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ABSTRACT: Residence time is an important parameter associated to in vivo drug’s safety and efficacy. The determination or 

modulation of kinetic rates correlated to residence time is performed to identify the best drug candidates in an early stage of drug 

design project. Herein, we developed a novel computational methodology based on molecular dynamics simulations and transition 

state theory in order to predict ligand unbinding pathways, kinetic rates and residence times. The studied set was composed of eight 

ligands with fast, intermediate and slow dissociation rates and binding to the active and inactive states of p38α protein kinase. The 

proposed method provides an excellent correlation between the predicted values and the experimentally measured kinetic rates, in 

addition to a detailed characterization of the kinetic paths at the atomic level. 

The drug candidate optimization and selection processes are 

often based on equilibrium thermodynamic constants such as 

the dissociation constant (KD) and the half maximal inhibitory 

concentration (IC50). Nonetheless, a high number of molecules 

still fails in phase II clinical trials during the evaluation of 

their efficacy in humans[1], resulting in high attrition rates and 

R&D costs. Indeed, in an in vivo delivery system, the dynamic 

of distribution and excretion modifies regularly the availability 

of a drug for binding to its target. This biological phenomenon 

requires predictive parameters that take into account the dy-

namic behavior of ligand binding to increase the success rate 

in clinical trials. In the last decade, binding kinetic constants 

(kon and koff) and in particular residence time (RT), emerged as 

good indicators of the in vivo efficacy.[2,3] Highlighted in 

2004 by Swinney and introduced thereafter in 2006 by 

Copeland et al,[4, 5] RT (1/koff), which reflects the lifetime of 

a drug-target complex, significantly influences pharmacody-

namics. So, RT-based ligand optimization may strongly im-

prove drug’s selectivity, efficacy and safety.[6,7] 

Nowadays, a number of experimental methods are available 

to measure protein-ligand binding kinetics, as technologies 

using a labeled molecule such as fluorescence labeling, 

radioligand binding assays or stopped-flow technology, or 

label-free technologies such as surface plasmon resonance 

(SPR).[8] However, the high cost of these techniques does not 

allow their use to provide kinetics data for a large number of 

molecules. While many efforts are currently pursued in kinet-

ics rate prediction, no efficient computational approach has 

still been developed to correctly estimate kinetics parameters. 

Nevertheless, recent studies have shown the possibility of 

simulating the association process of a ligand to a target with 

conventional molecular dynamics (cMD) for processes in the 

range of a few microseconds.[ 9,10] Despite the progress of 

computing power, cMD remains very expensive in computa-

tional time and simulating dissociation events in the range of 

minutes to hours is still challenging, even by including an 

artificial bias. Thus, the development of enhanced computa-

tional methods is strongly needed to simulate the protein-

ligand unbinding process and predict efficiently kinetics rate 

values and residence time. 

Some efforts have recently been carried out in this direction. 

We could mention for instance the estimation of the dissocia-

tion rate of the benzamidine-trypsin complex by adaptive 

multilevel splitting method and metadynamics[11,12] or the 

one of a fragment of Doramapimod-p38α complex by 

metadynamics[13] leading to RTs in good agreement with the 

experimental values. However, these methods were applied 

only on one ligand and have some limitations in the choice of 

the metadynamic collective variables. In another study, the 

RTs of seven inhibitors of glucokinase GK1 was estimated by 

scaled MD.[14] These predicted RTs were directly deduced 

from simulation times and the energetic profiles of transition 

states were omitted. Finally, in all those studies, inhibitors 

have RTs in the range of several seconds while longer RTs are 

desired for many drugs in clinical trials. 

In this work, we developed and applied a novel method to 

predict RT on p38α mitogen-activated protein kinases. This 

protein kinase plays a key role in regulating the pro-

inflammatory cytokines biosynthesis and is a therapeutic tar-

get for the treatment of autoimmune and inflammatory diseas-

es.[15] Like most protein kinases, p38α exists in two major 

conformational states: an active state (DFG-in) in which the 

ligands bind in the ATP opened pocket and an inactive state 

(DFG-out) in which a second hydrophobic pocket is opened 

through a conformational switch of the DFG motif.[16] The 

inhibitors targeting the active conformation of the protein 

kinase are called type I inhibitors and the ones binding the 

inactive form, type II inhibitors. Here, we explore the unbind-

ing paths of eight p38α kinase inhibitors, among them three 

are type I and five are type II. We also estimate the associated 



 

unbinding free energies by using bootstrapping and Weighted 

Histogram Analysis Method (WHAM) and the binding kinetic 

constant of the compounds with the help of transition state 

theory (TST). 

