
Techreport: 2023.10.05, version 1 – In submission to a peer-reviewed venue.
For updates and source code, visit:
https://www.cg.tuwien.ac.at/research/publications/2023/SCHUETZ-2023-SIMLOD/

SimLOD: Simultaneous LOD Generation and Rendering

Markus Schütz, Lukas Herzberger, Michael Wimmer

TU Wien

Figure 1: State-of-the-art LOD generation approaches require users to wait until the entire data set is processed before they are able to view
it. Our approach incrementally constructs an LOD structure directly on the GPU while points are being loaded from disk, and immediately
displays intermediate results. Loading the depicted point cloud was bottlenecked to 22M points/sec by the industry-standard but CPU-
intensive compression format (LAZ). Our approach is able to handle up to 580M points/sec while still rendering the loaded data in real time.

Abstract

About: We propose an incremental LOD generation approach for point clouds that allows us to simultaneously load points from
disk, update an octree-based level-of-detail representation, and render the intermediate results in real time while additional
points are still being loaded from disk. LOD construction and rendering are both implemented in CUDA and share the GPU’s
processing power, but each incremental update is lightweight enough to leave enough time to maintain real-time frame rates.

Background: LOD construction is typically implemented as a preprocessing step that requires users to wait before they are
able to view the results in real time. This approach allows users to view intermediate results right away.

Results: Our approach is able to stream points from an SSD and update the octree on the GPU at rates of up to 580 million
points per second (~9.3GB/s from a PCIe 5.0 SSD) on an RTX 4090. Depending on the data set, our approach spends an
average of about 1 to 2 ms to incrementally insert 1 million points into the octree, allowing us to insert several million points
per frame into the LOD structure and render the intermediate results within the same frame.

Discussion/Limitations: We aim to provide near-instant, real-time visualization of large data sets without preprocessing. Out-
of-core processing of arbitrarily large data sets and color-filtering for higher-quality LODs are subject to future work.

CCS Concepts
• Computing methodologies → Rendering;

ar
X

iv
:s

ub
m

it/
51

54
28

3 
 [

cs
.G

R
] 

 5
 O

ct
 2

02
3

https://www.cg.tuwien.ac.at/research/publications/2023/SCHUETZ-2023-SIMLOD/


2 of 12 M. Schütz & L. Herzberger & M. Wimmer / SimLOD: Simultaneous LOD Generation and Rendering

1. Introduction

Point clouds are an alternative representation of 3D models, com-
prising vertex-colored points without connectivity, and are typi-
cally obtained by scanning the real world via means such as laser
scanners or photogrammetry. Since they are vertex-colored, large
amounts of points are required to represent details that triangle
meshes can cheaply simulate with textures. As such, point clouds
are not an efficient representation for games, but they are never-
theless popular and ubiquitously available due to the need to scan
real-world objects, buildings, and even whole countries.

Examples for massive point-cloud data sets include: The 3D El-
evation Program (3DEP), which intends to scan the entire USA
[3DEP], and Entwine[ENT], which currently hosts 53.6 trillion
points that were collected in various individual scan campaigns
within the 3DEP program [ENTW]. The Actueel Hoogtebestand
Nederland (AHN) [AHN] program repeatedly scans the entire
Netherlands, with the second campaign resulting in 640 billion
points [AHN2], and the fourth campaign being underway. Many
other countries also run their own country-wide scanning programs
to capture the current state of land and infrastructure. At a smaller
scale, buildings are often scanned as part of construction, planning,
and digital heritage. But even though these are smaller in extent,
they still comprise hundreds of millions to several billion points
due to the higher scan density of terrestrial LIDAR and photogram-
metry.

One of the main issues when working with large point clouds is
the computational effort that is required to process and render hun-
dreds of millions to billions of points. Level-of-detail structures are
an essential tool to quickly display visible parts of a scene up to
a certain amount of detail, thus reducing load times and improv-
ing rendering performance on lower-end devices. However, gener-
ating these structures can also be a time-consuming process. Recent
GPU-based methods [SKKW23] improved LOD compute times
down to a second per billion points, but they still require users to
wait until the entire data set has been loaded and processed before
the resulting LOD structure can be rendered. Thus, if loading a bil-
lion points takes 60 seconds plus 1 second of processing, users still
have to wait 61 seconds to inspect the results.

In this paper, we propose an incremental LOD generation ap-
proach that allows users to instantly look at data sets as they are
streamed from disk, without the need to wait until LOD structures
are generated in advance. This approach is currently in-core, i.e.,
data sets must fit into memory, but we expect that it will serve as a
basis for future out-of-core implementations to support arbitrarily
large data sets.

Our contributions to the state-of-the-art are as follows:

• An approach that instantly displays large amounts of points as
they are loaded from fast SSDs, and simultaneously updates an
LOD structure directly on the GPU to guarantee high real-time
rendering performance.

• As a smaller, additional contribution, we demonstrate that dy-
namically growing arrays of points via linked-lists of chunks can
be rendered fairly efficiently in modern, compute-based render-
ing pipelines.

Specifically not a contribution is the development of a new LOD

structure. We generate the same structure as Wand et al. [WBB*08]
or Schütz et al. [SKKW23], which are also very similar to the
widely used modifiable nested octrees [SW11]. We opted for con-
structing the former over the latter because quantized voxels com-
press better than full-precision points (down to 10 bits per colored
voxel), which improves the transfer speed of lower LODs over the
network. Furthermore, since inner nodes are redundant, we can
compute more representative, color-filtered values. However, both
compression and color filtering are applied in post-processing be-
fore storing the results on disk and are not covered by this paper.
This paper focuses on incrementally creating the LOD structure and
its geometry as fast as possible for immediate display and picks a
single color value from the first point that falls into a voxel cell.

2. Related Work

2.1. LOD Structures for Point Clouds

Point-based and hybrid LOD representations were initially pro-
posed as a means to efficiently render mesh models at lower
resolutions [RL00; CAZ01; CH02; DVS03] and possibly switch
to the original triangle model at close-up views. With the ris-
ing popularity of 3D scanners that produce point clouds as inter-
mediate and/or final results, these algorithms also became useful
to handle the enormous amounts of geometry that are generated
by scanning the real world. Layered point clouds (LPC) [GM04]
was the first GPU-friendly as well as view-dependent approach,
which made it suitable for visualizing arbitrarily large data sets.
LPCs organize points into a multi-resolution binary tree where
each node represents a part of the point cloud at a certain level
of detail, with the root node depicting the whole data set at
a coarse resolution, and child nodes adding additional detail in
their respective regions. Since then, further research has improved
various aspects of LPCs, such as utilizing different tree struc-
tures [WS06; WBB*08; GZPG10; OLRS23], improving LOD con-
struction times [MVvM*15; KJWX19; SOW20; BK20; KB21] and
higher-quality sampling strategies instead of selecting random sub-
sets [vvL*22; SKKW23].

In this paper, we focus on constructing a variation of LPCs pro-
posed by Wand et al. [WBB*08], which utilizes an octree where
each node creates a coarse representation of the point cloud with
a resolution of 1283 cells, and leaf nodes store the original, full-
precision point data, as shown in Figure 2. Wand et al. suggest
various primitives as coarse, representative samples (quantized
points, Surfels, ...), but for this work we consider each cell of
the 1283 grid to be a voxel. A similar voxel-based LOD struc-
ture by Chajdas et al. [CRW14] uses 2563 voxel grids in inner
nodes and original triangle data in leaf nodes. Modifiable nested
octrees (MNOs) [SW11] are also similar to the approach by Wand
et al. [WBB*08], but instead of storing all points in leaves and rep-
resentative samples (Surfels, Voxels, ...) in inner nodes, MNOs fill
empty grid cells with points from the original data set.

