
An Eloquent Formula
for the Perimeter
of an Ellipse
Semjon Adlaj

T
he values of complete elliptic integrals

of the first and the second kind are

expressible via power series represen-

tations of the hypergeometric function

(with corresponding arguments). The

complete elliptic integral of the first kind is

also known to be eloquently expressible via an

arithmetic-geometric mean, whereas (before now)

the complete elliptic integral of the second kind

has been deprived such an expression (of supreme

power and simplicity). With this paper, the quest

for a concise formula giving rise to an exact it-

erative swiftly convergent method permitting the

calculation of the perimeter of an ellipse is over!

Instead of an Introduction

A recent survey [16] of formulae (approximate and

exact) for calculating the perimeter of an ellipse

is erroneously resuméd:

There is no simple exact formula:

There are simple formulas but they

are not exact, and there are exact

formulas but they are not simple.

No breakthrough will be required for a refu-

tation, since most (if not everything!) had long

been done by Gauss, merely awaiting a (last)

clarification.

The Arithmetic-Geometric Mean and a

Modification Thereof

Introduce a sequence of pairs {xn, yn}∞n=0:

xn+1 := xn + yn
2

, yn+1 := √xnyn.
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Define the arithmetic-geometric mean (which we

shall abbreviate as AGM) of two positive numbers

x and y as the (common) limit of the (descending)

sequence {xn}∞n=1 and the (ascending) sequence

{yn}∞n=1 with x0 = x, y0 = y.1
The convergence of the two indicated sequences

is said to be quadratic [7, p. 588]. Indeed, one might

readily infer that (and more) by putting

rn := xn − yn
xn + yn

, n ∈ N,

and observing that

rn+1 =
(√

xn −
√
yn√

xn +
√
yn

)2

=
(
√

1+ rn −
√

1− rn
√

1+ rn +
√

1− rn

)2

=





1−
√

1− r2
n

rn





2

≈ r2
n

4
,

where the sign for approximate equality ≈ might

be interpreted here as an asymptotic (as rn tends

to zero) equality.

Next, introduce a sequence of triples

{xn, yn, zn}∞n=0:

xn+1 := xn + yn
2

, yn+1 := zn+
√

(xn − zn)(yn − zn),

zn+1 := zn −
√

(xn − zn)(yn − zn).
Define the modified arithmetic-geometric mean

(which we abbreviate as MAGM) of two positive

numbers x and y as the (common) limit of the (de-

scending) sequence {xn}∞n=1 and the (ascending)

sequence {yn}∞n=1 with x0 = x, y0 = y and z0 = 0.

Put

ξn := xn−zn, ηn := yn−zn, ρn := ξn + ηn
xn + yn

, n ∈ N.

Each iteration for the AGM requires an addition,

a division, a multiplication, and taking the square

root. The first iteration for the MAGM coincides

with the first iteration for the AGM. Each subse-

quent iteration for the MAGM requires three more

(than an iteration for the AGM requires) additions,

1094 Notices of the AMS Volume 59, Number 8



but with each iteration the speed of convergence

for the MAGM (as compared with the speed of

convergence, at the corresponding iteration, for

the AGM) is greater by a ratio asymptotically coin-

ciding with the ratio ρn. The latter claim is clarified

by observing that

rn+1 =
ξn+1 − ηn+1

xn+1 + yn+1
= ξn+1

xn+1 + yn+1

(
√

ξn −
√
ηn

√

ξn +
√
ηn

)2

≈ r2
n

4ρn
.

The ratio ρn is eventually (that is, asymptotically)

doubled with each iteration.

An example considered (accurately) by Gauss

[12] and (sloppily) provided in [7, p. 587] for

demonstrating the convergence for the AGM uses

the initial values x = 1 and y = 0.8. We list (chop-

ping off digits) approximations corresponding to

four consecutive iterations:

x1 = 0.9,

r1 ≈ 0.003105620015141858539495851348,

y1 ≈ 0.8944271909999158785636694674,

4r1/r
2
0 ≈ 1.00622088490596216679665583678,

x2 ≈ 0.8972135954999579392818347337,

r2 ≈ 0.000002411230547635880335956669,

y2 ≈ 0.8972092687327323251471393964,

4r2/r
2
1 ≈ 1.000004822466909304514524340728,

x3 ≈ 0.8972114321163451322144870651,

r3 ≈ 0.000000000001453508188467332219,

y3 ≈ 0.8972114321137369238877556369,

4r3/r
2
2 ≈ 1.00000000000290701637693677712,

x4 ≈ 0.8972114321150410280511213510,

r4 ≈ 0.000000000000000000000000528171,

y4 ≈ 0.8972114321150410280511204032,

4r4/r
2
3 ≈ 1.00000000000000000000000105634.

