

AllB Carbon Footprint Report 2021

Greenhouse Gas Emissions Resulting from AIIB Internal Operations

December 2022

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	bsi.			bsi
<section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header>	Opinion S	tateme	nt	Service (Service (Ser
<text><text><text><text><text><text><text></text></text></text></text></text></text></text>			rification	
<text><text><text><list-item><list-item><list-item><list-item><list-item><text></text></list-item></list-item></list-item></list-item></list-item></text></text></text>	This is to certify that:	Tianchen East Ro Chaoyang Distric Beijing 100033	bad	hci
Image: State in the state of the state in the	Holds certificate No:	CFV 7798	93	UDL'
<text><text><text><text><list-item><list-item><list-item><list-item><text></text></list-item></list-item></list-item></list-item></text></text></text></text>	Verification statement			
<text><text><text><text><list-item><list-item><list-item><list-item><text></text></list-item></list-item></list-item></list-item></text></text></text></text>	As a result of carrying out	verification procedure	s, it is the opinion of BSI with re	asonable assurance that:
Frank ZHANG, Managing Director, BSI (China) Original Registration Date: 2022-11-03 Latest Revision Date: 2022-11-03 Latest Revision Date: 2022-11-03 Imaging excellence a habit. Page: 1 of 1 The British Standards Institution is independent to the above named client and has no financial interest in the above named client. This Opinion Statement has been prepared for the above named client only for the purpose of verifying its statements relating to its carbon emissions more particularly described in the scope. It was not prepared for any other purpose. The British Standards Institution will not, in providing this Opinion Statement, accept or assume responsibility (legal or otherwise) or scopet liability for or in connection with any other purpose for which it may be used or to any person by whom the Opinion Statement may be read. This Opinion Statement is prepared on the basis of review by The British Standards Institution of information presented to it by the above named client. The review does not even does not even does not even above named client. The review does not even above named client the scope. The way not perpared for any other purpose of verifying its statements relating to its carbon emissions more particularly described in the scope. It was not prepared for any other purpose for which it may be used or to any person by whom the Opinion Statement may be read. This Opinion Statement is prepared on the basis of review by The British Standards Institution of information presented to it by the above named client. The review does not even above named client. The review do	 tonnes of CO₂e Equiva Direct GHG emission Indirect GHG emission No material misstatem 	lent, including: s: 141 tonnes CO ₂ e ns from imported energy ns from transportations from products use ns associated with the ns from other sources ents for the year 202	rgy: 6,362 tonnes CO2e n: 540 tonnes CO2e d by organization: 220 tonnes e use of products from the orgar s: Not quantified 1 Greenhouse Gas Emissions cale	nization: Not quantified culation were revealed.
Frank ZHANG, Managing Director, BSI (China) Original Registration Date: 2022-11-03 Latest Revision Date: 2022-11-03 Latest Revisin Statement has been interest re				
Frank ZHANG, Managing Director, BSI (China) Original Registration Date: 2022-11-03 Latest Revision Date: 2022-11-03 Latest Revisin Statement Revision			1-0-	
Frank ZHANG, Managing Director, BSI (China) Original Registration Date: 2022-11-03 Latest Revision Date: 2022-11-	Fer and on bobalf of DCT.		Elling	
making excellence a habit." Page: 1 of 1	For and on benair or BSI:	Fran	nk ZHANG, Managing Director, BS	SI (China)
Page: 1 of 1 The British Standards Institution is independent to the above named client and has no financial interest in the above named client. This Opinion Statement has been prepared for the above named client only for the purposes of verifying its statements relating to its carbon emissions more particularly described in the scope. It was not prepared for any other purpose. The British Standards institution will not, in providing this Opinion Statement, accept or assume responsibility (legal or otherwise) or accept liability for or in connection with any other purpose for which it may be used or to any person by whom the Opinion Statement may be read. This Opinion Statement is prepared on the basis of review by The British Standards Institution of information presented to it by the above named client. The review does not extend beyond such information and is solely based on it. In performing such review, The British Standards Institution has assumed that all such information is complete and	Original Registration Date:	2022-11-03	Latest Revision Dat	e: 2022-11-03
prepared for the above named client only for the purposes of verifying its statements relating to its carbon emissions more particularly described in the scope. It was not prepared for any other purpose. The British Standards institution will not, in providing this Opinion Statement, accept or assume responsibility (legal or otherwsiee) or accept liability for or in connection with any other purpose for which it may be used or to any person by whom the Opinion Statement may be read. This Opinion Statement is prepared on the basis of review by The British Standards Institution of information presented to it by the above named client. The review does not extend beyond such information and is solely based on it. In performing such review, The British Standards Institution has assumed that all such information is complete and			making e	
	prepared for the above named client only fi not prepared for any other purpose. The fir accept liability for or in connection with ar Statement is prepared on the basis of review beyond such information and is solely base	or the purposes of verifying its tish Standards institution will r ny other purpose for which it v by The British Standards Ins d on it. In performing such r	Istatements relating to its carbon emissions not, in providing this Opinion Statement, acce may be used or to any person by whom th futution of information presented to it by the a eview, The British Standards Institution has a	more particularly described in the scope. It was pt or assume responsibility (legal or otherwise) or ie Opinion Statement may be read. This Opinion above named client. The review does not extend assumed that all such information is complete and

CONTENTS

EXECUTIVE SUMMARY	ii
CHAPTER 1: GENERAL DETAILS, PURPOSE, AND POLICY	. 1
1.1 Introduction	. 1
1.2 Purpose of this Report	. 1
1.3 Introduction to AIIB	. 1
1.3.1 Institutional Carbon Management Policies and Strategies	. 2
1.3.2 Institutional Carbon Monitoring-Reporting-Verification	. 3
1.3.3 AIIB Carbon Consultative Group	. 3
1.4 Persons Responsible	.4
1.4.1 ICEM Governance	. 4
1.4.2 Persons Responsible	. 5
1.5 Audience and Dissemination Policy	. 5
1.6 Reporting Period and Frequency of Reporting	. 6
1.7 Reporting Standards, Approach and Verification	. 6
1.7.1 Compliance with ISO 14064-1:2018	. 6
1.7.2 Audit of GHG Inventory	. 6
1.8 Declaration Statement by AIIB	. 6
CHAPTER 2: PRINCIPLES FOLLOWED IN GHG REPORTING	.7
CHAPTER 3: GHG INVENTORY BOUNDARIES	. 8
3.1 Geographic Boundaries of the Inventory	. 8
3.2 Reporting Boundary	. 9
3.2.1 Emissions Categories and Classification	. 9
3.2.2 Significance and Materiality	10
3.2.3 Summary of Emissions Source Inclusions	14
3.2.4 Summary of Emissions Source Exclusions	15
CHAPTER 4: QUANTIFIED GHG INVENTORY OF EMISSIONS	17
4.1 Consolidated Statement of Greenhouse Gas Emissions	17
4.2 Methodologies for the Collection and Quantification of Data	17
4.2.1 Calculation of GHG emission	18
4.2.2 Change in Methodologies from Prior Year/Base Year	22
4.2.3 GWP Calculation and Source	23
4.2.4 Review, Internal Audit and Improvement	23
4.2.5 Removals and Reductions / Increases	24
CHAPTER 5: GHG INVENTORY QUALITY MANAGEMENT	25
CHAPTER 6: MITIGATION ACTIVITIES	27
APPENDICES	29
A. Business Travel (Flight)	29
B. Business Travel (Train)	32
C. Business Travel (Hotel)	32
D. Refrigerant	33
E. Fire Extinguisher	34
F. Commuting	35
G. Energy Consumption	37

H. Waste Management	39
I. Cloud Service	39
J. Septic Tank	39

LIST OF FIGURES AND TABLES

Figure 1: AIIB's ICEM Plan (2021-2025)	2
Figure 2: ICEM Governance Structure	
Figure 3: AIIB Headquarters Location	. 8
Figure 4: AIIB Headquarters	. 9

Table 1: Significance Score of Direct and Indirect Emissions Sources, 2021	. 11
Table 2: Summary of Included Sources of Emissions, 2021	14
Table 3: Summary of Excluded Sources of Emissions, 2021	15
Table 4: Summary of Expense Share of the Top 80% of Goods and Services Procured	by
AIIB, 2021	
Table 5: Summary of CO ₂ e Emissions, 2021	17
Table 6: GWP Value	
Table 7: Inventory Quality Score	25
Table 8: Inventory Quality Score - Activities	25
Table 9: Summary of Business Travel Emissions	29
Table 10: Business Travel CO2e Emissions, Emission Factors, and Sources, 2021	29
Table 11: Business Travel CO ₂ Emissions, Emission Factors, and Sources, 2021	30
Table 12: Business Travel CH ₄ Emissions, Emission Factors, and Sources, 2021	30
Table 13: Business Travel N ₂ O Emissions, Emission Factors, and Sources, 2021	31
Table 14: Hotel and Train CO2e Emissions, Emission Factors, and Sources, 2021	32
Table 15: Train CO ₂ e Emissions, Emission Factors, and Sources, 2021	32
Table 16: Hotel CO2e Emissions, Emission Factors, and Sources, 2021	32
Table 17: Refrigerant Consumption and Facilities, 2021	33
Table 18: Fire Extinguisher Quantity, Capacity and CO ₂ Consumption, 2021	
Table 19: Staff Commuting Survey Results and CO2e Emissions, 2021	35
Table 20: CO ₂ e Emission Factors of Different Commuting Methods, 2021	37
Table 21: Different Energy Sources and Consumption Rates, 2021	37
Table 22: Gasoline GHGs Emission Factors Calculation Using IPCC 2006 and Ch	
Calorific Value, 2021	37
Table 23: Diesel GHGs Emission Factors Calculation Using IPCC 2006 and China Calor	rific
Value, 2021	
Table 24: Natural Gas GHGs Emission Factors Calculation Using IPCC 2006 and Ch	ina
Calorific Value, 2021	38
Table 25: Hot Water, Heat, Electricity and Cold Water CO2e Emission Factors and Source	es,
2021	38
Table 26: Waste Generation Raw Data, 2021	39

