Yanomama Clause Structure

Published by

Cover illustration: Unroofed house, Tihinaki village, Papiu 2011. Photo by Ana Maria Antunes Machado

ISBN: 978-94-6093-260-1
NUR 616

Copyright © 2017: Helder Perri Ferreira. All rights reserved.

Yanomama Clause Structure

Proefschrift
ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken, volgens besluit van het college van decanen in het openbaar te verdedigen op dinsdag 28 november 2017 om 10.30 uur precies
door
Helder Perri Ferreira
geboren op 1 juli 1976
te São Paulo, Brazilië

Promotor:

Prof. dr. P.C. Muysken

Copromotoren:

Dr. E.I. Crevels (Universiteit Leiden)
Dr. M. Vuillermet (Université Lumière Lyon II, Frankrijk)

Manuscriptcommissie:
Prof. dr. H. de Hoop (voorzitter)
Prof. dr. M.-C. Mattéi Muller (Universidad Central de Venezuela)
Dr. F. Seifart (Universiteit van Amsterdam)

This research was made possible by a scholarship awarded by the CAPES Foundation of the Ministry of Education of Brazil (proc. no. BEX 0944-12-2).

CAPES Foundation
Ministry of Education of Brazil
Caixa Postal 250
70040-020
Brasília - DF
Brazil

Table of contents

Acknowledgements xi
Abbreviations xiii
Part I
Chapter 1. Yanomama language and people 3
1.1. The Yanomami people and territory 3
1.2. Typological profile 7
1.3. Genetic relations of the Yanomami linguistic family 10
1.4. Diversity within the Yanomami linguistic family 10
1.5. Yanomam and the variety spoken in Papiu - Yanomama 12
1.6. The region of Papiu: history and the current situation 16
1.7. Early literature 22
1.8. Fieldwork and personal experience with the Yanomami people 25
1.9. Corpus used in this work 27
1.10. Purpose of this work and overview of the following chapters 32
Chapter 2. Phonological sketch 37
2.1. Introduction 37
2.2. Vowels 37
2.3. Consonants 42
2.3.1. Consonantal inventory 42
2.3.2. Consonantal contrasts 43
2.4. Syllable structure 49
2.5. Word and prosodic stress 52
2.6. Allophony 60
2.6.1. Free variation between voiced and voiceless consonants 60
2.6.2. Free variation between lateral approximant [1] and alveolar tap [r] 65
2.6.3. Phonological processes 66
2.6.3.1. Anticipatory weak lowering of the high vowel in bound morphemes 66
2.6.3.2. Progressive backness assimilation by the dynamic morpheme $=i$ 69
2.6.3.3. Full anticipatory vowel harmony of $/ \partial /$ in bound morphemes 70
2.6.3.4. Loss of aspiration of the aspirated stop $/ \mathrm{t}^{\mathrm{h}} /$ in bound morphemes 72
2.6.3.5. Progressive lowering of the stative morpheme $=0$ 73
2.6.3.6. Anticipatory nasalization of the approximant $/ \mathrm{j} /$ 73
2.6.3.7. Anticipatory alveolarization of palatal / $/ /$ 74
2.6.3.8. Nasalization of the palatal approximant 75
2.6.3.9. Nasalization of the lateral approximant 75
2.7. Orthography 77
2.8. Final remarks 79
Chapter 3. Parts-of-speech, free morphemes, and bound morphemes 81
3.1. Introduction 81
3.2. Nouns and verbs: a semantic first-approach 82
3.3. Nouns, verbs and word order patterns 87
3.3.1. Elicited sentences 88
3.3.2. Spontaneous texts 91
3.4. Basic morphological properties of nouns and verbs 92
3.4.1. Clitic clusters and parts-of-speech 94
3.4.1.1. Nominal clitics 94
3.4.1.2. Verbal clitics 98
3.4.1.3. Summary of the clitic clusters 106
3.5. Formal definition of nouns and verbs 107
3.6. Orthography issues about clitic clusters 107
3.7. Concluding remarks 109
Chapter 4. The noun phrase 111
4.1. Introduction 111
4.2. Different types of nouns 114
4.2.1. Morphological structure 120
4.2.2. Size of the paradigms 121
4.2.3. Number markers 125
4.2.4. Behavior in possessive and part-whole constructions 132
4.2.5. Incorporation into the predicate 136
4.2.6. Possibility of omission in minimal clause 139
4.2.7. Possibility of performing the role of agent of transitive clauses 142
4.2.8. Summary of the distinctive features of the nominal types 144
4.2.9. Type 4 - kinship terms 145
4.2.10. Other nouns with ambiguous behavior 156
4.3. Pronouns and Adnominals 161
4.3.1. Possessive Pronouns 162
4.3.2. Demonstratives 165
4.3.3. Quantifiers 169
4.3.4. Personal Pronouns 175
4.3.5. Indefinite pro-form pei 178
4.3.6. Attributive modifiers 182
4.4. Concluding remarks 184
xviii Yanomama clause structure
Chapter 5. Verb stems 187
5.1. Introduction 187
5.2. Four basic types of verb stems 187
5.3. Differences between the verb stem types 190
5.3.1. Morphemes in present readings 191
5.3.2. Morphemes in imperfective past readings 194
5.3.3. Morphemes in subordinate clauses with =tëhë 'when', 'if' 195
5.3.4. Inherent argument structure 198
5.3.5. Access to directional markers 202
5.3.6. Access to locational markers 204
5.3.7. Access to nominalizer -rima 207
5.3.8. Access to nominalizer -tima 209
5.3.9. Canonic secondary predication 211
5.3.10. Summary of the distinctive features of the verbal stems 213
5.4. Simple verb stems and verb roots 215
5.4.1. Simple attributive stems 218
5.4.2. Simple positional stems 224
5.4.3. Simple dynamic stems 226
5.4.4. Flexible roots 231
5.4.5. Consonantal roots 234
5.5. Compound verb stems 239
5.5.1. Body-part + verb 240
5.5.2. Clitic + verb 250
5.5.3. Attributive verb + dynamic or attributive verb 256
5.5.4. Reduplication 258
5.6. Derived verb stems 262
5.6.1. Zero derivation 262
5.6.2. Resultative $=n o:$ DYN $>$ ATTR 266
5.6.3. Attenuative $=h[\mathrm{~V}]:$ ATTR $>$ (attenuated) ATTR 268
5.6.4. Dynamizer $=a$: POST/ATTR $>$ DYN 269
5.6.5. Intransitive derivational morpheme $=p r u(=p r a): ~>$ POST/DYN 276
5.6.6. Transitive derivational morpheme $=p r a$ 280
5.6.7. Intransitivizer $=m u$ and the transitivizer $=m a: ~ \mathrm{POST}>\mathrm{DYN}$ 282
5.6.8. Conservative (to have, to keep, to possess) $=p u$ 284
5.6.9. Attributivizer $=r i$ (used with smells) 288
5.6.10. Derivation: from nouns to verbs 288
5.7. Final discussion 299
Chapter 6. Verb Morphology 301
6.1. Introduction 301
6.2. Tense and aspect 302
6.2.1. Present 302
6.2.2. Past categories 305
6.2.3. Perfective markers 309
6.2.4. Durative $=t i$ 322
6.2.5. Progressive $=$ imatayu 324
6.2.6. Non-punctual or distributive morpheme $=r a /=a$ 326
6.2.7. Celerative $=t a$ 329
6.3. Irrealis mood markers 332
6.3.1. Future irrealis $=p \ddot{ }$ 332
6.3.2. Volitional riä= 335
xx Yanomama clause structure
6.3.3. Conditional $x a=$ 337
6.4. Locational markers 339
6.5. Directional markers 345
6.6. Associated motion 349
6.6.1. Simultaneous motion 351
6.6.2. Motion prior to the action 353
6.6.3. Motion subsequent to the action 356
6.6.4. Motion both prior and subsequent to the action 357
6.6.5. Associated motion summary 358
6.7. Negation 359
6.8. Final discussion 362
Part II
Chapter 7. Argument marking: word order, flagging and indexing 365
7.1. Introduction 365
7.2. Some few basic concepts 366
7.2.1. Argument and flagging 366
7.2.2. Verb valency and indexing 367
7.2.3. Core and non-core arguments 372
7.3. Word order 373
7.3.1. Word order patterns in intransitive clauses 373
7.3.2. Word order patterns in transitive clauses 378
7.4. Case system 384
7.4.1. Absolutive: zero case $=\varnothing$ 388
7.4.2. Ergative $=n \dot{i}$ 393
7.4.3. Instrumental/causal $=n \dot{i}$ 399
7.4.4. Additive $=x$ o 403
7.4.5. Obliques $=$ ha and $=$ hami 410
7.5. Verb Indexing 420
7.5.1. Set 1 - Subject (S) and Patient (P) markers 421
7.5.2. Origins of Set 1: procliticization of the enclitics of the absolutive argument 426
7.5.3. Set 2 - Agent (A) markers 429
7.5.4. Morphosyntactic alignment of Sets 1 and 2 434
7.5.5. The different participant marker $\mathrm{e}=$ 436
7.6. Concluding remarks 438
Chapter 8. Non-verbal predication 441
8.1. Introduction 441
8.2. Proper inclusion and equative predicates 442
8.2.1. Proper inclusion 442
8.2.2. Equative 448
8.2.3. Equative predicates with possessive constructions 450
8.3. Locative predicates 454
8.4. Existential predicates 457
8.4.1. First strategy 457
8.4.2. Second strategy 459
8.5. Attributive predicates 460
8.6. Final remarks 462
Chapter 9. Valency and Voice changing mechanisms 463
9.1. Introduction 463
9.2. Lexical causatives 464
9.3. Labile causative alternation 465
9.4. Restricted labile alternation among positional stems 472
9.5. Valency-increasing mechanisms 473
9.5.1. Causative marker $=m a$ 473
9.5.2. Argument restructuring and Comrie's "paradigm case" 478
9.5.3. Transitive morpheme $=p r a$ 484
9.5.4. Applicative derivations 487
9.5.4.1. Associative applicative $k \tilde{a} y \tilde{o}=$ 487
9.5.4.2. Goal/locative applicative $n a p \ddot{e}=k \tilde{a} y o \tilde{=}=/ n a m o=k \tilde{a} y \tilde{o}=$ 494
9.5.4.3. Content promoter 'applicative' pihi=k $\tilde{a} y \tilde{o}=/$ mihi $=k \tilde{a} y \tilde{o}=$ 498
9.6. Valency-decreasing mechanisms 501
9.6.1. Antipassive $=m u$ or $=\mathrm{a}=m u$ 504
9.6.2. Reflexive $=m u$ 509
9.6.3. 'Pseudopassive' or reflexive-causative markers $=m u$ or $=m a=m u$ 513
9.6.4. Reciprocal $=y u$ 525
9.6.5. Intransitive morpheme $=p r u$ 532
9.7. Possessor promotion and possessed denominalization 533
9.8. Summary and final remarks 541
Chapter 10. Multi-verbal clauses 543
10.1. Introduction 543
10.2. Secondary predication 548
10.2.1. Canonical depictive secondary predicates 548
10.2.2. Non-canonical depictive secondary predicates 559
10.3. Adverbial modification 563
10.4. Serial verb constructions (SVCs) 565
10.4.1. Morphosyntax of SVCs 566
10.4.2. Semantics of SVCs 575
10.5. Complementation 585
10.5.1. Type 1 - Motion with purpose 585
10.5.2. Type 2 - Verbs tai 'to know' and wapaí 'to try' 588
10.5.3. Type 3 - Verbs taai 'to see,' himait 'accuse,' wasuu 'to forbid' 592
10.5.4. Type 4 - Predicative complementation 596
10.6. Summary of the differences between the multi-verbal constructions 600
10.7. Final remarks 603
Chapter 11. Evidentiality: time, location, direction 605
11.1. Introduction 605
11.2. Earlier literature 608
11.3. Evidentially in simple declarative clauses 613
11.3.1. Witnessed information 614
11.3.1.1. The k-words 614
11.3.1.2. The probable source of the k-words 624
11.3.1.3. The t-word $t h a=r e$ 627
11.3.2. Inferred (=no / =no $+k$-word $/ t$-word $)$ 630
11.3.3. Auditory information (wãa=/a$=$) 637
11.3.4. Reported hearsay/quoted information ($\tilde{e}=h \tilde{a}=$) 641
11.3.5. Assumed or supposed information: the m-words 646
11.4. Is there a single evidentiality system in YMA or is it multiplex? 660
11.5. On the obligatoriness of the evidentiality markers 663
11.6. Dreamed information mahari/utupë 666
11.7. Apparently - Low level of certainty (nëhë=) 670
11.8. Evidentiality in subordinate clauses 673
11.9. Final discussion 681
Chapter 12. Non-declarative speech acts 683
12.1. Introduction 683
12.2. Manipulative speech acts 684
12.2.1. Imperative 684
12.2.2. Prohibitive (=no mai) 688
12.2.3. Cessative imperative 691
12.3. Questions 692
12.3.1. Polarity questions 692
12.3.2. Permission questions $=x a$ 699
12.3.3. Constituent questions 702
12.3.4. Adverbial questions 708
12.4. Final remarks 714
Chapter 13. What's next: further research on YMA 715
References 723
Summary in English 733
Resumo em Português 737
Samenvatting in het Nederlands 741
Curriculum Vitae 745

