 pictures this automaton. For technical convenience, we
use an atomic propositionm to mark the blocks. That is, we
intendm to hold at pointi precisely wheni = 0 modn.

For π to represent ann-bit counter, the following proper-
ties need to hold:

1) The marker consists of a repeated pattern of a 1
followed by n-1 0’s.

2) The first n bits are 0’s.
3) If the least significant bit is 0,

then it is 1 n steps later and
the other bits do not change.

4) All of the bits before and including the first 0
in an n-bit block flip their values
in the next block; the other bits do not change.

Forn= 4, these properties are captured by the conjunction of
the following formulas:

1. (m) && ( [](m -> ((X(!m)) && (X(X(!m)))
&& (X(X(X(!m))))
&& (X(X(X(X(m))))))))

2. (!b) && (X(!b)) && (X(X(!b))) && (X(X(X(!b))))
3. []( (m && !b) ->

( X(X(X(X(b)))) &&
X ( ( (!m) &&

(b -> X(X(X(X(b))))) &&
(!b -> X(X(X(X(!b))))) ) U m ) ) )

4. [] ( (m && b) ->
( X(X(X(X(!b)))) &&

(X ( (b && !m && X(X(X(X(!b))))) U
(m ||

(!m && !b && X(X(X(X(b)))) &&
X( ( !m && (b -> X(X(X(X(b))))) &&

(!b -> X(X(X(X(!b))))) ) U
m ) ) ) ) ) ) )

Note that this encoding creates formulas of lengthO(n2).
A more compact encoding results in formulas of lengthO(n).
For example, we can replace formula (2) above with:

2. ((!b) && X((!b) && X((!b) && X(!b))))

We can eliminate the use ofU -connectives in the formula
by adding an atomic propositionc representing the carry bit.
The required properties of ann-bit counter with carry are as
follows:

1) The marker consists of a repeated pattern of a 1
followed by n-1 0’s.

2) The first n bits are 0’s.
3) If m is 1 and b is 0 then c is 0

and n steps later b is 1.
4) If m is 1 and b is 1 then c is 1

and n steps later b is 0.
5) If there is no carry,

then the next bit stays the same n steps later.
6) If there is a carry, flip the next bit

n steps later and adjust the carry.

Forn= 4, these properties are captured by the conjunction of
the following formulas.
1. (m) && ( [](m -> ((X(!m)) && (X(X(!m)))

&& (X(X(X(!m))))
&& (X(X(X(X(m))))))))

2. (!b) && (X(!b)) && (X(X(!b))) && (X(X(X(!b))))
3. [] ( (m && !b) -> (!c && X(X(X(X(b))))) )
4. [] ( (m && b) -> (c && X(X(X(X(!b))))) )
5. [] (!c && X(!m)) ->

( X(!c) && (X(b) -> X(X(X(X(X(b)))))) &&
(X(!b) -> X(X(X(X(X(!b)))))) )

6. [] (c -> ( ( X(!b) ->
( X(!c) && X(X(X(X(X( b))))) ) ) &&

( X( b) ->
( X( c) && X(X(X(X(X(!b))))) ) ) ))

The counterexample trace for a 4-bit counter with carry
is given in the following table. (The traces ofm andb are, of
course, the same as for counters without carry.)

A 4-bit Binary Counter
m 1000 1000 1000 1000 1000 1000
b 0000 1000 0100 1100 0010 1010
c 0000 1000 0000 1100 0000 1000

m 1000 1000 1000 1000 1000 1000
b 0110 1110 0001 1001 0101 1101
c 0000 1110 0000 1000 0000 1100

m 1000 1000 1000 1000 1000 . . .
b 0011 1011 0111 1111 0000 . . .
c 0000 1000 0000 1111 0000 . . .

Pattern Formulas We further investigated the problem space
by testing the tools on the eight classes of scalable formulas
defined by [24] to evaluate the performance of explicit state
algorithms on temporally-complex formulas.

