
 

AN-724
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com 

 
ADuC70xx Serial Download Protocol 

 

 

Rev. C | Page 1 of 8 

INTRODUCTION 
A key feature of the MicroConverter® product family is the ability 
of the devices to download code to their on-chip Flash/EE pro-
gram memory while in-circuit. An in-circuit code download is 
conducted over the device UART serial port, and is thus commonly 
referred to as a serial download. The serial download capability 
allows developers to reprogram the part while it is soldered 
directly onto the target system, avoiding the need for an external 
device programmer. The serial download feature also enables 
system upgrades to be performed in the field; all that is required 
is serial port access to the MicroConverter. This means manu-
facturers can upgrade system firmware in the field without 
having to swap out the device. 

Any MicroConverter device can be configured for serial down-
load mode via a specific pin configuration at power-on or during 
the application of the external reset signal. For the ADuC70xx 
family of MicroConverters, the BM input pin is pulled low 
through a resistor (1 kΩ). If this condition is detected by the  
part at power-on or during application of a hard reset input,  
the part enters serial download mode. In this mode, an on-chip 
resident loader routine is initiated. The on-chip loader configures 
the device UART and, via a specific serial download protocol, 
communicates with any host machine to manage the download 
of data into its Flash/EE memory spaces. The format of the 
program data to download must be little endian.  

Note that serial download mode operates within the standard 
supply rating of the part (2.7 V to 3.6 V). Therefore, there is no 
requirement for a specific high programming voltage because it 
is generated on-chip. Figure 1 shows how to enter serial down-
load mode on an evaluation board. 

As a QuickStart™ development tool, a Windows® program 
(ARMWSD.exe) is provided by Analog Devices, Inc. This 
program allows the user to download code from PC serial ports 
COM1 to COM31, inclusive, to the MicroConverter. Note, 
however, that any master host machine (PC, micro-controller, 
or DSP) can download to the MicroConverter once the host 
machine adheres to the serial download protocols detailed in 
this application note. 

This application note details the MicroConverter serial 
download protocol, allowing end users to understand and  
to successfully implement this protocol (embedded host to 
embedded MicroConverter) in an end-target system. 

For the purposes of clarity, the term host refers to the host machine 
(PC, microcontroller, or DSP) attempting to download data to 
the MicroConverter. The term loader refers to the on-chip serial 
download firmware on the MicroConverter. 

 
(A) RELEASED

(RESET = 1) (RESET = 1)(SERIAL DOWNLOAD = 1)

(RESET = 1) (SERIAL DOWNLOAD = 1)

(SERIAL DOWNLOAD = 0)

(RESET = 1)

(D) RELEASE (E) RELEASE

(SERIAL DOWNLOAD = 0)

(RESET = 0) (SERIAL DOWNLOAD = 0)

(B) PUSH (C) PUSH

04
84

4-
00

1

 
Figure 1. MicroConverter in Serial Download Mode 



AN-724 Application Note
 

Rev. C | Page 2 of 8 

TABLE OF CONTENTS 
Introduction ...................................................................................... 1 

Running the MicroConverter Loader ............................................ 3 

The Physical Interface ...................................................................... 3 

Defining the Data Transport Packet Format .................................... 3 

Intel Extended Hex Format ..............................................................6 

Record Types ......................................................................................6 

Limitations .........................................................................................7 

 



Application Note AN-724
 

Rev. C | Page 3 of 8 

RUNNING THE MICROCONVERTER LOADER 
The loader on the ADuC70xx MicroConverter is run by pulling 
the serial download BM pin low through a resistor (typically  
1 kΩ pull-down) and resetting the part (toggling the RESET 
input pin on the part itself or power cycling resets the part). 

THE PHYSICAL INTERFACE 
Once triggered, the loader waits for the host to send a back-
space (BS = 0x08) character to synchronize. The loader measures 
the timing of this character and accordingly configures the 
MicroConverter UART serial port to transmit/receive at the 
host’s baud rate with 8 data bits and no parity. The baud rate 
must be between 600 bps and 115,200 bps included. Note that 
the ADuC7060/ADuC7061 is limited to a baud rate of 38400 
bps. On receiving the backspace, the loader immediately sends 
the following 24-byte ID data packet: 

15 bytes = product identifier 
3 bytes = hardware and firmware version number 
4 bytes = reserved for future use 
2 bytes = line feed and carriage return 

04
84

4-
00

2

ADuC702x IS
THE PRODUCT ID

ADuC702x<space><space><space>-62<space>I31<space><space><space><space><\n><\r>

–62 CORRESPONDS
TO THE MEMORY

SIZE MODEL

I31 MEANS A SILICON REV. I AND
A VERSION 3 LOADER. 1 IS THE

LOADER’S VERSION REVISION NUMBER.
 

