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In 1973 Toomer suggested that the basic scale of ancient (ca. 500 AD) Indian sine tables, 
a circle of radius , was a remnant of even earlier Greek trigonometry, and that 
evidence for Greek use of that scale might be found in the otherwise curious ratios, 
327⅔ / 3144 and 247½ / 3122½, for the lunar anomaly that Ptolemy attributes to 
Hipparchus (Toomer 1973). Toomer was building upon an earlier suggestion by 
Neugebauer that ancient Indian sine tables compiled at angular intervals of 3¾° might 
have been derived from early Greek chord tables compiled at angular intervals of 7½° 
(Neugebauer 1972), using the fundamental relation 

3438R′ =

 1sin crd 2
2

α α= . 

In Almagest 4.11 Ptolemy tells us that Hipparchus analyzed two trios of lunar eclipses in 
order to determine the size of the first lunar anomaly (Toomer 1984, pp. 211-216). 
Hipparchus first used an eccentric model to analyze a trio of eclipses observed in 
Babylon in about 300 BC and found e / R = 327⅔ / 3144. Hipparchus later used an 
epicycle model to analyze a trio of eclipses observed in Alexandria in about 200 BC and 
found r / R = 247½ / 3122½. For reasons he did not explain, Toomer reversed 
Hipparchus’ order and analyzed first the second trio, usually referred to as Trio B. The 
input data for an analysis of lunar eclipse trios are the time of each eclipse and longitude 
of the Moon at that time, and Ptolemy reports that the Hipparchan intervals for Trio B 
are: 

B2 – B1: 178d 6h and 180;20°  

B3 – B2: 176d 1⅓h and 168;33° 
However, Toomer used instead a time interval B3 – B2 of 176d ⅓h, i.e. one hour shorter 
than given above (Toomer 1984, p. 215, fn. 75).1 Using the shorter interval, Toomer 
found it necessary to attribute to Hipparchus a mistake in geometry in order to explain the 
Hipparchan answer 327½ / 3122½ for Trio B. Using the longer (correct) interval, Toomer 
found that the ratio attributed to Hipparchus by Ptolemy was essentially correct, and so 
Hipparchus in fact did the geometry correctly, but the resulting numbers in the ratio no 
longer supported the hypothesis that Hipparchus was using a chord table based on a circle 
of radius 3438.2 (Toomer did not give the resulting numbers, but they must have been 
close to the values 232 / 2924 found below).  
 
 
 
 



On the other hand, Hipparchus’ intervals for the first trio, Trio A, are: 
A2 – A1: 177d 13¾h and 173 – ⅛°  

A3 – A2: 177d 1⅔h and 175 + ⅛°  
Toomer analyzed this trio more or less correctly, and found e / R = 338 / 3134, clearly 
suggesting that (a) his hypothesis that Hipparchus had used a chord table of radius  

 was correct, and (b) getting the exact Hipparchan numbers 327⅔ and 3144 
was most likely a matter of numerical rounding and minor miscalculation. As Ptolemy 
explains in Almagest 4.11, even small adjustments in the input intervals can result in 
large variation in the output answers. 

3438R′ =

 
In the following we repeat Toomer’s analysis of Trio A and confirm the conclusion that 
Hipparchus was very likely using a base 3438 chord table. In addition, we find an 
alternate path through the computation of Trio B that explains the absolute numbers 
247½ and 3122½ and sheds light on another numerical convention that Hipparchus was 
apparently using. 
 
Preliminaries 
Before diving deep into a thicket of tedious numerical analysis, it will be useful to discuss 
some preliminary results that may help in establishing and maintaining a useful 
perspective. First, the few geometrical tools needed are summarized in the Appendix. The 
principal assumption of Neugebauer and Toomer is that Hipparchus was using a chord 
table with entries derived from a circle of circumference 21,600, the number of arc 
minutes in 360°. Then starting with a reasonably accurate value for π  and the values of 
crd(90°) and crd(60°), which amounts to having estimates of 2  and 3 , one can use 
simple theorems3 that relate crd(180°–α) and crd(α/2) to crd(α) to compute the chord 
entries in steps of 7½°. One further assumes the use of simple linear interpolation to 
compute the chord of an arbitrary angle. The table in the appendix is a possible replica of 
Hipparchus’ table. 
 