Since our goal is to display all points the instant they are loaded
from disk to GPU memory, we need LOD construction approaches
that are capable of efficiently inserting new points into the hierar-
chy, expanding it if necessary, and updating all affected levels of
detail. This disqualifies recent bottom-up or hybrid bottom-up and



M. Schütz & L. Herzberger & M. Wimmer / SimLOD: Simultaneous LOD Generation and Rendering 3 of 12

top-down approaches [MVvM*15; SOW20; BK20; SKKW23] that
achieve a high construction performance, but which require prepro-
cessing steps that iterate through all data before they actually start
with the construction of the hierarchy. Wand et al. [WBB*08] as
well as Scheiblauer and Wimmer [SW11], on the other hand, pro-
pose modifiable LOD structures with deletion and insertion meth-
ods, which make these inherently suitable to our goal since we can
add a batch of points, draw the results, and then add another batch
of points. Bormann et al. [BDSF22] were the first to specifically ex-
plore this concept for point clouds by utilizing MNOs, but flushing
updated octree nodes to disk that an external rendering engine can
then stream and display. They achieved a throughput of 1.8 million
points per second, which is sufficient to construct an LOD struc-
ture as fast as a laser scanner generates point data. A downside of
these CPU-based approaches is that they do not parallelize well,
as threads need to avoid processing the same node or otherwise
sync critical operations. In this paper, we propose a GPU-friendly
approach that allows an arbitrary amount of threads to simultane-
ously insert points, which allows us to construct and render on the
same GPU at rates of up to 580 million points per second, or up to
1.2 billion points per second for construction without rendering.

While we focus on point clouds, there are some notable related
works in other fields that allow simultaneous LOD generation and
rendering. In general, any LOD structure with insertion operations
can be assumed to fit these criteria, as long as inserting a mean-
ingful amount of geometry can be done in milliseconds. Careil
et al. [CBE20] demonstrate a voxel painter that is backed by a
compressed LOD structure. We believe that Dreams – a popular
3D scene painting and game development tool for the PS4 – also
matches the criteria, as developers reported experiments with LOD
structures, and described the current engine as a “cloud of clouds
of point clouds" [Eva15].

2.2. Linked Lists

Linked lists are a well-known and simple structure whose constant
insertion and deletion complexity, as well as the possibility to dy-
namically grow without relocation of existing data, make it useful
as part of more complex data structures and algorithms (e.g.least-
recently-used (LRU) Caches [YMC02]). On GPUs, they can be
used to realize order-independent transparency [YHGT10] by cre-
ating pixel-wise lists of fragments that can then be sorted and drawn
front to back. In this paper, we use linked lists to append an un-
known amount of points and voxels to octree nodes during LOD
construction.

3. Data Structure

3.1. Octree

The LOD data structure we use is an octree-based [SW11] layered
point cloud [GM04] with representative voxels in inner nodes and
the original, full-precision point data in leaf nodes, which makes
it essentially identical to the structures of Wand et al. [WBB*08]
or Schütz et al. [SKKW23]. Leaf nodes store up to 50k points and
inner nodes up to 1283 (2M) voxels, but typically closer to 1282

(16k) voxels due to the surfacic nature of point cloud data sets. The
sparse nature of surface voxels is the reason why we store them in

(a) Inner node with Voxels. (b) Leaf node with points.

Figure 2: (a) Close-up of a lower-resolution inner-node compris-
ing 20 698 voxels that were sampled on a 1283 grid. (b) A full-
resolution leaf node comprising 22 858 points.

Figure 3: Higher-level octree nodes rendered closer to the camera.
Inner nodes store lists of representative voxels that were sampled
on a 1283 grid, and leaf nodes store up to 50k full-precision points.

lists instead of grids – exactly the same as points. Figure 3 illus-
trates how more detailed, higher-level nodes are rendered close to
the camera.

The difference to the structure of Schütz et al. [SKKW23] is that
we store points and voxels in linked lists of chunks of points, which
allows us to add additional capacity by allocating and linking ad-
ditional chunks, as shown in Figure 4. An additional difference to
Wand et al. [WBB*08] is that they use hash maps for their 1283

voxel sampling grids, whereas we use a 1283bit = 256kb occu-
pancy grid per inner node to simplify massivelly parallel sampling
on the GPU.

Despite the support for dynamic growth via linked lists,
this structure still supports efficient rendering in compute-based
pipelines, where each individual workgroup can process points in a
chunk in parallel, and then traverse to the next chunk as needed. In
our implementation, each chunk stores up to 1,000 points or vox-
els (Discussion in Section 7.4), with the latter being implemented
as points where coordinates are quantized to the center of a voxel
cell.



4 of 12 M. Schütz & L. Herzberger & M. Wimmer / SimLOD: Simultaneous LOD Generation and Rendering

Figure 4: Octree nodes store 3D data as linked chunks of
points/voxels. Linked chunks enable dynamic growth as new 3D
data is added; efficient removal (after splitting leaves) by simply
putting chunks back into a pool for re-use; and efficient rendering
in compute-based pipelines.

3.2. Persistent Buffer

Since we require large amounts of memory allocations on the de-
vice from within the CUDA kernel throughout the LOD construc-
tion over hundreds of frames, we manage our own custom persis-
tent buffer to keep the cost of memory allocation to a minimum. To
that end, we simply pre-allocate 90% of the available GPU mem-
ory. An atomic offset counter keeps track of how much memory
we already allocated and is used to compute the returned memory
pointer during new allocations.

Note that sparse buffers via virtual memory management may be
an alternative, as discussed in Section 8.

3.3. Voxel Sampling Grid

Voxels are sampled by inscribing a 1283 voxel grid into each inner
node, using 1 bit per cell to indicate whether that cell is still empty
or already occupied. Inner nodes therefore require 256kb of mem-
ory in addition to the chunks storing the voxels (in our implementa-
tion as points with quantized coordinates). Grids are allocated from
the persistent buffer whenever a leaf node is converted into an inner
node.

3.4. Chunks and the Chunk Pool

We use chunks of points/voxels to dynamically increase the ca-
pacity of each node as needed, and a chunk pool where we re-
turn chunks that are freed after splitting a leaf node (chunk allo-
cations for the newly created inner node are handled separately).
Each chunk has a static capacity of N points/voxels (1,000 in our
implementation), which makes it trivial to manage chunks as they
all have the same size. Initially, the pool is empty and new chunks
are allocated from the persistent buffer. When chunks are freed af-
ter splitting a leaf node, we store the pointers to these chunks inside
the chunk pool. Future chunk allocations first attempt to acquire
chunk pointers from the pool, and only allocate new chunks from
the persistent buffer if there are none left in the pool.

4. Incremental LOD Construction – Overview

Our method loads batches of points from disk to GPU mem-
ory, updates the LOD structure in one CUDA kernel, and ren-
ders the updated results with another CUDA kernel. Figure 5

shows an overview of that pipeline. Both kernels utilize per-
sistent threads [GSO12; KKSS18] using the cooperative group
API [HP17] in order to merge numerous sub-passes into a single
CUDA kernel. Points are loaded from disk to pinned CPU mem-
ory in batches of 1M points, utilizing multiple load threads. When-
ever a batch is loaded, it is appended to a queue. A single uploader
thread watches that queue and asynchronously copies any loaded
batches to a queue in GPU memory. In each frame, the main thread
launches the rasterize kernel that draws the entire scene, followed
by an update kernel that incrementally inserts all batches of points
into the octree that finished uploading to the GPU.