E(n) =
n̂

i=1

♦pi

U(n) = (. . .(p1 U p2) U . . .) U pn

R(n) =
n̂

i=1

(�♦pi ∨♦�pi+1)

U2(n) = p1 U (p2 U (. . . pn−1 U pn) . . .)

C1(n) =
n

_

i=1

�♦pi

C2(n) =
n̂

i=1

�♦pi

Q(n) =
^

(♦pi ∨�pi+1)

S(n) =
n̂

i=1

�pi
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5 Experimental Results

Our experiments resulted in two major findings. First, most
LTL translation tools are research prototypes, not industrial
quality tools. Second, the symbolic approach is clearly supe-
rior to the explicit approach for LTL satisfiability checking.

5.1 The Scalability Challenge

When checking the satisfiability of specifications we need to
consider large LTL formulas. Our experiments focus on chal-
lenging the tools with scalable formulas. Unfortunately, most
explicit tools do not rise to the challenge. In general, the per-
formance of explicit tools degrades substantially as the au-
tomata they generate grow beyond 1,000 states. This degra-
dation is manifested in both timeouts (our timeout bound was
4 hours per formula) and errors due to memory management.
This should be contrasted with BDD tools, which routinely
handle hundreds of thousands and even millions of nodes.

We illustrate this first with run-time results for counter
formulas. We display each tool’s total run time, which is
a combination of the tool’s automaton generation time and
SPIN’s model-analysis time. We include only data points for
which the tools provide correct answers; we know all counter
formulas are uniquely satisfiable. As is shown in Figures 3
and 4,17 SPOT is the only explicit tool that is somewhat com-
petitive with the symbolic tools. Generally, the explicit tools
time out or die before scaling ton = 10, when the automata
have only a few thousands states; only a few tools passed
n = 8.

We also found that SAL-SMC does not scale. Figure 5
demonstrates that, despite median run times that are compa-
rable with the fastest explicit-state tools, SAL-SMC does not
scale pastn = 8 for any of the counter formulas. No matter
how the formula is specified, SAL-SMC exits with the mes-
sage “Error: vector too large” when the state space increases
from 28×8 = 2048 states atn = 8 to 29×9 = 4608 states at
n = 9. SAL-SMC’s behavior on pattern formulas was similar
(see Figures 8 and 13). While SAL-SMC consistently found
correct answers, avoided timing out, and always exited grace-
fully, it does not seem to be an appropriate choice for formu-
las involving large state spaces. (SAL-SMC has the added
inconvenience that it parses LTL formulas differently thanall
of the other tools described in this paper: it treats all temporal
operators as prefix, instead of infix, operators.)

Figures 6 and 7 show median automata generation and
model-analysis times for random formulas. Most tools, with
the exception of SPOT and LTL2BA, timeout or die before
scaling to formulas of length 60. The difference in perfor-
mance between SPOT and LTL2BA, on one hand, and the rest
of the explicit tools is quite dramatic. Note that up to length
60, model-analysis time is negligible. SPOT and LTL2BA
can routinely handle formulas of up to length 150, while Ca-
denceSMV and NuSMV scale past length 200, with run times
of a few seconds.

17 We recommend viewing all figures online, in color, and magnified.
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Figure 8 shows performance on theE-class formulas. Re-
call that E(n) =

Vn
i=1♦pi . The minimally-sized automaton

representingE(n) has exactly 2n states in order to remember
which pi ’s have been observed. (Basically, we must declare
a state for every combination ofpi ’s seen so far.) However,
none of the tools create minimally sized automata. Again, we
see all of the explicit tools do not scale beyondn= 10, which
is minimally 1024 states, in sharp contrast to the symbolic
tools.