Second, we note that using Hipparchus’ intervals for Trio A and doing the trio analysis 
correctly, one finds 
 

 
2 2

3 36;24,49 336.07 327 327 6;15,11
60 3144 3065.36 3144 60

e
R
= = = = . (1) 

 
The 3rd and 4th ratios above show what the numerator and denominator would be in a 
correct calculation, if the denominator or numerator really was what Hipparchus gave. 
The final two terms are Hipparchus’ result, and show that Hipparchus made a fairly 
significant error in the calculation, far larger than would occur through rounding. The 
corresponding relations for Trio B are 
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4;46,24 248.41 247 247 4;46,30
60 3122 3111.03 3122 60

r
R
= = = = , (2) 

 



showing that rounding is likely adequate to account for the small discrepancy in this case. 
The important lesson for us is that starting from Hipparchus’ intervals it is impossible to 
get to his final numbers without invoking some generally small but unknown and 
irrecoverable sequence of numerical rounding for both trios, plus some miscalculation for 
Trio A. Of course, the same would be true for the great majority of calculations in the 
Almagest if Ptolemy had not written out so many of the intermediate steps – an event 
unique in ancient sources. 
 
Third, it is important to realize a point about distance scales in Hipparchus’ (and 
Ptolemy’s) trigonometry calculations. Since these were done without the aid of symbolic 
algebra as we know it, every length in a diagram has to be given a specific numerical 
value before it is used in calculation. In particular, the lengths of the distances in 
Figures 1 and 2 in the Appendix are used early in the calculation, and must be assigned 
numerical values, so that we can eventually compute R(d) for Trio A and r(d) for Trio B 
as implicit functions of d. While we know from the derivations in the Almagest that 
Ptolemy always used d = 120, his standard value for the hypotenuse of every reference 
triangle and the diameter of every reference circle, including his deferent circles, there is 
no reason to assume that Ptolemy’s convention was used by Hipparchus. Indeed, we shall 
see below that Hipparchus appears to have used the value 

d OB=

3,162 1,000 10d = , at least in 
Trio B. As further discussed below, it is likely that this value results from the use of the 
approximation 10π , which, like 3438R′ = , is widely attested in Indian astronomy 
texts. 
 
Finally, it might be helpful to anticipate how the numbers 327⅔, 3144, 247½, and 3122½ 
appear at intermediate steps and survive in the final ratios. The strategy is to work 
through each calculation numerically, much as Ptolemy does throughout the Almagest, 
but to maintain all intermediate steps as ratios of integers with simple fractions, rather 
than reducing all intermediate numbers to sexagesimal fractions as in the Almagest. For 
trio A, one first computes what is effectively R(d), followed by R/e as a function of R(d). 
For trio B, one first computes r(d) and then r/R as a function of r(d). Naturally, though, at 
intermediate steps decisions must be made about clearing and simplifying fractions. As it 
turns out, the cleanest interpretation is that during the computations of Trio A, the 
number 3144 appears as the result of a chord calculation, and survives through to the end, 
thus enabling the recovery of the scale of the underlying chord table used, and at the 
same time rendering whatever value Hipparchus was using for d irrecoverable. For Trio 
B, however, the opposite happens: the number 247½ arises from combining the value of d 
and a ratio of chord values at an intermediate step, and that number survives to the end. 
So in this case we can recover the value of d being used, but the scale of the underlying 
chord table is lost when he divides the two chord values, the ratio being of course 
independent of the scale of the chord table. 
 
The Eccentric Model and Trio A 
We first summarize the geometrical solution of the lunar eclipse trio problem. To be sure 
there is no direct evidence that Hipparchus used this particular solution, and in principle 
there must be other variants. On the other hand, this is the solution Ptolemy gives in the 
Almagest, and using it does lead us to the known Hipparchan numbers. 