Part II of II

7. Argument marking: word order, flagging and indexing

7.1. Introduction

This chapter describes how YMA indicates the grammatical relations of the arguments in basic independent clauses ${ }^{1}$, i.e. how it makes clear, at the morphosyntactic level, who did what to whom. The language relies for this on three strategies: the order of the nominal arguments in the clause, a system of nominal case markers, and a system of coreferential person indexes on the verb. I will start in §7.3, deepening the discussion initiated in Chapter 3 about the order of the clause's constituents. I will detail the order patterns found in 2100 clauses and comment on the native speakers' opinion about the best position for each argument type. We will see that only the subject of intransitive and patient of transitive predicates have a rigid pre-verbal position in the predicate, while other argument types enjoy more freedom in this respect. I will then turn to the morphological devices that express these arguments relations, namely nominal flagging and verbal indexing. In Section §7.4, I will describe the relatively simple case marking system of YMA, comprising only four overtly marked cases and one case which is not morphologically coded. This system is quite consistent and does not have any splits. In Section §7.5 I will deal with the pronominal markers that occur in the verbal phrase. This system is significantly more complicated than the case system regarding the number of marked categories and rules that govern their occurrence. This system displays, for instance, an argument hierarchy in transitive predicates in which the main participants are speech act participants, which prevents agent markers from appearing there.

[^0]Before we start the discussion of the marking devices themselves, I will present some analytical concepts in Section $\S 7.2$ that will be used throughout the chapter, such as argument, flagging, indexing and valency.

7.2. Some few basic concepts

7.2.1. Argument and flagging

At the clause level, a nominal argument or argument is any participant of the event that can be expressed by an NP. Some arguments may be morphologically marked in YMA when playing a particular role in the predicate. These morphological markers help in indicating the syntactic relations between the arguments themselves, and between the arguments and the verb in a particular predicate. The term flagging refers to this morphological marking of NPs and will be used as a more generic synonym for case marking. In YMA, the case markers are placed at the right-most end of the NP (in the last position) to which they refer. In the sentences in (1), the case markers are in bold.

```
(1) a.Papiu thëri yamaki hami tëpë =\emptyset kiki
    Papiu thëri =yamaki =hami tëpë =\varnothing kiki=
    Papiu inhabitant =1PL =OBL glass bead = Ø CLN:collective=
warokema yaro [..]
waro =ki =ma =yaro
arrive =PFV2 =PST =CNJ.EXPLV
    'For the glass beads arrived among us from Papiu [...]'
(PDYP_MIC_B_10_01)
\begin{tabular}{lllll} 
b. yarori & pëni & & wakë \(=\varnothing\) a \\
yarori & \(=p \ddot{e}\) & \(=\boldsymbol{n i}\) & wakë \(=\varnothing \quad a=\) \\
ancestor animal & \(=\) PL & \(=\mathbf{E R G}\) & fire \(=\emptyset \quad 3 \mathrm{SG}=\)
\end{tabular}
thomiremahe
\begin{tabular}{llll} 
thomi & \(=r i\) & \(=m a\) & \(=h e\) \\
steal & \(=\) PFV1 & \(=\) PST & \(=3 P L\)
\end{tabular}
```

'The ancestor animals stole the fire.' (wtx_iwa)

Some arguments, nevertheless, are not flagged in YMA, i.e., do not receive any specific morphological marker that indicates their role in the predicate, such as tëpë 'glass bead' in (1a) and wakë 'fire' in (1b-c). This is zero case argument, which will be represented in this chapter with a capital $=\varnothing$, at the right-most end of the NP, just like an overt case marker enclitic. However, the capital $=\varnothing$ should be understood as a mere indication of the lack of an overt case marker in that NP, comparing to other NPs in the clause. this symbol $=\varnothing$ in the mentioned position is only used for explanatory purposes and should not be read as an actual morpheme of the language, as no morpho-phonological evidence for it has been observed so far.

7.2.2. Verb valency and indexing

Verb valency has been broadly defined as the number of inherent arguments required by the verb in a predicate to make it grammatical (Tesnière, 1959: 238; Dixon and Aikhenvald, 2000: 2). This requirement is lexically based and has both a semantic and a morphosyntactic aspect (Naess: 2007: 6). On the one hand, verb valency is closely related to the "sense of completeness" of the clause. One can say, for example, that die is monovalent in English and kill bivalent, because one argument is enough to make the sentence (2a) semantically acceptable. A native speaker will possibly accept (2b) but point out that something or someone is missing from it, only taking (2c) as a complete sentence. We could still add other arguments to both sentences, such as in the village in (2d) and with a knife and in the forest in (2e), but they are somewhat peripheral and dispensable to the core meaning of the predicate. They could be omitted in the clauses without harming their grammaticality or semantic completeness.
(2) a. The elder died.
b. The enemy killed
c. The enemy killed the elder.
d. The elder died in the village.
e. The enemy killed the elder with a knife in the forest.

Following the iconicity principle (Naess: 2007: 47), most languages tend to reflect these different semantic requirements in their morphosyntactic structure. Languages often treat verbs that require one argument differently from those that require two (or three) participants. That is, verbs are not only semantically but also morphosyntactically monovalent or bivalent. Furthermore, the arguments themselves may be treated differently, depending on whether they are optional or core to the meaning of the predicate. In English, peripheral arguments are always flagged with a preposition and can never control the verb, neither in its active or passive form.

This iconic correlation between semantic and morphosyntactic valencies is not as straightforward and unproblematic as it may appear at first glance. For instance, one may argue that the verbs 'to give' and 'to put' are semantically trivalent in English. Sure enough, a predicate with the verb 'to give' implies that someone gives something to someone else (3a), while a predicate with 'to put' suggests that someone puts something on something else or somewhere (3b).
(3) a. John gave the book to Mary.

b. John put the book on the table.