5. Incrementally Updating the Octree

In each frame, the GPU may receive several batches of 1M points
each. The update kernel loops through the batches and inserts them
into the octree as shown in Figure 6. First, the octree is expanded
until the resulting leaf nodes will hold at most 50k points. It then
traverses each point of the batch through the octree again to gener-
ate voxels for inner nodes. Afterwards, it allocates sufficient chunks
for each node to store all points in leaf-, and voxels in inner nodes.
In the last step, it inserts the points and voxels into the newly allo-
cated chunks of memory.

The premise of this approach is that it is cheaper in massively
parallel settings to traverse the octree multiple times for each point
and only insert them once at the end, rather than traversing the
tree once per point but with the need for complex synchronization
mechanisms whenever a node needs splitting or additional chunks
of memory need to be allocated.

5.1. Expanding the Octree

CPU-based top-down approaches [WBB*08; SW11] typically tra-
verse the hierarchy from root to leaf, update visited nodes along
the way, and append points to leaf nodes. If a leaf node receives too
many points, it “spills" and is split into 8 child nodes. The points
inside the spilling node are then redistributed to its newly gener-
ated child nodes. This approach works well on CPUs, where we
can limit the insertion and expansion of a subtree to a single thread,
but it raises issues in a massively parallel setting, where thousands
of threads may want to insert points while we simultaneously need
to split that node and redistribute the points it already contains.

To support massively parallel insertions of all points on the
GPU, we propose an iterative approach that resembles a depth-
first-iterative-deepening search [Kor85]. Instead of attempting to
fully expand the octree structure in a single step, we repeatedly
expand it by one level until no more expansions are needed. This
approach also decouples expansions of the hierarchy and insertions
into a node’s list of points, which is now deferred to a separate pass.
Since we already defer the insertion of points into nodes, we also
defer the redistribution of points from spilled nodes. We maintain
a spill buffer, which accumulates points of spilled nodes. Points in
the spill buffer are subsequently treated exactly the same as points
inside the batch buffer that we are currently adding to the octree,
i.e., the update kernel reinserts spilled points into the octree from
scratch, along with the newly loaded batch of points.



M. Schütz & L. Herzberger & M. Wimmer / SimLOD: Simultaneous LOD Generation and Rendering 5 of 12

Figure 5: Timeline of our system over several frames.

In detail, to expand the octree, we repeat the following two sub-
passes until no more nodes are spilled and all leaf nodes are marked
as final for this update (see also Figure 6):

• Counting: In each iteration, we traverse the octree for each point
of the batch and all spilled points accumulated in previous iter-
ations during the current update, and atomically increment the
point counter of each hit leaf node that is not yet marked as final
by one.

• Splitting: All leaf nodes whose point counter exceeds a given
threshold, e.g., 50k points, are split into 8 child nodes, each with
a point counter of 0. The points it already contained are added to
the list of spilled points. Note that the spilled points do not need
to be associated with the nodes that they formerly belonged to
– they are added to the octree from scratch. Furthermore, the
chunks that stored the spilled points are released back to the
chunk pool and may be acquired again later. Leaf nodes whose
point counter does not exceed the threshold are marked as final
so that further iterations during this update do not count points
twice.

The expansion pass is finished when no more nodes are spilling,
i.e., all leaf nodes are marked final.

5.2. Voxel Sampling

Lower levels of detail are populated with voxel representations of
the points that traversed these nodes. Therefore, once the octree ex-
pansion is finished, we traverse each point through the octree again,
and whenever a point visits an inner node, we project it into the in-
scribed 1283 voxel sampling grid and check if the respective cell

is empty or already occupied by a voxel. If the cell is empty, we
create a voxel, increment the node’s voxel counter, and set the cor-
responding bit in the sample grid to mark it as occupied. Note that
in this way, the voxel gets the color of the first point that projects to
it.

However, just like the points, we do not store voxels in the nodes
right away because we do not know the amount of memory/chunks
that each node requires until all voxels for the current incremental
update are generated. Thus, voxels are first stored in a temporary
backlog buffer with a large capacity. In theory, adding a batch of 1
million points may produce up to (octreeLevels−1) million voxels
because each inner node’s sampling grid has the potential to hold
1283 = 2M voxels, and adding spatially close points may lead to
several new octree levels until they are all separated into leaf nodes
with at most 50k points. However, in practice, none of the test data
sets of this paper produced more than 1M voxels per batch of 1M
points, and of our numerous other data sets, the largest required
backlog size was 2.4M voxels. Thus, we suggest using a backlog
size of 10M points to be safe.

5.3. Allocating Chunks

After expansion and voxel sampling, we now know the exact
amount of points and voxels that we need to store in leaf and inner
nodes. Using this knowledge, we check all affected nodes whether
their chunks have sufficient free space to store the new points/vox-
els, or if we need to allocate new chunks of memory to raise the
nodes’ capacity by 1000 points or voxels per chunk. In total, we
need ⌊ counter+POINT S_PER_CHUNK−1

POINT S_PER_CHUNK ⌋ linked chunks per node.



6 of 12 M. Schütz & L. Herzberger & M. Wimmer / SimLOD: Simultaneous LOD Generation and Rendering

(a) Adding 10 points to the octree. (1) Expanding the octree by repeatedly counting and splitting until leaf nodes hold at most T points (depicted: 5, in practice:
50k). (2) Leaves that were not split do not count points again. (3) The voxel sampling pass inserts all points again, creates voxels for empty cells in inner
nodes, and stores new voxels (and the nodes they belong to) in a temporary backlog buffer. (4) Now that we know the number of new points and voxels, we
allocate the necessary chunks (depicted size: 2, in practice: 1000) to store them. (5) All points are inserted again, traverse to the leaf, and are inserted into the
chunks. Voxels from the backlog are inserted into the respective inner nodes.

(b) For illustrative purposes, we now add a batch of just two points which makes one of the nodes spill. (6) When splitting, we move all previously inserted
points into a spill buffer. (7, 8) for the remainder of this frame’s update, points in the spill buffer and the current batch get identical treatment.

Figure 6: The CUDA kernel that incrementally updates the octree. (a) First, it inserts a batch with 10 points into the initially empty octree
and (b) then adds another batch with two points that causes a split of a non-empty leaf node.

5.4. Storing Points and Voxels

To store points inside nodes, we traverse each point from the input
batch and the spill buffer again through the octree to the respective
leaf node and atomically update that node’s numPoints variable.
The atomic update returns the point index within the node, from
which we can compute the index of the chunk and the index within
the chunk where we store the point.

We then iterate through the voxels in the backlog buffer, which
stores voxels and for each voxel a pointer to the inner node that
it belongs to. Insertion is handled the same way as points – we
atomically update each node’s numVoxels variable, which returns
an index from which we can compute the target chunk index and
the position within that chunk.

6. Rendering

Points and voxels are both drawn as pixel-sized splats by a CUDA
kernel that utilizes atomic operations to retain the closest sam-
ple in each pixel [GKLR13; Eva15; SKW22]. Custom compute-
based software-rasterization pipelines are particularly useful for
our method because traditional vertex-shader-based pipelines are
not suitable for drawing linked lists of chunks of points. A CUDA
kernel, however, has no issues looping through points in a chunk,
and then traversing to the next chunk in the list. The recently in-
troduced mesh and task shaders could theoretically also deal with
linked lists of chunks of points, but they may benefit from smaller
chunk sizes, and perhaps even finer-grained nodes (smaller sam-

pling grids that lead to fewer voxels per node, and a lower maxi-
mum of points in leaf nodes).

During rendering, we first assemble a list of visible nodes, com-
prising all nodes whose bounding box intersects the view frustum
and which have a certain size on screen. Since inner nodes have a
voxel resolution of 1283, we need to draw their half-sized children
if they grow larger than 128 pixels. We draw nodes that fulfill the
following conditions:

• Nodes that intersect the view frustum.
• Nodes whose parents are larger than 128 pixels. In that case, the

parent is hidden and all its children are made visible instead.