 



C 

M3 

M1 

e 

R 

B 

O 

 
 
 
 
 
 
 
 
 
 
 
 

P  
 
 
 
 

M2  
 
                                             Figure 1. The lunar eccentric model 
 
First we shall summarize the trigonometry solution in algebraic form. In Figure 1 the 
eclipses are at points M1, M2, M3. The given angles are M1CM2 = α1, M2CM3 = α2, 
M1CM3 = α3, and M1OM2 = ζ1, M2OM3 = ζ2, M1OM3 = ζ3. We pick eclipse M1 as a 
special reference eclipse, and extend the line M1O to intersect the circle at point B. Then 
for a fixed value of d = OB, which determines the intrinsic and theoretically arbitrary 
length scale in the figure, one finds in turn M2B, M3B, M1M3, R, M1B, and R/e. The 
algorithm is: 

1. Find the angles at point B: M1BM2 = α1/2, M2BM3 = 180° – α2/2, M3BM1 = α3/2. 
2. Hence OM2B = ζ1 – α1/2 and OM3B = ζ3 –  α3/2. 

3. Sides of M2M3B: 2 1

2

crd 2(180 )
crd 2

M B
d OM B

ζ−
= , 3 3

3

crd 2(180 )
crd 2

M B
d OM B

ζ−
=

crdM P M B

, 

3 3 2α= 2 2 3 2crd(180 )M P M B M B, α= + − , and 
2 2

2 3 2 3M M M P M P= + . 

4. 2 3

2crd
M MR

α
=  (note that all lengths are proportional to d). 

5. 1 3
3 1 crd  and hence M BM CB M CB M CB

R 3 3α
−= = +

)

. 

6. M1B = R crd M1CB 
7. 2 2

1 1( )( ) (R e R e R e OB M O d M B d+ − = − = ⋅ = −  

8. 
2

1( ) 1
R R d
e R d M B
=

+ − d
 



To implement the calculation numerically, the first step is to convert the intervals in time 
and longitude into angles in anomaly and longitude. Thus we find 1 2( )a t t1α ω= − , 

2 3(a t t2 )α ω= − , and 3 1 2360α α α= − − 1 2 1 2 1( )t t t; , δ λ λ ω= − − −
)2 3 2 3 2(t t tδ λ λ ω= − − − , and 3 1 2δ δ δ= − i i i; ζ α δ= + , i= 1..3. Computing these angles 

requires specific values for the lunar mean motion in anomaly and longitude, and the 
latter is conventionally computed from assumed values of the lunar synodic month and 
the length of the solar year. Ptolemy does not tell us at what stage in his career 
Hipparchus was doing these calculations, so it is marginally possible that he was using 
values other than those attributed to him in Almagest 4.2-3, possibly even sidereal values. 
We shall use the Almagest 4.2-3 values, but it remains the case that one source of minor 
variation in the answers is the assumed value of these parameters. Thus, using 
Hipparchus’ Trio A intervals one finds by direct computation 
 

1 159;59,14α =  1 153;5,37ζ =  

2 153;24,33α =  2 155;23,59ζ =

3 46;36,11α =  3 51;30,23ζ =  
 
Step by step, the solution is: 

1. 1
2

1
1

53111crd 2(180 ) 8
6579crd 2( )

2

M B d dζ
αζ

−
= =

−
 

2. 3
3

3
3

55381crd 2(180 ) 7
73249crd 2( )
92

M B d dζ
αζ

−
= =

−
 

3. 2
3 3

5 55381 6991 5540crd 7 7
72 2 3438 34383249
9

M P M B d d
R
α

= = ⋅ =
′ ⋅

4
5  

4. 2
2 2 3

5 5 13111 5381 29351581crd(180 ) 8 7 4
72 6579 2 3438 34383249
9

M P M B M B d d d
R

α−
= + = + ⋅ =

′ ⋅

1
3  

5. 2 2
2 3 2 3

16270
3

3438
M M M P M P d= + =  

6. 2 3

2

1 16270 3135
3 7
5 6crd 6691 3345
7 7

M MR d d
α

= = =  



7. 3
3crd 6076M B RM CB

R
′⋅

= =  

 
8.  3 124;10M CB =
 
9.  1 3 3 170;57M CB M CB α= + =

10. 1
1

16422crd 7
3438 3438
M CBM B R d= =  

11.
2

1 2
2

1 13135 3135
7 7

3361( ) 1 68541 6 1 6 6(3135 ) 3345 3135 3345
7 7 7 7 3438

R R d
e R d M B d
= =

+ −

+ − ⋅ ⋅

=  

 
compared to Hipparchus’ answer 3144 / 327 ⅔. As mentioned earlier, Hipparchus made a 
mistake somewhere along the line and did not get the correct ratio. 
 