ABBREVIATIONS

AIIB		Asian Infrastructure Investment Bank
AR6	_	IPCC Sixth Assessment Report
BSI	_	British Standards Institution
CH_4	_	methane
CO ₂	_	carbon dioxide
CO ₂ e	_	carbon dioxide equivalent
FAS	_	Facilities and Administration Services Department
GHG	_	greenhouse gas
GWP	_	global warming potentials
HFCs		hydrofluorocarbons
ICEM	—	Institutional Carbon Emission Management
MDB	_	multilateral development bank
MRV	_	Monitoring-Reporting-Verification
NF ₃	_	nitrogen trifluoride
N ₂ O	_	nitrous oxide
PFCs	—	perfluorocarbons
SF_6	—	sulfur hexafluoride

EXECUTIVE SUMMARY

The Asian Infrastructure Investment Bank (AIIB or the Bank) aims to lead by example in managing its carbon emissions and disclosing the impact of its internal operations. It analyzed carbon emission impacts associated with its internal operations for the first time in September 2020 (for 2017-2019 emissions) and then again in September 2021 (for 2020 emissions), tracking the carbon footprint from scopes linked with its internal operations. Starting from this report of 2021 activities, AIIB will continuously monitor and verify its carbon emissions on an annual basis and disclose this information to the public.

This report provides a comprehensive analysis of the carbon footprint generated by the internal operations of the Bank's Headquarters in the Chaoyang area of Beijing in 2021. Annual data is prepared for the 12-month period from Jan. 1, 2021 to Dec. 31, 2021. It identifies the sources of greenhouse gases (GHG) and groups them in accordance with ISO 14064-1:2018, which lists six categories of emissions, and which differs somewhat from an earlier categorization that was in line with the Greenhouse Gas Protocol's Scopes 1 through 3.

In 2021, emissions from AIIB's internal operations totaled 7,263 metric tons of carbon dioxide equivalent (CO₂e); 71 percent of that total stems from office electricity consumption and additional 15 percent stems from office heating. In 2021, emissions from business travel accounted for only 7 percent; the sudden and almost complete shutdown of passenger air travel from 2020 until late-2022 due to COVID-19 had a substantial impact on the Bank's carbon footprint. The reduction of business travel, especially international business travel, contributed to the rapid decrease in the Bank's internal carbon emissions in 2021. As China relaxed its COVID policies since December 2022, business travel—especially international travel—is expected to restart in the coming months and emissions from that source will likely again increase in 2023/2024.

This report describes the methodology for selecting and collecting data and computing carbon emissions for all relevant emission categories, using internal and external documentation, interviews from key AIIB personnel and service suppliers, and source data. To ensure the accuracy of the calculations and the findings, GHG data is managed in strict accordance with the ISO14064-1:2018 standard. This document prioritizes open data, the data processing to provide results, and the enhancement of the data's usability and annual maintenance.

This report does not address AIIB's lending or technical support activities for its clients.

CHAPTER 1: GENERAL DETAILS, PURPOSE, AND POLICY

1.1 Introduction

This report includes the Asian Infrastructure Investment Bank's (AIIB or the Bank) complete GHG emissions inventory for 2021. AIIB's reporting procedures and emission categorizations adhere to international regulations and standards. This report conforms to the standards of ISO 14064-1:2018. The information given adheres to the standards established in Part 9.3.1 and (when applicable) Part 9.3.2 of said ISO.

1.2 Purpose of this Report

AIIB aims to (1) follow the best practices of Multilateral Development Banks (MDBs) regarding consistency, comparability, and completeness in the accounting of GHG emissions and (2) align its internal activities with a pathway toward low GHG emissions and with the objectives of the Paris Agreement.

This report:

- relates to AIIB emissions from internal activities. AIIB's portfolio emissions are not included in this report.
- reflects AIIB's initial attempt to report its GHG emissions in compliance with the standards of ISO 14064-1: 2018, as well as its attempts to better understand and eventually enhance its Monitoring-Reporting-Verification (MRV) performance concerning emissions.
- has been prepared in line with the standards of ISO 14064-1: 2018 by the Facilities and Administration Service Department (FAS) of AIIB.
- attempts to use primary data whenever possible, particularly for all major emission sources. In the absence of primary data, a consistent and conservative calculation method is utilized.
- does not include confidential information.

1.3 Introduction to AIIB

By investing in infrastructure and other productive sectors, AIIB aims to encourage sustainable economic development, create wealth, and strengthen infrastructural connections in Asia. Working with other international and bilateral development institutions, AIIB is also tasked with fostering regional cooperation and partnerships to address development concerns. AIIB adapts and innovates continuously to provide its clients with personalized investment solutions that overcome obstacles. They rely on AIIB's resiliency to assist them in achieving their goals even during the most difficult times.

For further information, please visit <u>www.AllB.org</u>.

1.3.1 Institutional Carbon Management Policies and Strategies

AIIB announced its first Institutional Carbon Emission Management (ICEM) Plan (the Plan) in January 2022 to assist the Bank in achieving carbon neutrality by 2025 and aligning its internal activities with the Paris Alignment. The Plan presents a five-year overview of AIIB's institutional greenhouse gas management strategy (2021-2025). In addition, it identifies steps for the Bank to monitor, verify, and report its institutional carbon footprint, as well as the high-level strategies the Bank might employ to cut and decarbonize institutional energy use.

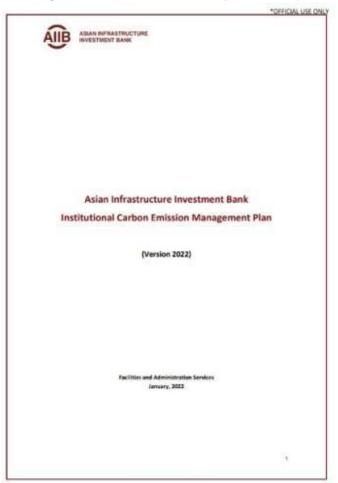


Figure 1: AIIB's ICEM Plan (2021-2025)

The Plan also sets four decarbonization targets for 2021-2025 as part of AIIB's efforts to curb climate change:

- AIIB will measure and manage its carbon footprint, continuously enhancing the data quality of its institutional carbon footprint wherever possible. AIIB will continue to hone its methods to enhance coverage and transparency and to prepare for disclosure.
- AIIB will publish its institutional GHG emissions resulting from business travel and facilities by the end of 2022.

- In 2023/2024, AIIB will begin purchasing renewable electricity to cut indirect emissions, eventually covering 100 percent of the electrical needs of its offices.
- Prior to 2025, AIIB will offset its remaining greenhouse gas emissions from internal activities.

1.3.2 Institutional Carbon Monitoring-Reporting-Verification

The ICEM Plan established the MRV system for the internal carbon footprint of AIIB. AIIB analyzed carbon emission impacts associated with its internal operations for the first time in September 2020 (for 2017-2019 emissions) and then again in September 2021 (for 2020 emissions), tracking the carbon footprint through scopes linked with its internal operations. Starting with this 2021 report, AIIB will continuously monitor and verify its emissions on an annual basis and disclose this information to the public.

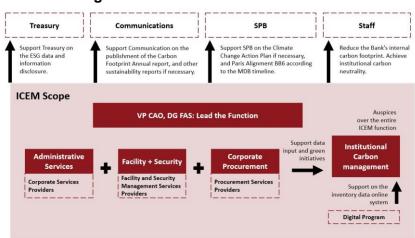
This report provides a comprehensive analysis of the carbon footprint generated by AIIB's internal operations at its Permanent Headquarters in the Chaoyang area of Beijing, China. It was compiled using internal and external documentation, interviews from key AIIB personnel and service suppliers, and source data and data-gathering systems. It describes the methodology for selecting and collecting data and computing carbon emissions for all relevant emission categories. It prioritizes the data source's openness, the data processing to provide results, and the enhancement of its usability and annual maintenance. Notably, this report does not address AIIB's lending or technical support activities for its clients.

Pursuant to AIIB's expansion of its global presence, in July 2022, the Board of Directors approved the establishment of an Interim Operational Hub outside China which is in the process of being set up. The Bank also maintains a backup office in Tianjin, China but it is not currently included due to its modest size and existing challenges to acquiring consistent statistics. Nonetheless, AIIB will undertake additional efforts in the coming reporting years to capture the environmental impact of its subsidiary office(s), and the release will be determined by future capacity.

1.3.3 AIIB Carbon Consultative Group

Utilizing its current knowledge and experience, AIIB established the 'Carbon Consultative Group' in 2021 to address issues connected to resource usage efficiency, waste reduction, and pollution prevention. This committee's primary objective is to (1) identify ways to reduce the Bank's nonportfolio carbon footprint, (2) educate, inspire, and motivate employees to change their behavior both in and out of the workplace, and (3) ultimately empower all Bank employees to live greener lives in a greener working environment. The committee fully uses the Bank's current skills and experience. It addresses resource conservation, waste reduction, and pollution control issues. AIIB has carefully evaluated and adopted key proposals and solutions from the Committee, such as substituting durable and recyclable materials for plastic containers in the canteen and café. Six core members include:

- Xing Zhang, Representative from Strategy, Policy and Budget Department
- Calvin Quek, Representative from Operational Services Department


- Henry Bell, Representative from Corporate Secretary
- Allen Shao, Representative from Information Technology Department
- Zhan Wang, Representative from Facilities and Administration Services Department
- Yuan Lin, Representative from Facilities and Administration Services Department

1.4 Persons Responsible

1.4.1 ICEM Governance

ICEM governance is explained by the following:

- AIIB institutional carbon emissions are the subject of the analyses (scope 1, 2,¹ and part of 3², including travel, commuting, waste management, water consumption, etc.)
- Staff responsible for ICEM:
 - Vice President and Chief Administration Officer (VPCAO) or Director General, FAS: Leads the function.
 - o Institutional Carbon Management Specialist: Supports the entire function.
 - Facility Officer(s) and facility management service providers: responsible for energy and electrical statistics, building energy efficiency measures, etc.
 - Administrative Officer(s) and corporate services providers: responsible for information regarding waste management, water use, vehicle operation, staff commute data, and other green activities.
 - Procurement Officer(s): responsible for procurement data, green procurement programs, etc.