Figure 3 illustrates the resulting selection of rendered octree
nodes within a frustum. Seemingly higher-LOD nodes are rendered
towards the edge of the screen due to perspective distortions that
make the screen-space bounding boxes bigger. For performance-
sensitive applications, developers may instead want to do the oppo-
site and reduce the LOD at the periphery and fill the resulting holes
by increasing the point sizes.

To draw points or voxels, we launch one workgroup per visible
node whose threads loop through all samples of the node and jump
to the next chunk when needed, as shown in listing 1.

1 Node* node = &visibleNodes[workgroupIndex];
2 Chunk* chunk = node->points;
3 int chunkIndex = 0;
4

5 for(
6 int pointIndex = block.thread_rank();



M. Schütz & L. Herzberger & M. Wimmer / SimLOD: Simultaneous LOD Generation and Rendering 7 of 12

7 pointIndex < node->numPoints;
8 pointIndex += block.num_threads()
9 ){

10 int targetChunkIndex = pointIndex /
POINTS_PER_CHUNK;

11

12 if(chunkIndex < targetChunkIndex){
13 chunk = chunk->next;
14 chunkIndex++;
15 }
16

17 int pIndex = pointIndex % POINTS_PER_CHUNK;
18 Point point = chunk->points[pIndex];
19

20 rasterize(point);
21 }

Listing 1: CUDA code showing threads of a workgroup iterating
through all points in a node, processing num_threads points at a
time in parallel. Threads advance to the next chunk as needed.

7. Evaluation

Our method was implemented in C++ and CUDA, and evaluated
on the test data sets shown in Figure 7.

The following systems were used for the evaluation:

OS GPU CPU Disk
Windows 10 RTX 3060 Ryzen 7 2700X Samsung 980 PRO
Windows 11 RTX 4090 Ryzen 9 7950X Crucial T700

Special care was taken to ensure meaningful results for disk IO
in our benchmarks:

• On Microsoft Windows, traditional C++ file IO operations such
as fread or ifstream are automatically buffered by the oper-
ating system. This leads to two issues – First, it makes the initial
access to a file slower and significantly increases CPU usage,
which decreases the overall performance of the application and
caused stutters when streaming a file from SSD to GPU for the
first time. Second, it makes future accesses to the same file faster
because the OS now serves it from RAM instead of reading from
disk.

• Since we are mostly interested in first-read performance,
we implemented file access on Windows via the Win-
dows API’s ReadFileEx function together with the
FILE_FLAG_NO_BUFFERING flag. It ensures that data
is read from disk and also avoids caching it in the first place.
As an added benefit, it also reduces CPU usage and resulting
stutters.

We evaluated the following performance aspects, with respect to
our goal of simultaneously updating the LOD structure and render-
ing the intermediate results:

1. Throughput of the incremental LOD construction in isolation.
2. Throughput of the incremental LOD construction while stream-

ing points from disk and simultaneously rendering the interme-
diate results in real time.

3. Average and maximum duration of all incremental updates.
4. Performance of rendering nodes up to a certain level of detail.

7.1. Data Sets

We evaluated a total of five data sets shown in Figure 7, three
file formats, and Morton-ordering vs. the original ordering by scan
position. Chiller and Meroe are photogrammetry-based data sets,
Morro Bay is captured via aerial LIDAR, Endeavor via terrestrial
laser scans, and Retz via a combination of terrestrial (town center,
high-density) and aerial LIDAR (surrounding, low-density).

The LAS and LAZ file formats are industry-standard point cloud
formats. Both store XYZ, RGB, and several other attributes. Due to
this, LAS requires either 26 or 34 bytes per point for our data sets.
LAZ provides a good and lossless compression down to around
2-5 bytes/point, which is why most massive LIDAR data sets are
distributed in that format. However, it is quite CPU-intensive and
therefore slow to decode. SIM is a custom file format that stores
points in the update kernel’s expected format – XYZRGBA (3 x
float + 4 x uint8, 16 bytes per point).

Endeavor is originally ordered by scan position and the times-
tamp of the points, but we also created a Morton-ordered variation
to evaluate the impact of the order.

7.2. Construction Performance

Table 1 covers items 1-3 and shows the construction performance of
our method on the test systems. The incremental LOD construction
kernel itself achieves throughputs of up to 300M points per second
on an RTX 3060, and up to 1.2 billion points per second on an RTX
4090. The whole system, including times to stream points from disk
and render intermediate results, achieves up to 100 million points
per second on an RTX 3060 and up to 580 million points per sec-
ond on the RTX 4090. The durations of the incremental updates are
indicators for the overall impact on fps (average) and occasional
stutters (maximum). We implemented a time budget of 10ms per
frame to reduce the maximum durations of the update kernel (RTX
3060: 45ms → 16ms; RTX 4090 25ms → 13ms). After the bud-
get is exceeded, the kernel stops and resumes the next frame. Our
method benefits from locality as shown by the Morton-ordered vari-
ant of the Endeavor data set, which increases the construction per-
formance by a factor of x2.5 (497 MP/s → 1221 MP/s).

7.3. Rendering Performance

Regarding rendering performance, we show that linked lists of
chunks of points/voxels are suitable for high-performance real-time
rendering by rendering the constructed LOD structure at high reso-
lutions (pixel-sized voxels), whereas performance-sensitive render-
ing engines (targeting browsers, VR, ...) would limit the number of
points/voxels of the same structure to a point budget in the single-
digit millions, and then fill resulting gaps by increasing point sizes
accordingly. Table 3 shows that we are able to render up to 89.4
million pixel-sized points and voxels in 2.7 milliseconds, which
leaves the majority of a frame’s time for the construction kernel
(or higher-quality shading). Table 4 shows that the size of chunks
has negligible impact on rendering performance (provided they are
larger than the workgroup size).

We implemented the atomic-based point rasterization by Schütz
et al. [SKW21], including the early-depth test. Compared to their



8 of 12 M. Schütz & L. Herzberger & M. Wimmer / SimLOD: Simultaneous LOD Generation and Rendering

Overview (color) Overview (nodes) Closeup (color) Closeup (nodes)

C
hi

lle
r

R
et

z
M

or
ro

B
ay

M
er

oe
E

nd
ea

vo
r

Figure 7: Overview and close-ups of our test data sets. The second and fourth columns illustrate the rendered octree nodes.

brute-force approach that renders all points in each frame, our on-
the-fly LOD approach reduces rendering times on the RTX 4090
by about 5 to 12 times, e.g. Morro Bay is rendered about 5 to 9
times faster (overview: 7.1ms → 0.8ms; closeup: 6.3ms → 1.1ms)
and Endeavor is rendered about 5 to 12 times faster (overview:
13.7ms → 1.1ms; closeup: 13.8ms → 2.7ms). Furthermore, the
generated LOD structures would allow improving rendering perfor-
mance even further by lowering the detail to less than 1 point per
pixel. In terms of throughput (rendered points/voxels per second),
our method is several times slower (Morro Bay overview: 50MP/s
→ 15.8MP/s; Endeavor overview: 58MP/s → 15.5MP/s). This is
likely because throughput dramatically rises with overdraw, i.e., if
thousands of points project to the same pixel, they share state and
collaboratively update the pixel.

At this time, we did not implement the approach presented in
Schütz et al.’s follow-up paper [SKW22] that further improves ren-
dering performance by compressing points and reducing memory
bandwidth.

