A SEARCH FOR SOME SMALL BRIER NUMBERS

YVES GALLOT

Abstract

In 1998, Eric Brier proved the existence of some numbers k such that $k \cdot 2^{n}$ is never adjacent to a prime. At that time, the smallest known "Brier Number" was a 41-digit number. The search was extended to find the smallest Brier number. Today, the smallest known number of this form is the 27-digit number $k=878503122374924101526292469$.

1. Definitions

Definition 1.1. A Sierpiński number is a positive integer k such that $k \cdot 2^{n}+1$ is not prime for any integer n.
Definition 1.2. A Riesel number is a positive integer k such that $k \cdot 2^{n}-1$ is not prime for any integer n.
Definition 1.3. A Brier number is both a Sierpiński number and a Riesel number.

2. A constructive approach

Let $S=\left\{p_{1}, p_{2}, \ldots, p_{s}\right\}$ a set of prime numbers and $P=\prod_{1 \leq i \leq s} p_{i}$. Let e_{i} the order of 2 modulo p_{i} (see [1, Definition 22]) and $e_{S}=\operatorname{lcm}\left(e_{1}, e_{2}, \ldots, e_{s}\right)$.
Definition 2.1. If one of the primes of the set S divides $k \cdot 2^{n}+1$ for any number n, and if for every prime p_{i} of S there is at least one n_{i} such that no other prime of S divides $k \cdot 2^{n_{i}}+1$, then S is called a covering set for the Sierpiński number k (idem for Riesel numbers). e_{S} is called the order of S.

Note that it is enough to verify the conditions for any number $0 \leq n<e_{S}$. Note also that a covering set may generate different Sierpiński numbers. To compute them, we should generate all possible sets of solutions $\left\{a_{1}, a_{2}, \ldots, a_{s}\right\}$ such that $k \equiv a_{i}\left(\bmod p_{i}\right)$ and determine k with Chinese Remainder Theorem.
Theorem 2.2. If S is a covering set for a Sierpiński number, then it is a covering set for a Riesel number and vice versa.

Proof. We can choose $k_{R}=2 P-k_{S}$.
Definition 2.3. Let S_{1} be a covering set and S_{2} another covering set such that $S_{1} \bigcap S_{2}=\emptyset$ or $\{3\} . S_{2}$ is called the complement of S_{1}.

[^0]Theorem 2.4. If S_{2} is a complement of S_{1}, then $S_{1} \bigcup S_{2}$ generates some Brier numbers.

Proof. The prime 3 can be used in both sets, eliminating even values of n in one case and odd values in the other one.

3. A systematic search for covering sets

We search for all covering sets for a Sierpiński number with a fixed e_{S}. The order of 2 modulo p_{i} are some divisors of e_{S} then the covering sets are some subsets of the list of prime factors of $2^{e_{S}}-1$. A necessary condition is $\sum_{i} e_{i} \geq 1$, but it is not sufficient.

To test completely a subset, we create an array of e_{S} cells. For each prime p_{i} and for each $0 \leq o_{i}<e_{i}$, we fill the cells of the array at position $o_{i}+j \cdot e_{i}$. If the array is totally filled, and if for each p_{i} there exists a cell which has been filled only once, then the subset of primes is a covering set and we can compute k with the relations $k \equiv a_{i} \equiv-1 / 2^{o_{i}}\left(\bmod p_{i}\right)$.

We can generate all covering sets by applying this method, but the number of operations grows very fast with e_{S}. So another method was used to find some small Brier numbers initially.

4. A SEARCH FOR THE "BEST" COVERING SET

For a covering set S, the different sets of solutions $\left\{a_{i}\right\}$ can be considered as some random numbers modulo p_{i}. Thus the values of k are some random numbers modulo P. Then to find some small values of k, we search for some covering sets with P being small.
Definition 4.1. The best covering set of order e_{S} is the covering set for which P is minimal.

To find some small Brier numbers, we can search for the best complements. We start the search with a covering set S_{1}. If we find its best complement S_{2}, we have a good chance to find the smallest Brier number that can be generated by S_{1} and any of its complements. We iterate the process by searching for S_{3}, the best complement of S_{2}, and stop when $S_{i+2}=S_{i}$.

Table 1. Some covering sets and their "good" complement

Set	e	Prime list	P size (digits)	compl.
S_{1}	24	3751713241	7	S_{2}
S_{2}	420	33112711431514133729113331	65	-
		711229215419611321281861711429		
S_{3}	64	3444929191106681152041		20
S_{4}	144	377313192413710997673	17	S_{4}
S_{5}	120	35311711151413316168161	18	S_{6}
S_{6}	144	377313257192413710997	16	S_{5}
S_{7}	160	35311711257416553761681414721	25	S_{4}

The search for the best complement is often unpractical because its size is too large. Then a program was written to find quickly a "good" complement: for a fixed
e_{S}, the prime factors of $2^{e_{S}}-1$ are sorted in ascending order size and in ascending size if the orders have the same size. Rather than searching for each $0 \leq o_{i}<e_{i}$, we select the o_{i} for which the number of filled free cells is the larger one and only search with this value. Surprisingly, this simple algorithm is very efficient: for all e_{S} for which all covering sets are known, the algorithm finds the best one (to be verified with recent results).

