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Abstract 

Weather and temperatures vary in ways that are difficult to explain and predict precisely. In this 

article we review data on temperature variations in the past as well possible reasons for these 

variations. Subsequently, we review key properties of global climate models and statistical analyses 

conducted by others on the ability of the global climate models to track historical temperatures. 

These tests show that standard climate models are rejected by time series data on global 

temperatures. Finally, we update and extend previous statistical analysis of temperature data 

(Dagsvik et al., 2020). Using theoretical arguments and statistical tests we find, as in Dagsvik et al.  

(2020), that the effect of man-made CO2 emissions does not appear to be strong enough to cause 

systematic changes in the temperature fluctuations during the last 200 years. 
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Sammendrag 

Et typisk trekk ved observerte temperaturserier over de siste 200 årene er at de gjennomgående 

viser lange sykler og en økende trend. Et sentralt spørsmål er om denne utviklingen er en del av en 

syklus som er analog til tidligere temperaturvariasjoner, eller om en systematisk endring av 

temperaturnivået har funnet sted i løpet av denne perioden, som et resultat av menneskeskapte 

utslipp av CO2. Selv om temperaturene i de senere årene skulle vise seg å avvike systematisk fra 

variasjonene i tidligere tider, er det likevel en komplisert utfordring å tallfeste hvor mye av denne 

endringen som skyldes utslipp av CO2. 

Formålet med denne artikkelen er å drøfte dette spørsmålet nærmere, nemlig om det kan sies å 

være bevist om deler av temperaturøkningen i løpet av de siste 200 år skyldes utslipp av 

klimagasser.  

I denne artikkelen beskrives først hvilke data som er tilgjengelige for analyse av variasjonene i 

klimatiske forhold.  

Dernest diskuteres mulige kilder til temperaturvariasjon i kapittel 3. Her har skydannelse, 

strømninger i havene samt havenes kapasitet til å lagre CO2 vesentlig betydning. Nyere forsking 

tyder på at variasjoner i solas magnetiske felt har stor betydning for langsiktige svingninger i 

solaktiviteten. Ifølge teori og rekonstruerte temperaturdata påvirkes klima av sykliske variasjonene i 

jordbanen, jordaksen samt planetbanene til Jupiter, Saturn, Neptun og Uranus.  

I kapittel 4 gis det en oversikt over sentrale egenskaper til de globale klimamodellene basert på 

eksisterende litteratur. I kapittel 5 diskuteres statistiske tester av de globale klimamodellene. Disse 

viser at det er manglende konsistens mellom variasjonene i temperaturprediksjonene fra de globale 

klimamodellene og variasjonene i de konstruerte globale temperatureriene. Med andre ord sår 

disse resultatene tvil om klimamodellene er i stand til å skille mellom naturlige temperatur-

variasjoner versus variasjoner som skyldes menneskeskapte CO2 i løpet av de siste 150 år.  

Endelig rapporteres resultater fra en statistisk analyse av observerte tidsserier av temperaturdata 

fra ulike deler av jordkloden i kapitlene 6 og 7. Denne analysen benytter den samme tilnærmingen 

som Dagsvik mfl. (2020). Mens Dagsvik mfl. (2020) ikke hadde temperaturdata for de seneste årene, 

benytter vi temperaturserier i denne artikkelen som er ajourførte inntil 2021. Vi finner, i likhet med 

Dagsvik mfl. (2020), at hypotesen om at temperaturprosessen varierer tilfeldig rundt et konstant 

nivå (stasjonaritet) ikke blir forkastet. Dette kan tyde på at effekten av CO2 utslipp de siste 200 årene 

ikke er sterk nok til å forårsake systematiske endringer i temperatursvingningene.  
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1. Introduction 

A typical feature of observed temperature series over the last two centuries is that they show, more 

or less, an increasing trend, see Appendix D and Figures B1, B6 and B7 in Appendix B. A key 

question is whether this tendency is part of a cycle, or whether the temperature pattern during this 

period deviates systematically from previous variations. Even if recent recorded temperature 

variations should turn out to deviate from previous variation patterns in a systematic way it is still 

a difficult challenge to establish how much of this change is due to increasing man-made emissions 

of carbon dioxide (CO2) and other greenhouse gases.  

At present, there is apparently a high degree of consensus among many climate researchers 

that the temperature increase of the last decades is systematic (and partly man-made). This is 

certainly the impression conveyed by the mass media. For non-experts, it is very difficult to obtain 

a comprehensive picture of the research in this field, and it is almost impossible to obtain an 

overview and understanding of the scientific basis for such a consensus (Koonin, 2021, Curry, 

2023). By looking at these issues in more detail, this article reviews past observed and 

reconstructed temperature data as well as properties and tests of the global climate models 

(GCMs). Moreover, we conduct statistical analyses of observed and reconstructed temperature 

series and test whether the recent fluctuation in temperatures differs systematically from previous 

temperature cycles, due possibly to emission of greenhouse gases.1  

In the global climate models (GCMs) most of the warming that has taken place since 1950 

is attributed to human activity. Historically, however, there have been large climatic variations. 

Temperature reconstructions indicate that there is a ‘warming’ trend that seems to have been going 

on for as long as approximately 400 years. Prior to the last 250 years or so, such a trend could only 

be due to natural causes. The length of the observed time series is consequently of crucial 

importance for analyzing empirically the pattern of temperature fluctuations and to have any hope 

of distinguishing natural variations in temperatures from man-made ones. Fortunately, many 

observed temperature series are significantly longer than 100 years and in addition, as mentioned 

above, there are reconstructed temperature series that are much longer.  

After the thermometer was invented in the 17th century, systematic temperature 

measurements were undertaken in many cities. This was the case, for example, in Uppsala with 

measurements from 1722, Berlin from 1756 and Paris from 1757, to name but a few. The longest 

 

1 Even if it cannot be proved in a rigorous sense that there is a systematic change in the temperature, it may still be rational to 

advocate a green environmental and economic policy globally, based on the precautionary principle.  
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available instrumental record of monthly temperatures in the world is from central England and 

begins in 1659.2  

One way to distinguish the effect of man-made emissions of greenhouse gases on   

temperatures from the effect of natural causes, is to check if temperature variations can be 

explained using GCMs. For this to be possible, a minimum requirement must be that GCMs are 

able to reproduce historically observed temperatures. Several researchers have applied advanced 

statistical methods to investigate the ability of GCMs to track global temperature series, and we 

review results from their analysis. 

Since the total impact on climate from various sources is not well understood the 

fluctuations in observed and reconstructed time series temperature data may be hard to explain. 

They may therefore to some extent appear unsystematic (stochastic). An alternative research 

approach is therefore to investigate whether the temperature series are consistent with a statistical 

model, and what the features of such a model might be. This was the approach taken by Dagsvik 

et al. (2020) and several of the references therein. A rigorous statistical analysis of the temperature 

phenomenon is, however, more complicated than might be expected. There are several reasons for 

this. First, it turns out that temperature, as a temporal process, appears to have cycles that can last 

for decades (long memory), if not hundreds of years. It is for precisely this reason that even such 

a prolonged increase in recent observed temperature series should not simply be interpreted as a 

trend leading to permanent climate change.    

The paper is organized as follows. In Section 2 we describe data and discuss some stylized 

facts about climate variations in prehistoric times. Moreover, we describe various observed and 

reconstructed data sets that are available, and we give a summary of climate variations in the past. 

In Section 3 we discuss some sources of temperature variations. Section 4 contains a summary 

description of some key features of the GCMs based mainly on Curry (2017) and Voosen (2016) 

and in Section 5 we review analyses in the literature on the ability of GCMs to track global 

temperature series. Section 6 discusses and motivates the specific statistical modelling approach 

we have applied in this paper and in Section 7 the resulting empirical results are discussed. This 

analysis extends and updates the study of Dagsvik et al. (2020) based on the same methodology 

as in Dagsvik et al. (2020). Whereas the analysis of Dagsvik et al. (2020) did not use data for the 

 

2 Thermoscopes were the earliest types of thermometers and they only showed changes in temperature but did not show 

numerical values. One of the first thermoscopes was developed by Galeleo Galilei in 1593. It used water as the liquid and glass 

bulbs inside an open tube. The glass bulbs rose and fell with the changes in temperature. In 1612, Santorio Santorio, used a 

numerical scale on the thermoscope but it was very rudimentary. In 1654 the first sealed glass tube was developed by Ferdinand 

II, the Grand Duke of Tuscany. It contained alcohol and had a numerical scale, but was not very accurate. The more modern 

thermometer was invented in 1709 by Daniel Fahrenheit. It was an enclosed glass tube that had a numerical scale, called the 

Fahrenheit scale. The early version of this thermometer contained alcohol and in 1714 Fahrenheit developed a mercury 

thermometer using the same scale. 
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most recent years the current study is based on data up to 2021, and the empirical results confirm 

the results obtained by Dagsvik et al. (2020). One key result is that the hypothesis of the 

temperature process being stationary is not rejected. Finally, in Section 8 we provide bounds on 

maximum temperature values under specific assumptions about the temperature process. Most of 

the results from the statistical analysis are reported in online appendices (Appendices C and D).3  

 

2. The available data 

This section gives a brief description of the data that are reviewed or analyzed in this paper. Apart 

from the last 250 years, data are based on reconstructions from several sources such as ice cores, 

tree rings and lake sediments (see for example Varenholt and Lüning, 2015, ch. 4). An ice core is 

a core sample that is obtained from an ice sheet or a glacier. Since the ice forms from the 

incremental buildup of annual layers of snow, lower layers are older than upper, and an ice core 

contains ice formed over a range of years. Cores can contain ice more than two million years old 

(Yan et al., 2019). The physical properties of the ice and of material trapped in it can be used to 

reconstruct the climate over the age range of the core. The proportions of different oxygen and 

hydrogen isotopes provide information about ancient temperatures, and the air trapped in tiny 

bubbles can be analyzed to determine the level of atmospheric gases such as CO2. Since 1979 

satellite observations in the troposphere have been used to estimate temperature.  

 

2.1. Temperature variations in the past  

Ice cores from Greenland and Antarctica provide unique archives of past climate and 

environmental changes based only on natural physical processes. Figure B2 in Appendix B shows 

reconstructed temperatures over the past 420,000 years obtained at the Vostok station, Antarctica 

(Petit et al., 1999, 2001). The record spans over four glacial periods and five interglacial periods, 

including the present.   

The preceding four interglacial periods are seen at about 125,000, 280,000, 325,000 and 

415,000 years before now, with much longer glacial periods in between. All four previous 

interglacial periods are seen to be warmer than the present. The typical length of a glacial period 

is about 100,000 years, while an interglacial period typically lasts for about 10-15,000 years. The 

present inter-glacial period has now lasted about 11,600 years. 

 

3 The online Appendix 4 of Dagsvik et al. (2020) contains all the R codes used for the statistical analysis of the temperature data 

developed by Mariachiara Fortuna (mariachiara.fortuna1@gmail.com). 

mailto:mariachiara.fortuna1@gmail.com
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Figure B3 shows the cyclical and parallel fluctuations of reconstructed temperatures and CO2 

during the last 420,000 years according to results from the Vostok ice core record. By analysing 

Antarctic blue ice Yan et al. (2019) have found that the high correlation between  

temperature and CO2 also occurs up to 2 million years ago during the time when the glacial period 

appeared to be only 40,000 years. Moberg et al. (2005) and Lundqvist (2010), among others, have 

reconstructed temperatures for the northern hemisphere from AD 1 to 1979 (Figure B6 in 

Appendix B) by using data from borehole drillings, tree rings and lake sediments. These data show 

considerable variation in temperatures during the last two millennia, such as during the little ice 

age.  