Figure 2: ICEM Governance Structure

¹ United States Environmental Protection Agency Scope 1 and Scope 2 Inventory Guidance: <u>https://www.epa.gov/climateleadership/scope-1-and-scope-2-inventory-guidance</u>

² United States Environmental Protection Agency Scope 3 Inventory Guidance: <u>https://www.epa.gov/climateleadership/scope-3-inventory-guidance</u>

Staff training: ICEM provides regular training to increase awareness of the importance of low carbon emissions and environmental preservation. Specific trainings have been provided by third-party verifiers to data managers (see 1.4.2) for data collecting and maintaining rules.

Document keeping: ICEM documents (UL360) are kept in an electronic format and maintained using a third-party inventory management system that is accessible to both internal and external parties. ICEM documents and management system are examined annually as part of internal and external auditing/verification.

1.4.2 Persons Responsible

AIIB prepared the AIIB Carbon Footprint Report 2021 with significant collaboration among departments of the Bank and service providers.

Overall responsibility lies with

- Dan Yang, Director General of FAS
- Zhan Wang, Manager of the Administrative and Facilities Division

Responsibility for the preparation of the GHG inventory and report:

• Yuan Lin, Senior Institutional Carbon Management Specialist

Data managers:

- Zhang Ying, Administration Officer
- Yechao Zhu, Administration Officer
- Lihai Yin, Senior Facility Management Officer
- Yang Zhang, Head of Security and Emergency
- Li Lv, Senior Corporate Procurement Specialist
- Wanning Zhong, Corporate Procurement Assistant
- Chong An, Digital Program Specialist

1.5 Audience and Dissemination Policy

This report is intended for all AIIB stakeholders interested in AIIB's GHG emissions inventory and the accompanying reporting format, notations, and explanations. It is made available to the public after appropriate third-party verification. In addition, the report communicates:

- AIIB's institutional GHG performance and
- AIIB's institutional resolve to achieve GHG performance improvements.

The intended users of this document are:

- Stakeholders and peers,
- Intergovernmental entities, and
- The general public.

1.6 Reporting Period and Frequency of Reporting

This GHG report covers the calendar year from Jan. 1, 2021 to Dec. 31, 2021. GHG reports are produced annually.

1.7 Reporting Standards, Approach and Verification

1.7.1 Compliance with ISO 14064-1:2018

The GHG report for the year ending on Dec. 31, 2021 has been prepared in accordance with ISO 14064-1:2018.

1.7.2 Audit of GHG Inventory

This report has been <u>verified to reasonable assurance by the British Standards Institution</u> (BSI).

1.8 Declaration Statement by AIIB

AIIB, in its capacity as a "Reporting Organization" for the purposes of this report, therefore, certifies that the inventorying and reporting of GHG emissions have been performed in accordance with ISO 14064-1: 2018. (Specification with Guidance at the Organization Level for Quantification and Reporting of Green House Gas Emissions and Removals).

This report has been verified by a third party, BSI, to a "limited degree of assurance" and that a "Statement of Assurance" from said third party has been included in the report.

AIIB initiated data collection and reporting in a structured format in accordance with ISO 14064-1:2018 requirements.

CHAPTER 2: PRINCIPLES FOLLOWED IN GHG REPORTING

In preparing this report, AIIB followed the following five principles set forth under ISO 14064-1:2018 to ensure that GHG-related information is true and accounted fairly:

- Relevance,
- Completeness,
- Consistency,
- Accuracy, and
- Transparency

Relevant GHG sources and sinks at the Bank were identified and quantified for the purpose of GHG reporting based on the methodology described in the respective chapters of this report. In the event of uncertainty or a lack of data, reasonable assumptions were made based on information accessible on various data platforms to limit the uncertainty and risk associated with GHG accounting.

AIIB maintains the records used to collect data for the quantification of greenhouse gas emissions. Collecting sufficient and relevant GHG-related information allows the intended users to make decisions with an acceptable degree of confidence and enable the formulation of a roadmap to reduce internal GHG emissions. This is AIIB's first official attempt to verify and publicly disclose its GHG performance for transparency under the ISO 14064 requirements and to allow for future comparison and benchmarking.

CHAPTER 3: GHG INVENTORY BOUNDARIES

3.1 Geographic Boundaries of the Inventory

AIIB calculates its carbon footprint utilizing the operational control approach. This method considers any emissions over all areas where AIIB has direct physical or operational control, but not necessarily financial control. As such, it encompasses the Bank's Headquarters in the Chaoyang area of Beijing, where its office facilities and administrative functions are located. This report currently does not include any of AIIB's external office(s) due to their small size and the difficulty in gathering reliable data; nevertheless, in the following reporting years, AIIB will make additional efforts to capture the environmental impact of its subsidiary offices worldwide.

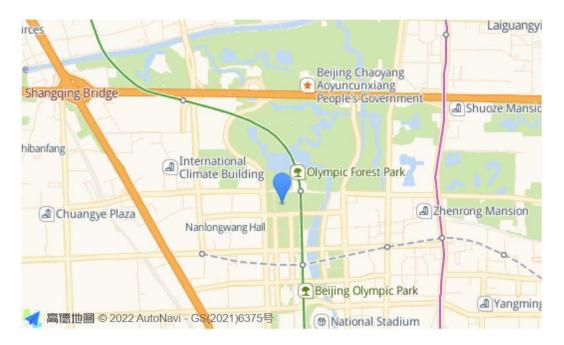


Figure 3: AIIB Headquarters Location

Address: AIIB, Tower A, Asia Financial Center, No.1 Tianchen East Road, Chaoyang District, Beijing 100101

Figure 4: AIIB Headquarters

3.2 Reporting Boundary

3.2.1 Emissions Categories and Classification

This report is directed by FAS of AIIB. Reporting boundaries have been established within the AIIB Headquarters, including emissions from facilities and office use in Headquarters, emissions from corporate vehicles in the Headquarters, Bank staff commuting and travel, and emissions from the use of certain products. The boundary does not encompass AIIB investment projects or their associated upstream and downstream emissions.

The sources of GHG emissions have been identified and categorized in accordance with ISO 14064-1:2018. This system classifies emissions into six categories, which differs slightly from Scopes 1 through 3 of the Greenhouse Gas Protocol.

- Category 1 (scope 1): Direct GHG emissions and removals
- Category 2 (scope 2): Indirect GHG emissions from imported energy
- Category 3 (scope 3): Indirect GHG emissions from transportation
- Category 4 (scope 3): Indirect GHG emissions from products used by the organization
- Category 5 (scope 3): Indirect GHG emissions associated with the use of products from the organization
- Category 6 (scope 3): Indirect GHG emissions from other sources

According to the requirements of ISO 14064-1:2018, GHGs include carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF₆), and nitrogen trifluoride (NF₃).

3.2.2 Significance and Materiality

Factors for consideration in assessing significance and materiality include:

- Difficulty in obtaining data
- AIIB's influence on the emission source
- Validity in available quantification and estimation approaches
- Risks/opportunities
- Staff engagement possibilities

AIIB selected inclusions and exclusions in strict accordance with the ISO14064-1:2018 standard. Table 1 shows the significance scores of all identified emission sources within the geographic boundaries of the inventory. All direct and indirect emission sources with significant and medium impact are reported in this document. Those with insignificant impact are not included in this report but are elaborated on in Chapter 3.2.4.

		Emission	Quantitative	Emission		Risk	(Sectoral		Staff		
	Subcategory	Sources	Method	Factor Availability	Influence	Possibility	Impact	Opportunity	unity Guidance Availability	Outsourcing	Engagement	Total	Summary
				Category 2	1: Direct Gre	enhouse Gas	(GHG) Er	nissions and R	emovals				
1.1	Stationary Combustion	Diesel for Emergency Generator	5	5	1	1	1	2	3	1	1	20	Significant
		Natural Gas	5	5	1	1	1	2	3	1	1	20	Significant
1.2	Mobile Combustion	Gasoline for Corporate Fleet	5	5	1	1	1	2	3	1	1	20	Significant
1.3	Industrial Process					Not Iden	tified withir	n the Reporting	Scope				
		Release of Refrigerant	5	5	1	1	1	1	3	1	1	19	Medium
1.4	Fugitive	Carbon Dioxide Fire Extinguisher	5	5	1	1	1	1	3	1	1	19	Medium
		Septic-tank	5	5	1	1	1	1	3	1	1	19	Medium
1.5	Land Use, Land Use Change and Forestry					Not Iden	tified withi	n the Reporting	Scope				
				Categ	jory 2: Indire	ect GHG Emis	sions fror	n Imported Ene	ergy				
2.1	Indirect GHG Emissions from Imported Electricity	Electricity from Grid	5	5	3	1	1	2	3	1	1	22	Significant
2.2	Indirect Emissions from	Hot water	5	5	1	1	1	2	3	1	1	20	Significant
	Imported Energy	Heating	5	5	3	1	1	2	3	1	1	22	Significant
				Cate	gory 3: Indir	ect GHG Emi	ssions fro	m Transportati	ion				