Figure 2.Example ID Data Packet 

DEFINING THE DATA TRANSPORT PACKET FORMAT 
Once the UART has been configured, a data transfer can begin. 
The general communications data transport packet format is 
shown in Table 1. 

Packet Start ID Field 

The first field is the packet start ID field, which contains two 
start characters (0x07 and 0x0E). These bytes are constant and 
are used by the loader to detect a valid data packet start. 

Number of Data Bytes Field 

The next field is the total number of data bytes, including Data 1 
(command function). The minimum number of data bytes is 
five, which corresponds to the command function and the 

address. The maximum number of data bytes allowed is 255:  
a command function, a 4-byte address, and 250 bytes of data. 

Command Function Field (Data 1) 

The command function field describes the function of the data 
packet. One of five valid command functions is allowed. The 
five command functions are described by one of five ASCII 
characters: E, W, V, P, or R. The list of data packet command 
functions is shown in Table 2. 

Address Field (Data 2 to Data 5) 

The address field contains a 32-bit address (h, u, m, l) with MSB 
in the h location and LSB in the l location. 

Data Byte Field (Data 6 to Data 255) 

User code is downloaded/verified by bytes. The data byte field 
contains a maximum of 250 data bytes.  

The data is normally stripped out of the Intel® Hex extended  
16-byte record format (see the Intel Extended Hex section) and 
reassembled by the host as part of the data packet described in 
Table 1 before transmission to the loader. 

Checksum Field 

The data packet checksum is written into the checksum field. 
The twos complement checksum is calculated from the summa-
tion of the hexadecimal values in the number of bytes field and 
the hexadecimal values in the Data 1 to Data 255 fields (as many  
as exist). The checksum is the twos complement value of this 
summation. Thus, the LSB of the sum of all the bytes from the 
number of data bytes to the checksum inclusive should be 0. 
This can also be expressed mathematically as 

CS = 0x00 − (Number of Data Bytes +  Data ByteN) ∑
−1N

255

Expressed differently, the 8-bit sum of all bytes excluding the 
Start ID must be 0x00. 

Acknowledge of Command 

The loader routine issues a BEL (0x07) as a negative response  
or an ACK (0x06) as a positive response to each data packet. 

A BEL is transmitted by the loader if it receives an incorrect 
checksum or an invalid address. The loader does not give a 
warning if data is downloaded over old (unerased) data. The  
PC interface must ensure that any location where code is 
downloaded is erased. 



AN-724 Application Note
 

Rev. C | Page 4 of 8 

Table 1. Data Transport Packet Format 
Start ID 

No. of Data Bytes Data 1 CMD Data 2 to Data 5 Data x (x = 6 to 255) Checksum ID0 ID1 
0x07 0x0E 5 to 255 E, W, V, P, or R h, u, m, l xx CS 

Table 2. Data Packet Command Functions 
Command Functions Command Byte in Data 1 Field Loader Positive Acknowledge Loader Negative Acknowledge 
Erase Page E (0x45) ACK (0x06) BEL (0x07) 
Write W (0x57) ACK (0x06) BEL (0x07) 
Verify V (0x56) ACK (0x06) BEL (0x07) 
Protect P (0x50) ACK (0x06) BEL (0x07) 
Run (Jump to User Code) R (0x52) ACK (0x06) BEL (0x07) 

Table 3. Erase Flash/EE Memory Command 
Start ID 

No. of Data Bytes Data 1 CMD Data 2 to Data 5 Data 6 (Pages) Checksum ID0 ID1 
0x07 0x0E 6 E (0x45) h, u, m, l x pages (1 to 124) CS 

Table 4. Program Flash/EE Memory Command 
Start ID 

No. of Data Bytes Data 1 CMD Data 2 to Data 5 Data x (x = 1 to 250) Checksum ID0 ID1 
0x07 0x0E 5 + x (6 to 255) W (0x57) h, u, m, l Data bytes CS 

Table 5. Verify Command, Bit Modifications  
Original Bits Transmitted Bits Restored Bits 
7 4 7 
6 3 6 
5 2 5 
4 1 4 
3 0  3 
2 7 2 
1 6  1 
0 5 0 

 

Erase Command 

The erase command allows the user to erase Flash/EE from a 
specific page determined by Data 2 to Data 5. The address is 
rounded down to the page start. This command also includes 
the number of pages to erase. If the address is 0x00000000 and 
the number of pages is 0x00, the loader interprets this as a mass 
erase command, erasing the entire user code space and the 
Flash/EE protection. The data packet for the erase command  
is shown in Table 3. 