The values at the first iteration coincide, of course,

with those for the (introduced) MAGM. Now we

list approximate values at the second, third, and

fourth iterations for the MAGM:

x2 ≈ 0.8972135954999579392818347337,

r2 ≈ 0.000001207486641916223450627540,

y2 ≈ 0.8972114287557112303660562524,

4r2ρ1/r
2
1 ≈ 1.000001812169285206907758643674,

x3 ≈ 0.8972125121278345848239454930,

r3 ≈ 0.000000000000091268194185543308,

y3 ≈ 0.89721251212767081089238034335,

4r3ρ2/r
2
2 ≈ 1.00000000000011412072150937444,

x4 ≈ 0.8972125121277526978581629182,

r4 ≈ 0.000000000000000000000000000260,

y4 ≈ 0.8972125121277526978581629177,

4r4ρ3/r
2
3 ≈ 1.000000000000000000000000000293,

along with the (tending to 2 as they ought to)

ratios:

ρ1 ≈ 1.99689437998485814146050414865,

ρ2/ρ1 ≈ 2.00000060092645088170346112822,

ρ3/ρ2 ≈ 2.00000000000011397880639959476,

ρ4/ρ3 ≈ 2.00000000000000000000000000042.

Fix β > 1, let {xn} and {yn} denote the sequences

converging to the AGM of x0 = β and y0 = 1,

and let {ξn} denote the descending sequence

converging to the MAGM of β2 and 1 with ξ0 = β2.

The following equalities hold:

xn = β−
n−1
∑

m=0

xm − ym
2

, ξn = β2−
n−1
∑

m=0

2m
x2
m − y2

m

2
.

Proceeding with another example of Gauss, con-

sidered in [17] as well, where β =
√

2, we write, for

1 ≤ n ≤ 4, approximations for xn:

x1 ≈ 1.2, x2 ≈ 1.19815, x3 ≈ 1.19814023479,

x4 ≈ 1.19814023473559220744,

and, moving on, we supply approximations for ξn:

ξ1 = 1.5, ξ2 ≈ 1.457, ξ3 ≈ 1.456946582,

ξ4 ≈ 1.4569465810444636254.

Efficient Calculations of Complete Elliptic

Integrals

Unfix β and assume, unless indicated otherwise,

that β and γ are two positive numbers whose

squares sum to one: β2 + γ2 = 1.

Gauss discovered a highly efficient (unsurpass-

able) method for calculating complete elliptic

integrals of the first kind:

(1)

∫ 1

0

dx
√

(1− x2)(1− γ2x2)
= π

2M(β)
,

where M(x) is the arithmetic-geometric mean of

1 and x. In particular, equality (1) holds if (in

violation of the assumption, otherwise imposed)

γ2 = −1:
∫ 1

0

dx√
1− x4

= π

2M(
√

2)

≈ 1.31102877714605990523.

The integral on the left-hand side of the latter

equation is referred to as the lemniscate integral

and is interpreted as the quarter length of the

lemniscate of Bernoulli whose focal distance is√
2. The precision of the numerical approxima-

tion given (assuming π is known with sufficient

precision) is attained after four iterations, that

is, at π/(2x4). The reciprocal of M(
√

2) is called

the Gauss constant; Gauss, having calculated it

to eleven decimal places, wrote in his diary [14]

on May 30, 1799, that the discovery “opens an
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entirely new field of analysis.” Thereby, the beau-

tiful field of elliptic functions and elliptic curves2

intertwining analysis, algebra, and geometry was

born.

The formula given via equation (1) signified a

qualitative transition in connecting the study of

elliptic integrals of the first kind with studying

elliptic functions. Yet, a formula, analogous3 to

(1), for calculating elliptic integrals of the second

kind had defied all subsequent efforts at attaining

it, awaiting December 16, 2011, to be discovered.

In fact (yet arguably), searching for an (unsurpass-

able) formula for calculating elliptic integrals of

the second kind has been a great (often hidden)

motivator and a driving force behind much of

the genuine research on elliptic functions and

elliptic curves. As is evidenced by the adjective

“elliptic” tagging this field, which Gauss’s discov-

ery had once ignited, the problem of calculating

the arc length of an ellipse has been its (most)

central problem. The formula for calculating com-

plete elliptic integrals of the second kind be now

known:

(2)

∫ 1

0

√

1− γ2x2

1− x2
dx = πN(β2)

2M(β)
,

where N(x) is the modified arithmetic-geometric

mean of 1 and x. The integral on the left-hand

side of equation (2) is interpreted as the quarter

length of an ellipse with a semi-major axis of unit

length and a semi-minor axis of length β (and ec-

centricity γ), whereas the swiftly converging ratio

on the right-hand side is elementary enough to be

presented in high or, perhaps, elementary school.