Table 1: Significance Score of Direct and Indirect Emissions Sources, 2021

PUBLIC

3.1	Emissions from Upstream Transport and Distribution for Goods	Not Identified within the Reporting Scope											
3.2	Emissions from Downstream Transport and Distribution for Goods					Not iden	tified withir	n the Reporting S	Scope				
3.3	Emissions from Employee Commuting	Staff Commuting	1	2	2	1	1	1	1	1	3	13	Medium
3.4	Emissions from Client and Visitor Transport	Visitor Transport	1	2	1	1	1	1	1	1	1	10	Insignificant
		Business Travel- Flight	5	5	2	1	1	1	1	1	1	18	Medium
3.5	Business Travel	Business Travel-Train	5	5	2	1	1	1	1	1	1	18	Medium
3.5	Business Havei	Business Travel-Hotel	5	5	2	1	1	1	1	1	1	18	Medium
		Business Travel-Local Transport	1	5	1	1	1	1	1	1	1	13	Insignificant
				Category 4: In	direct GHG E	Emissions fro	m Produc	ts Used by the	Organization				
	- · · · ·	Cloud Service	5	5	1	1	1	1	1	1	1	17	Medium
	Emissions from Purchased	Cold Water	5	5	1	1	1	2	1	1	1	18	Medium
4.1	Goods	Other Purchased Goods	2	1	1	1	1	2	1	1		10	Insignificant
4.2	Emissions from Capital Goods	Not Identified within the Reporting Scope											
4.3	Emissions from Disposal of Solid and Liquid	Waste	2	5	2	2	2	1	1	1	3	19	Medium

4.4	Emissions from	Not Identified within the Reporting Scope							
4.4	Use of Assets	Not identified within the Reporting Scope							
	Category 5: Indirect GHG Emissions Associated with the Use of Products from the Organization								
	Emissions or								
5.1	Removals from	Not Identified within the Departing Second							
5.1	the Use Stage of	Not Identified within the Reporting Scope							
	the Product								
	Emissions from								
5.2	Downstream	Not Identified within the Reporting Scope							
	Leased Assets								
	Emissions from								
5.3	End-of-life Stage	Not Identified within the Reporting Scope							
	of the Product								
5.4	Emissions from	Not Identified within the Reporting Scope							
5.4	Investments	Not identified within the Reporting Scope							
	Category 6: Indirect GHG Emissions from Other Sources								
	Indirect GHG								
6	Emissions from	Not Identified within the Reporting Scope							
	Other Sources								

3.2.3 Summary of Emissions Source Inclusions

Establishing operational limits for AIIB GHG emissions is mostly influenced by fossil fuel usage in purchased electricity and energy consumption, refrigerant gas consumption in chillers and air conditioning units at the headquarters, staff business travel, etc.

Emission Sources	Category	Data Source	Methodology
Diesel for Emergency Generator		Fuel Consumption statistics	Fuel use provided in liters
Gasoline for Corporate Fleet		Fuel consumption statistics	Fuel use provided in liters
Natural Gas		Fuel billing	Fuel use provided in m ³
Release of Refrigerant	Category 1	Refrigerant billing	Fuel use provided in kg
Carbon Dioxide Fire Extinguisher		Extinguisher quality and capacity	CO ₂ refilled in kg
Septic-tank		Total man-days	Assumed by BOD conversion factor, tank depth, etc
Heating		Heating billing	Billing by GJ
Hot Water	Category 2	Hot water billing	Billing by GJ
Electricity from Grid		Electricity billing	Billing by kWh
Staff Commuting		Survey	Staff provided information on their commuting methods
Business Travel – Flight	Category 3	Provider reports on km	Assumed by the emission factor
Business Travel – Train		Provider reports on km	Assumed by the emission factor
Business Travel – Hotel		Provider reports on total room nights	Assumed by the emission factor
Procurement – Cloud Service		Provider reports on emissions	Direct emission reports
Waste Disposal	Category 4	Provider reports on tonnes	Assumed by tonnes of different types of waste
Procurement – Cold Water		Water billing	Billing by m ³

Table 2: Summary of Included Sources of Emissions, 2021

Regarding Categories 3 and 4, AIIB chose staff commuting, business travel (flight, train, hotel), cold water and cloud service procurement, and waste disposal based on their relevance, applicability to AIIB, and availability of raw data.

Emissions derived from biomass have not been identified within the organization boundary and the reporting boundary.

3.2.4 Summary of Emissions Source Exclusions

This report exclusively evaluated emission sources from its internal operations. AIIB's lending or technical support activities for its clients are not addressed by this report. In addition, because this is the first attempt to verify and publicly disclose GHG performance, the difficulty of acquiring data and quantification methods is one of the most influential elements in determining the reporting limit. AIIB's capacity for data management will be continuously enhanced.

The following sources (see Table 3) of emissions have been discovered but are not included in the emissions inventory. The stakeholders and context of the inventory do not deem these sources substantial or material, nor is it possible or viable to calculate them at this time. These emission sources have been identified as insignificant and have been excluded from this report according to Table 1 on the Significance Score of the Direct and Indirect Emission Sources.

There are no Category 6 emissions identified as falling within the reporting boundary.

Emission Sources	Category	Data Source	Methodology
Business Travel – local	Category 3	Note 1	Insignificant source of
transport, e.g., taxi	Calegory 3		emissions, according to Table 5
Emissions from client and	Category 3	Note 2	Insignificant source of
visitor transport	Calegory 5	NOLE 2	emissions, according to Table 5
Procurement – other goods	Category 4	Note 3	Insignificant source of
and services		NOLE 3	emissions, according to Table 5
Emissions from Investment	Category 5		Insignificant source of
	Calegory 5		emissions, according to Table 5

Table 3: Summary of Excluded Sources of Emissions, 2021

Notes:

 AIIB's business travel expense reimbursement system, SAP Concur, can only record reimbursed cab expenditures without distance information. AIIB expects this part of emissions to be below 1 percent of the total emissions. AIIB is not calculating the price of a local cab for this report due to the wide pricing disparity between regions.

- 2. Visitors to the AIIB Headquarters are responsible for their own transportation reimbursement. AIIB expects this part of emissions to be below 1 percent of the total emissions.
- In 2021, 221 products and services in 9 subcategories accounted for almost 80 percent of all expenditures (Table 4). Most of these are consultancy services and IT services. This report only examines the emissions associated with cold water consumption and cloud services acquisition.

Table 4: Summary of Expense Share of the Top 80% of Goods and Services Procured
by AIIB, 2021

Category	Sub-Category	Expense Share
General Service	Property Management	19.55%
General Service	IT-Implementation	13.31%
General Service	IT Services	12.72%
General Service	IT-Subscription	7.80%
Consulting Firm	Consultancy Services	7.73%
General Service	Outsourced Services	7.40%
Goods	Publications and Subscriptions	5.57%
General Service	Staff Benefits Program-Medical Insurance	4.20%
Consulting Firm	Consulting Services	2.74%
	Total	81.01%

CHAPTER 4: QUANTIFIED GHG INVENTORY OF EMISSIONS

4.1 Consolidated Statement of Greenhouse Gas Emissions

Table 5: Summary of CO₂e Emissions, 2021

Category 1	CO ₂ e (tonne)		
Emergency Generators	13.48		
Kitchen Cookers	43.85		
Official Vehicles	19.24		
Chillers, etc.	0		
Carbon Dioxide Fire Extinguishers	0		
Septic-tanks	64.28		
Total	140.86		
Category 2	CO₂e (tonne)		
Municipal Heating	1116.48		
Municipal Hot Water Supply	72.52		
Electricity for Office Buildings	5173.24		
Total	6362.24		
Category 3	CO₂e (tonne)		
Staff Commuting (car, tram, metro, etc.)	4.88		
Staff Business Travel (High-Speed Rail)	7.29		
Staff Business Travel (by air)	490.00		
Staff Business Accommodation	37.87		
Total	540.04		
Category 4	CO₂e (tonne)		
Cloud Service	22.05		
Waste Disposal (food waste, other waste)	191.57		
Domestic Water Supply	6.17		
Total	219.79		
Total Emission Category 1-6	7262.92		

This document does not provide any recommendations or requirements for removal.

4.2 Methodologies for the Collection and Quantification of Data

Although the majority of the data sources are part of FAS's everyday operations, the format and level of detail of the original data vary markedly because AIIB has only just begun to collect fundamental data on carbon emissions from various service providers and sources. In accordance with the ISO 14064-1:2018 standard, the emissions summary consolidates and standardizes emissions data and provides a full explanation of working and estimation.

The overview of emissions sources and their respective data sources is provided in Section 3.2.3. The best available data and computation methods are utilized when estimation is necessary.

The combustion process is defined by the rapid oxidation of substances (i.e., fuels) with the release of thermal energy (i.e. heat). Category 1 activities emit direct GHG such as CO_2 , CH_4 and N_2O as well as ambient air pollutions. Emission of these gases from Category 1 sources depend upon fuel characteristics, size along with combustion technology. Emissions also vary with operation and maintenance practices. This guidance only addresses direct emissions of the following types of GHG, i.e., CO_2 , CH_4 and N_2O .