In order to get Hipparchus’ answer we have to invoke some amount of rounding and 
miscalculation, so the first step is to adjust something so that the correct numerical value 
for the ratio R/e is produced.4 One simple way to accomplish this, out of an infinity of 
choices, is to assume that Hipparchus miscomputed ζ3 as 51;19,37, but did everything 
else precisely. Then he would get: 
 

1. 1
2

1
1

53111crd 2(180 ) 6
6579crd 2( )

2

M B d dζ
αζ

−
= =

−
 

2. 3
3

3
3

15368crd 2(180 ) 9
33230crd 2( )
42

M B d dζ
αζ

−
= =

−
 

3. 2
3 3

1 4 15368 6991 5559crd 9 5 2
32 2 3438 34383230
4

M P M B d d
R
α

= = ⋅ =
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4. 2
2 2 3

5 1 6 13111 5368 1580 2939crd(180 ) 6 9 7 2
32 6579 2 3438 34383230
4

M P M B M B d d d
R

α−
= + = + ⋅ =

′ ⋅
 

5. 2 2
2 3 2 3

36288
4

3438
M M M P M P d= + =  



6. 2 3

2

33 31446288
84

4crd 33466691
5

M MR d d
α

= = =  

7. 3
3

5crd 6078
8

M B RM CB
R

′⋅
= =  

 
8.  3 124;16M CB =
 
9.  1 3 3 170;52M CB M CB α= + =

10. 1
1

16441crd 3
3438 3438
M CBM B R d= =  

11. 
2

1
2 2

3 33144 3144
8 8

51( ) 1 32768543 3 76(3144 ) 3346 3144 3346
8 8 3438

R R d
e R d M B d
= =

+ −

+ − ⋅ ⋅
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In the above I have shown the numbers rounded to one digit fractions, but the 
computations are in fact done, in an Excel spreadsheet, to full precision at each step. Both 
of the final numbers are very close to the values Ptolemy attributes to Hipparchus. Thus, 
with or without accounting for the source of his errors, we can be certain that this is 
indeed the computational path that Hipparchus followed.  
 
In order to show that this result is in no sense foreordained, we may use instead eclipse 
M2 or M3 as the reference, thus repeating the above calculation in two different ways. 
Then one finds that in order to get the crucial value 3144 in the numerator of the ratio for 
R, one must use the values for M3589R′ = 2, and 3525R′ =  for M3, neither of which is a 
plausible, not to mention attested, value for the radius of a reference circle. The 
conclusion appears unavoidable and firm: the numbers 3144 and 3438 are unambiguously 
linked. 
 
During the calculation above I have carried along the distance d = OB symbolically, as 
did Toomer. It appears that whatever value Hipparchus might have used for d, he chose 
not to clear the fraction involving 3144 (other than canceling a factor of two) which 
shows up first in the computation of M2M3. We will see below that he apparently did 
clear this fraction when analyzing Trio B, thereby effectively masking the information on 
the chord table he was using. Thus it is entirely fortuitous that the evidence revealing the 
3438 base of his chord table was revealed in the reported number 3144 of the Trio A 
ratio. 
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 B                                                       Figure 2. The lunar epicycle model 
 
The Epicycle Model and Trio B 
We now analyze the epicycle model for Trio B. In Figure 2 the eclipses are at points M1, 
M2, M3

 on a circle of radius r. The given angles are M1CM2 = α1, M2CM3 = α2, M1CM3 = 
α3, and M1OM2 = δ1, M2OM3 = δ2, M1OM3 = δ3. Using eclipse M2 as the reference 
eclipse, the solution strategy is very similar: for a fixed value of d, find M1B, M3B, M1M3, 
r, M2B, and r/R. The analysis step by step is: 

1. Find the angles at point B: M1BM3 = α3/2, M2BM3 = α2/2, M1BM2 = 180° – α1/2. 

2. Hence OM1B = α1/2 – δ1 and OM3B = 180° – α2/2 – δ2. 

3. Sides of M1M3B: 1 1

1

crd 2
crd 2

M B
d OM B

3 2

3

crd 2
crd 2

M B
d OM

δ
= , 

B
δ

= 3 3 3crdM P M B, α=

3

, 

1 1 3 crd(180 )M P M B M B α= − − . 