Kobashi et al. (2011) have reconstructed Greenland surface snow temperature variability 

over the past 4,000 years (until 1993) at the GISP2 site (near the Summit of the Greenland ice 

sheet) with a new method that utilizes argon and nitrogen isotopic ratios from occluded air bubbles 

(Figure B4, Appendix B). These data indicate that warmer temperatures were the norm in the 

earlier part of the past 4,000 years, including century-long intervals nearly 1°C warmer than the 

decade (2001-2010). Therefore, it appears that the current decadal mean temperature in Greenland 

has not exceeded the envelope of natural variability over the past 4,000 years. Schönwiese (1995) 

has reconstructed temperatures from ice cores in Greenland for the last 11,000 years (Figure B5, 

Appendix B). These reconstructions show that during the past 10,000 years temperatures over long 

periods were higher than they are today. The warmest phase occurred 4,000 to 8,000 years ago 

and is known as the Holocene Climate Optimum or the Atlantic Period. 

There are other reconstructed temperature and CO2 measurements for the last few millennia 

not reviewed here. Some of them have similar patterns as the ones reviewed here whereas others 

(based on ice cores from different locations) show a different picture. Thus, similarly to the 

observed data displayed in Appendix D there appears to be considerable regional variations in the 

samples of reconstructed temperature data. Furthermore, there may be substantial measurement 

errors in the reconstructed data which contribute to the variation across different reconstructed 

data sets. 

 

2.2. Observed temperature records 

Data on observed temperatures stem from several sources. The sources are the National 

Aeronautics and Space Administration (NASA), the Goddard Institute for Space Studies (GISS), 

the European Climate Assessment & Data and national meteorological institutes, such as the 

Swedish Meteorological and Hydrological Institute and the Norwegian Meteorological Institute, 

the Hadley Centre Central England Temperature (HadCET dataset, starting in 1659) and the 
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University of Alabama at Huntsville (UHA) (Satellite data). The data, certified by NASA, 

comprise a large number of series of temperatures from more than 100 countries. The temperature 

data (observed) we have used in the statistical analysis in this paper were collected by Hov Moen 

(2020) from NASA. The time series are available as annual and monthly figures. These data are 

far from perfect since most of the series contain one or several periods of missing observations.  

Most of the series are corrected for environmental change in the surroundings of the 

measuring instrument and for errors arising at the point of measurement, such as known equipment 

or procedural faults, change of measuring site, change of surroundings, change of averaging 

method, etc. Presumably some of the data series may still be affected by a local urban heat island 

(UHI) effect larger than assumed by standard UHI correction techniques, or by temporal, local 

temperature inversions prevailing during winter periods with calm conditions in cold regions 

(O’Neill et al., 2022).  

By using several selection criteria, 75 time series from 32 countries were included in the 

statistical analysis in this paper. Most of these time series are updates of the series used by Dagsvik 

et al. (2020) in their analysis. The criteria were based on the quality of the data, such as length and 

number of missing observations. Note that the data are based solely on observed air temperatures. 

Thus, no sea surface temperatures are used in this study, in contrast to the global temperature series 

produced (constructed) by several climate research centers. The reason for not using sea surface 

temperature observations is that they are, apart from recent decades, not observed at given 

observation sites. Appendix C (online) contains more information about the temperature series 

used in this study. 

 

2.3. Global temperature construction 

Estimates of global temperatures are produced and maintained by the Met Office Hadley Centre 

(UK) (HadCRUT), the US National Oceanic and Atmospheric Administration, the National 

Climatic Data Center (USA) (NCDC), NASA Goddard Institute for Space Studies (USA) (NASA 

GISS) and UAH. Global surface temperatures are typically constructed as simple or weighted 

averages of observed local temperature anomalies. A temperature anomaly is the difference 

between the long-term average temperature (sometimes called a reference value) and the actual 

temperature.4 

 

4 Global Temperature Record, Climatic Research Unit web site http://www.cru.uea.ac.uk/cru/info/warming/, Global Temperature 

(Meteorological Stations), Goddard Institute of Space Studies web site http://data.giss.nasa.gov/gistemp/graphs/ 

http://www.cru.uea.ac.uk/cru/info/warming/
http://data.giss.nasa.gov/gistemp/graphs/
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The surface records represent a blend of sea surface data collected by moving ships, drifting 

and tethered buoys, satellite measurements from the troposphere (UAH), plus data from land 

stations of partly unknown quality and unknown degree of representativeness for their region. 

Specifically, values for each hemisphere are the simple or weighted average of all the non-missing, 

grid-box anomalies in the hemisphere. The weights used are the areas of the grid boxes or cosines 

of the central latitudes of each grid box. For the three global surface air temperature estimates, 

HadCRUT, NCDC and GISS, the reference period differs. HadCRUT refers to the period 1961-

1990, while NCDC and GISS as reference instead use 1901-2000 and 1951-1980, respectively, 

which results in higher positive temperature anomalies. For all three surface air temperature 

records, but especially NCDC and GISS, administrative changes to anomaly values are quite often 

introduced, even for observations several years back in time. Some changes may be due to the 

delayed reductions of stations or addition of new station data, while others probably have their 

origin in a change of technique to calculate average values. It is impossible to evaluate the validity 

of such administrative changes for an outside user of these records. In addition, throughout the 

19th century and early 20th century, sea surface measurements were typically obtained by drawing 

buckets of water onto a ship’s deck.  

During the 20th century the makeup of the measurement network shifted towards engine 

room intake water temperature measurements, special insulated buckets, and the use of hull contact 

sensors. The end of the 20th century saw the deployment of large networks of drifting buoys and 

other platforms, which continue to provide more comprehensive temperature measurement 

coverage than was previously possible using purely ship based measurements. Many of the land 

stations have also moved geographically during their existence, and their instrumentation changed. 

See Brohan et al. (2006) and O’Neill et al. (2022) for more evidence and discussion about the 

uncertainties and homogenization adjustments of the European temperature records. 

The satellite temperature records also have their problems, but these are generally of a more 

technical nature and therefore correctable. In addition, the temperature sampling by satellites is 

more regular and complete on a global basis than that represented by the surface records. 

It therefore appears that the different temperature records might not be of equal scientific 

quality. While both NCDC and GISS seem to have undergone quite large administrative changes, 

and therefore might be considered unstable, the changes introduced to HadCRUT3 are fewer and 

smaller (Figure 1B in Appendix B). It is apparent that the degree of uncertainty (measurement 

errors) in these global temperature series have changed over time. Also, the number of weather 

stations and sea observation sites have increased over time. As a result, the variance of the 

measurement errors has probably decreased over time. These features represent a serious obstacle 

https://www.climate4you.com/GlobalTemperatures.htm#Temporal%20stability%20of%20global%20air%20temperature%20estimates
https://www.climate4you.com/GlobalTemperatures.htm#GISS%20Aug1935%20and%20Aug2006
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for conducting rigorous statistical time series analysis based on the (constructed) global 

temperature series. Even if the underlying true temperature series for each weather station were 

stationary, the corresponding (constructed) global temperature series therefore might be non-

stationary. 

Essex et al. (2006) question the whole concept of global temperature. In summary, their 

argument goes as follows: There are an infinite number of ways one can construct weighted 

averages for any given set of local temperature data, since physical principles provide no explicit 

basis for choosing among them. Distinct and equally valid statistical rules can and do show 

opposite trends when applied to the results of computations from physical models and real data in 

the atmosphere. A given set of local temperature measurements distributed across the world can 

be interpreted as there are both a “warming” and a “cooling” tendency going on simultaneously, 

making the notion of global warming physically ill-posed. 

 

3. What are key sources of temperature variations? 

The sun is the main source of energy for the Earth. This energy is delivered in a form of solar 

radiation in different wavelengths, called total solar irradiance. Variations of solar irradiance lead 

to heating of the upper planetary atmosphere and complex processes of solar energy transport 

towards a planetary surface.  

As reviewed above, reconstructed temperature records obtained from ice core drillings 

show that there have been more or less regular glacial periods (Petit et al., 2001, see Figure B2 in 

Appendix B). The glacial periods appear to be roughly consistent with the Milankovitch cycles. 

Milankovitch cycles describe the collective effects of changes in the Earth's movements on its 

climate over thousands of years. The term is named after the Serbian mathematician and 

astronomer Milutin Milankovitch. Milankovitch (1879-1958) hypothesized that variations in 

eccentricity, axial tilt, and precession of the Earth’s elliptical orbit resulted in cyclical variation in 

the solar radiation reaching the Earth, and that this orbital forcing strongly influenced the Earth's 

climatic patterns.  

It is known that the oceans have an enormous capacity to store CO2, depending on the sea 

temperature. When the sea temperature rises, this capacity decreases. In contrast, it follows from 

Henry's law that when the CO2 level increases in the atmosphere, a corresponding proportionate 
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increase occurs in the oceans as well.5 What is observed is thus the net effect. Accordingly, one 

explanation of the graphs in Figure B3 in Appendix B is that the variation of the storage capacity 

of the oceans, due to fluctuating temperatures, is the dominating effect.  

In addition to seasonal variations and glacial periods, observed temperatures seem to vary 

for reasons that are only partly understood. Some of the variations are due to solar radiation, cloud 

formations and greenhouse gases (water vapor, argon, CO2, aerosols,6 methane, nitrous oxide and 

ozone).  

Recently, Zharkova (2020) and Zharkova et al. (2015) have studied the role of the solar 

background magnetic field in defining solar activity. By applying principal component analysis, 

they were able to quantify the observed magnitudes of magnetic field at different times and 

consequently make long-term prediction of solar activity on a millennium timescale. Their 

approach revealed a presence of not only 11-year solar cycles but also of grand solar cycles with 

duration of 350–400 years. They demonstrated that these grand cycles are formed by the 

interferences of two magnetic waves with close but not equal frequencies produced by the double 

solar dynamo action at different depths of the solar interior. These grand cycles are always 

separated by grand solar minima of Maunder minimum type, which regularly occurred in the past.7 

During these grand solar minima, there is a significant reduction of solar magnetic field and solar 

irradiance, which yields a reduction of terrestrial temperatures derived for these periods from the 

analysis of terrestrial biomass during the past 12,000 or more years. The most recent grand solar 

minimum occurred during the little ice age (Maunder Minimum) (1645–1710), which led to 

reduction of solar irradiance by 0.22 percent from the modern one and a decrease of the average 

terrestrial temperature by 1.0–1.5°C. According to the research by these authors there will be an 

upcoming grand solar minimum, when solar magnetic field and its magnetic activity will be 

reduced by 70 per cent. During this grand minimum, one would expect a reduction of the average 

terrestrial temperature, ceteris paribus, by up to 1.0°C in the decade 2031–2043.  

In other recent studies (Scafetta and Bianchini, 2022, and Yndestad, 2022) it is suggested 

that Earth’s global temperature variabilities have solar-lunar forced stationary temperature cycles 

of up to 4450 years. The primary causes of the identified multidecadal temperature variation is the 

stationary orbital cycles produced by the Jovian planets (Jupiter, Saturn, Uranus and Neptune) and 

 

5 Hendry’s law states that the mass of a dissolved gas in a given volume of solvent at equilibrium is proportional to the partial 

pressure of the gas. 
6 Areosols are liquid or solid particles (from volcanos for examples) that are small enough to be suspended in the air. 

7Maunder minimum stands for prolonged sunspot minimum. 
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the 18.6-year lunar nodal cycle resulting from the Earth’s axis nutation. According to this theory 

the sea surface temperature will have a deep minimum in 2070. 

The clouds are known to affect global temperatures on longer timescales. Solar variations 

and water vapor affect the abundance of clouds in our atmosphere according to research at the 

National Space Institute at the Technical University of Denmark and the Racah Institute of Physics 

at the Hebrew University of Jerusalem (Svensmark et al., 2016). Large eruptions on the surface of 

the Sun can temporarily shield Earth from so-called cosmic rays which appear to affect cloud 

formation.  

The most important greenhouse gas is water vapor which varies greatly at any given place 

and time. About 66-85 per cent of the natural greenhouse effect can be traced back to water vapor 

and small droplets in clouds (Varenholt and Lüning, 2015, ch. 6). The next most significant 

greenhouse gas is CO2, which is different from water vapor in that its concentration in the 

atmosphere is pretty much the same all over the Earth. The amount of CO2 and other gases that 

humans have added to the atmosphere over the past 250 years increases the ability of the 

atmosphere to impede heat from diffusing into space.  