Nevertheless, at the morphosyntactic level, only to give is truly a trivalent verb and has three core arguments. The argument on the table in (3b) is peripheral. There are several ways to demonstrate it, but for the sake of conciseness, I will only mention that the table cannot be the subject of the passive version of the sentence (3b). Only the argument the book can play such a syntactic role in English (5b). The construction in (5b) is not grammatical. On the other hand, both Mary (4b) and the book (4a) can be the subject of the passive versions of (3a).
(4) a. The book was given to Mary by John.
b. Mary was given a book by John.
(5) a. The book was put on the table by John.

b. *The table was put the book by John.

This shows that the sense of semantic completeness of the clause is not a clearcut criterion for determining syntactic verbal valency and that one must find formal properties that corroborate or falsify any assumption about the argument structure of the clause based on the semantics of the verb alone. These syntactic features are always language specific. The access to the subject position of a passivized version of the clause is, for example, a test valid only for English. YMA has no passive voice.

In this study, I will adopt a working criterion for identifying the valency of a verb in YMA which will be based on the analysis of the morphological structure of the 'minimal grammatical clause,' i.e. the clause without all constituents that can be omitted. In YMA, there is no syntactic requirement for any NP, playing whichever thematic role, to appear in a clause as a full NP, even though its existence is semantically presupposed. As long as an adequate discursive context is provided, all NPs of (1), for example, could be omitted, and the sentences would still be grammatical and with a similar core meaning, as shown in (6). By contrast, none of the sub-constituents of the verbal phrase can be deleted without affecting the grammaticality or the core meaning of the predicate. The minimal clause in YMA is therefore composed of a verbal stem plus tense and aspect morphemes, and pronominal indexes (in bold).

I will take the obligatoriness of pronominal indexation on the verb as evidence for the syntactic obligatoriness of an argument with a specific verb. Hence valency
will be morphosyntactically defined in YMA as the number of simultaneous pronominal indexes that a particular verb requires when used in a grammatical predicate. Monovalent verbs need only one pronominal index to make the clause grammatical, while bivalents verbs may need two. In this sense, there is no trivalent verb in the language since only two person morphemes appear on the verb, as (7) shows.

(7)	kami	yaha		$a i$	wamath		hipia		
	kami	$=y a$	$=h a$	$a i$	wama=	thë $=$	hipit	= a	= $n 0$
	1	$=1 \mathrm{SG}$	$=\mathrm{OBL}$	other	$2 \mathrm{PL}=$	CLN.GNR=	give	$=$ DISTR	$=$ RESULT
mai !									

NEG
'Don't give another one of that!' (m011_joan_tihi)
From this criterion, one can say that wa 'eat' in (8a) is a bivalent verb, while $i a$ 'eat (have a meal)' in the sentence (8b) is monovalent at the clause level, although the lexical semantics of the two verbs are very similar.

a. kami	akini		yuri yamapë		war		
kami	= yamaki	$n \dot{1}$	yuri yama=	$p \ddot{e}=$	wa	=ri	$m a$
1	$=1 \mathrm{PL}$	$=$ ERG	fish 1PL=	3PL=		$=\mathrm{PFV} 1$	$=$ PST

'We ate fishes.'
b. yuri pëha yamaki iarayoma
yuri $=p e \ddot{=}=h a \quad$ yamaki= $i a \quad=r a y u \quad=m a$
fish =PL =OBL 1PL= eat =PFV1 =PST
'We ate fishes' / 'We have a meal of fishes.'

The same can be said about the bivalent verb taai 'see' in (9a) and the syntactically monovalent verb mamo xatio 'pay attention at, stare at' in (9b).

```
(9) a.ihã xinaru ya uku taarema
    ihã xinaru ya= uku= taa =ri =ma
    there cotton 1SG= CLN:porridge= see =PFV1 =PST
    'There I saw cotton [for the first time].' (PDYP_MIC_B_07_06)
    b. kami yanomama yamaki hami Funai wamaki mamo pree
    kami yanomama =yamaki =hami Funai wamaki= mamo= pree
    1 yanomami =1PL =OBL Funai 2PL= eye= also
xatio
xati =o
stick =STV
    'You people from Funai [should] also look at us Yanomama people.'
(m002_cesa_gari)
```

However, this definition of syntactic valency is not entirely unproblematic in YMA. We will see in §7.5.3, that in clauses with bivalents verb in YMA, two arguments are indeed indexed on the verb, but not in all contexts. First, there is no agent marker on the verb for 3rd person singular. Clauses with this type of agent display only one person index, as in (10).

thuë ani			wakë		horar		
thuë	$=a$	$n \dot{1}$	wakë	$a=$	hora		m
woman	$=3 \mathrm{SG}$	= ERG	fire		blow		PS

'The woman was blowing the fire.' (s_chck_arok)

Furthermore, when both participants are speech-act participants (SAP), only one of pronominal indices appears on the verb (11). We will see later that this is due to a morphotactic restriction on the concurrence of both SAP indexes combined with an argument hierarchy that determines which argument will be indexed.

'When I was married to you [...]' (lit. 'When I had you') (m006_arok_mari)

Thus, if we want to check the valency of the verb using the parameter of pronominal marking on the verb, we have to disregard the participant configurations described above. That is, we have to check the behavior of the verb only in the "mixed configuration," which involves a SAP and a 3rd person as main participants, or the "external configuration," which includes only 3rd persons. In both cases, the 3rd person participants must be non-singular (dual or plural).

7.2.3. Core and non-core arguments

The definition of core arguments comes as a consequence of the definition of syntactic valency. Core arguments in YMA are those arguments which may be indexed in the verb by a pronominal marker. The sole pronominal index that appears in a monovalent verb refers to the single core argument of that predicate. The core argument in (12) is napë 'white man' which is co-referenced by $a r \tilde{\imath}=$ on the verb.

huu tihi	pesiha	парё	$a r i ̃$		ithorayu	
huu tihi=	pesi	napë	$\boldsymbol{a}=$	$r i=$	itho	

 tree CLN:tree= woof =OBL white person 3SG= HON= alight =PFV1
 wei [...]
=wei
=NMLZ

```
'The white man (+REV) descending on the ladder [...]' (s_pear_cesa)

The two pronominal markers indexed in bivalent verbs are in co-reference with the two core arguments of the predicate, not mattering whether they are only implicit in the clause or visible by a nominal phrase. In the example in (13), the indexes \(a=\) and \(=h e\) are in co-reference with the core arguments pora 'ball' and napë pënt 'the white men,' respectively.
nарё pënë wawëwawë hamë pora a
napë \(=\) pë \(=n e \ddot{\text { wawëwawë }=h a m e ̈ ~ p o r a ~} \boldsymbol{a}=\)
white person \(=\mathrm{PL} \quad=\mathrm{ERG}\) glade \(=\mathrm{OBL}\) ball 3SG=
maihamahe
```

maiha =ma =he
bounce =PST =3PL

```
'The white men were bouncing the ball on the open field.' (s_ball_mrio)

Arguments that are not indexed in the verb, such as huu tihi pesiha 'on the ladder' of (12) and wawëwawë hami 'on the open field' in (13), are considered to be non-core or peripheral arguments. We will see in this chapter that oblique and instrumental arguments are always peripheral in YMA.

\subsection*{7.3. Word order}

In Chapter 3 (§3.3), we discussed some basic features of constituent or word order in YMA. We saw that verbs tend to appear in the final position of the clause, while nouns are more likely to occur before the verb. I also pointed out that the majority of the 2100 clauses of our sample does not have a single full noun phrase in them. In this section, I will deepen this discussion showing the possible grammatical arrangements of the arguments in the clause and the role that word order plays in indicating their syntactic function. I will begin with intransitive predicates in \(\S 7.3 .1\) and then turn to transitive ones in §7.3.2.

\subsection*{7.3.1. Word order patterns in intransitive clauses}

In our sample of 2100 clauses extracted from the corpus of narratives stimulated by video, there are 903 intransitive clauses ( \(43 \%\) ). In the majority of those clauses, the noun phrase that refers to the subject of the predicate is not overtly expressed, as Table 7.1 shows.

Table 7.1 - Frequency of explicit NPs in role of subject (S)
\begin{tabular}{lll}
\hline & Clauses & Frequency \\
\hline S is explicit & 334 & \(37 \%\) \\
S is not explicit & 569 & \(63 \%\) \\
& 903 & \(100 \%\) \\
\hline
\end{tabular}

According to all native speaker surveyed, when the subject is overtly expressed in the clause with an NP, its canonical position is before the verb, as in (14). Intransitive clauses with the subject after the verb are always flagged as ungrammatical or at least stilted.
(14) a. apiama a maproimi
apiama \(a=\) ma =pro =imi
airplane \(3 \mathrm{SG}=\) not_exist \(=\mathrm{DRV}=\mathrm{NEG}\)
'The airplane does not disappear.' (i.e. it does not decay)
(PDYP_MIC_A_02_42)
b. kami yanomama yamaki pihi
kami yanomama yamaki\(=\) pihi \(=\)
1 yanomami 1PL= V.PTC:thought= xuhuriprarioma
\begin{tabular}{llll} 
xuhuri & \(=\) pra & \(=\) rio & \(=m a\) \\
sadness & \(=\) DRV & \(=\) PFV1 & \(=\) PST
\end{tabular}
'We Yanomama people got sad.' (m002_cesa_gari)

The analysis of the intransitive clauses in our sample confirms this native judgment, as the figures in Table 7.2 clearly indicate. There are only two cases in which the subject appeared after the verb and two where it occurs before and after the verb. I assumet hat these rare cases do not conform to the syntactic possibilities of the language, but to repair or clarification strategies.

Table 7.2 - Position of \(S\) in relation to \(V\) (when \(S\) is overtly expressed with NP)
\begin{tabular}{lll}
\hline Order & Clauses & Frequency \\
\hline SV & 330 & \(98.8 \%\) \\
VS & 2 & \(0.6 \%\) \\
SVS & 2 & \(0.6 \%\) \\
& 334 & \(100 \%\) \\
\hline
\end{tabular}

When it comes to oblique arguments, native speakers also prefer to place them before the verb and, more specifically, before the subject, when this is present in the clause. In (15), I present two examples of intransitive clauses with this prototypical order of the oblique argument and the subject.
```