Write Command 

The write command includes the number of data bytes (5 + x), 
the command, the address of the first data byte to program,  
and the data bytes to program. The bytes are programmed into 

Flash/EE as they arrive. The loader sends a BEL if the checksum 
is incorrect or if the address received is out of range. If the host 
receives a BEL from the loader, the download process should be 
aborted and the entire download sequence started again. 

Verify Command 

The verify command is almost identical to the write command 
(see Table 5). The command field is V (0x56), but to improve 
the chance of detecting errors the data bytes are modified: the 
low 5 bits are shifted to the high 5 bits, and the high 3 bits are 
shifted to the low 3 bits. 

The loader restores the correct bit sequence and compares it to 
the flash contents. If it is correct and the checksum is correct, 
ACK (0x06) is returned; otherwise BEL (0x07) is returned. 



Application Note AN-724
 

Rev. C | Page 5 of 8 

Flash/EE Memory Protection Command 

To use this command, a 3-step sequence must be followed: 

1. Initiate the command. Type must be 0x00 and h, u, m, l can 
be any value. 

2. Send the address of the group of pages to protect. Repeat 
this step for each group of pages. Type must be 0x0F. 

3. Send the key in h, u, m, l; type must be 0x01. FEEADR 
takes the value of hu and FEEDAT takes the value of ml.  
If no keys are required, h, u, m, l must be 0xFFFFFFFF. 

For example, to protect Page 0 to Page 7 against writing, set  
the read protection and use Key 0x12345678. The following 
commands must be sent: 

• Start sequence:  
0x07 0x0E 0x06 0x50 0xXXXXXXXX 0x00 CS 

• Protection: 
0x07 0x0E 0x06 0x50 0x00000000 0x0F CS  
(Page 0 to Page 3) 
0x07 0x0E 0x06 0x50 0x00000200 0x0F CS  
(Page 4 to Page 7) 
0x07 0x0E 0x06 0x50 0x0000F800 0x0F CS  
(read protection) 

• Key and end of sequence:  
0x07 0x0E 0x06 0x50 0x12345678 0x01 CS 

Note that the protection command is only available in Revision 0 
and later versions of the loader. In Revision 0, FEEADR = ml and 
FEEDAT = ml. In later versions of the loader, FEEADR = hu. 

This protocol does not allow the Flash/EE memory to be 
unprotected. To remove the protection, use a mass erase 
command. 

Remote Run Command 

Once the host has transmitted all data packets to the loader,  
the host can send a final packet instructing the loader to start 
executing code. 

Two types of remote run are implemented 

• A software reset, with h, u, m, l = 0x1. 
• A jump to user code, with h, u, m, l = 0x0. 

Table 8 shows an example of a remote run or reset. Executing a 
software reset is recommended as it resets all peripherals. 

 

Table 6. Verify Flash/EE Memory Command 
Start ID 

No. of Data Bytes Data 1 CMD Data 2 to Data 5  Data x (x = 1 to 250) Checksum ID0 ID1 
0x07 0x0E 5 + x (6 to 255) V (0x56) h, u, m, l Modified data bytes CS 

 

Table 7. Flash/EE Memory Protection Command 
Start ID  

No. of Data Bytes  Data 1 CMD  Data 2 to Data 5  Data 6  Checksum ID0 ID1 
0x07  0x0E 0x06 P (0x50) h, u, m, l Type CS 

 

Table 8. Remote Run Command  
Packet ID 

No. of Data Bytes Data 1 CMD Data 2 to Data 5  Checksum ID0 ID1 
0x07 0x0E 0x05 R (0x52) h, u, m, l = 0x1 0xA8 

 

 



AN-724 Application Note
 

Rev. C | Page 6 of 8 

INTEL EXTENDED HEX FORMAT 
d is a standard for storing machine language in displayable 
ASCII or printable format. It is similar to the Hex 8 format, 
except that the Intel extended linear address record is output  
to also establish the upper 16 bits of the data address. Each  
data record begins with a colon followed by an 8-character 
prefix and ends with a 2-character checksum. Each record  
has the following format: 

:BBAAAATTHHHH....HHHCC 

where: 
BB is a 2-digit hexadecimal byte count representing the number 
of data bytes that appears on the line. 

AAAA is a 4-digit hexadecimal address representing the 
starting address of the data record. 

TT is a 2-digit record type:  
00–Data record  
01–End of file record  
02–Extended segment address record  
03–Start segment address record  
04–Extended linear address record  
05–Start linear address record  

HH is a 2-digit hexadecimal data byte.  

CC is a 2-digit hexadecimal checksum that is the twos comple-
ment of the sum of all preceding bytes in the record, including 
the prefix (sum of all bytes + checksum = 00). 