But other variations may be the result of the climate system itself (chaotic behavior). In 

fact, there is no need for “external” influences to produce periodic and seemingly stochastic 

variations in processes governed by deterministic non-linear dynamic systems, such as GCMs. See 

for example May (1976) who demonstrates that a simple non-linear dynamic model exhibits 

chaotic behavior. A phenomenon such as El Niño may be the result of the climate system itself. 

El Niño Southern Oscillation (ENSO) is an oceanic-atmospheric circulation system in the 

Pacific region involving the El Niño phenomenon and the Southern Oscillation. The latter 

describes a pressure shift between the South Asian low pressure zone and the South Pacific high 

pressure zone. El Niño occurs in the tropical Pacific every 2-7 years, typically around Christmas 

time. The event is characterized by a strong warming of the upper layer in this oceanic region. 

When this happens, high pressure and low pressure atmospheric systems trade places, and this 

leads to a partial reversal in air and ocean currents. El Niño has profound impacts on the climate, 

which not only have consequences for the Pacific region but for the entire globe. For example, 

during warm El Niño years, Southern Asia, Australia and the Amazon area are plagued with 

drought, whereas other parts of South America are inundated by heavy rain. (Varenholt and 

Lüning, 2015, pp. 122 124).−  
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4. Review of the Global climate models 

GCMs are representations of the Earth’s climate system that can be used to analyze and simulate 

variations in the climate under different conditions, including the development of global 

temperature. Existing GCMs are comprehensive and complex, and it is almost impossible for non-

specialists to acquire more than a superficial understanding of them. Here, we shall only give a 

brief description of their key properties, based to a large extent on Curry (2011, 2017, 2023) and 

Voosen (2016). We refer to these authors and Bader et al. (2008) for more detailed descriptions 

and discussions.  

GCMs consist of a number of modules that represent the contributions to climate variations 

made by the atmosphere, ocean, land surface, sea ice and glaciers. The atmospheric module 

simulates the evolution of wind, temperature, humidity and atmospheric pressure using complex 

mathematical equations that can be solved only by using computers. GCMs also use equations that 

describe how heat is transported in the ocean and how the ocean exchanges heat and moisture with 

the atmosphere. GCMs have a sub-model for the land surface that describes how vegetation, soil 

and snow or ice cover exchange energy and moisture with the atmosphere. Finally, GCMs have 

sub-models that represent ocean ice and glaciers. While some of the relations in GCMs are based 

on well-established theory from physics, such as the Navier-Stokes equations, there are 

representations that are only approximations and not based on physical laws. Unfortunately, no 

analytic solution of the Navier-Stokes equations has so far been obtained.8 To solve all these 

equations approximately using computers, the atmosphere, oceans and land are divided into a 

three-dimensional grid (space and time resolution). Common resolutions for GCMs are about 100-

200km in the horizontal direction and about one km vertically, and a time-stepping resolution of 

about 30 minutes. Due to the relatively coarse resolutions of the models, there are many important 

processes that take place within the cells determined by the model resolution, such as clouds and 

precipitation. These ‘subscale’ processes are modelled using ad hoc parametric relations that are 

intended to be approximate representations of the actual processes, based on observations or 

derivations from more detailed models. The parameters in these relationships are calibrated so that 

the model fits the weather and climate observations in a selected period. The parameter choices 

associated with the ad hoc subscale models that represent clouds and precipitation are among the 

most demanding, and they are the reason for the largest differences between the simulations from 

different climate models. 

 

8 The Clay Mathematics Institute has declared the existence and analytic solution of the Navier-Stokes equations to be one of the 

top seven problems in all of mathematics and is offering a million $ prize for its solution. 
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The GCMs have various limitations. First, the effect of increasing CO2 emissions on the climate 

cannot be evaluated precisely on time scales that are of the order of less than or equal to 100 years. 

Second, there is a lack of knowledge of the uncertainty which is partly due to the choice of the 

subscale models and the parameterization and calibration of these, as well as insufficient data. 

Third, according to some evaluations, GCMs are not sufficiently reliable to distinguish between 

natural and man-made causes of the temperature increase in the 20th century. Some of the 

predictions from GCMs are accompanied by standard errors, as in statistical analysis. But since 

the GCMs are deterministic models one cannot interpret these standard errors in the same way as 

in statistics.9 Fourth, GCMs are typically evaluated applying the same observations used to 

calibrate the model parameters. In an article in Science, Voosen (2016) writes; “Indeed, whether 

climate scientists like to admit it or not, nearly every model has been calibrated precisely to the 

20th century climate records – otherwise it would have ended up in the trash”. Unfortunately, 

models that match 20th century data as a result of calibration using the same 20th century data are 

of dubious quality for determining the causes of the 20th century temperature variability. The 

problem is that some of the variables representing sources of climate variability other than 

greenhouse gases are not properly controlled for during the calibrations. The resulting calibration 

of the climate sensitivity may therefore be biased. Further critical evaluations are given by several 

authors, such as Essex (2022). 

As mentioned in the previous section climate can also change owing to internal processes 

within the climate system even without any variations in external forcings (chaos). In the GCMs 

the source of chaos is the nonlinearity of the Navier-Stokes equations. If the initial conditions are 

not known exactly for a dynamic model based on the Navier-Stokes relations the forecast trajectory 

will diverge from the actual one, and it is not necessarily the case that small perturbations have 

small effects.10 In fact, slightly different initial conditions can yield wildly different outputs.11 In 

order to assess the uncertainty due to internal variability, researchers use so-called ICE (Initial 

Condition Ensembles) simulations. This means that outputs of GCMs are simulated starting from 

 

9The reference to probability distributions in the context of GCMs can be somewhat misleading since climate models are not 

stochastic models according to common terminology. It simply refers to the distribution of results generated by simulations of 

different calibrated versions and scenarios. See Stephenson et al. (2012) for a discussion of this issue. See also Curry (2011) for a 

discussion of climate uncertainty. 

10 “Since the climate system is complex, occasionally chaotic, dominated by abrupt changes and driven by competing feedbacks 

with large unknown thresholds, climate prediction is difficult, if not impracticable.” (Rial et al., 2004). 

11 In 2001 IPCC researchers wrote: …in sum, a strategy must recognize what is possible. In climate research and modelling, we 

should recognize that we are dealing with a coupled non-linear chaotic system, and therefore that the long-term prediction of 

future climate states is not possible. The most we can expect to achieve is the prediction of the probability distribution of the 

system’s future possible states by the generation of ensembles of model solutions. Intergovernmental panel on climate change. 

synthesis Report, section 14.2.2.2, p. 774. 
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slightly different initial conditions. As the climate system is chaotic, slightly different initial 

conditions lead to different trajectories. 

 

5. How well do climate models predict past temperatures? 

The problem with assessing the effect on the climate from man-made increase of CO2 is that all 

else is not necessarily equal because other factors are at work that influence climate, such as 

important amplifiers and feedback mechanisms which are poorly understood, see Varenholt and 

Lüning (2015) and the references therein.12 One way of assessing the effect of CO2 emissions on 

the temperature is to apply the GCMs. A key question is therefore whether the GCMs can be 

trusted to provide reliable predictions. One way of examining the quality of the GCMs is to check 

if the temperature predictions (hindcasts) from the GCMs are able to track the global temperature 

time series. Several researchers have investigated the ability of GCMs to track temperature over 

time, as well as their ability to track the precipitation and sea level pressure in specific locations 

such as the Arctic and North America (Beenstock et al., 2016, McKitrick and Christy, 2020, Fildes 

and Kourentzes, 2011, and Koonin, 2021, pp. 86–96). At the outset, it is not entirely clear what it 

means to track global temperatures over time since global temperatures are not observed, they are 

constructs. Unfortunately, there is, as mentioned above, no obvious way of how global 

temperatures should be constructed, as it is not clear how the temperature output from GCMs 

should be interpreted. But it may seem reasonable to assume that even if the temperature output 

from the GCMs does not predict the same levels as the constructed global temperatures one should 

still expect that the pattern of variations of the two series are similar. 

Prior to Beenstock et al. (2016) the ability of GCMs to track global temperature series has 

not, to the best of our knowledge, been subjected to rigorous empirical testing by means of 

advanced statistical methods such as cointegration tests.13 In this section we summarize some 

results obtained by Beenstock et al. (2016), and McKitrick and Christy (2020). 

Let X(t) denote global air temperature at time t and let X be the corresponding time series 

(temperature process). Let Z(t) be a set (vector) of input variables that enters the GCMs at time t 

and let Z be the corresponding time series. As mentioned above, significant drivers of the 

temperature process included in Z are factors such as solar radiation, aerosols and greenhouse 

 

12 It has been well established that the forests of the Earth absorb a considerable amount of CO2. 

13 Kaufman and Stern (2004) have applied cointegration tests to annual forecasts for three GCMs and concluded that two of the 

three were cointegrated. Unfortunately, the critical values they used were too lenient because they did not correct for degrees of 

freedom, see Beenstock et al. (2016).  
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gases. Reconstructions of past values of these variables have been made by means of ice core 

samples. Let ˆˆ ( ) ( ( ); )X t g Z t b=  be the (predicted) temperature at time t produced by the GCMs, 

where ( ( ); ),g Z t b  as a function of Z(t), represents the relation between temperature at time t  and 

( )Z t  and b̂ is an estimate of b, which is a vector of unknown coefficients. The estimate b̂ is 

determined so that the GCM temperature output is close to parts of the global temperature records 

(calibration). As discussed above, some elements of the function g are derived from physics, while 

other elements have an ad hoc character.14 For reasons discussed above, X and X̂  are perceived 

as stochastic processes.  

Beenstock et al. (2016) have used data for X and X̂ produced by 22 selected GCMs for the 

period 1880-2010 to test whether the regression model ˆ( ) ( ) ( )X t X t v t = + +  fits the data, where 

  and   are unknown coefficients and { ( )}v v t=  is the error process assumed to be stationary 

with zero expectation and to be independent of ˆ ( ).X t  As data for X they use global temperature 

estimates given by NASA- GISS.  

From statistical theory it follows that the regression model above can only be estimated 

consistently if the error process v is stationary. The most important characteristic of a zero mean 

stationary process is that it mean-reverts to zero over time. This implies that if a global climate 

model happens to over- or under-predict global temperatures during a specific period, its hindcasts 

are expected to come back on track over time. Given that the error process is stationary,   and   

can be estimated by well-known methods. Otherwise, statistical methods may not lead to 

consistent estimates for   and .  In such situations it may happen that even though the true value 

of   is zero the estimate of   may not converge to zero as the sample increases. Beenstock et al. 

(2016) found that statistical tests rejected the hypothesis that the error process v is stationary, which 

means that the regression model postulated above does not hold. In other words, this means that 

the X̂  process produced by the GCMs is unable to track the X process (Global temperature). 

McKitrick and Christy (2020) have done a somewhat similar analysis for the period 1979-

2014 and they found that the GCMs overpredict the global temperatures after 2000. For further 

details we refer to their paper. Fildes and Kourentzes (2011) compared the tracking behavior of 

one GCM to simple time series and neural network models, and found that the latter outperformed 

the former, despite their simplicity.  

 

14 In principle, the model may also depend on Z(s) for s t  but for simplicity this is disregarded in this summary description. 

https://www.sciencedirect.com/science/article/pii/S0169207011000604#!
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            Although the predictions from the GCMs referred to above might be questionable, this 

does not mean that GCMs are unable to capture some of the temperature fluctuations in the past. 

According to Moberg et al. (2005) for example, graphs from simulation experiments using GCMs 

to hindcast temperatures for the period 1000–1990 show patterns that are qualitatively similar to 

the reconstructed temperature data shown in Figure B6 in Appendix B. Graphically, there may 

therefore seem to be some agreement between the reconstructed temperatures and the 

corresponding GCMs-based predictions.15 The finding that the GCMs are only capable of 

reproducing some of the temperature variations in the past casts serious doubts about their ability 

to produce credible climate scenarios. 