4. 2 2
1 3 1 3M M M P M P= +  

5. 1 3

3crd
M Mr

α
=  

6. 1 3
3 2 crd and hence BMM CB M CB M CB

r 3 2α
−= = − . 

7. M2B = r crd M2CB 
8. 2 2

2R d r d M B= + − ⋅ . 
Using Hipparchus’ Trio B intervals the angles αi and δi are computed as in the eccentric 
model, and one finds 
 
 



1 168;50,0α =  1 8;21,24δ =  

2 140;9,46α =  2 8;46,28δ =  

3 51;0,13α =  3 0;25,4δ =  
 
and, as mentioned earlier, a small discrepancy in the ratio r/R compared to Hipparchus’ 
answer 247½ / 3122½. In order to get Hipparchus’ answer we again have to invoke a 
small amount of rounding and/or miscalculation. As in the eccentric case, the simplest 
route, of an infinity of choices, is to assume that the analyst miscomputed δ2 as 8;44,8 but 
did everything else precisely. Then he would get Hipparchus’ numerical answer for the 
ratio r/R, no matter what the specific values for the numerator and denominator. 
However, following the same path as in Trio A using 3438R′ =  does not give the 
specific values attributed to Hipparchus. Instead one finds 232r =  and , or 
conversely, a circle radius of 

2924R =
3672R′ =  is required to get the Hipparchan values 247½ 

and 3122½. Using eclipses M1 or M3 as reference points, one finds that the required 
values of R′are instead 3178 and 3213.  
 
None of these values is particularly suggestive as the radius of a circle for a chord table, 
and so we must consider the possibility that Hipparchus followed a different path in this 
computation. Some variation in computational details by Hipparchus would not be 
unlikely in any case, given that (a) the models were different, and (b) the analyses were 
evidently made at different times, and possibly very different times.5 Now as discussed 
above, in the eccentric analysis of Trio A the specific value chosen for d played no role. 
However, suppose that in the analysis of Trio B at step 5 Hipparchus used the specific 
value 3,162 1,000 10d =  and, unlike his procedure in Trio A, combined all fractions, 
getting 

 1 3

3

3231 143162 2472crd 22960
5

M Mr
α

= = . 

Then in step 8 he would have computed 

 

2 2
2

2 21 1
2 7

1
2

3162 247 3162 106
3122

R d r d M B= + − ⋅

= + − ⋅  

On the other hand, using eclipses M1 or M3 as reference points one finds that the required 
values of d are instead 2988 and 3197, neither particularly suggestive as a reference circle 
diameter. Thus we may conclude that the numbers 247½ and 3162 are firmly linked, and 
reveal Hipparchus’ computational procedure for Trio B.6 Note that when Hipparchus 
combined the fractions in step 5 he effectively masked the radius of the chord circle that 
he was using. Thus, while it is certainly possible that he used 3162d = and  in 
both of the analyses, he might also have used 3438 for both values in Trio A, and 3162 
for both values in Trio B. 

3438R′ =

 



The rationale for the value of d is in fact similar to that for 3438R′ = . In numerous 
ancient Indian astronomy texts a common approximation for was 10π , usually in the 
context of computing the diameter of a planet’s orbit given the orbit’s circumference 
(Pingree 1978, p. 557). Some of these sources also used the more accurate value 3.1416 
for computing the equation of center and similar details in the planetary models. Now the 
rationale for the value  is that it is the radius of a circle whose circumference is 

. It would not be unreasonable, then, to find someone using a 
convention in which a circle circumference is 10,000, and assuming 

3438R′ =
/60 360 21,600′ ⋅ = ′

10π = , the 
corresponding diameter is 1,000 10 3,162d = . Indeed, during the early days of 
trigonometry we probably should expect several coexisting conventions, until one 
eventually becomes dominant. We at least know from the Almagest that  was a 
firmly established convention at Ptolemy’s time. 

120d =
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Consider the circle with center at C and radius CA CB R′= = . Then if angle ACB = α,  
 crd / 2sin / 2AB Rα α′= =  
For any point D on the longer arc, angle ADB = α/2, and for any point E on the shorter 
arc, angle AEB = 180° – α/2. 