(15) a. Xupari wakë hami kaho wamaki huu paxio
Xupari =wakë =hami kaho wamaki= hu =i paxi =o
Satanas =CLN:fire =OBL 2 2PL= go =DYN be obvious =STV
'You two are going to hell.' (n006_masipe) (note: Xupari = Satanas)

```

'When the mouse was sleeping [leaning] on the roots of the tree [...]' (s_ms10_arok)

Nevertheless, native speakers do not reject constructions where the oblique appears after the verb, as in the examples in (16). This order may sound stilted in elicited sentences or in single clauses detached from their context but is perfectly acceptable when sufficient discursive context is provided. The only restriction made by the speakers in the arrangement of the arguments in intransitive clauses is against
placing the oblique argument in between the verb and the subject, which yields ungrammatical sentences.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (16) a. hapai & & kami ya & pihi kuu & & & kaho \\
\hline hapai & = naha & kami \(y \mathrm{a}=\) & pihi \(=\) & \(k u\) & \(=i\) & kaho \\
\hline CAT & \(=\) thereby & \(1 \quad 1 \mathrm{SG}=\) & V.PTC:thought= & say & \(=\mathrm{DYN}\) & 2 \\
\hline waehami & & [...] & & & & \\
\hline = wa \(\quad=e\) & \(=h\) & ami & & & & \\
\hline \(=2 \mathrm{SG}=\) DIF . & ART \(=\) OB & & & & & \\
\hline
\end{tabular}
'I think about you the following [...]' (m006_arok_mari)
b. ̂̀hz̃ tëhë [ thuwë ]a aa
\(\tilde{\text { anh }}=\) tëhë thuwë \(a=a=a\)
ANA =REL.PRS woman \(3 \mathrm{SG}=\) go \(=\) PFV.VWL
kõrahuruma yano aha
\(k \tilde{o}=r a \quad=h u r u \quad=\) ma yano \(=a \quad=\boldsymbol{h a}\)
again =PFV1 =DIR.AND =PST house =SG =OBL
'Then the women went away again to the house.' (s_chck_marc)

Interestingly, the frequency of oblique arguments in the post-verbal position is very low in our sample. It happened only in twelve instances (1.4\%), where we total all occurrences, both in clauses with and in those without a subject NP. I think that this relatively low frequency is due to the limited size of the sample or still possibly due to the type of text selected for the sample (only narratives stimulated by video).

In Table 7.3, I present the frequency of each type of argument order in the intransitive clauses of our sample. This table brings the same data presented in Table 7.2 but now also considering the position of the oblique argument, abbreviated as Obl . The table also indicates whether the arguments are being expressed by a noun or a pronoun. In the latter case, the argument S or Obl are in parentheses, as \((\mathrm{S})\) and \((\mathrm{Obl})\).

Table 7.3 - Word order of intransitive clauses that have a subject \(\mathbf{N P}\)
\begin{tabular}{llll}
\hline Order & Clauses & \begin{tabular}{l} 
Frequency over the \\
intransitive clauses without \\
an explicit subject NP
\end{tabular} & \begin{tabular}{l} 
Frequency over the \\
total of intransitive \\
clauses
\end{tabular} \\
\hline SV & 210 & \(62.9 \%\) & \(23.0 \%\) \\
\((\mathrm{~S}) \mathrm{V}\) & 84 & \(25.1 \%\) & \(9.2 \%\) \\
OblSV & 15 & \(4.5 \%\) & \(1.6 \%\) \\
\((\mathrm{Obl})(\mathrm{S}) \mathrm{V}\) & 8 & \(2.4 \%\) & \(0.9 \%\) \\
\((\mathrm{Obl}) \mathrm{SV}\) & 8 & \(2.4 \%\) & \(0.9 \%\) \\
Obl(S)V & 1 & \(0.3 \%\) & \(0.1 \%\) \\
SVObl & 4 & \(1.2 \%\) & \(0.5 \%\) \\
\((\mathrm{~S}) \mathrm{VS}\) & 2 & \(0.6 \%\) & \(0.2 \%\) \\
VS & 2 & \(0.6 \%\) & \(0.2 \%\) \\
& 334 & \(100 \%\) & \(37 \%\) \\
\hline
\end{tabular}

Oblique arguments also preferentially precede the verb in clauses where the subject is not an NP overtly expressed. Table 7.4 shows how frequently in this context each type of word order appeared in our sample.

Table 7.4 - Word order of intransitive clauses that do not have a subject NP
\begin{tabular}{llll}
\hline Order & Clauses & \begin{tabular}{l} 
Frequency over the \\
intransitive clauses without \\
an explicit subject NP
\end{tabular} & \begin{tabular}{l} 
Frequency over the \\
total of intransitive \\
clauses
\end{tabular} \\
\hline V & 515 & \(90.5 \%\) & \(57 \%\) \\
\((\mathrm{Obl}) \mathrm{V}\) & 26 & \(4.6 \%\) & \(2.9 \%\) \\
OblV & 20 & \(3.5 \%\) & \(2.2 \%\) \\
Vobl & 6 & \(1.1 \%\) & \(0.7 \%\) \\
\((\mathrm{Obl}) \mathrm{V}(\mathrm{Obl})\) & 1 & \(0.2 \%\) & \(0.1 \%\) \\
OblVObl & 1 & \(0.2 \%\) & \(0.1 \%\) \\
& 569 & \(100 \%\) & \(63 \%\) \\
\hline
\end{tabular}

As a final note, instrumental/causal arguments did not show up in the sample of 2100 clauses. These arguments behave very similarly to oblique arguments as far as word order is concerned. I will discuss more on this type of argument in Section §7.4.3. I will turn now to the study of the order of the arguments in transitive predicates.

\subsection*{7.3.2. Word order patterns in transitive clauses}

Similarly to what happens in the intransitive clauses, the vast majority of the transitive predicates do not have a single overt argument in one of the core syntactic positions of the clause; i.e. there are no full agent and patient arguments in the clause. The figures on Table 7.5 shows this prevalence of nounless clauses in our sample. Note also that the P argument is about four times more frequently expressed than the A argument.

Table 7.5 - Frequency of explicit NPs in role of patient (P) and agent (A)
\begin{tabular}{lll}
\hline & Clauses & \begin{tabular}{l} 
Frequency over the total \\
of transitive clauses
\end{tabular} \\
\hline Neither P or A are explicit & 710 & \(59.3 \%\) \\
Only P is explicit & 359 & \(30.0 \%\) \\
Both P and A are explicit & 72 & \(6.0 \%\) \\
Only A is explicit & 56 & \(4.7 \%\) \\
& 1197 & \(100 \%\) \\
\hline
\end{tabular}

Native speakers agree among themselves that when the P argument is present, it always goes before the verb, as in the examples in (17). Constructions with the patient placed after the verb are considered ungrammatical.
\begin{tabular}{|c|c|c|c|}
\hline a. mau & \(u\) & koama & \\
\hline mau & \(u=\) & koa & \(=m a\) \\
\hline water & CLN & drink & \(=\) PST \\
\hline
\end{tabular}
b. matihi yama pë taaì pihioimi
matihi yama= pë=taa =i pihi =o =imi
belongings \(1 \mathrm{PL}=3 \mathrm{PL}=\) see \(=\mathrm{DYN}\) will \(=\) STV \(=\) NEG
'[We] don't want to see the goods/belongings.' (PDYP_MIC_B_06_08)

The numbers found in the clauses of our sample reflects this strict preference for the pre-verbal position of the P argument, as Table 7.6 shows. I attribute the two occurrences of the post-verbal patient to repair and clarification strategies.

Table 7.6 - Position of \(P\) in relation to \(V\) (when \(P\) is explicit in the clause as NP)
\begin{tabular}{llll}
\hline Order & Clauses & \begin{tabular}{l} 
Frequency over the \\
intransitive clauses without \\
an explicit patient NP
\end{tabular} & \begin{tabular}{l} 
Frequency over \\
the total of \\
transitive clauses
\end{tabular} \\
\hline P before V & 429 & \(99.4 \%\) & \(36.0 \%\) \\
P after V & 1 & \(0.3 \%\) & \(>0.1 \%\) \\
P before and after V & 1 & \(0.3 \%\) & \(>0.1 \%\) \\
& 431 & \(100 \%\) & \(36.0 \%\) \\
\hline
\end{tabular}

Likewise, the agent argument also appears before the verb in most clauses, as Table 7.7 shows.

Table 7.7 - Position of A in relation to V (when A is explicit in the clause as NP )
\begin{tabular}{lll}
\hline Order & Clauses & Frequency \\
\hline A before V & 117 & \(91.4 \%\) \\
V before A & 11 & \(8.6 \%\) \\
& 128 & \(100 \%\) \\
\hline
\end{tabular}

Two examples are given in (18) of the canonical placement of the agent argument before the verb.
\[
\begin{array}{cllll}
\text { a. } \text { napë } a n i & & & {[\text { tёрё }} & ] k i k i  \tag{18}\\
\text { napë } & =a & =\boldsymbol{n i} & \text { tëpë } & k i k i= \\
\text { foreigner } & =\text { SG } & =\mathbf{E R G} & \text { glass bead } & \text { CLN:collective= }
\end{array}
\] hipíanimi
\begin{tabular}{llll} 
hipi & \(=a\) & \(=n\) & \(=\) imi \\
give & \(=\) DRV & \(=\) PST & \(=\) NEG
\end{tabular}
'The white person did not give us [the glass beads].' (PDYP_MIC_A_03_18)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{b. kami yamakini} & \multicolumn{3}{|l|}{wakë yamaa} & \multicolumn{3}{|l|}{tanimi} \\
\hline kami & = yamaki & \(=\boldsymbol{n i}\) & wakë & yama= & \(a=\) & \(t a\) & \(n\) & \(=i m i\) \\
\hline 1 & \(=1 \mathrm{PL}\) & = ERG & fire & \(1 \mathrm{PL}=\) & \(3 \mathrm{SG}=\) & know & \(=\mathrm{PST}\) & =NEG \\
\hline
\end{tabular}
'We did not know the fire.' (n001_iwa)
However, as Table 7.7 also indicates, the post-verbal position of A is much more frequent than \(P\) in the same position. Indeed, according to native speakers' evaluation, it is not ungrammatical to place the agent after the verb, even though this is not its canonical position. The agent argument only cannot appear between the patient argument and the verb. In (19), I present two examples of A being placed after the verb.