This formula, unlike any other preceding formula

for computing complete elliptic integrals of the

second kind, aside from offering a calculating

algorithm possessing both (sought-for features)

iterativity and fast convergence, is lucent. On the

other hand, the Euler formula and the (so-called)

Gauss-Kummer series, which, in fact, is due to

Ivory [13], aside from lacking simplicity, converge

only linearly and particularly slowly for large

eccentricities (near one).

The Legendre relation [10], relating comple-

mentary complete elliptic integrals of the first

and the second kind to each other, might now

be rewritten, yielding a parametric (uncountably

infinite) family of identities for π :

(3) π = 2M(β)M(γ)

N(β2)+N(γ2)− 1

2We need not adhere to the rather common (and ridiculous)

separation of the study of elliptic curves from the study of

elliptic functions.
3The sought-for formula, aside from its desired simplicity,

must give rise to an iterational and rapidly (faster than

linearly) convergent algorithm.

and, in particular, yielding a countably infinite

family of identities (where the ratio of M(γ) to

M(β) is an integer power of
√

2), from which,

setting c :=
√

2− 1, we list a few:

π = M(
√

2)2

N(2)− 1
=
M
(

2
√√

2 c
)2
/2

N
(

4
√

2 c2
)

− 2c
= M

(√
2c
)2

√
2N(2c)− 1

= 2M(c)2√
2N (c2)− c =

2M
(

c2
)2

N (c4)− c2
,

where the first of the latter chain of identities for

π might be inferred from a special case (where

β = γ) of the Legendre relation discovered by

Euler [11]. Iteratively calculating (for β =
√

2 ) the

sequences {xn} and {ξn}, of which we have already

calculated the terms up to those whose indices

do not exceed n = 4, one arrives at the (so-called)

Brent-Salamin algorithm for computing π [18].4

Setting

πn := x2
n

ξn+1 − 1

=

(√
2+ 1−

∑n−1
m=1 xm − ym

)2

2
√

2− 1−
∑n−1
m=1 2m(xm − ym)2

, n ∈ N,

we enlist, for n ≤ 4, approximations for the ratios

πn (descendingly and quadratically converging to

π ):

π1 ≈ 3.18, π2 ≈ 3.1416, π3 ≈ 3.1415926538,

π4 ≈ 3.141592653589793238466.

A Few Examples

Although we aim to provide several applications

of the formula attained for complete elliptic in-

tegrals of the second kind, we can hardly skip a

classical demonstration from mechanics provid-

ing a shining example of the Gauss formula for

calculating complete elliptic integrals of the first

kind.

The Period of a Simple Pendulum

Had Appell known of the Gauss method (for calcu-

lating complete elliptic integrals of the first kind)

he would not have had to “discover” a mechanical

interpretation of the “imaginary period” [8] of

a simple pendulum [9]. The (two-valued) period

T of a simple pendulum5 might be clearly and

4Evidently, “Gauss-Euler algorithm” would be a naming

less exotic, yet restoring the credit to whom it rightfully

belongs.
5T regarded as a function of |g| – the modulus of g. The

choice of the positive direction along the “vertical” is, after

all, arbitrarily made, so, regardless of the choice, both signs

of g must be accounted for.
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succinctly expressed as

T = 2πk

√

l

g
, k := k(θ)

=
{

1/M (cos(θ/2)) if g > 0,√
−1/M (sin |θ/2|) if g < 0,

where l is the length of the pendulum, g is the

acceleration (due to gravity), θ is the angle of

the maximal inclination from the pointing (in the

positive direction) downwards vertical (as shown

in Figure 1), 0 < |θ| < π .

The configuration space of the pendulum upon

which an external force of constant magnitude and

direction (presumably acting along the vertical) is

being exerted is a circle. In other words, the weight

of the pendulum is (holonomically) constrained

to lie on a circle so that its radial component is

counterbalanced by pivot reaction force.

θ l

↓ +

Figure 1. The pendulum.

The period corresponding to the (upper) value

of k with g being positive corresponds to gravity

pointing downwards (as is customarily assumed).

The complementary period, corresponding to

the (lower) value of k with g being negative,

is then readily seen to correspond to revers-

ing the direction of gravity. Surprisingly, too

many (if not all!) “popular” references on elliptic

functions, such as [15, pp. 59, 77], and “author-

itative” references on mechanics, such as [19, p.