A weakness of the tests reviewed above is that the time series of measurement errors in the 

global temperature constructs most likely are non-stationary with unknown properties. Thus, it 

may be theoretically possible that the GCMs are able to track the “true” latent global temperature 

series reasonably well, despite the fact that they do not track the corresponding observed 

(constructed) one. In any case, the analyses of Beenstock et al. (2016), and McKitrick and Christy 

(2020) are startling and raise serious doubts about the quality of the GCMs, and in particular, if 

the CO2 sensitivity has been correctly identified.  

There are also other examples of informal tests, including some by IPCC. In an IPCC 

review it was claimed that “There continues to be very high confidence that the models reproduce 

observed large-scale mean surface temperature patterns (pattern correlation ∼0.99)” (IPCC, 

2014, p. 743)16. But as discussed above, the mere fact that these correlations are high does not 

necessarily mean that the GCMs that produced them have been validated successfully. When the 

temperatures predictions produced by GCMs have time trends, these correlations may be spurious, 

i.e., the models may happen to mimic global temperatures without there being any true relationship 

between them. Therefore, the usual empirical estimator of the correlation coefficient may not be 

consistent, that is, it may not converge to the true correlation coefficient as the sample increases. 

The statement by IPCC cited above is therefore misleading.17 

 

 

15 In the literature there are several other attempts to assess the performance of GCMs, see Beenstock et al. (2016) and references 

therein. 

16 IPCC (2014) Intergovernmental panel on climate change. 5th review. 

17 Gavin Schmidt, director of NASA’s GISS says: «Many of the world’s leading models are now projecting warming rates that 

most scientists, including the model makers themselves, believe are implausibly fast» (see Voosen, 2021). 
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6. Statistical time series analysis 

In Section 3 we summarized theories of sources of climate variations. The effect on climate and 

temperature from some of these sources is not well understood and therefore partly unknown. 

Consequently, to the observing analyst observed or reconstructed temperature series appear to 

fluctuate in an unsystematic (stochastic) manner with local trends that may be hard to explain. Due 

to the seemingly stochastic pattern of temperature fluctuations, it thus seems worthwhile to study 

the temperature phenomenon as realizations from a statistical (stochastic) model, and to investigate 

what the properties of such a model might be. It is particularly interesting to test whether the 

observed and reconstructed temperature data indicate a rejection of the hypothesis of stationarity 

(absence of systematic trends). Although it seems clear from the reconstructed temperatures that 

the temperature process is not stationary in time frames that are longer than the interglacial periods, 

the stationary hypothesis may still appear as a possible benchmark in time frames of a few hundred 

years, or even up to two millennia.   

The current paper extends the analysis of Dagsvik et al. (2020) by using observed 

temperature series up to 2021 for a set of weather stations, in contrast to the analysis of Dagsvik 

et al. (2020) who only analyzed a few temperature series up to 2012 whereas most of the 

temperature series used in their analysis ended between 1980 and 2012, see Section 2.2 and 

Appendices C and D for details.  

As mentioned above, the temperature process is affected by a set of variables (drivers), 

such as aerosols, greenhouse gases and variations in radiation from the sun, etc. Some of the drivers 

that affect the climate might appear to be stationary (including cyclical drivers such as sunspots 

and grand solar cycles) and others might appear to be non-stationary (CO2 emissions in the period 

after the industrial revolution). Although some of the drivers may be non-stationary, the 

temperature process may still be approximately stationary.  

Both annual and monthly temperature series are used in the empirical analysis we have 

conducted. The monthly temperature series have been seasonally adjusted and are normalized to 

have zero mean (for convenience).18 Both observed and reconstructed temperature series have the 

property that they are, or can be interpreted as, temporal aggregates of data generated at a finer 

(original) time scale where the aggregation takes place over a ‘large’ number of original time units. 

For example, weekly temperatures are defined as the average of daily (average) temperatures per 

week, monthly temperatures are the average of daily temperatures per month, etc. A formal 

 

18 See Dagsvik et al. (2020) for details about the seasonal adjustment procedure. 
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statement of this property is given as Property A below. As above, recall that { ( ), 0}X X t t=   

denotes the (observed) temperature process, which we view as a pure stochastic process. In the 

following, let N denote the set of integers, including zero, and let [t] denote the integer part of t.  

Property A 

           The process { ( ), 0}X t t   is generated as averages of observations at a finer (basic) 

timescale, i.e. 

  
[ ]

[ ] 1

1
( ) ( )

mt

q mt m

X t X q
m = − +

=    

where { ( ), }X q q N  denotes the process defined at the basic timescale. 

  

 Suppose, for example, that the unit of the basic timescale is “day” and that t indexes 

“month”. Then ( )X q is the temperature recorded at day q (properly adjusted for diurnal variation), 

30,m  and X(t) is defined as the temperature of month t. Here, it is understood that the 

enumeration of the days goes from 1 to mT where T is the length of the time series when using 

the timescale that corresponds to the observed data, which in this case is “month”. Alternatively, 

if t instead indexes “year”, then X(t) is defined as the temperature of year t and m = 365. In our 

case Property A is simply a formalized statement of how the observed time series (suitably adjusted 

for seasonal variations) have been constructed. 

If the temperature process { ( ), }X X q q N=   is strictly stationary and certain mild 

mathematical regularity conditions are met,19 the temporal aggregation property (Property A) of 

data implies surprisingly strong restrictions on the model of the observed temperature process, 

namely that it is, asymptotically (that is, when m is large), a so-called fractional Gaussian noise 

process (FGN) (Giraitis et al., 2012, Proposition 4.4.1, p. 77).20 In other words, the implied model 

(under strict stationarity) for the average annual or monthly temperatures is, asymptotically, FGN. 

The FGN process is a strictly stationary zero mean long memory Gaussian process with 

autocovariance function given by 

 

19 For details about regularity conditions, see Theorem 3, Appendix A in Dagsvik et al. (2020). 

20 Proposition 4.4.1 in Giraitis et al. (2012) requires that X is a (causal) linear process. Fortunately, Bickel and Bühlmann (1996) 

have proved that any strictly stationary process can be approximated arbitrarily closely (under a suitable metric) by linear 

processes. 
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2 2 2 2( ( ), ( )) 0.5 (( 1) 2 | 1| )H H HCov X t X t k k k k− = + − + −   

where 
2 ( ),0 1.VarX t H =    When k is large the autocovariance function reduces to 

(approximately) 

        
2 2 2( ( ), ( )) (2 1) .HCov X t X t k H H k −−  −   

Thus, the model is completely determined by two unknown parameters, namely the variance 2

of the temperature fluctuations and H (in our context H assumes values between 0.5 and 1) which 

determines how strongly the temperatures covary over time. In addition to being stationary and 

Gaussian, FGN has fractal properties. The term ‘fractal properties’ means that the structure of the 

model is invariant under scale transformations of the time unit. Furthermore, in continuous time 

the realized oscillation patterns are extremely irregular in the sense that although the sample paths 

are (almost surely) continuous they are (almost surely) not differentiable (Mandelbrot and van 

Ness, 1968, Mandelbrot and Wallis, 1968, 1969). Long-range dependence means that temperatures 

at time epochs that are far apart are noticeably correlated. The parameter H is called the Hurst 

index, named after the British engineer Harold Edwin Hurst (1880–1978), who seems to have been 

the first to use this type of modelling approach in empirical research. To get an impression of the 

irregularity and long-range dependence properties of FGN, different realizations of the model with 

1 =  and 3 levels of H have been simulated, see Figure B8 in Appendix B, which is taken from 

Dagsvik et al. (2020). The larger the value of H, the stronger the long-range dependence property 

of FGN. Remember that these simulations are stochastic, meaning that different simulations based 

on the same model parameters will produce different realized sample paths. These simulations 

display interesting variation patterns. Recall that the properties of the model are independent of 

which time unit is used. When H = 0.7, from about time unit 625 to about time unit 720 there 

seems to be a declining trend, while from about time unit 260 to about time unit 330 there is an 

increasing trend. When H = 0.8 and 0.9, this type of pattern is more pronounced. Thus, in this case, 

local trends can last several hundred units of time. Thus, unless the time series are long it may be 

difficult to distinguish systematic variations from pure stochastic variation in the presence of long-

range dependence because stationary models can exhibit long local trends. When H is greater than 

or equal to 0.9 (see lower panel of Figure B8), it may, unless the time series are very long, be 

almost impossible to separate systematic from stochastic trends without further a priori theoretical 

restrictions.  

As mentioned, the FGN model follows from temporal aggregation, given that the basic 

process defined at a finer time scale is stationary. In other words, the properties of this model do 

not necessarily reflect properties of the original series realized on the basic time scale, but is solely 
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a consequence of temporal aggregation. A crucial point is therefore whether the observed 

temperature process is in fact stationary, and if so, whether it is consistent with FGN. Recall that 

FGN is implied by the aggregation properties of data, under stationarity, given that certain 

mathematical regularity conditions are met, and that aggregation takes place over a large enough 

(unknown) number of days. Consequently, it is of interest to test both the hypothesis of stationarity 

and whether the data are consistent with FGN. Thus, the hypotheses to be tested are: 

Hypothesis B: the process X is stationary. 

Hypothesis C: the process X can be represented by FGN. 

Since FGN is stationary, hypothesis C implies hypothesis B. One method used to test hypothesis 

B is non-parametric and has been proposed by Cho (2016). This test is not based on specific model 

assumptions beyond general regularity conditions for the statistical distributions involved, and it 

uses random selected sub-samples from the temperature series and checks if there are possible 

local deviations from stationarity. It is therefore, to a certain extent, dependent on the researcher’s 

choice of the number of sub-samples (M) and the smallest size of the sub-samples (m). The method 

used to test hypothesis C, on the other hand, does not depend on M and m. Hypothesis C is tested 

by using a Chi-square type statistic (called the Q statistic) which measures how well the FGN 

model fits the data. Under hypothesis C, this measure will be approximately standard normally 

distributed. Hypothesis C has also been tested by using a more informal graphical method which 

will not be discussed here (see Dagsvik et al., 2020). 

 

7. Empirical results from statistical time series analysis 

For the monthly observed time series, hypothesis B was rejected for 10 series when using the non-

parametric test with significance level 5%. On the other hand, hypothesis B was rejected for only 

3 series when annual data were used (with a 5% significance level). Note that the monthly and 

annual time series cover the same time interval. Rejection of hypothesis B for some of the monthly 

series may be due to weaknesses in the method used for seasonal adjustment.21 A striking feature 

of these estimates is that the Hurst index H does not vary very much between weather stations 

(when accounting for standard errors). It was found that hypothesis C was rejected for four series 

when using the monthly data and three series when using the annual data (details are given in 

Appendices C and D). We have also analyzed the HadCET time series as well as the mean time 

series where the mean was taken across 74 weather stations used in the analysis. By using the same 

 

21 See Dagsvik et al. (2020) where our approach to seasonal adjustment is described. 
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tests as above, we found that the HadCET and the aggregate series were stationary and consistent 

with FGN. Further results are displayed in Table 1. Here, cH  and wH  denote the estimate of H 

based on the characteristics function approach and the Whittle approach, respectively. See Dagsvik 

et al. (2020) for details. The statistics 
cHQ and 

wHQ are goodness of fit measures based on the 

estimates cH  and ,wH  respectively. These statistics are standard normally distributed. Thus, if 

| | 1.96Q   it signifies that the model is rejected at the 5 per cent significance level. Table 1 shows 

that the model fit is sensitive to the estimates. Specifically, when the estimate cH  is used the model 

based on the annual aggregate data is rejected whereas when the estimate wH is used the model  

  

Table 1. Estimates of H and Q 

  
cH   

wH   SE 
wH   

cHQ   
wHQ   

Annual aggregate 0.854 0.904 0.057 -2.052 -0.384 

Monthly aggregate  0.798 0.766 0.016 -0.502 -3.077 

Annual HadCET 0.773 0.749 0.035  0.041 -0.780 

       

 

is not rejected. For the monthly aggregate data the estimate wH  implies rejection whereas the 

estimate cH  implies that the model is not rejected. 