7.4. Chunk Sizes

Table 4 shows the impact of chunk sizes on LOD construction and
rendering performance. Smaller chunk sizes reduce memory usage
but also increase construction duration. The rendering duration, on
the other hand, is largely unaffected by the range of tested chunk
sizes. We opted for a chunk size of 1k for this paper because it
makes our largest data set – Endeavor – fit on the GPU, and because
the slightly better construction kernel performance of larger chunks
did not significantly improve the total throughput of the system.

7.5. Performance Discussion

Our approach constructs LOD structures up to 320 times faster than
the incremental, CPU-based approach of Bormann et al. [BDSF22]
(1.8MP/s → 580MP/s) (Peak result of 1.8MP/s taken from Bor-
mann et al.) while points are simultaneously rendered on the same
GPU, and up to 677 times faster if we only account for the con-
struction times (1.8MP/s → 1222MP/s). On the same 4090 test
system, our incremental approach is about 7.6 times slower than
the non-incremental, GPU-based construction method of Schütz et
al. [SKKW23] for the same first-come sampling method (Morro



M. Schütz & L. Herzberger & M. Wimmer / SimLOD: Simultaneous LOD Generation and Rendering 9 of 12

Update Duration Throughput
Data Set GPU points format size avg max updates total updates total total

(M) (GB) (ms) (ms) (sec) (sec) (MP/s) (MP/s) (GB/s)
Chiller RTX 3060 73.6 LAS 1.9 1.2 13.3 0.2 1.3 297 54 1.4

SIM 1.2 2.0 14.0 0.2 0.8 298 87 1.4
Retz 145.5 LAS 4.9 1.0 14.9 0.6 3.2 260 45 1.5

SIM 2.3 2.8 14.3 0.5 1.6 272 91 1.4
Morro Bay 350.0 LAS 11.9 1.2 15.9 1.4 7.6 242 46 1.6

SIM 5.6 4.1 16.1 1.4 3.5 247 100 1.6
Chiller RTX 4090 73.6 LAS 1.9 0.6 7.5 0.1 0.3 1,215 291 7.5

SIM 1.2 0.6 8.0 0.1 0.2 1,217 439 7.2
Retz 145.5 LAS 4.9 0.4 8.0 0.1 0.7 1,145 221 7.4

SIM 2.3 1.0 8.6 0.1 0.4 1,187 425 6.7
Morro Bay 350.0 LAS 11.9 0.6 9.2 0.4 1.5 979 234 8.0

SIM 5.6 1.5 10.9 0.3 0.8 1,030 458 7.3
Meroe 684.4 LAS 23.3 0.7 10.4 0.8 2.8 882 241 8.2

SIM 11.4 1.9 12.1 0.7 1.7 945 401 6.4
Endeavor 796.0 LAS 20.7 7.0 12.6 1.6 2.6 497 307 8.0

LAZ 8.0 0.2 7.2 2.4 25.1 328 32 0.3
SIM 12.7 9.1 12.9 1.6 2.3 497 341 5.4

Endeavor (z-order) SIM 12.7 2.2 10.7 0.7 1.4 1,221 581 9.3

Table 1: LOD Construction Performance showing average and maximum durations of the update kernel, total duration of all updates or the
whole system, and the throughput in million points per second (MP/s) or gigabytes per second (GB/s). Total duration includes the time to
load points from disk, stream them to the GPU, and insert them into the octree. Update measures the duration of all incremental per-frame
(may process multiple batches) updates in isolation. Throughput in GB/s refers to the file size, which depends on the number of points and
the storage format (ranging from 10 (LAZ), 16(SIM) to 26 or 34(LAS) byte per point).

overview closeup
points voxels nodes duration points voxels nodes duration

Chiller 1.5 M 10.3 M 450 1.3 ms 22.7 M 19.5 M 1813 3.5 ms
Morro Bay 0.4 M 12.5 M 518 1.5 ms 8.8 M 16.2 M 1065 2.2 ms
Meroe 1.4 M 2.5 M 208 0.9 ms 24.6 M 21.0 M 2069 3.7 ms
Endeavor 5.2 M 11.8 M 914 2.1 ms 54.0 M 50.7 M 4811 7.5 ms

Table 2: Rendering performance from overview and closeup viewpoints shown in Figure 7. Points and voxels are both rendered as pixel-sized
splats. Some voxels may be processed but discarded because they are replaced by higher-res data in visible child nodes. Up to 104 million
points+voxels stored in linked-lists inside 4,811 octree nodes are rasterized at >120fps for close-up views at high levels of detail.

overview closeup
GPU points voxels nodes duration samples/ms points voxels nodes duration samples/ms

Chiller 3060 2.6 M 8.4 M 441 3.3 ms 3.3 M 28.0 M 7.9 M 1678 7.4 ms 4.9 M
Retz 5.2 M 12.4 M 644 4.4 ms 4.0 M 18.9 M 7.5 M 1616 6.0 ms 4.4 M
Morro Bay 0.6 M 12.0 M 477 3.5 ms 3.6 M 16.3 M 13.7 M 1346 6.5 ms 4.6 M
Chiller 4090 2.6 M 8.4 M 441 0.7 ms 15.7 M 28.0 M 7.9 M 1678 1.3 ms 27.6 M
Retz 5.2 M 12.4 M 644 0.8 ms 22.0 M 18.9 M 7.5 M 1616 1.1 ms 24.0 M
Morro Bay 0.6 M 12.0 M 477 0.8 ms 15.8 M 16.3 M 13.7 M 1346 1.1 ms 27.3 M
Meroe 1.9 M 2.0 M 190 0.5 ms 7.8 M 36.4 M 17.5 M 2500 1.9 ms 28.4 M
Endeavor 6.5 M 10.5 M 906 1.1 ms 15.5 M 72.7 M 16.7 M 4956 2.7 ms 33.1 M

Table 3: Rendering performance from overview and closeup viewpoints shown in Figure 7. Samples (Points+Voxels) are both rendered as
pixel-sized splats.



10 of 12 M. Schütz & L. Herzberger & M. Wimmer / SimLOD: Simultaneous LOD Generation and Rendering

Chunk Size construct (ms) Memory (GB) rendering (ms)
500 933.9 17.1 1.9

1 000 734.9 17.2 1.9
2 000 654.5 17.6 1.9
5 000 618.1 18.9 1.9

10 000 611.0 21.0 1.9

Table 4: The Impact of points/voxels per chunk on total construc-
tion duration, memory usage for octree data, and rendering times.
(Close-up viewpoint of the Meroe data set on an RTX 4090)

Bay: 7500 MP/s → 979 MP/s), but about 18 times (Morro Bay;
LAS; with rendering: 13 MP/s → 234 MP/s) to 75 times (Morro
Bay; LAS; construction: 13 MP/s → 979 MP/s) faster than their
non-incremental, CPU-based method [SOW20].

In practice, point clouds are often compressed and distributed
as LAZ files. LAZ compression is lossless and effective, but slow
to decode. Incremental methods such as Bormann et al. [BDSF22]
and ours are especially interesting for these as they allow users to
immediately see results while loading is in progress. Although non-
incremental methods such as [SKKW23] feature a significantly
higher throughput of several billions of points per second, they are
nevertheless bottle-necked by the 32 million points per second (see
Table 1, Endeavor) with which we can load and decompress such
data sets, while they can only display the results after loading and
processing is fully finished.

8. Conclusion, Discussion and Potential Improvements

In this paper, we have shown that GPU-based computing allows us
to incrementally construct an LOD structure for point clouds at the
rate at which points can be loaded from an SSD, and immediately
display the results to the user in real time. Thus, users are able to
quickly inspect large data sets right away. without the need to wait
until LOD construction is finished.