73], have missed (up to this day) these elegant

and powerful expressions (for which Gauss must

be solely credited), routinely providing, instead,

either unfinished calculations or cumbersome

power series representation (lacking iterativity

and convergence expediency), hardly enabling an

understanding of the double-valuedness of T . A

particular (self-complementary) case to be pointed

out corresponds to the (middle) value θ = π/2, for

which |k| =
√

2/M(
√

2). For a full appreciation of

the Gauss formula, one must employ it for values

of θ approaching π when traditional calculations

of T via its power series representation eventually

fail to converge at any reasonable time!

Perimeters of Ellipses for Five Values of

Eccentricity

Denote by l(γ) the ratio of the length of an ellipse

of eccentricity γ to its major axis. Let L denote the

semilength6 of the lemniscate of Bernoulli whose

focal distance is
√

2, whereas we use the letter M

to denote, for brevity, M(
√

2), the reciprocal of

the Gauss constant. Thus L = π/M , as calculated.

We shall say that two ellipses are complementary

if the squares of their eccentricities add up to one.

As defined, l(0) = π is the aforementione d

ratio for an ellipse whose eccentricity is zero,

that is, a circle. The complementary ellipse, being

an ellipse with eccentricity 1, is seen to be the

(degenerate) ellipse whose semilength coincides

with its major axis, so l(1) = 2. The latter equality

might be alternatively expressed as a limiting

equality:

lim
β→0

M(β)

N (β2)
= π

2
,

which one could have also attained as the limiting

case of Legendre relation (3).

Supplementing formula (2) with formula (3),

we shall calculate the perimeters of three more

ellipses.

The self-complementary ellipse is confocal with

the lemniscate, cocentered with the superscribing

circle (Figure 2). It is the case to be considered

first following the two preceding cases. Here, we

have

l
(

1/
√

2
)

= L+M√
2

≈ 2.7012877620953510050.

The latter equation might be viewed as, the dis-

covered by Euler, special case of the Legendre

relation (somewhat) disguised.7 The precision of

the numerical approximation given is attained at

(π/x4 + x4)/
√

2 (with x4 already calculated).

The two complementary ellipses (Figure 3) for

which the eccentricities are c2 (small) and 2
√√

2 c

(large) are:

l
(

c2
)

= L+ cM ≈ 3.11834348914448577623,

l

(

2

√√
2 c

)

= c (L+ 2M)

≈ 2.07866367001535595794.

6The reader might be cautioned to observe that, according

to the definition being given here, the constant L is twice the

so-called lemniscate constant.
7One might also observe that the length of the “sine” curve

over half a period, that is, the length of the graph of the

function t ֏ sin(t) from the point where t = 0 to the point

where t = π , is
√

2 l
(

1/
√

2
)

= L+M.
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Figure 2. Confocal self-complementary ellipse

and lemniscate inscribed in cocentered circle.

Figure 3. Two complementary ellipses and a

circle sharing a single diameter.

The precision of the numerical approximation

is attained atπ/x4+c x4 for the first ellipse (whose

eccentricity is small) and at c (π/x4 +2x4) for the

second (whose eccentricity is large).

We now exploit the latter approximation (of the

perimeter of the elongated ellipse with β = c2) in

order to compare formula (2) with two well-known

formulae. Put

F(a, b, x) :=
∞
∑

n=0

(a)n(b)n

(n!)2
xn,

where (·)n is the Pochhammer symbol. The ratio

l(γ)/π might be calculated via either one of two

formulae, due to Euler and Ivory, respectively:

l(γ)

π
=
√

2− γ2

2
F



−1

4
,
1

4
,

(

γ2

2− γ2

)2




= 1+ β
2

F



−1

2
,−1

2
,

(

1− β
1+ β

)2


 .

Assuming exact arithmetic, 337 terms of the

first (Euler) power series
√

3 c F(−1/4,1/4,8/9)

are required to achieve the precision of the

approximation given for the latter perimeter,

whereas 55 terms of the second (Ivory) power

series
√

2 c F (−1/2,−1/2,1/2) are still necessary

to achieve that precision. The Ivory formula, al-

though faster than the Euler formula, is (still)

linearly convergent and is (particularly) slow for

large eccentricities when compared with formula

(2), which, being quadratically convergent, is quite

indifferent8 to larger eccentricities. As was the

case with the Gauss formula for complete elliptic

integrals of the first kind, the presented formula,

for complete elliptic integrals of the second kind

must be employed for critical values of the ellip-

tic modulus γ (nearing one), as all conventional

power series representations fail to converge at

any reasonable time before a fuller appreciation

evolves. As γ approaches one, the corresponding

value on the right-hand side of formula (2) remains

bounded, unlike the corresponding value on the

right-hand side of formula (1). Thereby, the con-

vergence of formula (2) as traditional calculations

fail makes it even more convincingly superior,

being the only formula applicable for practically

viable calculations at critical range.