To challenge the novel predictive approach, the choice of 

the ligands was based on three criteria: 1) ligands of different 

sizes such as fragments and ligands belonging to two different 

chemical series, 2) experimental residence times ranging from 

seconds to hours, 3) type I and II kinase inhibitors to evaluate 

the conformational state of the protein kinase (active or inac-

tive) (Table 1, similarity matrix and chemical structures in 

Figure S1). Among the selected ligands, three of them, B96, 

BMU, SB6, are structurally solved in complex with p38 and 

available under PDB codes 1KV2, 1KV1 and 1A9U respec-

tively. For the other ligands, the structure of each protein-

ligand complex was built by making minor substitutions of the 

most similar solved ligand in its crystallographic structure 

(SI.2.1, Table S1). 

 

 

Table 1. Comparison of experimental affinities, kinet-

ics, and protein conformation states of studied inhibi-

tors 

Ligand 
[a]

 
KD (M)

 
 koff (s

-1
)  RT 

Exp. 
DFG 
orien-
tation 

Experi-
mental 
method 
[reference] 

B96 6.1e-10 5.2e-5 5.3 h Out SPR
[17]

 

BMU 1.1e-6 2.8e-2 35.7 s Out SPR
[17]

 

SB5 4.0e-8 2.7e-2 37 s In SPR
[17]

 

SB6 7.8e-8 1.3e-1 7.7 s In SPR
[17]

 

SB7 5.1e-8 6.7e-2 14.9 s In SPR
[17]

 

BR5 9.7e-11 1.5e-5 18.5 h Out SFF
[18]

 

BR8 2.3e-8 3.3e-3 5 min Out SFF
[18]

 

B12 1.6e-8 2.6e-5 10.6 h Out SFF
[18]

 

[a] Structures reported in Figure S1., SPR: Surface Plas-
mon Resonance, SFF: Stopped-Flow Fluorescence 

To investigate the unbinding process of each ligand, we 

simulated their behavior along the dissociation event, from the 

binding pocket up to the solvent, using steered molecular 

dynamics (SMD). We applied a biasing force to steer the 

ligand out from the binding site by increasing the distance 

between the center of mass of the ligand (COMLig) and the 

center of mass of the binding site (COMBS) with a constant 

velocity of 1 Å.ns
-1

. This unsupervised approach allows the 

ligand to find the exit path according to the encountered ener-

getic barriers. Since the exploration of paths can change from 

one simulation to another, we performed ten replicates of 

simulations per ligand in order to sample a large number of 

events. This number of replicates is recommended to have a 

statistically meaningful estimation of kinetics.[19] 

As expected, all replicates of type I inhibitors SB5, SB6 and 

SB7 select dissociation paths toward the solvent area side of 

the ATP pocket, since the allosteric pocket is not available in 

the DFG-in conformation. They all have short RTs. In the case 

of the type II inhibitors, for which two pockets exist, we ob-

serve two interesting exit paths. For the inhibitors with a long 

RT such as B12, B96 and BR5, dissociation pathways go 

through the solvent area side of the allosteric pocket in all 

replicates. In the case of the inhibitors BMU and BR8 having 

short and medium RT, five replicates present an exit path 

through the solvent area side of the ATP pocket and five 

through the allosteric pocket (Figure 1 (a)). These observa-

tions show that short and long RTs are mainly induced by 

ATP and allosteric channels respectively. To estimate the free 

energy of dissociation with a reasonable statistical relevance, 

we considered the ten replicates for each ligand, including 

those taking two different paths. 

Using biased molecular dynamics simulations such as SMD, 

the free energy profile is obtained as a function of a reaction 

coordinate. This energy profile is referred to potential of mean 

force (PMF). The PMF is usually calculated from the work of 

the steering force using the Jarzynski equality, which allows to 

compute free energy differences.[20] If the sampling is insuf-

ficient, the simulations have to be restarted with longer veloci-

ties. However, evaluating the quality of sampling to obtain a 

relevant estimation remains difficult with this method. To 

solve this issue, we first applied a bootstrapping approach 

where each path is split, according to the reaction coordinate, 

into small windows of 0.5 Å. Then, we generated from the 

centroid of each window a new statistically robust distribution 

(SI.2.5, Figure S3) by performing 5 ns of resampling with the 

same parameters as those used in the SMD method, leading to 

a total of 450 ns per replicate and of 4.5 μs for each ligand. 

Then, the PMF was rebuilt from the new probability distribu-

tions using WHAM. [21] (Figure 1 (b) for BMU, Figure S4 for 

all ligands). 