RECORD TYPES 
Data Record 

Record Type 00, the data record, is the record that contains  
the data of the file. The data record begins with the colon start 
character (:) followed by the byte count (10), the address of the 
first byte (0000), and the record type (00). The data bytes follow 
the record type. The checksum follows the data bytes and is the 
twos complement of the preceding bytes in the record, excluding 
the start character. The following are examples of data records 
(spaces are included for clarity only and are not found in a real 
object file): 

:10 0000 00 FFFEFDFCFBFAF9F8F7F6F5F4F3F2F1F0 78 

:05 0010 00 0102030405 DC 

End Record 

Record Type 01, the end record, signals the end of the data file. 
The end record starts with the colon start character (:) followed 
by the byte count (00), the address (0000), the record type (01), 
and the checksum (FF). For example: 

:00 0000 01 FF 

Extended Segment Address Record 

Record Type 02, the extended segment address record, defines 
Bit 4 through Bit 19 of the segment base address. It can appear 
anywhere within the object file, and it affects the absolute 
memory address of all subsequent data records in the file until 
it is changed. The extended segment address record starts with 
the colon start character (:) followed by the byte count (02),  
the address (0000), the record type (02), the 4-character hexa-
decimal number represented by Bit 4 through Bit 19 of the 
segment base address (1000), and the 2-character checksum 
(FB). For example: 

:02 0000 02 1000 FB 

Start Segment Address Record 

Record Type 03, the start segment address record, defines Bit 4 
through Bit 19 of the execution start segment base address for 
the object file. For example: 

:02 0000 03 0000 FB 

Extended Linear Address Record 

Record Type 04, the extended linear address record, defines  
Bit 16 through Bit 31 of the destination address. It can appear 
anywhere within the object file, and it affects the absolute 
memory address of all subsequent data records in the file until 
it is changed. The extended linear address record starts with  
the colon start character (:) followed by the byte count (02),  
the address (0000), the record type (04), the 4-character hexa-
decimal number represented by Bit 16 through Bit 31 of the 
destination address (FFFF), and the 2-character checksum (FC). 
For example: 

:02 0000 04 FFFF FC 

Start Linear Address Record 

Record Type 05, the start linear address record, defines Bit 16 
through Bit 31 of the execution start address for the object file. 
For example: 

:02 0000 05 0000 F9 



Application Note AN-724
 

Rev. C | Page 7 of 8 

Sample Intel Hex Object File 

Here is an example of an Intel Hex object file that contains the 
following records: extended linear address, extended segment 
address, data, and end. 

:020000040108F1 

:0200000212FFEB 

:0401000090FFAA556D 

:00000001FF 

1. Determine the extended linear address offset for the data 
record (0108 in this example).  
:02 0000 04 0108 F1 

2. Determine the extended segment address for the data 
record (12FF in this example). 
:02 0000 02 12FF EB 

3. Determine the address offset for the data in the data record 
(0100 in this example). 
:04 0100 00 90FFAA55 6D 

4. Calculate the absolute address for the first byte of the  
data record. 
+ 0108 0000 linear address offset shifted left 16 bits 
+ 0001 2FF0 segment address offset shifted left 4 bits 
+ 0000 0100 address offset from data record 
= 0109 30F0 32-bit address for first data byte 

5. Calculations: 
010930F0 90 
010930F1 FF 
010930F2 AA 
010930F3 55 

LIMITATIONS 
Record Type 02, Record Type 03, Record Type 04, and Record 
Type 05 are not implemented. Unsupported records are ignored. 
Only the low 16 address bits are significant to access internal 
flash, therefore, it is safe to ignore the record types that change 
the high 16 bits. 

 



AN-724 Application Note
 

Rev. C | Page 8 of 8 

NOTES 
 

©2008–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
 registered trademarks are the property of their respective owners. 
  AN04844-0-6/09(C)  


	INTRODUCTION
	TABLE OF CONTENTS
	RUNNING THE MICROCONVERTER LOADER
	THE PHYSICAL INTERFACE
	DEFINING THE DATA TRANSPORT PACKET FORMAT
	Packet Start ID Field
	Number of Data Bytes Field
	Command Function Field (Data 1)
	Address Field (Data 2 to Data 5)
	Data Byte Field (Data 6 to Data 255)
	Checksum Field
	Acknowledge of Command
	Erase Command
	Write Command
	Verify Command
	Flash/EE Memory Protection Command
	Remote Run Command

	INTEL EXTENDED HEX FORMAT
	RECORD TYPES
	Data Record
	End Record
	Extended Segment Address Record
	Start Segment Address Record
	Extended Linear Address Record
	Start Linear Address Record
	Sample Intel Hex Object File

	LIMITATIONS