Since global temperature constructions use different data sources at different time periods 

they become problematic to analyze with statistical time series methods, as mentioned above, 

because their statistical properties may vary over time in a way that is not known. Specifically, by 

looking at the HadCRUT3 time series (Figure B1 in Appendix B) it appears that the variance of 

the temperatures is greater the first 30 years than in the subsequent years. Indeed, by applying the 

non-parametric test described above we found that the HadCRUT3 time series (Figure 1B in 

Appendix B) is far from stationary. However, when comparing the HadCRUT3 series with the 

aggregate series obtained from 74 weather stations we see from Figure B7 in Appendix B that the 

overall trends of these series seem to be more or less similar. Still, as mentioned above, the 

aggregate series were found to be stationary in contrast to the HadCRUT3 series. This means that 

the trend in the aggregate series is unsystematic (stochastic). The reason why the HadCRUT3 

series is non-stationary may not be because of the increasing trend but because of the systematic 

change in the pattern of variations over time (variance and auto-correlation, not visible in the 

figure). We also found that the HadCET time series is stationary and consistent with the FGN 

model.  

Finally, we have checked if the reconstructed temperature series from Greenland is 

consistent with FGN. We found that this time series is also non-stationary. From Figure B4 in 
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Appendix B it is apparent that the temperature at several instances in the past were higher than 

recent observed temperatures. Kobashi et al. (2011) concluded that the current decadal mean snow 

temperature in central Greenland has not exceeded the envelope of natural variability of the past 

4000 years. 

Dagsvik et al. (2020) found that the reconstructed temperature data from the last two 

millennia (Moberg et al., 2005), see Figure B6 in Appendix B, were consistent with FGN. Recall 

that according to the theory of Zharkova et al. (2015) there are systematic grand solar cycles with 

durations 350-400 years. However, the statistical tests we have used do not reject stationarity. One 

reason for this may be that since the long-range dependence is very strong (H = 0.95) it appears 

difficult to detect departure from stationarity unless the observed time series are very long, or if a 

priori theoretical restrictions are imposed on the statistical model (cf. Figure B8 in Appendix B). 

 

8. Extreme temperature values 

In this section we shall establish bounds on the variation of the temperature process, under the 

FGN assumption. Given such bounds it is possible to assess whether extreme temperature 

observations are consistent with FGN or not. Pickands (1969) and others have obtained almost 

sure asymptotic bounds on extreme values of stationary Gaussian processes. A drawback with 

these results is that they are asymptotic (with slow convergence properties) and can therefore not 

be applied to compute corresponding bounds on extreme temperatures over finite time intervals. 

We shall therefore use an alternative approach. Let TM  denote the maximum temperature within 

the interval [0, T], where it is understood that the temperature process is normalized to have zero 

mean. We have the following result: 

 

Theorem 1 

Assume that { ( ), 1,2,...}X t t =  is a stationary Gaussian sequence with ( ) 0,EX t =   

2( )VarX t =  and ( ( ) ( )) 0.E X t X s   Then for 0x  we have 

( )
T

T

y
P M y



 
   

 
  

where ( )x  is the standard normal c.d.f. 

 

 The proof of Theorem 1 is given in Appendix A. 
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 When H = 0.5, FGN reduces to a white noise process and in this case the inequality in 

Theorem 1 becomes an equality. When H increases the inequality becomes less and less sharp. 

Theorem 1 can be used to calculate asymptotic upper bounds for the temperatures of the respective 

weather stations for a given connected time interval of length T. Specifically, this can be done by 

solving the equation ( )
T

Tx   =  for x where   is close to one. Let Tx   denote the solution of 

the above equation. Then it follows from Theorem 1 that T TM x   with probability greater than 

or equal to .  Let M  and D  be the standard deviation of the monthly and daily mean 

temperature, respectively (seasonally adjusted). Consider the daily upper bound over 50 years with 

0.999. = 22 Then we get that 5.24.Tx     

 In our data we only have observations of monthly and annual temperatures. Under the 

hypothesis of FGN it is easy to compute variances for other averages, such as daily or weekly 

average temperatures. It is easy to show that under the FGN hypothesis then 
130 H

M −
 is the 

approximate standard deviation of the daily temperature (maximum or average). Consider the 

upper bound for Oslo, for example. Estimates for Oslo are 2.08M   and 0.72H   implying that 

5.39.D   From these estimates and the formula above it follows that the upper bound for the 

daily normalized maximum temperature for a period of 50 years is about 21.3 degrees.23 Thus, the 

upper bound for the maximum daily temperature for a period of 50 years for Oslo in July becomes 

28.3 degrees Celsius plus the average maximum daily temperature for Oslo in July. Since the 

average maximum temperature for July is 22.7 degrees it follows that the upper bound of the 

temperatures in July in Oslo becomes 51.0 degrees Celsius. The highest temperature ever recorded 

in Oslo is 35 degrees (21 July 1901), which we note is substantially lower than the upper bound. 

If we consider New York City, 0.7H   and 1.83.M =  The average maximum temperature in 

July in New York is about 29 degrees Celsius. With 0.999 =  this implies that the upper bound 

for the maximum temperature for a period of 50 years in July in New York becomes about 55.6 

degrees Celsius. Thus, even in a stationary model with normally distributed variations, such as 

FGN, quite extreme temperature realizations are possible. 

 

  

 

22 This value of  means that the corresponding upper bound may be crossed once each thousand years, on average. 

23 The normalized temperature series have zero mean.  
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9. Concluding remarks 

In this paper we have reviewed data on climate and temperatures in the past and ascertained that 

there have been large (non-stationary) temperature fluctuations resulting from natural causes.  

            Subsequently, we have summarized recent work on statistical analyses on the ability of 

the GCMs to track historical temperature data. These studies have demonstrated that the time 

series of the difference between the global temperature and the corresponding hindcast from the 

GCMs is non-stationary. Thus, these studies raise serious doubts about whether the GCMs are 

able to distinguish natural variations in temperatures from variations caused by man-made 

emissions of CO2. 

Next, we have updated the statistical time series analysis of Dagsvik et al. (2020) based on 

observed temperature series recorded during the last 200 years and further back in time. Despite 

long trends and cycles in these temperature series, we have found that the hypothesis of stationarity 

was not rejected, apart from a few cases. These results are therefore consistent with the results 

obtained by Dagsvik et al. (2020). In other words, the results imply that the effect of man-made 

CO2 emissions does not appear to be sufficiently strong to cause systematic changes in the pattern 

of the temperature fluctuations. In other words, our analysis indicates that with the current level of 

knowledge, it seems impossible to determine how much of the temperature increase is due to 

emissions of CO2. 
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Appendix A 

Extreme values for stationary normal sequences 

The following result is useful for proving Theorem 1. 

 

Lemma 1 

Assume that { ( ), 1,2,...}X t t =  is a stationary Gaussian sequence with ( ) 0,EX t =   

( ) 1VarX t =  and ( ( ) ( )) 0.E X t X s   Then 

( )( ( ) ) ( ) .j j j j

j nj n

P X t x P X t x


 
   

 
   

 

The result of Lemma 1 follows from Slepian (1962). 
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Appendix B 

Figure B1. Global air temperatures (HadCRUT3) 

 

 

Figure B2. Reconstructed temperatures over the last 420,000 years 

 

 

Reconstructed global temperature based on the Vostok ice core from the Antarctica. The horizontal line indicates the 

modern temperature level. The red square to the right indicates the time interval shown in greater detail in 

https://www.climate4you.com/ 

 

https://www.climate4you.com/
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Figure B3. Reconstructed temperatures and CO2 for the last 420,000 years

    

 

Figure B4. Reconstructed temperatures from Greenland, 2000 BC to 2000 AD  
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Figure B5. Reconstructed temperatures from Greenland for the last 11,000 (Schönwiese, 

1995) 

 

NB: The original graph also includes greenhouse-induced predictions for the next 130 

years, not shown here. 

 

Figure B6. Reconstructed temperatures (Moberg et al., 2005), AD 1–1979  

 

 

  



 

34 

Figure B7. HadCRUT3 and aggregate annual air temperatures 
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Figure B8. Simulated realizations of the FGN process with unit variance and different  

                   values of the Hurst parameter
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Table C1. Summary information about data

Weather
station

First year Last year Years Nonmissing
months

Full length in
months

Missing
months

Aberdeen 1880 2018 139 1657 1669 12
Adelaide 1881 2021 141 1681 1692 11

Alexandria 1870 2021 152 1796 1825 29
Alice Springs 1881 2021 141 1679 1692 13

Allahabad 1881 2014 134 1559 1610 51
Andoya 1868 2021 154 1842 1854 12

Archangelsk 1881 2019 139 1657 1668 11
Athens 1858 2015 158 1887 1899 12
Atlanta 1881 2021 141 1683 1695 12
Basel 1755 2019 265 3141 3188 47

Bergen 1858 2021 164 1963 1974 11
Berlin 1756 2021 266 3186 3198 12

Bismarck 1880 2013 134 1606 1617 11
Bodo 1868 2021 154 1843 1854 11
Boise 1880 2021 142 1697 1708 11

Bombay 1881 2021 141 1671 1694 23
Boston 1881 2021 141 1684 1695 11

Budapest 1780 2021 242 2898 2910 12
Cap Otway 1865 2021 157 1840 1884 44

Chattanooga 1880 2021 142 1695 1707 12
Cincinatti 1880 2021 142 1696 1707 11
Columbus 1880 2017 138 1646 1657 11
Concord 1881 2021 141 1684 1695 11

Copenhagen 1798 2021 224 2677 2689 12
Des Moines 1880 2021 142 1696 1707 11

Detroit 1880 2021 142 1696 1707 11
Dodge City 1880 2021 142 1696 1707 11

Dombas 1865 2021 157 1876 1890 14
Fargo 1881 2021 141 1684 1695 11

Galveston 1881 2021 141 1684 1695 11
Geneva 1753 2019 267 3201 3212 11

Gibraltar 1852 2021 170 1985 2045 60
Hohenpeissenberg 1781 2021 241 2885 2898 13

Illulisat 1873 2021 149 1778 1794 16
Indianapolis 1881 2021 141 1684 1695 11

Indore 1880 2021 142 1677 1696 19
Jacksonville 1880 2021 142 1695 1708 13

Karasjok 1876 2021 146 1747 1758 11
Kazalinsk 1881 2021 141 1687 1698 11
Knoxville 1881 2021 141 1684 1696 12

Kremsmunster 1876 2021 146 1741 1752 11
Lahore 1876 2021 146 1746 1758 12
Lisbon 1880 2021 142 1697 1710 13

Madison 1880 2021 142 1697 1708 11
Madras 1880 2021 142 1693 1706 13

Marquette 1881 2021 141 1681 1696 15
Milwaukee 1881 2021 141 1685 1696 11

Mobile 1880 2021 142 1697 1708 11
Nagasaki 1880 2021 142 1699 1710 11
Nagpur 1880 2020 141 1684 1702 18
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Weather
station

First year Last year Years Nonmissing
months

Full length in
months

Missing
months

Nantes 1851 2021 171 2038 2053 15
Nashville 1880 2021 142 1697 1708 11

New Orleans 1874 2021 148 1738 1779 41
New York 1822 2020 199 2379 2390 11

Oksoy
Lighthouse

1870 2021 152 1818 1830 12

Ona 1868 2021 154 1831 1854 23
Oslo 1816 2021 206 2467 2478 11
Paris 1757 2021 265 3174 3186 12

Prague 1775 2021 247 2959 2970 11
Reykjavik 1870 2021 152 1819 1830 11

Roros 1871 2021 151 1806 1818 12
Sort 1881 2013 133 1566 1607 41

Sulina 1880 2021 142 1699 1710 11
Tokyo 1876 2021 146 1747 1758 11

Tromso 1868 2021 154 1842 1854 12
Uccle 1833 2021 189 2257 2268 11

Uppsala 1774 2021 248 2966 2979 13
Utsira 1868 2021 154 1843 1854 11
Vardo 1858 2021 164 1962 1974 12