There are, however, several limitations and potential improve-
ments that we would like to mention:

• Out-of-Core: This approach is currently in-core only and serves
as a baseline and a step towards future out-of-core approaches.
For arbitrarily large data sets, out-of-core approaches are neces-
sary that flush least-recently-modified-and-viewed nodes to disk.
Once they are needed again, they will have to be reloaded – either
because the node becomes visible after camera movement, or be-
cause newly loaded points are inserted into previously flushed
nodes.

• Compression: In-between “keeping the node’s growable data
structure in memory" and “flushing the entire node to disk" is the
potential to keep nodes in memory, but convert them into a more
efficient structure. “Least recently modified" nodes can be con-
verted into a non-growable, compressed form with higher mem-
ory and rendering efficiency, and “least recently modified and
viewed" nodes could be compressed even further and decoded
on-demand for rendering. For reference, voxel coordinates could
be encoded relative to voxels in parent nodes, which requires
about 2 bit per voxel, and color values of z-ordered voxels could

be encoded with BC texture compression [BC], which requires
about 8 bit per color, for a total of 10 bit per voxel. Currently,
our implementation uses 16 bytes (128 bit) per voxel.

• Color-Filtering: Our implementation currently does a first-
come color sampling for voxels, which leads to aliasing arti-
facts similar to textured meshes without mipmapping, or in some
cases even bias towards the first scan in a collection of multiple
overlapping scans. The implementation offers a rendering mode
that blends overlapping points [BHZK05; SKW21], which sig-
nificantly improves quality, but a sparse amount of overlapping
points at low LODs are not sufficient to reconstruct a perfect rep-
resentation of all the missing points from higher LODs. Thus,
proper color filtering approaches will need to be implemented to
create representative averages at lower levels of detail. We im-
plemented averaging in post-processing [SKKW23], but in the
future, we would like to integrate color sampling directly into
the incremental LOD generation pipeline. The main reason we
did not do this yet is the large amount of extra memory that is
required to accumulate colors for each voxel, rather than the sin-
gle bit that is required to select the first color. We expect that this
approach can work with the help of least-recently-used queues
that help us predict which nodes still need high-quality sam-
pling grids, and which nodes do not need them anymore. This
can also be combined with the hash map approach by Wand et
al. [WBB*08], which reduces the amount of memory of each
individual sampling grid.

• Quality: To improve quality, future work in fast and incremental
LOD construction may benefit from fitting higher quality point
primitives (Surfels, Gaussian Splats, ... [PZvBG00; ZPvBG01;
WHA*07; KKLD23]) to represent lower levels of detail. Consid-
ering the throughput of SSDs (up to 580M Points/sec), efficient
heuristics to quickly generate and update splats are required, and
load balancing schemes that progressively refine the splats closer
to the user’s current viewpoint.

• Sparse Buffers: An alternative to the linked-list approach for
growable arrays of points may be the use of virtual memory man-
agement (VMM) [PS20]. VMM allows allocating large amounts
of virtual memory, and only allocates actual physical memory
as needed (similar to OpenGL’s ARB_sparse_buffer exten-
sion [Inc14]). Thus, each node could allocate a massive virtual
capacity for its points in advance, progressively back it with
physical memory as the amount of points we add grows, and
thereby make linked lists obsolete. We did not explore this op-
tion at this time because our entire update kernel – including
allocation of new nodes, insertion of points and required allo-
cations of additional memory, etc. – runs on the device, while
VMM operations must be called from the host.

The source code for this paper is available at https://
github.com/m-schuetz/SimLOD. The repository also con-
tains several subsets of the Morro Bay data set (which in turn is a
subset of San Simeon [CA13]) in different file formats.

9. Acknowledgements

The authors wish to thank Weiss AG for the Chiller data set; Riegl
Laser Measurement Systems for providing the data set of the town
of Retz; PG&E and Open Topography for the Morro Bay data set (a

https://github.com/m-schuetz/SimLOD
https://github.com/m-schuetz/SimLOD


M. Schütz & L. Herzberger & M. Wimmer / SimLOD: Simultaneous LOD Generation and Rendering 11 of 12

subset of the San Simeon data set) [CA13]; Iconem for the Northern
necropolis - Meroë data set [Meroe]; NVIDIA for the Endeavor data
set; Keenan Crane for the Spot model; and Bunds et al. [CA19] for
the San Andras Fault data set.

This research has been funded by WWTF project ICT22-055 -
Instant Visualization and Interaction for Large Point Clouds, and
FFG project LargeClouds2BIM.

References
[3DEP] 3D Elevation Program (3DEP). https://www.usgs.gov/
core-science-systems/ngp/3dep, Accessed 2020.09.18 2.

[AHN] AHN. https : / / www . ahn . nl /
kwaliteitsbeschrijving, Accessed 2023.06.01 2.

[AHN2] AHN2. https : / / www . pdok . nl / introductie/ -
/article/actueel-hoogtebestand-nederland-ahn2-,
Accessed 2021.03.27 2.

[BC] MICROSOFT. BC7 Format. Accessed 2023.06.09. 2022. URL:
https : / / learn . microsoft . com / en - us /
windows / win32 / direct3d11 / bc7 - format # bc7 -
implementation/ 10.

[BDSF22] BORMANN, PASCAL, DORRA, TOBIAS, STAHL, BASTIAN,
and FELLNER, DIETER W. “Real-time Indexing of Point Cloud Data
During LiDAR Capture”. Computer Graphics and Visual Computing
(CGVC). Ed. by VANGORP, PETER and TURNER, MARTIN J. The Euro-
graphics Association, 2022. ISBN: 978-3-03868-188-5. DOI: 10.2312/
cgvc.20221173 3, 8, 10.

[BHZK05] BOTSCH, MARIO, HORNUNG, ALEXANDER, ZWICKER,
MATTHIAS, and KOBBELT, LEIF. “High-quality surface splatting on to-
day’s GPUs”. Proceedings Eurographics/IEEE VGTC Symposium Point-
Based Graphics, 2005. 2005, 17–141 10.

[BK20] BORMANN, PASCAL and KRÄMER, MICHEL. “A System for Fast
and Scalable Point Cloud Indexing Using Task Parallelism”. Smart Tools
and Apps for Graphics - Eurographics Italian Chapter Conference. Ed.
by BIASOTTI, SILVIA, PINTUS, RUGGERO, and BERRETTI, STEFANO.
The Eurographics Association, 2020 2, 3.

[CA13] PACIFIC GAS & ELECTRIC COMPANY. PG&E Diablo Canyon
Power Plant (DCPP): San Simeon and Cambria Faults, CA, Airborne
Lidar survey. Distributed by OpenTopography. 2013 10, 11.

[CA19] BUNDS, M.P., SCOTT, C., TOKÉ, N.A., et al. High Resolution
Topography of the Central San Andreas Fault at Dry Lake Valley. Dis-
tributed by OpenTopography, Accessed 2023.09.29. 2020 11.

[CAZ01] COHEN, J.D., ALIAGA, D.G., and ZHANG, WEIQIANG. “Hy-
brid simplification: combining multi-resolution polygon and point ren-
dering”. Proceedings Visualization, 2001. VIS ’01. 2001, 37–539. DOI:
10.1109/VISUAL.2001.964491 2.

[CBE20] CAREIL, VICTOR, BILLETER, MARKUS, and EISEMANN, EL-
MAR. “Interactively modifying compressed sparse voxel representa-
tions”. Computer Graphics Forum. Vol. 39. 2. Wiley Online Library.
2020, 111–119 3.

[CH02] COCONU, LIVIU and HEGE, HANS-CHRISTIAN. “Hardware-
Accelerated Point-Based Rendering of Complex Scenes”. Eurographics
Workshop on Rendering. Ed. by DEBEVEC, P. and GIBSON, S. The Eu-
rographics Association, 2002. ISBN: 1-58113-534-3. DOI: 10.2312/
EGWR/EGWR02/043-052 2.