(19) a. hapai naha thë thama napë ani
\begin{tabular}{llllll} 
hapai & \(=\) naha thë \(=\) & tha & \(=\) ma napë & \(=a\) & \(=\boldsymbol{n i}\) \\
CAT & \(=\) thereby CLN.GNR \(=\) & do; make & \(=\) PST foreigner & \(=\) SG & \(=\) ERG
\end{tabular}
'The white person did the following.' (s_ball_arir)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline b. wamaki & mërama & & & & \(A I S\) & pëni & \\
\hline wamaki= & mëra & \(=m a\) & \(=i\) & \(=h e\) & \(A I S\) & \(=p \ddot{ }\) & \(=\boldsymbol{n i}\) \\
\hline \(2 \mathrm{PL}=\) & blunder & \(=\) CAUS & \(=\mathrm{DYN}\) & \(=3 \mathrm{PL}\) & healt & & = ERG \\
\hline
\end{tabular}
'The Indigenous health agents (AIS) are deceiving you.'
(PDYP_MIC_A_13_13)

The position of non-core arguments, such as instrumental and oblique arguments, is relatively free in transitive clauses. The native speakers' first choice in elicitation sessions seems to be placing them after the A argument (when it is present) and before the \(P\) argument. The clauses in (20) illustrate this preference. In (20a), we have an oblique argument (huitukana hami 'in the garden') after the agent (kami yamakini 'we'), and in (20b) we have an instrumental argument (hãyokoroma ani 'with the axe) in between the agent (napë ant 'the white person') and the patient (kõa ayõki ‘firewood’).
A
OBL
[P]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{(20) a. kami yamakini} & \multicolumn{2}{|l|}{hutukana hami} & \multicolumn{2}{|l|}{[ xinaru] yama} \\
\hline & kami & & & \(=n \dot{i}\) & hutukana & = hami & xinaru & yama= \\
\hline & 1 & \(=1 \mathrm{P}\) & & = ERC & garden & \(=\mathrm{OBL}\) & cotton & \(1 \mathrm{PL}=\) \\
\hline ирё & & tuai & & & wei & [...] & & \\
\hline ирё= & & \(t u\) & \(=a\) & = & \(=w e i\) & & & \\
\hline \multicolumn{6}{|l|}{CLN:cotton= plant =DRV = DYN =NMLZ} & & & \\
\hline
\end{tabular}
'The cotton that we plant in the garden [...]' (PDYP_MIC_A_03_18)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline A & & & INS & & & P \\
\hline b. napë ani & & & hãyokoroma & & & kõa \\
\hline парё & \(=a\) & \(=n \dot{t}\) & hãyõkõrõma & \(=a\) & \(=n \dot{t}\) & kõa \\
\hline foreigner & \(=\) SG & \(=\) ERG & & \(=\) SG & \(=\) INS & firewood \\
\hline ayõki & & pahikim & ama & & & \\
\hline ayõ= & \(k \dot{i}=\) & pahiki & \(=m a\) & \(=m a\) & & \\
\hline CLN:firewood= & \(3 \mathrm{PL}=\) & shattered & =CAUS & = PST & & \\
\hline
\end{tabular}
'The white man was chopping the firewood in pieces with the ax.' (s_chck_hoax).

I present one example below of an instrumental argument being placed after the verb (21a) (in bold), and another one with an oblique argument in the same position (21b) (in bold).

'You first scraping it with knife [...]' (PDYP_MIC_A_03_11)

'Then the other white person threw the child down on the floor.'
(s_ball_marc)

Finally, in (22) there are two more examples that show the greater mobility of non-core arguments in YMA in comparison with core ones. In these examples, the oblique argument appears before the A argument. This is not a very common position for the oblique argument when A is present in the clause. Nevertheless, as I explained before, this is not ungrammatical; the only position in which non-core arguments cannot appear is in between the P argument and the verb.

OBL A P

'First the white person leaned the ladder on the food [i.e. on the tree that had fruit].' (note: huu tihi pesi = 'ladder')( s_pear_arir)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{OBL} & \multicolumn{3}{|l|}{A} & \multicolumn{2}{|r|}{P} \\
\hline b. tёрё & kikiha & & thuwë & thëpëni & & & pesima \\
\hline tёрё & \(=k i k i\) & \(=h a\) & thuwë & \(=t h e ̈\) & \(=p \ddot{ }\) & \(=n \dot{1}\) & pesima \\
\hline glass bea & \(\mathrm{d}=\mathrm{PL}\) & \(=\mathrm{OBL}\) & woman & \(=\) CLN.GNR & \(\mathrm{R}=\mathrm{PL}\) & \(=E R G\) & loincloth \\
\hline \(k i k i\) & \multicolumn{3}{|l|}{raromarema} & \multicolumn{2}{|r|}{yarohe} & & [...] \\
\hline \(k i k i=\) & raro & \(=m a\) & \(=r i\) & \(=m a=\) & = yaro & & \\
\hline CLN:collective= & thrive & \(=\) CAUS & \(=\mathrm{PFV} 1\) & = PST \(=\) & =CNJ.EXPLV & = & PL \\
\hline
\end{tabular}
'For the women had multiplied the loin-cloths from/with the glass beads.' (PDYP_MIC_B_10_01)

I discussed the distribution of core and non-core arguments in the clause in this section, having the verb and the other arguments as parameters. We saw that that there is a strict word order SV and PV, and that no other argument may appear between \(\mathrm{S} / \mathrm{P}\) and V. Other argument types display more flexibility in this respect, even though there are an apparent tendency and conscious preference for also placing them before the verb.

In the next sections, I will describe how the syntactic roles are marked in the nominal phrases, through the case marking system, and on the verb, with person indexes that are in co-reference with the core arguments of the clause.

\subsection*{7.4. Case system}

YMA has a small set of morphemes, consisting of only three enclitics, that appear in the last position of some NPs (slot 8 of Cluster A); these enclitics are case marking morphemes that make explicit some of the syntactic relations of the arguments in the predicate. In this section, I will deal with these enclitics, as in Table 7.8.

Table 7.8-YMA case markers
\begin{tabular}{ll}
\hline Marker & Meaning \\
\hline\(=n \dot{t}\) & Ergative, instrumental, causal \\
\(=x o\) & Additive \\
\(=h a /=h a m \dot{~}\) & Oblique \\
\hline
\end{tabular}

For all persons and in all syntactic configurations, these markers display ergative-absolutive alignment, or more precisely, ergative alignment since there is not an absolutive case marker in the paradigm. Indeed, if the nominal argument plays an absolutive role in the clause, i.e. is either the subject (S) of intransitive clause or patient ( P ) of a transitive one, it does not receive any case marker. The absolutive case is null in the language. Only in this chapter, I will use \(=\varnothing\) (a capitalized zero) to indicate the non-marked argument of the clause. This is for illustrative purposes only and does mean that I am postulating an actual enclitic \(=\varnothing\) (a lowercase zero) to that position. I am not aware of any evidence that would support this analysis. In (23), I offer an example where we can see that sole argument of an intransitive clause do not receive any marker (= \(\varnothing\) ). In section 7.4.1, I will discuss the zero-code case of the language some more.
(23) hiima \(=\varnothing\) a hapa huimama
hiima \(=\varnothing\) a hapa hu =ima =ma
\(\operatorname{dog}=\emptyset 3 \mathrm{SG}=\) before go =DIR.VEN =PST
'First, the dog came.' (s_ms01_alfr_from_xxxx)
It is worth noting that, as a nominal enclitic, the morpheme \(=n \dot{i}\) may be glossed in three different ways: as a marker of the ergative case (24a), the instrumental case (24b) and the causal case (24c). We will see in section 7.4.3 that arguments playing the roles of instrument and cause are identical in the sense that they display the same morphosyntactic properties, such as not controlling the person indexes on the verb.

Among the arguments marked with \(=n \dot{t}^{2}\), only the ergative ones can exercise such control over these markers, as I will explain in §7.4.2. In that section, I will also investigate, from a semantic perspective, the various types of ergative arguments found in the YMA texts.

ERGATIVE
(24)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline a. kami & & & napë & \(=\varnothing\) & \(y a\) & \(p \ddot{ }\) & taimi & \\
\hline kami & \(=y a\) & & napë & \(=\varnothing\) & \(y a=\) & \(p \ddot{e}=\) & \(t a\) & \(=i m i\) \\
\hline 1 & \(=1 \mathrm{SG}\) & \[
\begin{gathered}
=\text { ERG } \\
{[.}
\end{gathered}
\] & white person ..] & & \(1 \mathrm{SG}=\) & & know & \(=\) NEG \\
\hline
\end{tabular}
\(m a=\quad k i=i\)
FOC.CONC \(=\) COP =REL
'Even though I do not know the white people [...]' (m011_joan_tihi)

\section*{INSTRUMENTAL}
b. hãyõkoroma anë hoxo wãriãmahe
\(\begin{array}{lllllll}\text { hãyõkoroma } & =a & =n \ddot{\boldsymbol{e}} \quad \text { hoxo }= & \text { wãri } & =\tilde{a} & =m a & =h e \\ \text { axe } & =\text { SG } & =\text { ERG CLN:airstrip= spoil } & =\text { DISTR } & =\text { PST } & =3 \mathrm{PL}\end{array}\)
'They cleaned the airstrip [area] with axes.' (to spoil = to clear or to cut down the forest) (PDYP_MIC_A_03_18)

\section*{CAUSAL}
\[
\begin{array}{rllll}
\text { c. } \text { xawara pëni } & & \text { yamaki } & \text { yei } \\
\text { xawara }=\text { pë } & =\boldsymbol{n i} & \text { yamaki= } & \text { yei } \\
\text { epidemic }=\mathrm{PL} & =\text { CAUSE } 1 \mathrm{PL}= & \text { true }
\end{array}
\]
maprarioma
```