Some results, found using this method, are shown in Table 1. If the order of the first set is too small then the second set contains several primes and the resulting Brier number is not small.

No pair of sets better than S_{5} and S_{6} was discovered. The smallest Brier number generated by these sets is 878503122374924101526292469 .

5. A REturn to the systematic search

The orders of the sets found during the partial search were small enough to attempt the discovery of a smaller Brier number with an exhaustive search. All covering sets of Sierpiński numbers having $e_{S}<180$ were generated and many others for some fixed s (see Table 2).

All complementary sets were paired and arranged in ascending P, where P is the product of the prime numbers of both sets. The smallest Brier numbers associated to the first pairs of the list were computed (see Table 3 for the top of them) But none of them was smallest than the previously found 27 -digit Brier number. It is unlikely that a smaller Brier number will be found with two complementary sets.

Is it possible to find a smaller Brier number for which no complementary sets exist? A program was written to search for some Brier numbers directly, by filling two arrays of e_{S} cells. With this program, it was proved that no Brier number exists for $e_{S}<180$. The possible candidates for $e_{S}<288$ are 180, 240, 252 and 264. Some Brier numbers exist for $e_{S}=288$: for example, the covering sets $\{3$, $7,5,17,73,13,257,19,241,65537,37,109,97,673,433,38737,193,577,1153$, 6337 \} can be used. But the size of the Brier numbers found in this way is really larger than the numbers found by using two complementary sets.

References

1. D. Shanks, Solved and Unsolved Problems in Number Theory, 4th ed., Chelsea, New York, 1993.

E-mail address: galloty@wanadoo.fr

Table 2. Count of covering sets

e_{S}	n	Set
24	1	3751713241
36	4	
48	15	
60	23	
64	1	3517257655376416700417
72	93	
80	1	3531171125741616814278255361
84	8	
96	71	
108	24	
112	1	3512717432572911315790321515354410972897
120	698	
128	2	
140	1	3531127114341291137112292128186171741636147392381
144	3376	
160	28	
168	1475	
180	$?$	

Table 3. Brier numbers generated by some covering sets having a small P

$e_{1}=120$	35311711151413316168161
$e_{2}=144$	377313257192413710997
k	$878503122374924101526292469(27 / 34)$
$e_{1}=120$	35311711151413316168161
$e_{2}=144$	377313192413710997673
k	$3872639446526560168555701047(28 / 34)$
$e_{1}=120$	353117111514161681611321
$e_{2}=144$	377313257192413710997
k	$6752111260707276586600527347(28 / 34)$
$e_{1}=120$	35311711151413316168161
$e_{2}=144$	3773132571924137109673
k	$2573455513910801216010607729(28 / 35)$
$e_{1}=120$	353117114133161681611321
$e_{2}=144$	377313257192413710997
k	$11252264900274601966567368371(29 / 35)$
$e_{1}=120$	353117111514161681611321
$e_{2}=144$	377313192413710997673
k	$2668934159979395835274330907(28 / 35)$
$e_{1}=120$	3531171115141331616811321
$e_{2}=144$	377313257192413710997
k	$27456735936026361614526507061(29 / 35)$
$e_{1}=120$	353117114133161681611321
$e_{2}=144$	377313192413710997673
k	$16985143930825825363784428577(29 / 35)$
$e_{1}=120$	353117111514161681611321
$e_{2}=144$	3773132571924137109673
k	$1723525455942005335396308929(28 / 35)$
$e_{1}=120$	3531171115141331616811321
$e_{2}=144$	377313192413710997673
k	$71304118104020595224410968529(29 / 36)$
$e_{1}=120$	353117114133161681611321
$e_{2}=144$	3773132571924137109673
k	$19387161879696990635166458771(29 / 36)$
$e_{1}=64$	3517257655376416700417
$e_{2}=144$	377313192413710997673
k	$623506356601958507977841221247(30 / 36)$
$e_{1}=120$	3531171115141331616811321
$e_{2}=144$	3773132571924137109673
k	$5005425549902954169655052777(28 / 36)$
$e_{1}=120$	35311711151413316168161
$e_{2}=144$	377313257192413797433577
k	$713331160941223303050450522407(30 / 37)$

[^0]: Date: February 6, 2000.
 2000 Mathematics Subject Classification. Primary 11Y11; Secondary 11A41.
 Key words and phrases. prime numbers.
 (C) Copyright 2000, Yves Gallot. You may make unlimited copies of the document and give copies to other persons as long as the copies you make and distribute contain the unaltered and unabridged document.