[CRW14] CHAJDAS, MATTHÄUS G., REITINGER, MATTHIAS, and
WESTERMANN, RÜDIGER. “Scalable rendering for very large meshes”.
Journal of WSCG 22 (2014), 77–85 2.

[DVS03] DACHSBACHER, CARSTEN, VOGELGSANG, CHRISTIAN, and
STAMMINGER, MARC. “Sequential Point Trees”. ACM Trans. Graph.
22.3 (2003), 657–662 2.

[ENT] Entwine. https://entwine.io/, Accessed 2021.04.13 2.

[ENTW] USGS / Entwine. https://usgs.entwine.io, Accessed
2020.09.18 2.

[Eva15] EVANS, ALEX. “Learning from failure: A Survey of Promis-
ing, Unconventional and Mostly Abandoned Renderers for ‘Dreams
PS4’, a Geometrically Dense, Painterly UGC Game”. ACM SIGGRAPH
2015 Courses, Advances in Real-Time Rendering in Games. http :
/ / media . lolrus . mediamolecule . com / AlexEvans _
SIGGRAPH-2015.pdf [Accessed 7-June-2022]. 2015 3, 6.

[GKLR13] GÜNTHER, CHRISTIAN, KANZOK, THOMAS, LINSEN, LARS,
and ROSENTHAL, PAUL. “A GPGPU-based Pipeline for Accelerated
Rendering of Point Clouds”. J. WSCG 21 (2013), 153–161 6.

[GM04] GOBBETTI, ENRICO and MARTON, FABIO. “Layered Point
Clouds: A Simple and Efficient Multiresolution Structure for Distribut-
ing and Rendering Gigantic Point-sampled Models”. Comput. Graph.
28.6 (2004), 815–826 2, 3.

[GSO12] GUPTA, KSHITIJ, STUART, JEFF A., and OWENS, JOHN D. “A
study of Persistent Threads style GPU programming for GPGPU work-
loads”. 2012 Innovative Parallel Computing (InPar). 2012, 1–14. DOI:
10.1109/InPar.2012.6339596 4.

[GZPG10] GOSWAMI, P., ZHANG, Y., PAJAROLA, R., and GOBBETTI,
E. “High Quality Interactive Rendering of Massive Point Models Us-
ing Multi-way kd-Trees”. 2010 18th Pacific Conference on Computer
Graphics and Applications. 2010, 93–100 2.

[HP17] HARRIS, MARK and PERELYGIN, KYRYLO. Cooperative Groups:
Flexible CUDA Thread Programming. Accessed 2023.06.05. 2017. URL:
https://developer.nvidia.com/blog/cooperative-
groups/ 4.

[Inc14] INC., THE KHRONOS GROUP. ARB_sparse_buffer Extension. Ac-
cessed 2023.06.01. 2014. URL: https://registry.khronos.
org / OpenGL / extensions / ARB / ARB _ sparse _ buffer .
txt/ 10.

[KB21] KOCON, KEVIN and BORMANN, PASCAL. “Point cloud indexing
using Big Data technologies”. 2021 IEEE International Conference on
Big Data (Big Data). 2021, 109–119 2.

[KJWX19] KANG, LAI, JIANG, JIE, WEI, YINGMEI, and XIE, YUXIANG.
“Efficient Randomized Hierarchy Construction for Interactive Visualiza-
tion of Large Scale Point Clouds”. 2019 IEEE Fourth International Con-
ference on Data Science in Cyberspace (DSC). 2019, 593–597 2.

[KKLD23] KERBL, BERNHARD, KOPANAS, GEORGIOS, LEIMKÜHLER,
THOMAS, and DRETTAKIS, GEORGE. “3D Gaussian Splatting for Real-
Time Radiance Field Rendering”. ACM Transactions on Graphics 42.4
(July 2023). URL: https://repo-sam.inria.fr/fungraph/
3d-gaussian-splatting/ 10.

[KKSS18] KENZEL, MICHAEL, KERBL, BERNHARD, SCHMALSTIEG,
DIETER, and STEINBERGER, MARKUS. “A High-Performance Software
Graphics Pipeline Architecture for the GPU”. 37.4 (July 2018). ISSN:
0730-0301. DOI: 10.1145/3197517.3201374. URL: https:
//doi.org/10.1145/3197517.3201374 4.

[Kor85] KORF, RICHARD E. “Depth-first iterative-deepening: An optimal
admissible tree search”. Artificial intelligence 27.1 (1985), 97–109 4.

[Meroe] ICONEM. Northern necropolis - Meroë. Accessed 2023.06.05.
URL: https://app.iconem.com/#/3d/project/public/
6384d382 - 5e58 - 4454 - b8e6 - dec45b6e6078 / scene /
c038fb6f-c16b-421e-a2ac-f7292f1b1c64/ 11.

[MVvM*15] MARTINEZ-RUBI, OSCAR, VERHOEVEN, STEFAN, van
MEERSBERGEN, M., et al. “Taming the beast: Free and open-source
massive point cloud web visualization”. Capturing Reality Forum 2015,
Salzburg, Austria. 2015 2, 3.

[OLRS23] OGAYAR-ANGUITA, CARLOS J., LÓPEZ-RUIZ, ALFONSO,
RUEDA-RUIZ, ANTONIO J., and SEGURA-SÁNCHEZ, RAFAEL J.
“Nested spatial data structures for optimal indexing of LiDAR data”. IS-
PRS Journal of Photogrammetry and Remote Sensing 195 (2023), 287–
297. ISSN: 0924-2716 2.

https://www.usgs.gov/core-science-systems/ngp/3dep
https://www.usgs.gov/core-science-systems/ngp/3dep
https://www.ahn.nl/kwaliteitsbeschrijving
https://www.ahn.nl/kwaliteitsbeschrijving
https://www.pdok.nl/introductie/-/article/actueel-hoogtebestand-nederland-ahn2-
https://www.pdok.nl/introductie/-/article/actueel-hoogtebestand-nederland-ahn2-
https://learn.microsoft.com/en-us/windows/win32/direct3d11/bc7-format#bc7-implementation/
https://learn.microsoft.com/en-us/windows/win32/direct3d11/bc7-format#bc7-implementation/
https://learn.microsoft.com/en-us/windows/win32/direct3d11/bc7-format#bc7-implementation/
https://doi.org/10.2312/cgvc.20221173
https://doi.org/10.2312/cgvc.20221173
https://doi.org/10.1109/VISUAL.2001.964491
https://doi.org/10.2312/EGWR/EGWR02/043-052
https://doi.org/10.2312/EGWR/EGWR02/043-052
https://entwine.io/
https://usgs.entwine.io
http://media.lolrus.mediamolecule.com/AlexEvans_SIGGRAPH-2015.pdf
http://media.lolrus.mediamolecule.com/AlexEvans_SIGGRAPH-2015.pdf
http://media.lolrus.mediamolecule.com/AlexEvans_SIGGRAPH-2015.pdf
https://doi.org/10.1109/InPar.2012.6339596
https://developer.nvidia.com/blog/cooperative-groups/
https://developer.nvidia.com/blog/cooperative-groups/
https://registry.khronos.org/OpenGL/extensions/ARB/ARB_sparse_buffer.txt/
https://registry.khronos.org/OpenGL/extensions/ARB/ARB_sparse_buffer.txt/
https://registry.khronos.org/OpenGL/extensions/ARB/ARB_sparse_buffer.txt/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://doi.org/10.1145/3197517.3201374
https://doi.org/10.1145/3197517.3201374
https://doi.org/10.1145/3197517.3201374
https://app.iconem.com/#/3d/project/public/6384d382-5e58-4454-b8e6-dec45b6e6078/scene/c038fb6f-c16b-421e-a2ac-f7292f1b1c64/
https://app.iconem.com/#/3d/project/public/6384d382-5e58-4454-b8e6-dec45b6e6078/scene/c038fb6f-c16b-421e-a2ac-f7292f1b1c64/
https://app.iconem.com/#/3d/project/public/6384d382-5e58-4454-b8e6-dec45b6e6078/scene/c038fb6f-c16b-421e-a2ac-f7292f1b1c64/


12 of 12 M. Schütz & L. Herzberger & M. Wimmer / SimLOD: Simultaneous LOD Generation and Rendering

[PS20] PERRY, CORY and SAKHARNYKH, NIKOLAY. Introducing Low-
Level GPU Virtual Memory Management. Accessed 2023.06.01. 2020.
URL: https : / / developer . nvidia . com / blog /
introducing - low - level - gpu - virtual - memory -
management/ 10.