ma =pra =rio =ma
not_exist =DRV =PFV1 =PST

```
'We really [almost] disappeared due to epidemics.' (PDYP_MIC_A_14_02)

\footnotetext{
\({ }^{2}\) Or the variant \(=n \ddot{e}\).
}

Cases where the ergative case marker appears simultaneously with the causal or instrumental are discussed in 7.4.3.

As I will show in Section §7.4.4, the additive case marker \(=x o\) specifies that several arguments have the same role in the predicate, also marked with the additive marker. We will see that YMA allows the use of \(=x o\) to indicate multiple subjects, patients and agents, and even multiple instruments. Only multiple oblique arguments cannot be specified with the additive \(=x o\). In (25), I present an example of multiple subjects being marked with additive \(=x o\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Usitepã axo & & Miyuti axo & & moto & hami & kipë \\
\hline Usitepã \(=a\) & =xo & Miyuti \(=a\) & o & moto & hami & kipë= \\
\hline Estevão =SG & =ADD & Milton \(=\) SG & =A & not & OB & 3DU \\
\hline
\end{tabular} warokema
waro \(=k i=m a\)
arrive =PFV2 =PST
'Estevão and Milton, they two arrived by motor boat.'
(PDYP_MIC_B_10_02)

Finally, YMA has two oblique markers \(=h a\) and \(=h a m i^{3}\) that are used to mark a variety of non-core arguments of the clauses, ranging from location and direction/goal to means-of-transportation, beneficiaries, and recipients. The oblique markers can also specify some theme- stimulus- or even experiencer-like arguments, which are syntactically not coded as core arguments. We will see in \(\S 7.4 .5\) that some of these types of oblique arguments are preferentially flagged with one of the two morphemes, even though these are used interchangeably in some other contexts, as the examples from our corpus show. In (26) I offer two examples of these markers in use. In (26a) the morpheme \(=h a\) specifies a locative argument, while in (26b) the alternative form \(=h a m i ̀\) indicates means-of-transportation.

\footnotetext{
\({ }^{3} \mathrm{Or}=\) hame.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline a. mõri yano & ha & kipërĩ & & piria & \\
\hline mori yano & \(=h a\) & kipë= & \(r \tilde{L}=\) & piri & \(=a\) \\
\hline one house & \(=\) OBL & \(3 \mathrm{DU}=\) & HON= & lie & = POST \\
\hline
\end{tabular}

'They are going by plane.' (m002_cesa_gari)

I will begin in the next section discussing the argument that is not morphologically flagged in YMA.

\subsection*{7.4.1. Absolutive: zero case \(=\varnothing\)}

At the clause level, the majority of the predicates in YMA have one explicit - or understood - nominal phrase with no particular morpheme specifying its syntactic role. This NP is the zero case argument, which has a fixed position immediately before the verb, and no other argument can intervene between them. The zero-case argument may be explicit in the clause, as in the examples (27), but is more frequently omitted, as we saw in §7.3.
\begin{tabular}{rllllll} 
(27) a. \(\operatorname{sipo}\) & hami karaka & \(=\varnothing\) a praa & & tëhë & [...] \\
sipo & \(=h a m i ~ k a r a k a ~\) & \(=\varnothing\) & \(a=\) & pra & \(=a\) & \(=\) tëhë
\end{tabular}
'When the chicken was lying on the floor outside [the house] [...]'
(s_chck_batm)
```