This report tries to use regional emission factors instead of international emission factors. It uses the most relevant factor indicated by:

- China Greenhouse Gas Emission Coefficient Library for Product Life Cycle
- GB/T 2589-2020
- Guidelines for the Preparation of Provincial Greenhouse Gas Inventories
- Climate Letter [2022] No. 111, General Office of the Ministry of Ecology and Environment
- Department for Business, Energy & Industrial Strategy (BEIS) 2021
- IPCC Sixth Assessment Report Global Warming Potentials
- 2006 IPCC Guidelines for National Greenhouse Gas Inventories

4.2.1 Calculation of GHG emission

A fuel-based approach is applied to calculate GHG emissions. The approach typically requires the collection of activity data, in the form of the type and quantity of fuel consumed for combustion purposes. To calculate emissions using fuel type, fuel consumption and emission factor data, the following equations can be applied:

Emission from Diesel Consumption:

Emission (tCO₂e) = consumption (L) * density (kg/L) * emission factor (t/t) /1000 = 5165 (L) * 0.84 (kg/L) * 3.11 (t/t) /1000 = 13.49 (tCO₂e)

For full GHG gases emission factors, sources, and emissions, please see Section G of the Appendix.

Emission from Petrol Consumption:

Emission (tCO₂e) = consumption (L) * density (kg/L) * emission factor (t/t) /1000 = 8454.24 (L) * 0.747 (kg/L) * 3.05 (t/t) /1000 = 19.26 (tCO₂e)

For full GHG gases emission factors, sources, and emissions, please see Section G of the Appendix.

Emission from Natural Gas Consumption:

Emission (tCO₂e) = consumption (L) * density (kg/L) * emission factor (t/t) /1000 = 23872 (m³) * 0.775 (kg/m³) / 1000*2.37 (t/m³) = 43.85 (tCO₂e)

For full GHG gases emission factors, sources, and emissions, please see Section G of the Appendix.

Emission from Fire Extinguishers:

Emission (t CO_2e) = Quantity of CO_2 gas refilled in 2021 (kg) /1000 = 0 (t CO_2e)

For fire extinguisher information, please see Section G of the Appendix.

Emission from Refrigerant Make Up for Air Conditioners and Refrigerators:

Emission (tCO₂e) = Quantity of refrigerant refilled in 2021 (kg) * GWP /1000 = 0 (tCO₂e)

R104a, R404a and R410a, which are commonly used in refrigeration and air conditioning sectors, are GHGs with Global Warming Potentials (GWP) much higher than that of CO₂. Therefore, the uncontrolled release of these gases into the atmosphere may have significant potential impact on climate change. However, because of two facilities without refrigerant charge information (see Section G of the Appendix), the uncontrolled release of the gases to calculate the emissions cannot be used; instead, the refrigerant refilling quantity was used. For GWP, please see Chapter 4.2.4.

Emission from the Septic Tank:

Emission (tCH₄) = total people * total day * BOD generation (g/per capita per day) BOD transfer factor (tCH₄/tBOD) * coefficient of correction emission (for 4.4m tank) /1000 /1000 = 600 (people) * 200 (day) * 40 (g/per capita per day) * 0.6 * 0.8 /1000 /1000 = 2.30 (tCH₄)

Emission (tCO₂e) = Emission (tCH₄) * CH₄ GWP (tCO₂e/tCH₄) = 2.30 (tCH₄) * 27.9 (tCO₂e/tCH₄) = 64.28 (tCO₂e)

Note: depth of septic tank: 4.4m

For septic tank information and factors, please see Section J of the Appendix.

Emission from Electricity Consumption:

 $\begin{array}{l} \mbox{Emission (tCO_2e) = consumption (kwh) * emission factor (kg/kwh) \\ /1000 \\ \mbox{= 8904025.57 (kwh) * 0.581 (kg/kWh) / 1000 \\ \mbox{= 5173.24 (tCO_2e) \\ \mbox{Emission (tCO_2) = Emission (tCO_2e) \\ \mbox{= 5173.24 (tCO_2) } \end{array}$

Emissions from Heat and Hot Water Consumption

- Hot Water
 Emission (tCO₂e) = consumption (GJ) * emission factor (kg/GJ) /1000
 = 1299 (GJ) * 55.829 (kg/GJ) /1000
 = 72.52 (tCO₂e)
- Heat Emission (tCO₂e) = consumption (GJ) * emission factor (kg/GJ) /1000 = 19998.13 (GJ) * 55.829 (kg/GJ) /1000 = 1116.48 (tCO₂e)

Note: This report notes how the generation of heat and hot water from natural gas can produce both CO_2 and CH_4 . However, the paper <u>Carbon Dioxide Emission Factors of Nature Gas Boilers and Its Uncertainty in Beijing</u> only provides CO_2e emission factors for heat and hot water and there is no other source providing emission factors for all of the GHG gases. Therefore, this report only calculates CO_2e emissions for these two emission sources.

For emission factors and sources, please see Section G of the Appendix.

Emissions from cold water consumption

Emission (tCO₂e) = consumption (m³) * emission factor (kg/m³) /1000) = 29398 (m³) * 0.21 (kg/m³) / 1000 = 6.17 (tCO₂e) Emission (tCO₂) = Emission (tCO₂e) = 6.17 (tCO₂)

For emission factor and sources, please see Section G of the Appendix.

Emission from Business Travel – Flight and Train

• Flight – Short haul Business class

Emission (tCO₂e) = distance (km) * emission factor (kg/km) /1000 = 170224.84 (km) * 0.12 (kg/km) / 1000 = 20.39 (tCO₂e)

For full GHG gases factors, sources, and emissions, please see Section A of the Appendix.

 Train (high-speed railway) Emission (tCO₂e) = distance (km) * emission factor (kg/km) /1000 = 280487.24 (km) * 0.026 (kg/km) / 1000 = 7.29 (tCO₂e) Emission (tCO₂) = Emission (tCO₂e) = 7.29 (tCO₂)

For emission factor and source, please see Section B of the Appendix.

Emission from Business Travel – Hotel

Emission (tCO₂e) = total night * emission factor (kg/per capita per night) /1000 = 860 (nights) * 44.03 (kg/per capita per night) /1000 = 37.87 (tCO₂e) Emission (tCO₂) = Emission (tCO₂e) = 37.87 (tCO₂)

For emission factor and source, please see Section C of the Appendix.

Emission from Waste

Emission (tCO₂e) = mass of waste * emission factor (kg/t) /1000 = (61.92 + 54.18) (t) * 1.65 (kg/t) / 1000 = 0.19 (t CO₂e)

Note: This report notes that waste treatment can produce both CO_2 and CH_4 . However, <u>China Greenhouse Gas Emission Coefficient Library for Product Life Cycle</u> only provides CO_2e emission factors for waste incineration and cogeneration. There is no other source providing emission factors for all of the GHG gases. Therefore, this report only calculates CO_2e emissions for waste treatment (incineration and cogeneration).

For emission factor and source, please see Section H of the Appendix.

Emission from Commuting

Emission (tCO₂e) = \sum commuting method * emission factor of this method (kg/km) /1000

AIIB designed a five-question survey to understand staff commuting methods. Fifteen percent of AIIB staff participated in the survey, with a total of 82 responses. AIIB staff commuting methods include walking; cycling; e-biking; and riding a taxi, a motor, the bus, private cars, and the subway. See Section F of the Appendix for the full survey results, emission factors for each of the commuting methods and sources, and detailed calculated carbon emission.

Note: This report understands that commuting by bus, private car, subway, motor and taxi can produce CO_2 , CH_4 and N_2O . However, <u>China Greenhouse Gas Emission</u> <u>Coefficient Library for Product Life Cycle</u> only provides CO_2e emission factors for each of the commuting methods and there is no other source providing emission factors for all of the GHG gases. Therefore, this report only calculates CO_2e emissions for staff commuting.

Emission from Cloud Service

There are two cloud service providers, Microsoft Azure and AWS. Both can provide AIIB's carbon footprint by using cloud service from them.

Emission (tCO₂e) = Microsoft Azure CO₂e + AWS CO₂e = 11.35 (tCO₂e) + 10.7 (tCO₂e) = 22.05 (tCO₂e)

For more information, please see Section I of the Appendix.

4.2.2 Change in Methodologies from Prior Year/Base Year

This report, which represents the calendar year 2021, is the first verified GHG report produced by AIIB; it serves as the baseline for future evaluations. There is no change to the base year calculation in this reporting period.

2021 is the first full operational year following the June 2020 relocation of AIIB's offices to its new, permanent location. AIIB discovered that conditions and emissions vary significantly between its former and current Headquarters. Therefore, 2021 is temporarily regarded as the emission base year, serving as a benchmark for future emission comparisons and preserving data set integrity.

However, AIIB understands that the sudden and almost complete shutdown of passenger air travel from 2020 due to COVID-19 had a substantial impact on the Bank's carbon footprint, therefore 2021 would not be a typical year as a benchmark in the long run. As China has

relaxed its COVID policies since December 2022, business travel especially international travel is expected to restore in the coming months and the emissions from business travel will likely rebound in 2023/2024. AIIB will, on one hand, take steps to encourage employees to use lower-carbon means of transportation, and on the other hand, choose a more appropriate year as the base year in the future. Therefore, recalculation of the base year will be applied where it is necessary to maintain an effective base year comparison. Reasons for this might include the following:

- if the emission factors used change significantly and are relevant to prior years,
- if the total emission changes significantly due to host country's post-covid policies change and/or calculation scope change,
- if a significant estimation method has been changed/improved,
- if a significant data sourcing strategy has been changed/improved,
- if the scope of the inventory is changed (for instance, emissions from other offices included).

4.2.3 GWP Calculation and Source

According to the requirement of ISO 14064-1:2018, seven GHGs include CO_2 , CH_4 , N_2O , HFCs, PFCs, SF₆, and NF₃.