Graceless DegradationMost explicit tools do not behave ro-
bustly and die gracelessly. When LTL2Buchi has difficulty
processing a formula, it produces over 1,000 lines ofjava.
lang.StackOverflowError exceptions. LTL2BA periodi-
cally exits with “Command exited with non-zero status 1”
and prints into the Promela file, “ltl2ba: releasing a free
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block, saw ’end of formula’.” Python traceback errors hin-
der LTL→NBA. Modella suffers from a variety of mem-
ory errors including *** glibc detected *** double
free or corruption (out): 0x 55ff4008 *** . Some-
times Modella causes a segmentation fault and other times
Modella dies gracefully, reporting “full memory” before exit-
ing. When used purely as a LTL-to-automata translator, SPIN
often runs for thousands of seconds and then exits with non-
zero status 1. TMP behaves similarly. Wring often triggers
Perl “Use of freed value in iteration” errors. When the trans-
lation results in large Promela models, SPIN frequently yields
segmentation faults during its own compilation. For example,
SPOT translates the formulaE(8) to an automaton with 258
states and 6,817 transitions in 0.88 seconds. SPIN analyzes
the resulting Promela model in 41.75 seconds. SPOT trans-
lates theE(9) formula to an automaton with 514 states and
20,195 transitions in 2.88 seconds, but SPIN segmentation
faults when trying to compile this model. SPOT and the SMV
tools are the only tools that consistently degrade gracefully;
they either timeout or terminate with a succinct, descriptive
message.

A more serious problem is that of incorrect results, i.e.,
reporting “satisfiable” for an unsatisfiable formula or vice
versa. Note, for example, in Figure 8, the size of the automa-
ton generated by TMP is independent ofn, which is an obvi-
ous error. The problem is particularly acute when the returned
automatonAϕ is empty (no state). On one hand, an empty
automaton accepts the empty language. On the other hand,
SPIN conjoins the Promela model for the never claim with
the model under verification, so an empty automaton, when
conjoined with a universal model, actually acts as a univer-
sal model. The tools are not consistent in their handling of
empty automata. Some, such as LTL2Buchi and SPOT, return
an explicit indication of an empty automaton, while Modella
and TMP just return an empty Promela model. We have taken
an empty automaton to mean “unsatisfiable.” In Figure 9 we
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show an analysis of correctness for random formulas. Here
we counted “correct” as any verdict, either “satisfiable” or
“unsatisfiable,” that matched the verdict found by the two
SMVs for the same formula as the two SMVs always agree.
We excluded data for any formulas that timed out or triggered
error messages. Many of the tools show degraded correctness
as the formulas scale in size.

Does Size Matter?The focus of almost all LTL translation
papers, starting with [26], has been on minimizing automata
size. It has already been noted that automata minimization
may not result in model checking performance improvement
[20] and specific attention has been given to minimizing the
size of the product with the model [40,24]. Our results show
that size, in terms of both number of automaton states and
transitions, is not a reliable indicator of satisfiability check-
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ing run time. Intuitively, the smaller the automaton, the easier
it is to check for nonemptiness. This simplistic view, how-
ever, ignores the effort required to minimize the automaton.
It is often the case that tools spend more time constructing the
formula automaton than constructing and analyzing the prod-
uct automaton. As an example, consider the performance of
the tools on counter formulas. We see in Figures 3 and 4 dra-
matic differences in the performance of the tools on such for-
mulas. In contrast, we see in Figures 10 and 11 that the tools
do not differ significantly in terms of the size of generated au-
tomata. (For reference, we have marked on these graphs the
minimum automaton size for ann-bit binary counter, which
is (2n)∗n+1 states. There are 2n numbers in the series ofn
bits each plus one additional initial state, which is neededto
assure the automaton does not accept the empty string.) Sim-
ilarly, Figure 8 shows little correlation between automatasize
and run time forE-class formulas.
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Consider also the performance of the tools on random for-
mulas. In Figure 12 we see the performance in terms of size of
generated automata. Performance in terms of run time is plot-
ted in Figure 14, where each tool was run until it timed out or
reported an error for more than 10% of the sampled formulas.
SPOT and LTL2BA consistently have the best performance
in terms of run time, but they are average performers in terms
of automata size. LTL2Buchi consistently produces signifi-
cantly more compact automata, in terms of both states and
transitions. It also incurs lower SPIN model-analysis times
than SPOT and LTL2BA. Yet LTL2Buchi spends so much
time generating the automata that it does not scale nearly as
well as SPOT and LTL2BA.