 b. hehami kami yamakini kariperu =Ø yama pë yai
 hehami kami =yamaki =n\dot{t}}\mathrm{ kariperu =Ø yama= pë= yai
 here 1 =1PL =ERG miner =Ø 1PL= 3PL= true
 piximaimi
pixima =imi
want =NEG

```
'We really do not want miners here.' (m004_paya_gari)

We do not find zero-case arguments only in impersonal predicates that convey some states and processes related to the weather or natural events (28).
```

(28) thë titi mahipruu tëhë [...]
thë= titi mahi =pru =i =tëhë
CLN.GNR= night much =DRV =DYN =REL.PRS
'When it was getting really dark [...]' (n028_naikiki)

```

Except for the impersonal predicates, all clauses in YMA have one zero case argument that does not receive any extra morpheme indicating its role in the clause. In fact, and quite in contrary to receiving additional morphology, the zero case argument in YMA loses some of its 'regular' morphological material to the verbal phrase. For instance, if we compare it to the form used for labeling or quoting the same referent (29), we will see that the zero case argument lacks all the enclitics from Cluster A, including the number morphemes (30a) and the noun classifiers (30b). Hence the zero argument itself is always transnumeral, i.e. not marked for number. This morphological transfer from the nominal phrase to the predicate gave rise to the re-grammaticalization of the number morphemes and the classifiers as person indexes on the verb. I will present the pieces of evidence that this process has happened in Section §7.5.2.
(29) a. sihẽsihẽ pë
sihẽsihẽ \(=\boldsymbol{p e}\)
twigs \(=\mathbf{P L}\)
'the residues', 'the leftovers'

390 Yanomama clause structure
b. huu tihiki
\[
\begin{array}{ll}
\text { huи }=\boldsymbol{t i h i} & =\boldsymbol{k} \boldsymbol{i} \\
\text { tree }=\text { CLN:tree } & =\text { PL } \\
\text { 'trees' } &
\end{array}
\]
(30) a. sihẽsihẽ =Ø yama pë hoyaprama wï̀
sihẽsihẽ \(=\emptyset\) yama \(=\boldsymbol{p e ̈}=\) hoya \(=p r a=m a\) wï
twigs \(=\emptyset 1 \mathrm{PL}=\mathbf{3 P L}=\) throw away \(=\mathrm{DRV}=\) PST basket
pëhami
\(=p \ddot{\quad=h a m i}\)
\(=3 \mathrm{PL}=\mathrm{OBL}\)
'We also threw away in the baskets the residues (twigs, leaves...).'
(PDYP_MIC_B_03_18)
b. huи \(=\varnothing\) wama tihiki matha hoyaprai
huи \(=\) Ø wama \(=\boldsymbol{t i h i}=\quad \boldsymbol{k} \boldsymbol{i}=\) matha \(=\) hoya \(\quad\) pra \(=\boldsymbol{i}\)
tree \(=\varnothing 2\) PL \(=\quad\) CLN:tree \(=\quad \mathbf{P L}=\) leg \(=\) throw away \(=D R V=D Y N\)
'You throw away the pieces of the trees.' (PDYP_MIC_B_03_18)

Syntactically, the zero case display an absolutive alignment, i.e. it is the sole argument (S) of intransitive predicates (31a) and the patient argument (P) of transitive ones (31b).
(31) a. ai napë \(=\varnothing\) a pairionimi
ai napë \(=\varnothing\) a \(=\) pairi \(=o \quad=n \quad=i m i\)
other white person \(=\emptyset 3 \mathrm{SG}=\) take part in \(=\) STV \(=\) PST \(=\) NEG
‘There was no other white person.' (PDYP_MIC_B_10_02)
b. mareã \(=\varnothing\) wama sipë
toai
mareã \(=\varnothing\) wama \(=s i=\quad p \ddot{e}=\) toa \(=i\)
money \(=\) Ø \(2 \mathrm{PL}=\) CLN:large_surface \(=\mathrm{PL}=\) take \(=\mathrm{DYN}\)
'You take money.' (i.e. 'You have a salary') (PDYP_MIC_B_10_02)

However, there is no particular semantics associated with the zero case argument. This is particularly true for predicates with monovalent verbs, since all monovalent verbs in YMA, no matter their semantics, select one zero case argument as their syntactic subject. For this reason, this argument can refer to highly volitional subjects of unergative verbs, as in (32a), or much less volitional participants (experiencers) of unaccusative predicates, as in (32b).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline a. nарё & oxe & \(=\emptyset\) ai & & rërëi & ama & \\
\hline парё & oxe & \(=\varnothing\) a & \(i=\) & rërë & = ima & \(=m a\) \\
\hline white person & youn & \(=\varnothing\) 3SG= & & & \(=\) DIR.VEN & \(=\) PST \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline b. \(\mathfrak{\text { thtu tëhë }}\) & & wãrõkõxi & \(=\varnothing\) una & & & \\
\hline \(\tilde{\text { an }} \boldsymbol{\sim}\) & =tëhë & wãrõkõxi & \(=\varnothing\) una \(=\) & \(\boldsymbol{k e}\) & =rayu & \(=m a\) \\
\hline ANA & \(=\) REL.PRS & sp._of_fru & Ø CLN:? & & PFV1 & \(=\) PST \\
\hline
\end{tabular}
'Then the sugar-apple (Duguetia sp.) fell.' (s_ms10_arir)

Furthermore, the sole argument of monovalent verbs that convey either position and posture, as in (33a), or an attribute, as in (33b), also receives zero marking.



Similar to what is observed in predicates with monovalent verbs, the thematic roles played by zero case arguments may vary considerably with bivalent verbs, depending on the lexical semantics of the latter. A zero case argument can be
associated with a participant that is affected by the predicate by a change in its state (a patient-like participant), as in (34a), or with a participant that undergoes the predicate but is not physically modified by it (a theme-like participant), as in (34b).
(34) a. ropeni urihi \(=\varnothing\) a waremahe
ropeni urihi \(=\varnothing a=w a=r i \quad=m a=h e\)
quickly forest \(=\varnothing 3 \mathrm{SG}=\) eat \(=\) PFV1 \(=\) PST \(=3 \mathrm{PL}\)
'They quickly devastated the forest.' (lit. 'They quickly ate the forest')
(m002_cesa_gari)
b. tëpë = Ø yama pë yapraì
tëpë \(\quad=\varnothing\) yama \(=\) pë \(=\) yapra \(\quad=i\)
glass bead \(=\emptyset 1 \mathrm{PL}=3 \mathrm{PL}=\) choose \(=\mathrm{DYN}\)
'We are selecting the glass beads.' (i.e. choosing the good ones)
(PDYP_MIC_A_06_08)

In predicates encoding transfer, the zero case argument may be associated either with the entity being transferred (theme) - while the recipient or beneficiary is regarded (and flagged) as an oblique argument - or with the recipient/beneficiary where the theme is treated as the oblique argument. The same occurs with communication verbs. The choice for one or other argument structure type is lexically determined. I will discuss this alternation more in \(\S 7.4 .5\) when describing oblique arguments. Please refer to the examples (67)-(70).

Despite this apparent unspecialized semantics associated with zero case arguments, one feature can be pointed out at least in predicates with bivalent verbs: the relative low volition of the participant in the predicate. Comparing to the participant expressed by the other argument indexed in the verb (the argument expressed by the NP with case marker \(=n i\) ), the zero case argument always refers to a participant with a less pro-active role in the event. It is never the participant who triggers, initiates or even performs the predicated action, but rather the one who is a passive, involuntary or counter-voluntary target of this predication and/or undergoes the possible changes involved. For this reason, it is correct to state that zero case
arguments have a more specialized semantics with bivalent verbs than with monovalent verbs. With bivalents verbs, it is exclusively a patient-, theme- or beneficiary-like argument (and never an agent-like), while in monovalent verbs it can be either an agent-like argument (with unergative verbs) or a patient- or experiencerlike argument (with unaccusative verbs). Agent-like arguments of bivalent verbs will always be associated with the ergative case marker \(=n \dot{i}\), as discussed in the next section (§7.4.2).

Before we move on, it is worth mentioning that no variation is observed in the marking of the zero case argument when the predicate varies for aspect or tense. Also in this respect, no special treatment is given to 1 and 2 person pronouns or proper names when they occupy the absolutive position in the clause. In (35), I present an example of the latter.
\[
\begin{array}{llll}
\text { Rezende }=\emptyset \text { wamaa } & \text { tai } & \text { hikio } &  \tag{35}\\
\text { Rezende }=\emptyset \text { wama }= & a=t a & t a & \text { hiki }
\end{array}=o
\]

\subsection*{7.4.2. Ergative \(=n i\)}

Every predicate with bivalent verbs selects one zero-case argument and one argument flagged with the ergative case marker \(=n \dot{i}\). The participant marked with \(=n \dot{i}\) has always a higher degree of volition, proactivity, and initiative in participating in the specific event than the zero case argument. For instance, the agent-like participant of "prototypical transitive predicates" (Comrie, 1989: 111; Taylor 1995: 206-207; Haspelmath, 2011: 546), such as kë̈ 'brake' (36a) and xëpraí 'kill' (36b), is always flagged with \(=n \dot{t}\) (in bold), while the other participant (the more patient-like one) of these events remains unmarked.

'The white women (+REV) first broke the firewood in pieces.' (s_chck_arok)
 xëpraremahe
\begin{tabular}{lllll}
\(x e ̈\) & \(=p r a\) & \(=r i\) & \(=m a\) & \(=h e\) \\
beat; kill & \(=\mathrm{DRV}\) & \(=\mathrm{PFV} 1\) & \(=\mathrm{PST}\) & \(=3 \mathrm{PL}\)
\end{tabular}
'The spirits of the potoos (bird) killed that ancestor.' (n052_thomi)

Predicates with other types of bivalent verbs - such as waí 'to eat'(37a) and tiyë̈ 'to weave' (37b) - also imply an agent-like participant, which is flagged with the ergative marker as well.
\begin{tabular}{|c|c|c|c|c|}
\hline (37) a. kaho wa & & & pesima \(=\varnothing\) wa & \(k i k i\) \\
\hline kaho & \(=w a\) & \(=\boldsymbol{n i}\) & pesima \(=\varnothing\) wa= & \(k i k i=\) \\
\hline 2 & \(=2 \mathrm{SG}\) & = ERG & loincloth \(=\emptyset 2 \mathrm{SG}=\) & CLN:collective= \\
\hline tiyëprai & & tëhë & [...] & \\
\hline tiyë =pra & \(=\dot{i}\) & \(=t e ̈ h\) & & \\
\hline weave = DRV & \(=\mathrm{D}\) & \(\mathrm{N}=\) REL & .PRS & \\
\hline
\end{tabular}
'When you are weaving the loin-cloth [...]' (PDYP_MIC_B_01_17)

'The caiman eating it cooked [...]' (wtx_iwa)

In predicates that convey transfer, like hipi 'give,' ximi 'to send' or tipi 'to present,' the marker case \(=n \dot{i}\) is always associated with the argument that refers to the giver (38a) or sender (38b).

'If I give away my glass beads [...]’ (PDYP_MIC_A_06_08)
b. patere pëni yamaki topimahe
patere \(=p \ddot{e}=n \boldsymbol{i} \quad\) yamaki\(=\) top \(\dot{\boldsymbol{i}} \quad=m a \quad=h e\)
priest \(=\mathrm{PL}=\) ERG \(1 \mathrm{PL}=\) present \(=\mathrm{PST}=3 \mathrm{PL}\)
'The priests presented us [with glass beads].' (PDYP_MIC_B_02_01)

In predicates with verbs that express request, such as wãri 'ask/question' or naka 'ask/call' the ergative argument will be identified with the requestor, as the example in (39).
(39) Tẽrẽma ani pei hẽaropë \(=\emptyset\) e nakaa

Tẽrẽта \(=a \quad=\boldsymbol{n i}\) pei hẽaropë \(=\emptyset e=\quad\) naka \(=a\)
Tẽrẽma \(=\) SG \(=\) ERG INDEF husband \(=\varnothing\) DIF.PART \(=\) call; ask \(=\) PFV.VWL
xoakema
xoa \(=k i=m a\)
afterwards \(=\) PFV2 \(=\) PST
'Tẽrema then called her husband.' (wtx_terema)

In causative constructions, the causer is the argument flagged by the marker \(=n \dot{t}\), as we can see in the examples in (40). A full account on causatives and their argument structure is given in Chapter 9 (§9.5.2).
\[
\begin{array}{rlll}
\text { (40) a. } M D M \text { pëni } & \text { tëpë } & =\emptyset \text { kiki } & \text { wãroho } \\
M D M=p \ddot{e} & =n \boldsymbol{i} \quad \text { tëpë } & =\emptyset k i k i= & \text { wãroho } \\
\text { MDM }=\text { PL } & =\text { ERG glass bead }=\varnothing \text { CLN:collective= }=\text { a lot } \\
\text { pëpramaremahe } & &
\end{array}
\]
\begin{tabular}{lllll}
\(p \ddot{e}\) & \(=p r a\) & \(=m a\) & \(=r i\) & \(=m a\) \\
\(=h e\) \\
appear & \(=\) DRV & \(=\) CAUS & \(=\) PFV1 & \(=\mathrm{PST}\) \\
\(=3 \mathrm{PL}\)
\end{tabular}
'The people from MDM (Médecins du Monde) made appear (i.e. brought) a lot of glass beads.' (PDYP_MIC_B_08_01)
\begin{tabular}{rll} 
b. mokaxaiu thëri & pënë & thë \\
mokaxaiu thëri & \(=p \ddot{e}=n \ddot{e}\) & thë \(=\)
\end{tabular}

Mucajai inhabitant =PL =ERG CLN.GNR= taamaremahe
```

taa =ma =ri =ma =he
see =CAUS =PFV1 =PST =3PL

```
'The people from the Mucajaí River showed it [to them]'
(PDYP_MIC_A_03_18)

However, agentivity is not a necessary feature for an argument to be marked with the ergative \(=n i\). For instance, some transitive verbs of perception - as \(t a a\) 'see' (41a) or hĩrĩ 'hear (41b) - projects an experiencer type of participant, which is still the syntactic agent of the clause and thus marked with \(=n i\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline a. sũrũrũma & usirini & & & wakë & taar & & \\
\hline sũrũrũma & \(=u s i\) & \(=r i\) & \(=\boldsymbol{n i}\) & wakë= & taa & \(=r i\) & \(=m a\) \\
\hline woodpecker & \(=C L N\) :??? & \(=\mathrm{HON}\) & = ERG & CLN:fire= & & \(=\mathrm{PFV} 1\) & \(=\) PST \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline b. napë pëni & \multicolumn{7}{|c|}{[ ipa ] \(=\varnothing\) thãã} \\
\hline парё & \(=p \ddot{ }\) & \(=\boldsymbol{n i}\) & ipa & & thë= & & \(\tilde{a}=\) \\
\hline white person & \(=3 \mathrm{PL}\) & = ERG & 1 POS & \(=\varnothing\) & CLN.GNR \(=\) & & sound= \\
\hline
\end{tabular}
hiriihe
```