Vestervig 1874 2021 148 1758 1770 12
Vienna 1855 2021 167 1929 2003 74

Wellington 1864 2021 158 1875 1902 27
Winnipeg 1880 2021 142 1694 1705 11

Zagreb 1861 2021 161 1915 1927 12
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Table C2. Estimates and test statistics based on monthly data

Name Hc Hw SE_Hw Q_Hc Q_Hw
Aberdeen 0.702 0.709 0.016 -0.411 -0.069
Adelaide 0.702 0.663 0.016 0.708 -0.953

Alexandria 0.825 0.827 0.016 -2.381 -2.170
Alice Springs 0.716 0.686 0.016 0.877 -0.556

Allahabad 0.678 0.679 0.017 -0.056 0.003
Andoya 0.724 0.717 0.015 -0.005 -0.405

Archangelsk 0.680 0.669 0.016 0.056 -0.358
Athens 0.697 0.704 0.015 -0.631 -0.322
Atlanta 0.637 0.635 0.016 -0.039 -0.070
Basel 0.654 0.639 0.012 -0.122 -0.736

Bergen 0.696 0.700 0.015 -0.485 -0.318
Berlin 0.685 0.682 0.012 -0.418 -0.529

Bismarck 0.663 0.656 0.016 0.062 -0.172
Bodo 0.692 0.696 0.015 -0.283 -0.138
Boise 0.672 0.661 0.016 0.037 -0.364

Bombay 0.802 0.818 0.016 -1.697 -0.091
Boston 0.694 0.668 0.016 0.473 -0.561

Budapest 0.666 0.671 0.012 -0.831 -0.609
Cap Otway 0.809 0.753 0.015 2.594 -2.582

Chattanooga 0.640 0.643 0.016 -0.175 -0.071
Cincinatti 0.649 0.640 0.016 0.038 -0.220
Columbus 0.618 0.637 0.016 -0.356 0.074
Concord 0.701 0.675 0.016 0.273 -0.874

Copenhagen 0.774 0.782 0.013 -0.976 -0.188
Des Moines 0.626 0.633 0.016 -0.108 0.060

Detroit 0.663 0.664 0.016 -0.131 -0.106
Dodge City 0.622 0.599 0.016 0.337 -0.163

Dombas 0.650 0.675 0.015 -0.754 0.065
Fargo 0.665 0.667 0.016 -0.247 -0.187

Galveston 0.690 0.697 0.016 -0.300 -0.041
Geneva 0.698 0.666 0.012 0.184 -1.654

Gibraltar 0.806 0.771 0.015 0.719 -2.642
Hohenpeissenberg 0.636 0.615 0.012 0.135 -0.535

Illulisat 0.743 0.773 0.016 -0.913 1.227
Indianapolis 0.610 0.618 0.016 -0.178 -0.029

Indore 0.740 0.713 0.016 0.597 -0.968
Jacksonville 0.634 0.660 0.016 -0.685 0.012

Karasjok 0.641 0.673 0.016 -0.594 0.380
Kazalinsk 0.680 0.730 0.016 -1.108 1.093
Knoxville 0.619 0.620 0.016 -0.138 -0.112

Kremsmunster 0.704 0.678 0.016 -0.012 -1.139
Lahore 0.657 0.700 0.016 -0.779 0.772
Lisbon 0.790 0.724 0.016 1.793 -3.143

Madison 0.645 0.656 0.016 -0.277 0.049
Madras 0.759 0.760 0.016 -0.816 -0.761

Marquette 0.720 0.711 0.016 -0.515 -0.989
Milwaukee 0.685 0.669 0.016 0.223 -0.395

Mobile 0.635 0.654 0.016 -0.406 0.097
Nagasaki 0.747 0.719 0.016 0.333 -1.386
Nagpur 0.690 0.704 0.016 -0.322 0.267
Nantes 0.667 0.655 0.014 -0.182 -0.651

4



Name Hc Hw SE_Hw Q_Hc Q_Hw
Nashville 0.601 0.615 0.016 -0.230 0.014

New Orleans 0.711 0.694 0.016 0.165 -0.639
New York 0.749 0.703 0.013 0.768 -2.451

Oksoy Lighthouse 0.735 0.800 0.016 -1.434 3.667
Ona 0.730 0.750 0.015 -0.693 0.538
Oslo 0.711 0.746 0.013 -1.154 1.121
Paris 0.748 0.677 0.012 2.018 -3.327

Prague 0.684 0.675 0.012 0.012 -0.461
Reykjavik 0.737 0.705 0.015 0.484 -1.340

Roros 0.673 0.702 0.015 -0.690 0.486
Sort 0.658 0.703 0.017 -0.657 0.932

Sulina 0.684 0.720 0.016 -1.110 0.465
Tokyo 0.801 0.750 0.016 1.356 -2.954

Tromso 0.675 0.689 0.015 -0.346 0.186
Uccle 0.676 0.655 0.014 0.103 -0.763

Uppsala 0.723 0.741 0.012 -1.021 0.319
Utsira 0.755 0.781 0.016 -0.898 1.192
Vardo 0.787 0.759 0.015 0.907 -1.540

Vestervig 0.753 0.802 0.016 -1.397 2.739
Vienna 0.709 0.676 0.015 0.254 -1.294

Wellington 0.843 0.783 0.015 3.334 -3.715
Winnipeg 0.675 0.683 0.016 -0.493 -0.165

Zagreb 0.710 0.686 0.015 -0.033 -1.232
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Table C3. Estimates and test statistics based on annual data

Name Hc Hw SE_Hw Q_Hc Q_Hw
Aberdeen 0.794 0.781 0.057 0.289 -0.058
Adelaide 0.910 0.793 0.056 7.018 -0.552

Alexandria 0.879 0.936 0.055 -1.818 3.067
Alice Springs 0.675 0.755 0.056 -0.560 0.495

Allahabad 0.710 0.783 0.058 -0.415 0.882
Andoya 0.797 0.773 0.054 1.018 0.303

Archangelsk 0.749 0.781 0.057 -0.652 -0.040
Athens 0.760 0.833 0.053 -1.127 0.787
Atlanta 0.731 0.749 0.056 -0.009 0.318
Basel 0.719 0.764 0.041 -1.753 -0.886

Bergen 0.793 0.747 0.052 0.588 -0.607
Berlin 0.739 0.750 0.041 -0.686 -0.424

Bismarck 0.753 0.753 0.057 0.186 0.176
Bodo 0.744 0.723 0.053 0.005 -0.357
Boise 0.779 0.739 0.056 0.608 -0.280

Bombay 0.807 0.915 0.057 -2.039 3.539
Boston 0.744 0.741 0.056 -0.374 -0.423

Budapest 0.721 0.753 0.043 -1.500 -0.892
Cap Otway 0.887 0.843 0.055 2.821 0.161

Chattanooga 0.732 0.729 0.056 0.271 0.213
Cincinatti 0.746 0.749 0.056 0.253 0.309
Columbus 0.722 0.717 0.056 0.451 0.370
Concord 0.814 0.766 0.056 0.676 -0.631

Copenhagen 0.825 0.789 0.045 0.568 -0.823
Des Moines 0.651 0.645 0.055 0.095 0.041

Detroit 0.722 0.699 0.055 0.410 0.043
Dodge City 0.675 0.741 0.056 -0.505 0.341

Dombas 0.689 0.657 0.052 -0.026 -0.379
Fargo 0.744 0.727 0.056 0.319 0.017

Galveston 0.713 0.737 0.056 -0.590 -0.265
Geneva 0.862 0.817 0.041 1.295 -1.204

Gibraltar 0.821 0.917 0.054 -2.032 3.351
Hohenpeissenberg 0.723 0.733 0.043 -0.742 -0.553

Illulisat 0.832 0.791 0.055 1.836 0.324
Indianapolis 0.686 0.680 0.055 0.025 -0.048

Indore 0.828 0.894 0.057 -0.506 3.053
Jacksonville 0.660 0.739 0.056 -0.621 0.282

Karasjok 0.695 0.672 0.054 0.238 -0.052
Kazalinsk 0.786 0.708 0.055 1.265 -0.474
Knoxville 0.736 0.706 0.056 0.205 -0.258

Kremsmunster 0.789 0.888 0.056 -2.375 1.019
Lahore 0.665 0.753 0.055 -0.303 0.921
Lisbon 0.948 0.933 0.057 4.772 2.035

Madison 0.676 0.680 0.055 0.047 0.097
Madras 0.836 0.902 0.057 -1.202 2.320

Marquette 0.757 0.775 0.056 -0.795 -0.461
Milwaukee 0.681 0.736 0.056 -0.693 -0.042

Mobile 0.669 0.739 0.056 -0.492 0.374
Nagasaki 0.835 0.791 0.056 0.529 -0.837
Nagpur 0.685 0.734 0.056 -0.224 0.450
Nantes 0.759 0.756 0.051 -0.682 -0.739
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Name Hc Hw SE_Hw Q_Hc Q_Hw
Nashville 0.601 0.698 0.055 -0.370 0.361

New Orleans 0.854 0.877 0.056 0.272 1.525
New York 0.917 0.860 0.048 5.050 -0.366

Oksoy Lighthouse 0.699 0.696 0.053 -0.326 -0.358
Ona 0.715 0.751 0.055 -0.691 -0.122
Oslo 0.717 0.720 0.046 -0.700 -0.652
Paris 0.885 0.833 0.041 0.882 -2.348

Prague 0.771 0.724 0.042 0.797 -0.484
Reykjavik 0.914 0.887 0.055 3.868 1.217

Roros 0.738 0.703 0.054 0.122 -0.426
Sort 0.643 0.595 0.056 0.227 -0.102

Sulina 0.708 0.743 0.056 -0.917 -0.478
Tokyo 0.934 0.856 0.056 5.734 -1.325

Tromso 0.681 0.676 0.053 -0.007 -0.059
Uccle 0.791 0.759 0.048 0.161 -0.715

Uppsala 0.749 0.735 0.042 -0.507 -0.805
Utsira 0.761 0.793 0.054 -0.639 0.097
Vardo 0.802 0.823 0.052 -0.233 0.502

Vestervig 0.729 0.766 0.055 -1.041 -0.466
Vienna 0.826 0.852 0.054 -1.109 -0.117

Wellington 0.868 0.937 0.055 -1.233 5.063
Winnipeg 0.768 0.764 0.056 0.090 0.003

Zagreb 0.783 0.863 0.053 -2.304 0.102
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Table C4. Stationarity test. Annual data

Name Test_statistics Test_result Test_criterion
Aberdeen 2.086 No rejection 5.783
Adelaide 3.273 No rejection 5.890

Alexandria 4.063 No rejection 5.527
Alice Springs 3.797 No rejection 5.774

Allahabad 2.590 No rejection 5.762
Andoya 4.899 No rejection 5.936

Archangelsk 3.568 No rejection 5.717
Athens 4.090 No rejection 5.570
Atlanta 3.606 No rejection 5.889
Basel 4.573 No rejection 5.963

Bergen 2.515 No rejection 5.834
Berlin 4.486 No rejection 5.982

Bismarck 3.335 No rejection 5.641
Bodo 4.479 No rejection 5.917
Boise 3.463 No rejection 5.632

Bombay 4.763 No rejection 5.861
Boston 3.319 No rejection 5.805

Budapest 4.501 No rejection 5.941
Cap Otway 3.901 No rejection 5.858

Chattanooga 3.598 No rejection 5.843
Cincinatti 4.177 No rejection 5.851
Columbus 2.884 No rejection 5.828
Concord 2.945 No rejection 5.855