5.2 Symbolic Approaches Outperform Explicit Approaches

Across the various classes of formulas, the symbolic tools
outperformed the explicit tools, demonstrating faster perfor-
mance and increased scalability. (We measured only com-
bined automata-generation and model-analysis time for the
symbolic tools. The translation to automata is symbolic and
is very fast; it is linear in the size of the formula [11].) We
see this dominance with respect to counter formulas in Fig-
ures 3 and 4, for random formulas in Figures 6, 7, and 14,
and forE-class formulas in Figure 8. ForU-class formulas,
no explicit tools could handlen = 10, while the symbolic
SMV tools scale up ton = 20; see Figure 13. Recall that
U(n) = (. . .(p1 U p2) U . . .) U pn, so while there is not
a clear, canonical automaton for eachU-class formula, it is
clear that the automata size is exponential.

The only exception to the dominance of the symbolic
tools occurs with 3-variable linear counter formulas, where
SPOT outperforms all symbolic tools. We ran the tools on
many thousands of formulas and did not find a single case in
which any symbolic tool yielded an incorrect answer yet ev-
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ery explicit tool gave at least one incorrect answer during our
tests.

The dominance of the symbolic approach is consistent
with the findings in [37,38], which reported on the superi-
ority of a symbolic approach with respect to an explicit ap-
proach for satisfiability checking for the modal logicK. In
contrast, [41] compared explicit and symbolic translations of
LTL to automata in the context of symbolic model checking
and found that explicit translation performs better in thatcon-
text. Consequently, they advocate ahybridapproach, combin-
ing symbolic systems and explicit automata. Note, however,
that not only is the context in [41] different than here (model
checking rather than satisfiability checking), but also thefor-
mulas studied there are generally small and translation time
is negligible, in sharp contrast to the study we present here.
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We return to the topic of model checking in the concluding
discussion.

Figures 6, 7, and 14 reveal why the explicit tools gen-
erally perform poorly. We see in the figures that for most
explicit tools automata-generation times by far dominate
model-analysis times, which calls into question the focus in
the literature on minimizing automata size. Among the ex-
plicit tools, only SPOT and LTL2BA seem to have been de-
signed with execution speed in mind. Note that, other than
Modella, SPOT and LTL2BA are the only tools implemented
in C/C++.

6 Discussion

Too little attention has been given in the formal verification
literature to the issue of debugging specifications. We argued
here for the adoption of a basic sanity check: satisfiability
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checking for both the specification and the complemented
specification. We showed that LTL satisfiability checking can
be done via a reduction to checking universal models and
benchmarked a large array of tools with respect to satisfia-
bility checking of scalable LTL formulas.

We found that the existing literature on LTL-to-automata
translation provides little information on actual tool perfor-
mance. We showed that most LTL translation tools, with the
exception of SPOT, are research prototypes, which cannot be
considered industrial quality tools. The focus in the litera-
ture has been on minimizing automata size, rather than eval-
uating overall performance. Focusing on overall performance
reveals a large difference between LTL translation tools. In
particular, we showed that symbolic tools have a clear edge
over explicit tools with respect to LTL satisfiability checking.

While the focus of our study was on LTL satisfiability
checking, there are a couple of conclusions that apply to
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model checking in general. First, LTL translation tools need
to be fast and robust. In our judgment, this rules out imple-
mentations in languages such as Perl or Python and favors
C or C++ implementations. Furthermore, attention needs to
be given to graceful degradation. In our experience, tool er-
rors are invariably the result of graceless degradation dueto
poor memory management. Second, tool developers should
focus on overall performance instead of output size. It has
already been noted that automata minimization may not re-
sult in model checking performance improvement [20] and
specific attention has been given to minimizing the size of
the product with the model [40]. Still, no previous study of
LTL translation has focused on model checking performance,
leaving a glaring gap in our understanding of LTL model
checking.
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