Our estimation of free energies was motivated by the Bell-

Evans theory of binding kinetics,[22-23] which is supported 

by previous experimental studies showing a correlation be-

tween the height of the energy barriers (E) and the measured 

koff .[24-25] This correlation follows an Arrhenius law where 

A is the pre-exponential factor, kB is the Boltzmann constant 

and T is the temperature [Eq. (1)]. 

k    .e  k  T      1  

Assuming that the dissociation events of the studied kinase 

inhibitors follow an Arrhenius like behavior, the estimation of 

their activation free energies, which correspond to the energy 

barriers E in Eq. (1), can be used to calculate the dissociation 

rate (koff). For this purpose, the transition state theory (TST) is 

used according to Eq. (2), where ΔGoff is the absolute unbind-

ing free energy of activation. 

koff    .e
  Goff k  T         

Another variant of Eq. (2) can be written by using the loga-

rithm and the equation above is in the form y=ax+b [Eq. (3)]. 

 log k
off
   Goff k T   log       3  



 

koff can be calculated from the determination of the pre-

exponential factor (A) and the slope from a linear correlation.. 

We estimated ΔGoff in a context of a kinetic model having two 

energetic states (bound and unbound states) and by consider-

ing that the resampled replicates explore the transition states 

and describe the rare events between these two states. This 

activation free energy was calculated as the  Goff’s average of 

the ten replicates for each inhibitor (⟨ Goff⟩) (table 2). 

Figure 1. Unbinding simulation results for the ligand BMU: (a) 

ATP pocket path from replicate 3 and allosteric pocket path from 

replicate 9. Each point represents the position of the COMLig at 

each step of the simulation. (b) Potential of Mean Force (PMF) 

built from bootstrapping of each replicate. 

 

 

Figure 2. The correlation between the experimental and predicted 

koffs. 

The linear regression analysis between the estimated ⟨ Goff⟩ 
and the experimental koff values disclose a very strong positive 

correlation with a coefficient of determination r
2
 of 0.88 and a 

good confidence interval (Figure S5). The linear regression 

equation (y=0.26x-1.11) was used to calculate the predicted 

koffs, and RTs were deduced from these predicted koffs (Figure 

2, Table 2). It should be noted that a weak correlation (r
2
=0.4) 

is obtained when the linear regression analysis is made be-

tween the estimated ⟨ Goff⟩ and the experimental affinity 

values KD (Figure S6). 

 

Table 2. Comparison of Experimental RT, Predicted 
RT and average of relative activation free energy 
⟨∆Goff⟩. 

Ligand ⟨∆Goff⟩ (kcal.mol
-1
) RT Pred RT Exp 

B96 36.1 1.2 h 5.3 h 

BMU 23.8  2.8 min 35.7 s 

SB5 13.5 11 s 37 s 

SB6 10.2 4 s 7.7 s 

SB7 16.6 25 s 14.9 s 

BR5 42.1 5.7 h 18.5 h 

BR8 33.6 36 min 5 min 

B12 45.5 13.9 h 10.6 h 

 

The proposed method ranks most inhibitors according to 

their experimental RTs and in respect of their time scales 

(seconds, minutes, hours). These results are very encouraging 

and show that it is possible to apply molecular dynamics simu-

lations to predict the kinetics parameters of inhibitors with 

long RTs and with medium and short RTs. However, the accu-

racy of the predictive power of the method is sensitive to 

reliable experimental values, to the heterogeneity of assay 

conditions or to the kinetic behaviour, for which the Arrhenius 

linearity is not always perfect. While the predicted koff values 

obtained here are in good agreement with experimental values, 

these parameters have to be taken into account in future stud-

ies to improve the method. 

In summary, we explored at the atomic level the mechanism 

of dissociation of eight type I and II kinase inhibitors having 

long, medium short RTs. We first demonstrated that the RT 

scale depends on the path followed by the ligand, from the 

ATP pocket side or from the allosteric pocket side for inhibi-

tors with short or long RTs respectively. These results provide 

new insights in the optimization of p38α inhibitors. If the goal 

is to increase the RT, the synthesis of the molecules should be 

guided so that the ligand dissociation from the allosteric side is 

favored, according to the interactions characterized at the 

atomic level (Video SI.4). Then, we estimated the activation 

free energies for each inhibitor from the simulated dissociation 

paths. With the help of a linear regression analysis, we show 

an excellent correlation between calculated energies and 

measured koff. This means that the dissociation process follows 

an Arrhenius-like behaviour, irrespective of the receptor’s 

conformation states. This linear regression model was used to 

predict RTs of eight inhibitors using the transition state theory. 

Using an original computational approach, we were able to 



 

clearly differentiate the protein kinase inhibitors with short, 

medium and long RTs. However, further studies are needed to 

improve the absolute values of the predicted RT and to vali-

date the method on other therapeutic targets. 
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