Copenhagen 3.784 No rejection 5.958
Des Moines 2.720 No rejection 5.776

Detroit 3.489 No rejection 5.810
Dodge City 2.811 No rejection 5.823

Dombas 4.591 No rejection 5.850
Fargo 2.107 No rejection 5.463

Galveston 2.885 No rejection 5.879
Geneva 4.158 No rejection 5.952

Gibraltar 5.364 No rejection 5.855
Hohenpeissenberg 6.153 Rejection 5.997

Illulisat 3.701 No rejection 5.835
Indianapolis 3.003 No rejection 5.801

Indore 2.554 No rejection 5.849
Jacksonville 3.832 No rejection 5.821

Karasjok 4.224 No rejection 5.863
Kazalinsk 3.484 No rejection 5.755
Knoxville 3.523 No rejection 5.887

Kremsmunster 5.685 No rejection 5.773
Lahore 3.092 No rejection 5.893
Lisbon 5.661 No rejection 5.854

Madison 2.146 No rejection 5.793
Madras 4.372 No rejection 5.742

Marquette 2.616 No rejection 5.750
Milwaukee 2.522 No rejection 5.752

Mobile 2.679 No rejection 5.903
Nagasaki 3.997 No rejection 5.743
Nagpur 4.199 No rejection 5.869
Nantes 3.307 No rejection 5.847
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Name Test_statistics Test_result Test_criterion
Nashville 3.314 No rejection 5.854

New Orleans 4.297 No rejection 5.881
New York 4.566 No rejection 5.576

Oksoy Lighthouse 3.471 No rejection 5.876
Ona 3.670 No rejection 5.907
Oslo 4.438 No rejection 5.931
Paris 4.227 No rejection 5.954

Prague 3.994 No rejection 5.991
Reykjavik 3.708 No rejection 5.706

Roros 3.160 No rejection 5.814
Sort 3.892 No rejection 5.597

Sulina 4.297 No rejection 5.545
Tokyo 3.581 No rejection 5.576

Tromso 5.150 No rejection 5.891
Uccle 4.063 No rejection 5.945

Uppsala 2.854 No rejection 5.924
Utsira 3.879 No rejection 5.860
Vardo 3.108 No rejection 5.895

Vestervig 3.832 No rejection 5.856
Vienna 3.285 No rejection 5.783

Wellington 3.456 No rejection 5.484
Winnipeg 3.220 No rejection 5.584

Zagreb 4.396 No rejection 5.856
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Table C5. Stationarity test. Monthly data

Name Test_statistics Test_result Test_criterion
Aberdeen 3.818 No rejection 5.856
Adelaide 5.527 No rejection 6.064

Alexandria 4.473 No rejection 5.876
Alice Springs 3.768 No rejection 6.033

Allahabad 6.386 Rejection 5.727
Andoya 4.380 No rejection 5.981

Archangelsk 3.711 No rejection 5.563
Athens 5.573 No rejection 6.030
Atlanta 3.325 No rejection 6.067
Basel 3.873 No rejection 6.120

Bergen 3.345 No rejection 6.037
Berlin 5.279 No rejection 6.111

Bismarck 5.307 No rejection 6.026
Bodo 3.074 No rejection 6.028
Boise 6.780 Rejection 6.053

Bombay 4.124 No rejection 5.724
Boston 3.151 No rejection 6.017

Budapest 4.419 No rejection 6.120
Cap Otway 5.931 No rejection 6.025

Chattanooga 3.941 No rejection 6.042
Cincinatti 3.448 No rejection 6.041
Columbus 5.500 No rejection 6.046
Concord 3.853 No rejection 5.902

Copenhagen 5.233 No rejection 6.110
Des Moines 5.692 No rejection 6.049

Detroit 5.039 No rejection 6.031
Dodge City 4.780 No rejection 6.039

Dombas 5.196 No rejection 5.977
Fargo 3.972 No rejection 6.043

Galveston 4.581 No rejection 6.064
Geneva 5.030 No rejection 6.128

Gibraltar 6.070 Rejection 6.008
Hohenpeissenberg 3.238 No rejection 6.096

Illulisat 4.394 No rejection 6.043
Indianapolis 6.068 Rejection 6.039

Indore 5.084 No rejection 6.040
Jacksonville 4.216 No rejection 5.896

Karasjok 4.383 No rejection 5.878
Kazalinsk 3.728 No rejection 6.020
Knoxville 3.552 No rejection 6.071

Kremsmunster 4.519 No rejection 5.837
Lahore 6.268 Rejection 6.008
Lisbon 3.721 No rejection 5.828

Madison 4.101 No rejection 6.050
Madras 2.798 No rejection 5.938

Marquette 4.132 No rejection 5.945
Milwaukee 5.249 No rejection 6.057

Mobile 5.786 No rejection 5.827
Nagasaki 4.490 No rejection 6.060
Nagpur 4.037 No rejection 6.038
Nantes 6.136 Rejection 6.058
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Name Test_statistics Test_result Test_criterion
Nashville 5.682 No rejection 6.047

New Orleans 4.802 No rejection 5.978
New York 2.916 No rejection 5.956

Oksoy Lighthouse 4.470 No rejection 5.909
Ona 4.193 No rejection 6.037
Oslo 3.908 No rejection 6.041
Paris 5.169 No rejection 6.139

Prague 6.494 Rejection 6.108
Reykjavik 8.775 Rejection 6.006

Roros 3.609 No rejection 5.975
Sort 5.211 No rejection 5.823

Sulina 5.215 No rejection 6.066
Tokyo 4.151 No rejection 5.990

Tromso 2.912 No rejection 5.959
Uccle 3.492 No rejection 6.057

Uppsala 4.764 No rejection 6.131
Utsira 5.016 No rejection 5.994
Vardo 6.728 Rejection 6.063

Vestervig 5.105 No rejection 5.907
Vienna 4.187 No rejection 5.976

Wellington 7.499 Rejection 5.721
Winnipeg 3.764 No rejection 5.998

Zagreb 4.134 No rejection 6.017
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Table C6. Monthly and annual standard deviations of the temperature series

Name SD_annual SD_monthly_des
Aberdeen 0.585 1.225
Adelaide 0.570 1.229

Alexandria 0.701 1.047
Alice Springs 0.806 1.558

Allahabad 0.521 1.149
Andoya 0.789 1.530

Archangelsk 1.356 3.014
Athens 0.687 1.441
Atlanta 0.662 1.744
Basel 0.818 1.954

Bergen 0.766 1.616
Berlin 0.986 2.139

Bismarck 1.229 2.924
Bodo 0.867 1.824
Boise 0.932 2.061

Bombay 0.467 0.760
Boston 0.773 1.649

Budapest 0.929 2.047
Cap Otway 0.599 1.004

Chattanooga 0.723 1.818
Cincinatti 0.895 2.119
Columbus 0.804 2.088
Concord 0.878 1.810

Copenhagen 1.059 1.832
Des Moines 0.930 2.384

Detroit 0.892 2.006
Dodge City 0.814 2.124

Dombas 1.048 2.313
Fargo 1.183 2.683

Galveston 0.655 1.446
Geneva 0.841 1.775

Gibraltar 0.629 1.008
Hohenpeissenberg 0.897 2.183

Illulisat 1.665 3.225
Indianapolis 0.810 2.150

Indore 0.525 1.052
Jacksonville 0.648 1.561

Karasjok 1.301 3.130
Kazalinsk 1.256 2.834
Knoxville 0.708 1.846

Kremsmunster 0.933 1.941
Lahore 0.537 1.318
Lisbon 0.765 1.276

Madison 0.974 2.306
Madras 0.409 0.753

Marquette 1.208 2.243
Milwaukee 1.030 2.146

Mobile 0.607 1.597
Nagasaki 0.623 1.125
Nagpur 0.487 1.070
Nantes 0.754 1.654
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Name SD_annual SD_monthly_des
Nashville 0.709 1.952

New Orleans 0.764 1.641
New York 0.976 1.833

Oksoy Lighthouse 0.869 1.738
Ona 0.695 1.338
Oslo 1.006 2.078
Paris 1.051 1.953

Prague 0.962 2.102
Reykjavik 0.792 1.556

Roros 1.134 2.615
Sort 0.660 1.605

Sulina 0.872 1.874
Tokyo 0.750 1.230

Tromso 0.784 1.720
Uccle 0.833 1.841

Uppsala 1.145 2.315
Utsira 0.741 1.383
Vardo 0.977 1.620

Vestervig 0.949 1.789
Vienna 0.994 2.045

Wellington 0.679 1.043
Winnipeg 1.323 2.873

Zagreb 1.025 2.099
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−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.96

Bombay
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1880 1900 1920 1940 1960 1980 2000 2020

9

10

11

12

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.26
0.17 0.14 0.13 0.09 0.13 0.13 0.08 0.08 0.09

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.69

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

Self−similarity test 

Estimated H by regression = 0.7

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.97

Boston
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1800 1850 1900 1950 2000

8

9

10

11

12

13

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.28

0.13 0.11 0.08 0.05 0.08 0.08 0.1 0.08 0.09

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.67

1800 1850 1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

Self−similarity test 

Estimated H by regression = 0.67

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.97

Budapest
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1900 1950 2000

12.5

13.0

13.5

14.0

14.5

15.0

15.5

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.46
0.39

0.31 0.28 0.23 0.25 0.2 0.22 0.19 0.21

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.81

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.5

−1.0

−0.5

Self−similarity test 

Estimated H by regression = 0.82

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.98

Cap Otway
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1880 1900 1920 1940 1960 1980 2000 2020

15.0

15.5

16.0

16.5

17.0

17.5

18.0

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.22
0.11 0.07 0.08 0.04 0.03 0.06 0.05 0.02 0.05

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.64

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

Self−similarity test 

Estimated H by regression = 0.64

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.97

Chattanooga
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1880 1900 1920 1940 1960 1980 2000 2020

10

11

12

13

14

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.21
0.11 0.08 0.11 0.06 0.06 0.08 0.05 0.02 0.07

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.65

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

Self−similarity test 

Estimated H by regression = 0.66

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.96

Cincinatti
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1880 1900 1920 1940 1960 1980 2000 2020

10

11

12

13

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.2
0.09 0.05 0.1

0.03 0.05 0.05 0.03 −0.01 0.03

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.62

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.1

−2.0

−1.9

−1.8

−1.7

−1.6

−1.5

Self−similarity test 

Estimated H by regression = 0.62

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.95

Columbus
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1880 1900 1920 1940 1960 1980 2000 2020

5

6

7

8

9

10

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.28
0.19 0.16 0.14 0.09 0.13 0.13 0.11 0.1 0.09

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.7

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

Self−similarity test 

Estimated H by regression = 0.71

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.97

Concord
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1800 1850 1900 1950 2000

5

6

7

8

9

10
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Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.48

0.31
0.23 0.21 0.19 0.19 0.18 0.19 0.17 0.2

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.77

1800 1850 1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.5

−1.0

Self−similarity test 

Estimated H by regression = 0.78

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.97

Copenhagen
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1880 1900 1920 1940 1960 1980 2000 2020

8

9

10

11
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Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.2
0.09 0.06 0.07 0.06 0.02 0.04 0.04 0.02 0.03

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.63

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.1

−2.0

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

Self−similarity test 

Estimated H by regression = 0.63

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.97

Des Moines

26



1880 1900 1920 1940 1960 1980 2000 2020

8

9

10

11

12

Year

A
nn
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l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.25
0.13 0.1 0.13

0.06 0.09 0.09 0.06 0.01 0.04

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.66

1900 1950 2000

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

Self−similarity test 

Estimated H by regression = 0.67

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.97

Detroit
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1880 1900 1920 1940 1960 1980 2000 2020

11

12

13

14

15

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ 0.13

0.08 0.09 0.06 0.09
0.02 0.05 0.08 0.03 0.06

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.62

1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.1

−2.0

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

Self−similarity test 

Estimated H by regression = 0.63

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.97

Dodge City
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1900 1950 2000

−1

0

1

2

3

4

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.28

0.11 0.06 0.03 0.05 0.05 0.08 0.09 0.06 0.11

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.65

1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

Self−similarity test 

Estimated H by regression = 0.66

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.96

Dombas
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1880 1900 1920 1940 1960 1980 2000 2020