Quantities of GHG emissions are given in tones of CO₂e using the GWP from the IPCC Sixth Assessment Report (AR6). The scope of time is 100 years. Sources of direct emissions (Category 1) are expressed as both CO₂e and a thorough breakdown of their GHG emissions, including the GWP value. The most notable greenhouse gases include:

CO ₂	1
CH_4	27.9
N ₂ O	273
NF_3	17400
SF_6	25200
R125	3740
R143a	5810
R134a	1350
R152a	164
R32	771
R23	14600
R404a	4728
R407c	1985
R410a	2255.5

Table 6: GWP Value

4.2.4 Review, Internal Audit and Improvement

This research examines the available data and information as the first comprehensive portrayal of AIIB's emissions. The collection of primary data on all key sources of emissions has been pursued. Where data is absent or incomparable, conservative estimation methods have been deployed, creating an incentive to continuously improve the ratio of source data to estimation methods. In future years, AIIB plans to utilize this section to highlight enhancements to AIIB's framework and methodology for capturing and calculating emissions figures and reduce ambiguity.

AIIB has already established an internal carbon management plan, MRV roadmap, and emission reduction objectives. To implement the plan, and based on the findings of this analysis, it developed the following data management recommendations for 2023:

- Unify the statistical rigor of the activity data as soon as possible to improve the data quality and utilize monitoring data as much as possible, such as fuel consumption purchase records for the corporate fleet, distance for business travel using local taxis, etc.
- Implement more carbon reduction projects and initiate preparations for carbon offsetting while educating and communicating with employees and suppliers.
 - Increase employee training and communication regarding GHG mitigation.
 - Promote carbon reduction among suppliers and build a carbon footprint database for the Bank's acquired goods and services.
 - Promote carbon emission awareness among vendors, suppliers, and service providers.
- Energy consumption, including electricity and heating, accounts for most global emissions. Although AIIB Headquarters are LEED Platinum-certified, there are still opportunities to reduce energy use by implementing further energy conservation measures.
- No disposable products in the Bank.
- Transition from a petrol fleet to electric vehicles.
- Together with waste management service providers, enhance resource recovery in the Bank and avoid landfill disposal.
- Consider purchasing green electricity and utilizing renewable energy as necessary.

Furthermore, to align with Paris Agreement goals, AIIB intends to compensate for its residual emissions beginning in 2024 by purchasing high-quality carbon offset credits, resulting in "carbon neutral" emissions from its internal activities.

4.2.5 Removals and Reductions / Increases

There are no emission cuts to report for the current reporting period

Reduced/increased emissions are irrelevant for this reporting period as the base year.

CHAPTER 5: GHG INVENTORY QUALITY MANAGEMENT

The GHG emission data is derived from raw data supplied by various data sources. To ensure the accuracy of the calculation procedure and the findings, GHG data is managed in strict accordance with the ISO14064-1:2018 standard. The greater the score, from 0 to 10, the higher the data quality. The computed average score according to the standard is 4.95, which corresponds to Level 2. Category 2 emissions from purchased electricity, heating, and hot water have the most accurate statistics. Other categories range from 0.07 to 0.14, indicating substantial room for future improvement.

The specific calculation process is as follows:

Level	Level 1	Level 2	Level 3	Average score	Level
Activity data error level (A1)	Activity data is measured automatically and continuously	Activity data are intermittent measurements	Activity data is self- estimated	4.95	2
Activity data error level (A2)	Use of self-developed emission factors (1) derived from measurement/quality- energy balance; or (2) empirical coefficients for the same process/equipment	Use of (3) manufacturer- provided factors; or (4) regional or national emission factors	Use of (6) international emission factors	Level $1 \rightarrow 1 \le a$ score < 4 Level $2 \rightarrow 4$ average score Level $3 \rightarrow 7$ average score	<= e < 7 <=

Table 7: Inventory Quality Score

Table 8: Inventory Quality Score - Activities

Activity	Fuel	Emission (t)	Percentage (%)	Score
Emergency generators	Diesel	13.48	0.19%	0.00
Kitchen cookers	Natural gas	43.85	0.60%	0.01
Official vehicles	Petrol	19.24	0.26%	0.01
Chillers, etc.	R134a	0.00	2.59%	0.00
Freezers	R404A	0.00	0.00%	0.00
Split air conditioners (30 units)	R32	0.00	0.00%	0.00

Chillers, etc.	R410a	0.00	0.00%	0.00		
Carbon dioxide fire extinguishers	CO ₂	0.00	0.00%	0.00		
Septic tanks	CH4	64.28	0.89%	0.05		
	Category	1		0.07		
Municipal heating	Natural gas	1116.48	15.37%	0.31		
Municipal hot water supply	Natural gas	72.52	1%	0.02		
Electricity for office buildings	Electricity supply to the grid	5173.24	71.23%	4.27		
	Category 2					
Staff commuting (car, tram, metro, etc.)	Electricity, petrol, diesel, etc.	4.88	0.07%	0.00		
Staff Business Travel (High-Speed Rail)	Electricity	7.29	0.10%	0.00		
Staff business travel (by air)	Aviation diesel, etc.	490.00	6.75%	0.13		
Staff Business Accommodation	Electricity etc.	37.87	0.52%	0.01		
	Category	3		0.14		
Waste disposal (food waste, other waste)	CH ₄	191.57	2.64%	0.11		
Waste disposal (recycling)	CH₄	0.00	0.00%	0.00		
Cloud Service	Electricity	22.05	0.30%	0.01		
Domestic water supply	Domestic water supply Electricity 6.17 0.09%					
Category 4						
Total						

CHAPTER 6: MITIGATION ACTIVITIES

The permanent headquarters of AIIB is LEED Platinum-certified. Installing lighting occupancy sensors; increasing chilled-water set point; adjusting building-wide heating and cooling set points; shortening operational hours of heating, cooling, and lighting central control systems for the entire building; chiller optimization to reduce energy demands on the facility; etc. are examples of energy-saving initiatives adopted by AIIB.

Figure 5: Energy Saving Initiatives

	gineers are leveraging their professionalism set up all the energy saving initiatives and vstem daily operation optimization. Electrical	Heating	Water
籥	*		
 Reinforce the seal-off works surrounding the building and secure all the holes and gaps are thoroughly plugged off Take meticulous investigation onto the gap and air intake. Check the rock wool thermal insulation and apply sealant accordingly onto the perimeter wall Seal off the gaps and holes in Basement & sky guard, Dismantled the aluminum or wood panel; Block with fire stopper sealant, Erect up with other material partition or panel Negotiate with BIG developer to spur of the thermal secure of whole building JLL team spontaneous observation and carry out nearly 85 spots of sealing-off works 	 Set up the lightings in different area like open working offices, core wall, lift lobby, L1 lobby skyline and entry canopy turning on with different time in light of daily operation practice The lightings in individual offices and meeting rooms are furnished with motion sensors that are able to save energy after people leave the room Implement and set up all the lightings with weekends and holiday models Defer turning on the lightings in lobby skyline, sky guard lanterns and entry canopy lightings in terms of our weather amid summer seasons Upgrading integrate the lightings in meetings rooms and addition the motion sensors in all printing rooms. 	 Operate the Chiller, Air handling units, Fan coil units and water pumps in aligned working times in light of daily operation best practice Implement and operate all the equipment with weekends and holiday operation model Refine the equipment operating frequency and enhance the operation efficiency in light of outdoor weather through building management system platform Interact with BIG developer to heat up and enhance the lobby floor heating amid winter seasons Refine and set up the operating temperature of 50 spots of electric heating trace in terms of detected surrounding temperature 	 Optimize and shorten the operation time of cooling tower & Chiller Furnish the faucets of lavatory in public restrooms with infrared sensor pattern t achieve energy saving Upgrade the lobby water feature system and reduce the cleaning maintenance of water consumption Coach and mentor the amenity services vendors like cafeteria kitchen, executive dining room, coffee shop and gym etc. tu understand the importance of energy saving and take action Initiate the energy saving in Pantry and devise with water leakage detection system to avert water flood. Coordinate and train the janitorial team for the water saving in mop sink of Janitor's room.

Source: AIIB Energy Consumption Analysis Report in the Year 2021

Other initiatives include:

- 1. Technology
 - Purchased GHG emission online management software, maintain GHG related data online from 2022.
 - Made duplex and black-and-white printing the standard for the entire organization.
 - Improved and promoted teleconferencing capabilities wherever possible to reduce travel
- 2. Reducing Waste
 - Reduce the use of single-use plastics.
 - Eliminated paper cups and free plastic lunchboxes from AIIB catering and vending areas.
 - Staff calendars are made from recycled paper.
- 3. Improved and promoted teleconferencing capabilities wherever possible to reduce travel
- 4. Staff tree planting with emission reduction certified

5. Collaboration with the World Wildlife Fund and participated in the annual Earth Hour activity.

APPENDICES

A. Business Travel (Flight)

Summary:

Table 9: Summary of Business Travel Emissions

	CO ₂ e	CO ₂	CH ₄	N₂O	HFCs	PFCs	SF ₆	NF ₆
Emission (t)	490.00	485.37	0.04	4.58	0	0	0	0

Emission Factors:

Department for Business, Energy & Industrial Strategy (BEIS) - 2021 https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2021

Table 10: Business Travel CO₂e Emissions, Emission Factors, and Sources, 2021

CO₂e:

	Seat Class	km	CO₂e Emission Factor (kg/km)	Source	2021 Emission (ton)
	Business	170224.84	0.12	BEIS-Short Haul- Business-CO ₂ e	20.39
Short	Economy	80808.30	0.08	BEIS-Short Haul- Economy- CO₂e	6.45
	Premium	2858.12	0.08	BEIS-Short Haul-Average Class- CO ₂ e	0.23
	Business	508805.57	0.22	BEIS-International- Business- CO ₂ e	109.70
Mid	Economy	160280.73	0.07	BEIS-International- Economy-CO2e	11.92
IVITO	Premium	20130.73	0.12	BEIS-International- Premium- CO₂e	2.39
	First	15103.28	0.30	BEIS-International-First- CO ₂ e	4.49
	Business	1346259.19	0.23	BEIS-Long Haul- Business- CO₂e	305.21
Long	Economy	273515.95	0.08	0.08 BEIS-Long Haul- Economy- CO ₂ e	
	Premium	62633.96	0.13	BEIS-Long Haul-	7.83