We emphasize that Cayley’s formula [10]:

l(γ) = 2+
(

ln

(

4

β

)

− 1

1 · 2

)

β2

+1 · 3

2 · 4

(

ln

(

4

β

)

− 2

1 · 2
− 1

3 · 4

)

β4

+1 · 32 · 5

2 · 42 · 6

(

ln

(

4

β

)

− 2

1 · 2
− 2

3 · 4
− 1

5 · 6

)

β6

+1 · 32 · 52 · 7

2 · 42 · 62 · 8

(

ln

(

4

β

)

− 2

1 · 2
− 2

3 · 4
− 2

5 · 6
− 1

7 · 8

)

β8 + · · · ,

although traditionally regarded as the remedy

for calculating the perimeters of elongated el-

lipses, does not truly eliminate the convergence

problem of Ivory’s formula, replacing it with a

convergence problem for calculating values of

the (transcendental) logarithmic function over an

unbounded domain (or, equivalently, in a neigh-

borhood of zero). Incidentally, if the precision

of the approximation for the latter ellipse (with

β = c2) is required, then (presuming the difference

ln (4)−ln (β) is known with sufficient precision) all

terms up to (and including) the term involving β26

from Cayley’s formula become necessary. Many

more terms are needed if higher precision is de-

sired, with Cayley’s formula being, again, another

power series representation for the perimeter,

with the power (of β) growing only linearly.9

8Another formal definition is compelling here. Yet, avoid-

ing digression, readers are urged to come up with one of

their own.
9Even a polynomial growth (of the power of β) of high or-

der would not suffice for matching the speed with which

formula (2) converges; nothing less than an exponential

growth would!
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Broad Concepts behind the Formula and an

Epilogue

Fundamental research involving Tethered Satellite

Systems at the Division of Stability of Motion and

Mechanics of Controlled Systems at the CCRAS,10

conducted by a team led by S. Ya. Stepanov,11 has

required extensive use of the elliptic functions ap-

paratus. Two traditional approaches to studying

elliptic functions (due to Jacobi and Weierstrass)

were naturally united by adopting Sophus Lie’s

(algebraic) methodology for solving differential

equations. The two groups of (linear fractional)

transformations respectively fixing the differen-

tial equations, satisfied by the Weierstrass elliptic

function and the Jacobi sine function, turn out

to be isomorphic with each other (both being

isomorphic with the Klein four-group). An essen-

tial elliptic function for which the corresponding

transformations acquire the simplest form might

then be (canonically) defined [3]. Halving values

for such a function is far less cumbersome than

halving the values of either Weierstrass or Jacobi

elliptic functions, thus permitting, in particular,

an attainment of exact values (expressed in qua-

dratic radicals) at all eighth lattice points [4].

Exact special values of the modular invariant at

the boundary of the fundamental domain were

also (most) efficiently calculated. The formida-

ble search for an explicit inverse of the modular

invariant, initiated by Abel [1] and adamantly

(yet unsuccessfully) pursued by Ramanujan, had

then reached its destination on (the 212th an-

niversary of the Gauss discovery) May 30, 2011

[5]. Moreover, a canonical formula for halving

points on elliptic curves (via efficiently inverting

the doubling formula) and yielding an iterative

algorithm for computing (incomplete) elliptic in-

tegrals (qualitatively revising the traditional view

of the constructability of inverses for such inte-

grals) was attained [6]. The formula for calculating

the perimeter of an ellipse, presented in this pa-

per, turned out to be next. The chapter “Elliptic

Integrals” by L. M. Milne-Thomson [2, ch. 17] is

highly recommended for an essential overview,

and a quotation from [7, p. 591], referring to

Landen transformations, seems appropriate for

a conclusion: “Indeed, Landen himself evidently

never realized the importance of his idea.”

Agreeing, we must say that it took Gauss and

over two centuries to be properly conveyed!

10The Computing Centre of the Russian Academy of Sci-

ences, Moscow, Russia.
11Sergey Yakovlevich Stepanov is one of the pioneering (in

the 1960s) researchers of gyrostatic stability and stabiliza-

tion of satellites.
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