Law of sines   crd 2 crd 2 crd 2A B C
a b c

= =  

where a, b and c are the sides of a triangle, and  A, B and C are the opposite angles. 
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In the left figure, given OC = R and CD = r, then (R+r)(R-r) = R2-r2= OB·OM. 
In the right figure, given OC = R and CE = e, then (R+e)(R-e) = R2-e2= FE·EB.  
 
Assuming that Hipparchus used adequately accurate estimates of π , 2 , and 3 , the 
resulting chord table would be something close to the following. 
 
 
 
 



                                                            Table of chords 
Angle(degrees) Chord 

0      0 
7 1/2   450 

15   897 
22 1/2 1341 

30 1780 
37 1/2 2210 

45 2631 
52 1/2 3041 

60 3438 
67 1/2 3820 

75 4186 
82 1/2 4533 

90 4862 
97 1/2 5169 
105 5455 

112 1/2 5717 
120 5954 

127 1/2 6166 
135 6352 

142 1/2 6511 
150 6641 

157 1/2 6743 
165 6817 

172 1/2 6861 
180 6875 
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NOTES 
                                                 

D

1 Toomer explains that Heiberg’s text in fact gives Hipparchus’ time interval correctly, 
but a following sentence in the text, meant to give the differences in Ptolemy’s and 
Hipparchus’ intervals, is garbled. Manitius resolved the discrepancy incorrectly, and 
Toomer followed him. 
2 More precisely, chord tables are in fact based on a circle of a given diameter, and for a 
circle of circumference 21,600 the diameter ′ is, to the nearest integer, 6875, while the 
radius R′ 2D R′ ′≠is, again to the nearest integer, 3438. The apparent discrepancy, that , 
is simply an accident of rounding. 
3 These were presumably well-known by Hipparchus’ time, since the theorems are used 
explicitly by Archimedes in his “Measurement of the Circle”, in which he inscribes and 
circumscribes a circle with 96-sided polygons to derive the bound 10 1

71 73 3π< < . 

Archimedes begins with a hexagon and an estimate for 3 and by successive halving 
implicitly computes about two-thirds of the entries needed to populate a chord table with 
7½° spacing. It would be straightforward to generate the remaining entries by starting 
with a square and an estimate of 2 . For the details, see (Heath 1897). 
4 At this point, and again in Trio B, it is not really necessary to change just one angle, and 
there is no intention to suggest that is what Hipparchus did. One could instead arrange a 
whole series of rounding errors and miscalculations in the following sequence of 
arithmetical operations. Either way, such fine details of the actual path followed by 
Hipparchus are irrecoverable, and, for our purposes, inconsequential. 
5 Ptolemy gives us no information about why Hipparchus was analyzing multiple eclipse 
trios, or what he concluded from his analyses. One reason to think that Hipparchus’ 
analyses were done at substantially different times is that while the given intervals in time 
and longitude can be used to determine the parameters of the lunar model, the same 
intervals permit the recovery of the underlying solar model. In fact, assuming a standard 
Hipparchan solar model with only one inequality, and assuming that there are no errors in 
the intervals, a questionable assumption in itself, one finds the solar model parameters 
e = 7;48 and A = 76;25° for Trio A, and e = 3;11 and A = 46;9° for Trio B, both 
substantially different from the parameters Ptolemy attributes to Hipparchus in Almagest 
3.1, e = 2;30 and A = 65;30°. While it is, of course, extremely unlikely that Hipparchus 
was actually using those models to compute the eclipse longitudes, and was instead using 
some alternate procedure that we do not now know, it hardly seems likely that he would 
be using such widely disparate solar models at the same time. Still, without more 
understanding of Hipparchus’ scientific motivations, it is impossible to be certain about 
details such as the temporal sequence of his analyses. 
6 When Toomer recomputed Trio B with the (textually) correct intervals he found the 
ratio very nearly equal to 247½ / 3112½, rather than 247½ / 3122½ as given in the 
Almagest (see equation (2) above for the exact answers). He also realized that the former 
ratio is in slightly better agreement with what Ptolemy says is the ratio in his 
conventional base 60 norm, 4;46 / 60, and also with what Ptolemy says is the implied 
maximum equation of center, 4;34°. Since all manuscripts are unanimous for 3122½, we 
can only conclude that the error, if there is one, was introduced at some point prior to the 



                                                                                                                                                 
date of the earliest manuscript, about 800 A.D., and perhaps even before the time of 
Ptolemy. 