		Premium- CO ₂ e	
Total	2640620.67		490.00

Table 11: Business Travel CO₂ Emissions, Emission Factors, and Sources, 2021

CO ₂ :					
	Seat Class	km	CO₂ Emission Factor (kg/km)	Source	2021 Emission (ton)
	Business	170224.84	0.12	BEIS-Short Haul- Business- CO ₂	20.19
Short	Economy	80808.30	0.08	BEIS-Short Haul- Economy- CO ₂	6.39
	Premium	2858.12	0.08	BEIS-Short Haul-Average Class- CO ₂	0.23
	Business	508805.57	0.21	BEIS-International- Business- CO ₂	108.67
Mid	Economy	160280.73	0.07	BEIS-International- Economy- CO ₂	11.80
INIC	Premium	20130.73	0.12	BEIS-International- Premium- CO ₂	2.37
	First	15103.28	0.29	BEIS-International-First- CO ₂	4.45
	Business	1346259.19	0.22	BEIS-Long Haul- Business- CO ₂	302.33
Long	Economy	273515.95	0.08	BEIS-Long Haul- Economy- CO ₂	21.18
	Premium	62633.96	0.12	BEIS-Long Haul- Premium- CO ₂	7.76
Total		2640620.67			485.37

Table 12: Business Travel CH₄ Emissions, Emission Factors, and Sources, 2021

С	н	
J		4.

	Seat Class	km	CH₄ Emission Factor (kg/km)	Source	2021 Emission (ton)
Short	Business	170224.84	0.00001	BEIS-Short Haul- Business-CH ₄	0.001702248
Short	Economy	80808.30	0.00001	BEIS-Short Haul- Economy-CH ₄	0.000808083

	Premium	2858.12	0.00001	BEIS-Short Haul- Average Class- CH ₄	2.85812E-05
	Business	508805.57	0.00001	BEIS-International- Business-CH ₄	0.005088056
Mid	Economy	160280.73	0.000005	BEIS-International- Economy-CH ₄	0.000801404
	Premium 20130.73		0.00001	BEIS-International- Premium-CH ₄	0.000201307
	First	First 15103.28 0.00		BEIS-International- First- CH ₄	0.000302066
	Business	1346259.19	0.00002	BEIS-Long Haul- Business- CH₄	0.026925184
Long	Economy 273515.95		0.00001	BEIS-Long Haul- Economy-CH ₄	0.00273516
	Premium	62633.96	0.00001	BEIS-Long Haul- Premium- CH₄	0.00062634
Total		2640620.67			0.039218428

Table 13: Business Travel N_2O Emissions, Emission Factors, and Sources, 2021

N₂O:

	Seat		N₂O Emission	Emission Factor		
	Class	km	Factor	Source	2021 Emission	
			(kg/km)		(ton)	
	Business	170224.84	0.00112	BEIS-Short Haul-	0.190651824	
				Business-N ₂ O		
Short	Economy	80808.30	0.00075	BEIS-Short Haul-	0.060606224	
onore	200110111	00000.00	0.00070	Economy- N ₂ O	0.000000221	
	Premium	2858.12	0.00076	BEIS-Short Haul-	0.002172169	
	Premium	2000.12	0.00070	Average Class-N ₂ O	0.002172109	
	Duchase		0.00000	BEIS-International-	4 007707050	
	Business	508805.57	0.00202	Business-N ₂ O	1.027787258	
	Economy	160290 72	0.0007	BEIS-International-	0.11219651	
Mid		160280.73	0.0007	Economy-N ₂ O	0.11219051	
wita	Premium	20120 72	0.00111	BEIS-International-	0.000045444	
		20130.73	0.00111	Premium-N ₂ O	0.022345114	
	First	15103.28	0.00279	BEIS-International-	0.042138153	
	FIISL	15105.20	0.00279	First- N ₂ O	0.042130133	
	Business	1246250 10	0.00212	BEIS-Long Haul-	2 95 4060 495	
Long	DUSINESS	1346259.19	0.00212	Business- N ₂ O	2.854069485	
Long	Foonomy	272515.05	0.00072	BEIS-Long Haul-	0.100666645	
	Economy	273515.95	0.00073	Economy- N ₂ O	0.199666645	

	Premium	62633.96	0.00117	BEIS-Long Haul- Premium- N₂O	0.073281729	
Total		2640620.67			4.58491511	

Table 14: Hotel and Train CO_{2e} Emissions, Emission Factors, and Sources, 2021

	Activity	Unit	Emission Factor	Unit	Emission Factor Source	2021 Emission (ton)	Unit
Train	280487.2	km	0.026	kg CO₂e/km	China Greenhouse	7.292668339	ton
Hotel	860	night	44.03	kg CO₂e/night	Gas Emission Coefficient Library for Product Life Cycle	37.8658	ton

Data Provider: Ying Zhang

B. Business Travel (Train)

Table 15: Train CO_{2e} Emissions, Emission Factors, and Sources, 2021

Train	CWT	CAS	FCM	Total
Original Data	123224.00	77835.00	126084.40	
Unit	mile	km	km	km
km	76567.84	77835.00	126084.40	280487.24
	0.026			
	7.29			

Emission Factor Source: <u>China Greenhouse Gas Emission Coefficient Library for Product</u> <u>Life Cycle</u>

Data Provider: Ying Zhang

C. Business Travel (Hotel)

Table 16: Hotel CO_{2e} Emissions, Emission Factors, and Sources, 2021

Hotel	СМТ	CAS	FCM	Total
Original Data	480.00	276.00	104.00	860.00
Unit	night	night	night	night
	44.03			

٦	Total CO ₂ e Emission (t)	37.87

Emission Factor Source: <u>China Greenhouse Gas Emission Coefficient Library for Product</u> <u>Life Cycle</u>

Data Provider: Ying Zhang

D. Refrigerant

Facility	Quality	Refrigera Refrigera nt nt charge		Unit	GWP	2021 Consump tion	2021 Emis sion
Water Chiller	5	R134a	3407	kg	1350	0	0
Water Chiller (networking room)	2	R410a	332	kg	2255.5	0	0
multi-coupled air conditioning unit	22	R410a	176	kg	2255.5	0	0
water source heat pump air conditioning system	29	R410a	38.57	kg	2255.5	0	0
ELV Precision Air conditioner	32	R22	64	kg	0	0	0
Split air conditioner	30	R32	32.25	kg	771	0	0
Parallel freezer	2	R134a	340	g	1350	0	0
Double-door refrigerator	1	R134a	340	g	1350	0	0
Fresh cabinet	1	R134a	340	g	1350	0	0
Drink freezer	1	R134a	80	g	1350	0	0
Double door refrigerator	1	R134a	360	g	1350	0	0
Two-storage temperature refrigerator	1	R404a	398	g	4728	0	0
Double door refrigerator	4	R404a	360	g	4728	0	0
Freezer*	1	R404a	BOHN LOPL042		4728	0	0
Front Office's refrigerator*	1	SD- 226Y/HP				0	0

Table 17: Refrigerant Consumption and Facilities, 2021

Double door freezer	1	R404a	360	g	4728	0	0
Double door refrigerator	3	R134a	360	g	4728	0	0
Freezer	2	R404a	390	g	4728	0	0
Double door refrigerator	1	R404a	320	g	4728	0	0

*Two facilities without Refrigerant charge information.

GWP value: IPCC Sixth Assessment Report Global Warming Potentials

Data Provider: Lihai Yin, Lihai Yin, Senior Facility Management Officer

E. Fire Extinguisher

Facility	Quantity	Capacity	Unit	Total	Unit	2021 consumption	2021 emission
Dry powder extinguisher	1918	5	kg	9590	kg	0	0
Trolley dry powder fire extinguisher	3	35	kg	105	kg	0	0
CO ₂ fire extinguisher	28	7	kg	196	kg	0	0
IG541 gas flooding system (8% CO ₂)	228	80	L	18240	L	0	0