2

3

4

5

6

7

8

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.26
0.15

0.09 0.09 0.07 0.07 0.08 0.07 0.08 0.07

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.67

1900 1950 2000

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

Self−similarity test 

Estimated H by regression = 0.67

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.97

Fargo
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1880 1900 1920 1940 1960 1980 2000 2020

20

21

22

23

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.31

0.19
0.12 0.1 0.08 0.07 0.09 0.07

0.02 0.05

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.69

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

Self−similarity test 

Estimated H by regression = 0.69

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.92

Galveston
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1750 1800 1850 1900 1950 2000

8

9

10

11

12

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.27
0.16 0.14 0.11 0.12 0.13 0.12 0.13 0.14 0.14

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.7

1750 1800 1850 1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

Self−similarity test 

Estimated H by regression = 0.72

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.98

Geneva
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1850 1900 1950 2000

16.5

17.0

17.5

18.0

18.5

19.0

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.49

0.36
0.31 0.27 0.27 0.26 0.28 0.26 0.27 0.29

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.81

1850 1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.5

−1.0

−0.5

Self−similarity test 

Estimated H by regression = 0.81

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 2.01

Gibraltar
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1800 1850 1900 1950 2000

5

6

7

8

9

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.16
0.09 0.08 0.08 0.05 0.08 0.09 0.09 0.06 0.08

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.64

1800 1850 1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

Self−similarity test 

Estimated H by regression = 0.65

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.98

Hohenpeissenberg
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1900 1950 2000

−8

−6

−4

−2

0

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.45

0.26
0.2

0.11 0.09 0.09 0.09 0.1 0.14 0.16

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.74

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

Self−similarity test 

Estimated H by regression = 0.75

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.88

Illulisat
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1880 1900 1920 1940 1960 1980 2000 2020

10

11

12

13

14

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.18
0.07 0.02

0.07 0.03 0.04 0.06 0.04 −0.01 0.04

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.61

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.1

−2.0

−1.9

−1.8

−1.7

−1.6

−1.5

Self−similarity test 

Estimated H by regression = 0.62

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.96

Indianapolis
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1880 1900 1920 1940 1960 1980 2000 2020

23.5

24.0

24.5

25.0

25.5

26.0

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.35

0.21 0.2 0.2 0.15 0.17 0.15 0.15 0.14 0.14

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.74

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

Self−similarity test 

Estimated H by regression = 0.75

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.98

Indore
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1880 1900 1920 1940 1960 1980 2000 2020

18.5

19.0

19.5

20.0

20.5

21.0

21.5

22.0

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.25

0.12
0.06 0.05 0.04 0 0.01

0.07 0.05 0.08

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.63

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

Self−similarity test 

Estimated H by regression = 0.63

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.93

Jacksonville
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1900 1950 2000

−5

−4

−3

−2

−1

0

1

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.27

0.07 0.07 0.06 0.04 0.06 0.06 0.07 0.06 0.03

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.64

1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

Self−similarity test 

Estimated H by regression = 0.65

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.95

Karasjok
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1880 1900 1920 1940 1960 1980 2000 2020

6

7
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9
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11

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.37

0.14
0.07 0.06 0.04 0.06 0.06 0.05 0.04 0.05

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.68

1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

Self−similarity test 

Estimated H by regression = 0.68

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.9

Kazalinsk
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1880 1900 1920 1940 1960 1980 2000 2020

13

14

15

16

17

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.18
0.07 0.04 0.07 0.04 0.04 0.08 0.05 0.01 0.05

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.62

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.1

−2.0

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

Self−similarity test 

Estimated H by regression = 0.63

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.97

Knoxville
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Year

A
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l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.29
0.18 0.14 0.12 0.14 0.13 0.14 0.16 0.12 0.15

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.7

1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

Self−similarity test 

Estimated H by regression = 0.72

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.94

Kremsmunster
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1900 1950 2000

23.5

24.0

24.5
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25.5

Year

A
nn
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l t

em
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re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.31

0.14
0.08 0.05 0.04 0.02 0 0.04 0.04 0.07

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.66

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

Self−similarity test 

Estimated H by regression = 0.66

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.96

Lahore
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1880 1900 1920 1940 1960 1980 2000 2020

15.0

15.5

16.0

16.5

17.0

17.5

18.0

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.4
0.3 0.27 0.24 0.25 0.25 0.27 0.26 0.3 0.26

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.79

1900 1950 2000

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.5

−1.0

−0.5

Self−similarity test 

Estimated H by regression = 0.81

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 2

Lisbon
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1880 1900 1920 1940 1960 1980 2000 2020

5

6

7

8

9

10

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.24
0.12

0.06 0.09 0.05 0.04 0.07 0.05 0.05 0.04

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.64

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

Self−similarity test 

Estimated H by regression = 0.65

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.97

Madison
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1880 1900 1920 1940 1960 1980 2000 2020

28.0

28.5

29.0

29.5

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.45

0.31
0.2 0.16 0.18 0.17 0.17 0.15 0.17

0.24

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.76

1900 1950 2000

−3

−2

−1

0

1

2

3

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.5

−1.0

Self−similarity test 

Estimated H by regression = 0.77

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 2.01

Madras
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1880 1900 1920 1940 1960 1980 2000 2020

1

2

3

4

5

6

7

8

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.35
0.25

0.17 0.16 0.13 0.15 0.19 0.16 0.15 0.14

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.72

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

Self−similarity test 

Estimated H by regression = 0.73

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.97

Marquette
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1880 1900 1920 1940 1960 1980 2000 2020

6

7

8

9

10

11

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.26
0.16 0.11 0.14 0.12 0.11 0.14 0.1 0.07 0.08

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.68

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

Self−similarity test 

Estimated H by regression = 0.7

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.98

Milwaukee
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1880 1900 1920 1940 1960 1980 2000 2020

18.0

18.5

19.0

19.5

20.0

20.5

21.0

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.24
0.12

0.06 0.06 0.03 0 0.03 0.05
−0.02

0.04

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.63

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

Self−similarity test 

Estimated H by regression = 0.63

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.93

Mobile
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1880 1900 1920 1940 1960 1980 2000 2020

15.5

16.0

16.5

17.0

17.5

18.0

18.5

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.37
0.27 0.23

0.17 0.15 0.13 0.14 0.15 0.18 0.19

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.75

1900 1950 2000

−3

−2

−1

0

1

2

3

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

Self−similarity test 

Estimated H by regression = 0.75

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.98

Nagasaki
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1880 1900 1920 1940 1960 1980 2000 2020

25.5

26.0

26.5

27.0

27.5

28.0

28.5

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.32

0.19 0.14 0.1 0.09 0.09 0.11 0.07 0.07 0.08

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.69

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

Self−similarity test 

Estimated H by regression = 0.69

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.95

Nagpur
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1850 1900 1950 2000

10

11

12

13

14

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.24
0.14 0.09 0.07 0.11 0.1 0.1 0.07

0.13 0.11

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.67

1850 1900 1950 2000

−6

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

Self−similarity test 

Estimated H by regression = 0.68

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.96

Nantes
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1880 1900 1920 1940 1960 1980 2000 2020

14.5

15.0

15.5

16.0

16.5

17.0

17.5

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.17
0.08

0.03 0.06 0.02 0.01 0.05 0.04
−0.02

0.04

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.6

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.1

−2.0

−1.9

−1.8

−1.7

−1.6

Self−similarity test 

Estimated H by regression = 0.6

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.95

Nashville
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1900 1950 2000

19

20

21

22

23

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.32
0.19

0.13 0.12 0.11 0.1 0.12 0.13
0.06 0.1

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.71

1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

Self−similarity test 

Estimated H by regression = 0.72

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.94

New Orleans
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1850 1900 1950 2000

9

10

11

12

13

14

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.35
0.24 0.21 0.22 0.18 0.19 0.21 0.18 0.15 0.18

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.75

1850 1900 1950 2000

−4

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

Self−similarity test 

Estimated H by regression = 0.76

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.98

New York
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1900 1950 2000

6

7

8

9

10

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.47

0.24
0.16 0.12 0.11 0.09 0.09 0.09 0.09 0.1

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.74

1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

Self−similarity test 

Estimated H by regression = 0.73

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.94

Oksoy Lighthouse
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1900 1950 2000

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.4

0.21 0.16 0.16 0.15 0.15 0.15 0.13 0.13 0.1

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.73

1900 1950 2000

−3

−2

−1

0

1

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

Self−similarity test 

Estimated H by regression = 0.74

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 2

Ona
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1850 1900 1950 2000

4

5

6

7

8

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.39

0.2
0.12 0.11 0.1 0.08 0.08 0.1 0.1 0.11

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.71

1850 1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

Self−similarity test 

Estimated H by regression = 0.71

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.96

Oslo
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1750 1800 1850 1900 1950 2000

8

9

10

11

12

13

14

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.31
0.23 0.21 0.2 0.19 0.2 0.2 0.18 0.21 0.21

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.75

1750 1800 1850 1900 1950 2000

−6

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

Self−similarity test 

Estimated H by regression = 0.77

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.98

Paris
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1800 1850 1900 1950 2000

7

8

9

10

11

12

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.28

0.14 0.12 0.09 0.05 0.07 0.09 0.1 0.09 0.1

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.68

1800 1850 1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

Self−similarity test 

Estimated H by regression = 0.69

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.94

Prague
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1900 1950 2000

3

4

5

6

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.34
0.22 0.21 0.18 0.15 0.12 0.12 0.14 0.14 0.16

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.74

1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

Self−similarity test 

Estimated H by regression = 0.75

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.97

Reykjavik
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1900 1950 2000

−2

−1

0

1

2

3

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.32

0.13 0.08 0.06 0.05 0.06 0.08 0.07 0.07 0.06

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.67

1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

Self−similarity test 

Estimated H by regression = 0.68

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.94

Roros
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1880 1900 1920 1940 1960 1980 2000

13

14

15

16

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.32

0.15
0.06 0.08

0.02 0.04 0.02 0.02 −0.01
0.05

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.66

1900 1950 2000

−2

0

2

4

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

Self−similarity test 

Estimated H by regression = 0.64

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.99

Sort
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1880 1900 1920 1940 1960 1980 2000 2020

10

11

12

13

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.35

0.18 0.14 0.09
0.03 0.06 0.05 0.05 0.05 0.06

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.68

1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

Self−similarity test 

Estimated H by regression = 0.68

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.95

Sulina
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1900 1950 2000

14.0

14.5

15.0

15.5

16.0

16.5

17.0

Year

A
nn

ua
l t

em
pe

ra
tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.46
0.36 0.31

0.24 0.24 0.21 0.22 0.23 0.27 0.3

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.8

1900 1950 2000

−3

−2

−1

0

1

2

3

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.5

−1.0

−0.5

Self−similarity test 

Estimated H by regression = 0.82

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 2.01

Tokyo
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1900 1950 2000

1
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A
nn
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l t
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tu

re

2 4 6 8 10

−0.5

0.0

0.5

1.0

 Autocorrelation

Lag
ρ

0.3

0.14 0.1 0.1 0.07 0.08 0.08 0.07 0.08 0.06

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.68

1900 1950 2000

−3

−2

−1

0

1

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

Self−similarity test 

Estimated H by regression = 0.68

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 2.01

Tromso
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−0.5

0.0

0.5

1.0

 Autocorrelation
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ρ

0.24
0.14 0.09 0.1 0.1 0.12 0.12 0.1 0.11 0.1

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.68

1850 1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

Self−similarity test 

Estimated H by regression = 0.69

−2.0 −1.5 −1.0 −0.5 0.0

−5

−4

−3

−2

−1

Normality test 

Estimated alpha = 1.95

Uccle
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0.5

1.0

 Autocorrelation
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ρ

0.4

0.22
0.14 0.12 0.12 0.1 0.1 0.11 0.1 0.12

Empirical autocorrelation
FGN theorical autocorrelation, H= 0.72

1800 1850 1900 1950 2000

−4

−2

0

2

 Deviation from the mean

0.0 0.5 1.0 1.5 2.0 2.5

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

Self−similarity test 
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