[PZvBG00] PFISTER, HANSPETER, ZWICKER, MATTHIAS, van BAAR,
JEROEN, and GROSS, MARKUS. “Surfels: Surface Elements As Ren-
dering Primitives”. Proceedings of the 27th Annual Conference on Com-
puter Graphics and Interactive Techniques. SIGGRAPH ’00. New York,
NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000, 335–
342 10.

[RL00] RUSINKIEWICZ, SZYMON and LEVOY, MARC. “QSplat: A Mul-
tiresolution Point Rendering System for Large Meshes”. Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’00. USA: ACM Press/Addison-Wesley Pub-
lishing Co., 2000, 343–352 2.

[SKKW23] SCHÜTZ, MARKUS, KERBL, BERNHARD, KLAUS, PHILIP,
and WIMMER, MICHAEL. GPU-Accelerated LOD Generation for Point
Clouds. Feb. 2023. URL: https://www.cg.tuwien.ac.at/
research/publications/2023/SCHUETZ-2023-LOD/ 2, 3,
8, 10.

[SKW21] SCHÜTZ, MARKUS, KERBL, BERNHARD, and WIMMER,
MICHAEL. “Rendering Point Clouds with Compute Shaders and Ver-
tex Order Optimization”. Computer Graphics Forum 40.4 (2021), 115–
126. ISSN: 1467-8659. URL: https://www.cg.tuwien.ac.at/
research/publications/2021/SCHUETZ- 2021- PCC/ 7,
10.

[SKW22] SCHÜTZ, MARKUS, KERBL, BERNHARD, and WIMMER,
MICHAEL. “Software Rasterization of 2 Billion Points in Real Time”.
Proceedings of the ACM on Computer Graphics and Interactive Tech-
niques 5.3 (July 2022), 1–17 6, 8.

[SOW20] SCHÜTZ, MARKUS, OHRHALLINGER, STEFAN, and WIMMER,
MICHAEL. “Fast Out-of-Core Octree Generation for Massive Point
Clouds”. Computer Graphics Forum 39.7 (Nov. 2020), 1–13. ISSN:
1467-8659 2, 3, 10.

[SW11] SCHEIBLAUER, CLAUS and WIMMER, MICHAEL. “Out-of-Core
Selection and Editing of Huge Point Clouds”. Computers & Graphics
35.2 (2011), 342–351 2–4.

[vvL*22] VAN OOSTEROM, PETER, VAN OOSTEROM, SIMON, LIU,
HAICHENG, et al. “Organizing and visualizing point clouds with con-
tinuous levels of detail”. ISPRS Journal of Photogrammetry and Remote
Sensing 194 (2022), 119–131. ISSN: 0924-2716 2.

[WBB*08] WAND, MICHAEL, BERNER, ALEXANDER, BOKELOH,
MARTIN, et al. “Processing and interactive editing of huge point clouds
from 3D scanners”. Computers & Graphics 32.2 (2008), 204–220 2–4,
10.

[WHA*07] WEYRICH, TIM, HEINZLE, SIMON, AILA, TIMO, et al. “A
Hardware Architecture for Surface Splatting”. ACM Trans. Graph. 26.3
(July 2007), 90–es. ISSN: 0730-0301. DOI: 10 . 1145 / 1276377 .
1276490. URL: https : / / doi . org / 10 . 1145 / 1276377 .
1276490 10.

[WS06] WIMMER, MICHAEL and SCHEIBLAUER, CLAUS. “Instant
Points: Fast Rendering of Unprocessed Point Clouds”. Symposium on
Point-Based Graphics. Ed. by BOTSCH, MARIO, CHEN, BAOQUAN,
PAULY, MARK, and ZWICKER, MATTHIAS. The Eurographics Associa-
tion, 2006. ISBN: 3-905673-32-0 2.

[YHGT10] YANG, JASON C., HENSLEY, JUSTIN, GRÜN, HOLGER,
and THIBIEROZ, NICOLAS. “Real-Time Concurrent Linked List
Construction on the GPU”. en. Computer Graphics Forum 29.4
(2010). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
8659.2010.01725.x, 1297–1304. ISSN: 1467-8659. URL: https://
onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-
8659.2010.01725.x (visited on 09/19/2023) 3.

[YMC02] YOON, JINHYUK, MIN, SANG LYUL, and CHO, YOOKUN.
“Buffer cache management: predicting the future from the past”. Pro-
ceedings International Symposium on Parallel Architectures, Algorithms
and Networks. I-SPAN’02. 2002, 105–110. DOI: 10.1109/ISPAN.
2002.1004268 3.

[ZPvBG01] ZWICKER, MATTHIAS, PFISTER, HANSPETER, van BAAR,
JEROEN, and GROSS, MARKUS. “Surface Splatting”. Proceedings of the
28th Annual Conference on Computer Graphics and Interactive Tech-
niques. SIGGRAPH ’01. New York, NY, USA: Association for Com-
puting Machinery, 2001, 371–378. ISBN: 158113374X. URL: https:
//doi.org/10.1145/383259.383300 10.

https://developer.nvidia.com/blog/introducing-low-level-gpu-virtual-memory-management/
https://developer.nvidia.com/blog/introducing-low-level-gpu-virtual-memory-management/
https://developer.nvidia.com/blog/introducing-low-level-gpu-virtual-memory-management/
https://www.cg.tuwien.ac.at/research/publications/2023/SCHUETZ-2023-LOD/
https://www.cg.tuwien.ac.at/research/publications/2023/SCHUETZ-2023-LOD/
https://www.cg.tuwien.ac.at/research/publications/2021/SCHUETZ-2021-PCC/
https://www.cg.tuwien.ac.at/research/publications/2021/SCHUETZ-2021-PCC/
https://doi.org/10.1145/1276377.1276490
https://doi.org/10.1145/1276377.1276490
https://doi.org/10.1145/1276377.1276490
https://doi.org/10.1145/1276377.1276490
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2010.01725.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2010.01725.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2010.01725.x
https://doi.org/10.1109/ISPAN.2002.1004268
https://doi.org/10.1109/ISPAN.2002.1004268
https://doi.org/10.1145/383259.383300
https://doi.org/10.1145/383259.383300

	Introduction
	Related Work
	LOD Structures for Point Clouds
	Linked Lists

	Data Structure
	Octree
	Persistent Buffer
	Voxel Sampling Grid
	Chunks and the Chunk Pool

	Incremental LOD Construction – Overview
	Incrementally Updating the Octree
	Expanding the Octree
	Voxel Sampling
	Allocating Chunks
	Storing Points and Voxels

	Rendering
	Evaluation
	Data Sets
	Construction Performance
	Rendering Performance
	Chunk Sizes
	Performance Discussion

	Conclusion, Discussion and Potential Improvements
	Acknowledgements