Data Provider: Yang Zhang, Head of Security and Emergency

F. Commuting

				Single trip 2021 total									
	Private Car	Subway	Cycle	Walk	Taxi	Bus	E-bike	Motor	Total km	Workdays	emission	emission	Unit
1	80%	20%							13	200	0.0358	14.32	kg
2		60%			40%				20	200	0.0154	6.16	kg
3	10%	80%			10%				18	200	0.0177	7.08	kg
4				70%	30%				5	200	0.0048	1.92	kg
5	10%	90%							18	200	0.0176	7.04	kg
6		100%							13	160	0.015	4.8	kg
7			100%						5	200	0	0	kg
8		50%	30%	20%					13	200	0.0075	3	kg
9		80%			20%				18	200	0.0152	6.08	kg
10		75%	15%	10%					13	200	0.01125	4.5	kg
11		33%			33%	34%			8	200	0.01329	5.316	kg
12		50%	50%						13	200	0.0075	3	kg
13		50%					50%		13	200	0.01505	6.02	kg
14		90%	10%						20	200	0.0135	5.4	kg
15					5%			95%	13	200	0.0597	23.88	kg
16		40%	40%		20%				20	200	0.0092	3.68	kg
17		60%	20%		20%				13	200	0.0122	4.88	kg
18		80%	20%						13	200	0.012	4.8	kg
19		80%	20%						13	200	0.012	4.8	kg
20	80%	10%			10%				18	200	0.0359	14.36	kg
21		80%			20%				20	200	0.0152	6.08	kg
22		100%							13	200	0.015	6	kg
23			50%		50%				13	160	0.008	2.56	kg
24		90%	10%						13	200	0.0135	5.4	kg
25		10%			90%				20	200	0.0159	6.36	kg
26			33%	33%	34%				5	200	0.00544	2.176	kg
27	100%								13	200	0.041	16.4	kg
28		45%	10%	45%					8	200	0.00675	2.7	kg
29	70%			.070			30%		18	200	0.03323	13.292	kg
30	40%	10%			50%				13	200	0.0259	10.36	kg
31	80%	10%			10%				13	200	0.0359	14.36	kg
32			90%		10%				5	200	0.0016	0.64	kg
33			0070	100%					5	220	0	0	kg
34	40%	20%			40%				18	200	0.0258	10.32	kg
35		20%			80%				13	200	0.0158	6.32	kg
36		100%							13	200	0.015	6	kg
37	100%								18	200	0.041	16.4	kg
38	10070	45%			5%	50%			13	200	0.01205	4.82	kg
39		90%			10%				8	200	0.0151	6.04	kg
40		50%			50%				18	200	0.0155	6.2	kg
41	100%				2370				18	200	0.041	16.4	kg
42	80%	20%							8	200	0.0358	14.32	kg
43	0070	2070			100%				5	200	0.0350	6.4	kg
44	100%				10070				18	200	0.041	16.4	kg
45		30%			70%				13	200	0.0157	6.28	kg
46	100%	0070							20	220	0.041	18.04	kg
40	10070	20%	80%						8	200	0.003	1.2	kg
48	80%	2070	0070		20%				20	200	0.036	14.4	kg
40	100%				2070				13	200	0.041	16.4	kg
50	10070			50%	50%				5	200	0.008	3.2	kg
50	50%	50%		0070	0070				8	200	0.028	11.2	
51	50%	50%							0	200	0.020	11.2	kg

PUB	LIC.

									staff	4.88362	t
									Total 616	030.092	мy
82	100%						8	200	0.041 Total	16.4 650.092	kg kg
81	80%	20%					18	200	0.0358	14.32	kg
80	000/	100%					13	200	0.015	6	kg
79		90%			10%		18	200	0.0151	6.04	kg
78	100%	0.001			100(8	200	0.041	16.4	kg
77		1%	89%	10%			5	200	0.00015	0.06	kg
76		100%					13	200	0.015	6	kg
75	100%						20	200	0.041	16.4	kg
74		33%	34%		33%		8	200	0.01023	4.092	kg
73	100%						18	200	0.041	16.4	kg
72		90%			10%		18	200	0.0151	6.04	kg
71	60%	40%					8	200	0.0306	12.24	kg
70		50%			50%		13	200	0.0155	6.2	kg
69	10%	90%					18	200	0.0176	7.04	kg
68		25%	25%		50%		8	200	0.01175	4.7	kg
67	80%		15%		5%		5	200	0.0336	13.44	kg
66	50%	30%	20%				20	200	0.025	10	kg
65		20%			80%		13	80	0.0158	2.528	kg
64		50%			50%		13	200	0.0155	6.2	kg
63		10%	30%		60%		13	200	0.0111	4.44	kg
62		100%					13	200	0.015	6	kg
61			98%		2%		5	200	0.00032	0.128	kg
60		80%		1	20%		8	200	0.0152	6.08	kg
59	20%	80%		1			8	200	0.0202	8.08	kg
58		50%				50%	13	200	0.01505	6.02	kg
57	100%						20	200	0.041	16.4	kg
56		80%	20%				8	200	0.012	4.8	kg
55			50%		50%		5	200	0.008	3.2	kg
54		20%			80%		8	200	0.0158	6.32	kg
53	80%				20%		18	200	0.036	14.4	kg
52		95%			5%		13	200	0.01505	6.02	k

Commuting Method	Private Car	Subway	Cycle	Walk	Taxi	Bus	E-bike	Motor
Emission Factor	0.041	0.015	0	0	0.016	0.009	0.0151	0.062
Unit	kg/km	kg/km	kg/km	kg/km	kg/km	kg/km	kg/km	kg/km

Table 20: CO_{2e} Emission Factors of Different Commuting Methods, 2021

Emission Factor Source: <u>China Greenhouse Gas Emission Coefficient Library for Product</u> <u>Life Cycle</u>

Survey:

https://forms.office.com/Pages/AnalysisPage.aspx?AnalyzerToken=WhwTaLlqCM7rbSkxDR Ufbe4qim62Y51A&id=K2XqMcInUk-

fgZHOQtSOb0dUDUIGf4VMutKBQgk9cTIUNUw4QVZKR0lKTVNGR0JXQIY0Mzc0SUg4SC 4u

G. Energy Consumption

Table 21: Different Energy Sources and Consumption Rates, 2021

Energy	Emission Category	Consumption	Unit
Diesel	1	5165	L
Natural Gas	1	23872	m ³
Gasoline	1	8454.24	L
Hot Water	2	19998.1264	GJ
Heat	2	1299	GJ
Electricity	2	8904025.57	kwh
Cold Water	4	29398	m ³

Emission Factors

Table 22: Gasoline GHGs Emission Factors Calculation Using IPCC 2006 and ChinaCalorific Value, 2021

China Local	Carbon oxidation rate	Emission factor from IPCC 2006			En	nission factor		
Gasoline calorific value (GJ/t)		CO₂ (t/GJ)	CH₄ (t/GJ)	N₂O (t/GJ)	CO₂ (t/GJ)	CH₄ (tCH₄/t)	N ₂ O (tN ₂ O/t)	
43.07	98%	0.0693	0.000025	0.000008	2.9251	0.0011	0.0003	
						CO ₂ e	3.0467	

Table 23: Diesel GHGs Emission Factors Calculation Using IPCC 2006 and ChinaCalorific Value, 2021

China Diesel	Carbon oxidatio	Emissio	on factor from	n IPCC 2006	En	nission fa	ctor
calorific value (GJ/t)	n rate	CO₂ (t/GJ)	CH₄ (t/GJ)	N₂O (t/GJ)	CO ₂ (t/GJ)	CH₄ (tCH₄/t)	N ₂ O (tN ₂ O/t)
42.652	98%	0.0741	0.000003	0.0000006	3.0973	0.0001	0.0000
						CO ₂ e	3.1076

Table 24: Natural Gas GHGs Emission Factors Calculation Using IPCC 2006 and ChinaCalorific Value, 2021

China Natural	Carbon	Emissio	n factor fron	n IPCC 2006	En	nission fa	ctor
Gas calorific value (GJ/t)	oxidatio n rate	CO₂ (t/GJ)	CH₄ (t/GJ)	N₂O (t/GJ)	CO₂ (t/GJ)	CH₄ (tCH₄/t)	N₂O (tN₂O/t)
42.652	99%	0.0561	0.000003	0.0000001	2.3688	0.0000	0.0000
						CO ₂ e	2.3704

Emission Factors from IPCC 2006 source: <u>2006 IPCC Guidelines for National Greenhouse</u> Gas Inventories, IPCC, Volume 2: Energy

China Local Energy Calorific Value source: <u>GB/T 2589-2020 General rules for calculation of</u> the comprehensive energy consumption

Table 25: Hot Water, Heat, Electricity and Cold Water CO₂e Emission Factors and Sources, 2021

Energy	Emission Factor	Unit	Source
Hot Water	55.829	CO ₂ e kg/GJ	Carbon Dioxide Emission Factors of
Heat	55.829	CO ₂ e kg/GJ	Nature Gas Boilers and Its Uncertainty in Beijing
Electricity	0.581	CO ₂ e t/mwh	Climate Letter [2022] No. 111, General Office of the Ministry of Ecology and Environment
Cold Water	0.21	CO ₂ e kg/m ³	China Greenhouse Gas Emission Coefficient Library for Product Life Cycle

Data Provider: Lihai Yin, Senior Facility Management Officer and Yechao Zhu, Administration Officer

H. Waste Management

Table 26: Waste Generation Raw Data, 2021

Refuse classification	2021 quantity	Unit	Waste treatment company	Treatment way
			Beijing Tianyou	
Recycled Waste	15.48	t	Environmental Technology	Recycling
			Company	
Other	61.92	+	Beijing Gaoantun Waste	Incineration and
Other	01.92	L	Incineration Co. Ltd.	cogeneration
Food Waste	54.18	+	Beijing Gaoantun Waste	Incineration and
ruuu Waste	04.10	L	Incineration Co. Ltd.	cogeneration

Data Provider: Yechao Zhu, Administration Officer

I. Cloud Service

AWS: 10.7 tCO₂e Microsoft Azure: 11.35 tCO₂e

Data Providers:

- Chong An, Digital Program Specialist
- AWS Calculation method <u>https://aws.amazon.com/blogs/aws/new-customer-</u> <u>carbon-footprint-tool/</u>
- Microsoft Azure Calculation method <u>https://appsource.microsoft.com/en-</u> us/product/power-bi/coi-sustainability.emissions_impact_dashboard?tab=Overview

J. Septic Tank

Table 27: Septic-Tank Coefficient of Correction, BOD Generation Rate, BOD-CH4Conversion Factor, 2021

Tank Depth (m)	Coefficient of correction (for 4.4m tank) ¹	BOD generation (g/per capita per day) ¹	BOD-CH₄ conversion factor (t/t)¹	People in HQ in 2021 (people) ²	Total workday (day) ²	CH₄ GWP³
4.4	0.8	40	0.6	600	200	27.9

1. Factor source: Guidelines for the Preparation of Provincial Greenhouse Gas Inventories

2. Including staff, assistants and service providers who physically worked in the Headquarter office in 2021. Both work population and workday are estimated by FAS security of AIIB.

3. GWP value: IPCC Sixth Assessment Report Global Warming Potentials

Data Provider: Yang Zhang, Head of Security and Emergency