hiri =i =he
hear =DYN =3PL

```
'The white people listen to [my] words.' (PDYP_MIC_A_13_07)

The same happens with some cognition verbs - as tai 'know' (42a) and pihipuu 'remember'(42b) - whose experiencer participant may be regarded as with even less agency than the those of perceptual verbs. In these cases, the 'knower' or 'rememberer' is flagged with the ergative case marker, while the theme remains unmarked.
\begin{tabular}{|c|c|c|c|c|c|}
\hline a. kami yan & & & \(a i=\emptyset \quad y a\) & thãa & \\
\hline kami & \(=y a\) & \(=\boldsymbol{n i}\) & \(a i=\emptyset\) ya= & thä= & \(\tilde{a}=\) \\
\hline \[
\begin{array}{r}
1 \\
\text { ipuu }
\end{array}
\] & \(=1 \mathrm{SG}\) & \[
\begin{gathered}
=\text { ERG } \\
\text { wei }
\end{gathered}
\] & \[
\begin{aligned}
& \text { other }=\emptyset \quad 1 \mathrm{SG}= \\
& {[\ldots]}
\end{aligned}
\] & CLN.GNR \(=\) & sound= \\
\hline \(=p u\) & \(=i\) & & & & \\
\hline = CSVT & = DY & =NM & & & \\
\hline
\end{tabular}
'Other stories that I know [...]' (n024_howari)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline b. \(y a\) & thãa & & pree tait & & kam & & \\
\hline \(y a=\) & thã= & \(\tilde{a}=\) & pree ta & \(=\dot{i}\) & kami & \(=y a\) & \(=n i\) \\
\hline \(1 \mathrm{SG}=\) & CLN.GNR \(=\) & sound= & also know & \(=\) DYN & 1 & \(=1 \mathrm{SG}\) & = ERG \\
\hline
\end{tabular}
'I also know it.' (PDYP_MIC_B_07_06)

Nevertheless, there is a limit on how "low" the agentivity of the ergative case argument can go. Arguments that are flagged with the ergative case can never refer to a semantically patient participant of the predicate. In YMA there is no syntactic passive voice and, more interestingly, I have not registered yet any bivalent verb with an inherent passive semantics, such as receive in English or apanhar 'be beaten' in Portuguese.

Moreover, there is a strong tendency in the language not to let inanimate entities be the ergative argument of a predicate. In YMA, only animate entities (humans, animals, and spirits, basically) can actually do things from a syntactic perspective. That is, only NPs that refer to these kinds of entities can be marked with \(=n \dot{t}\) and simultaneously be co-referenced in the verb by a pronominal index. NPs that refer to inanimate entities can also be marked with \(=n i\), but they are never co-referenced in the verb. In those cases, the NP marked with \(=n i\) is interpreted as an instrumental/causal argument. English sentences such as "Malaria made us scrawny" are often translated in YMA as intransitive clauses, like in (43). In the next subsection (§7.4.3), I will discuss the instrumental/causal arguments in more detail.


Similarly to what happens with zero case arguments, there is no alternation in the marking of the ergative argument when the predicate varies for aspect or tense. Moreover, no variation has been observed regarding the use of the ergative marker \(=n \dot{i}\) with 1 st and 2 nd person pronouns, proper names or human nouns.

As a final note, it is worth underlining that the examples presented in the section are representative of a minority type of clause in YMA. As I explained in §7.3, the nominal arguments are not explicit on the clause in most cases. More specifically, only in \(10.7 \%\) of the transitive clauses of our sample had the ergative argument realized, either by a full noun or a pronoun. That is, in about \(90 \%\) of the time, the speaker cannot count on the ergative marker to identify the syntactic agent of the clause but instead has to rely on person indexes on the verb and, in a lesser degree, word order.

\subsection*{7.4.3. Instrumental/causal \(=n i\)}

The markers for ergative and instrumental/causal cases have the same form. The types of argument which they refer to are considerably different, nevertheless, and that is the reason for assigning two glosses for the same form (ERG and INST/CAUSE). The differences between these two types of argument are not only related to the thematic roles they play in the predicate but, most importantly, to their syntactic properties. The most important difference is that instrumental/causal arguments do not control the verb, in the sense that none of the pronominal indexes that appear in the verb refers to that type of argument. In (44), we have an example of clauses with an instrumental/causal argument on them. In (44a), there are two person indexes on the verb \(y a=\) ' 1 SG ' and \(h i=\) 'CLN: tree' and neither of them is co-referent with the instrumental argument ãama ant 'with the chainsaw.' In (44b), there is only one index on the verb \(a=\) ' 3 SG ', which refers to the absolutive argument of the clause (hiima 'dog') not to causal argument huи tihini 'because of the tree.' In contrast, ergative arguments are co-referenced on the verb \({ }^{4}\).

'I cut the raperima tree with the chainsaw.'
\begin{tabular}{|c|c|c|c|c|c|}
\hline b. huu tihini & & hiima \(=\varnothing\) a & noma & ma & \\
\hline huu \(=\) tihi & \(=\boldsymbol{n i}\) & hiima \(=\varnothing\) a \(=\) & noma & \(=r a y u\) & ma \\
\hline tree \(=\) CLN:tree & \(=\) CAUS & \(\operatorname{dog}=\emptyset 3 \mathrm{SG}\) & die & \(=\mathrm{PFV} 1\) & \(=\mathrm{PS}\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{4}\) Except in the local construction and when the ergative argument is 3rd person singular, as we will discuss in §7.5.3.
}
'The dog died because of a (falling) tree.'

Instrumental/causal case arguments are not, therefore, core arguments of the verb. That is the reason why the occurrence of an instrumental/causal case argument is not determined by the valency of the verb. Ergative case arguments can appear only in predicates with bivalent verbs, while the instrumental/causal arguments do not have this restriction. In (45a) we have an example of the transitive clause with an instrumental argument on it, and in (45b), an intransitive clause with a causal argument. Note that both instrumental and causal arguments are not indispensable either for the grammaticality of the clause or the complete meaning of the proposition.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{(45) a. kami yanit} & \multicolumn{2}{|l|}{mokaa ani} & \multicolumn{4}{|c|}{xama \(=\varnothing\) уарё} \\
\hline kami =ya & \(=n \dot{t}\) & mokaa & \(=a\) & & xama \(=\varnothing\) & \(y a=\) & \(p \ddot{e}=\) \\
\hline \(=1 \mathrm{SG}\) & \(=\) ERG & rifle & \(=\) SG & \(=\) INS & tapir \(=\varnothing\) & \(1 \mathrm{SG}=\) & \(3 \mathrm{PL}=\) \\
\hline \multicolumn{8}{|l|}{xëprarema} \\
\hline \(x \ddot{\text { ë }}=p r a\) & \(=r i\) & \(=m a\) & & & & & \\
\hline beat; kill =DRV & \(=\mathrm{PFV} 1\) & \(=\mathrm{PST}\) & & & & & \\
\hline 'I killed the ta & apirs with & a rifle. & & & & & \\
\hline
\end{tabular}
\begin{tabular}{rllll} 
b. maa ani & & \(w a \quad\) thokomorayoma & \\
\(m a a=a\) & \(=\boldsymbol{n i}\) & \(w a=\) thokomo \(=\) rayu & \(=m a\) \\
rain \(=\) SG & \(=\) CAUSE \(2 \mathrm{SG}=\) cough & \(=\) PFV1 & \(=\mathrm{PST}\)
\end{tabular}.
'You started coughing because of the rain.'

Instrumental/causal and ergative arguments also differ in their basic semantic features. Instrumental/causal arguments are associated with participants with low or no animacy feature while ergative arguments are always related to highly animate participants, often a human being or a mammal. Indeed, there is a restriction for inanimate entities to be selected as an ergative argument of a predicate and control the verb by a pronominal index. In YMA, sentences such as (46a) sounds "funny" to native ears and predicates with a monovalent verb (46b) are usually preferred instead.
(46) a. * mararia ani
\begin{tabular}{llllll} 
mararia \(=a\) & \(=\boldsymbol{n i} \quad a=\) & \(x \ddot{\boldsymbol{e}}\) & \(=p r a\) & \(=r i\) & \(=m a\) \\
malaria & \(=\mathrm{SG}\) & \(=\) ERG \(\mathrm{SG}=\) & beat; kill & \(=\mathrm{DRV}\) & \(=\mathrm{PFV} 1\)
\end{tabular}
'Malaria killed her.'

In general terms, we can say that when an NP that displays the marker \(=n \dot{i}\) also displays the feature [-animate], the case marker \(=n \dot{t}\) is considered to be instrumental/causal because this argument cannot be indexed in the verb. Only in NPs that have the semantic feature [ + animate \(]\) the marker \(=n i\) can be considered ergative. In these cases, as we showed, the NP may be co-referenced on the verb by an ergative pronominal clitic if it does not refer to a 3rd person singular or if the transitive clause does not involve only SAPs, i.e. if it is not a local construction. If two arguments display the marker \(=n \dot{i}\), one of them (the less agentive) must necessarily be interpreted as an instrumental argument, as in (47).
\begin{tabular}{lllllll} 
warõ ani & & hãyõkoroma & ani & & \(k o ̃ a\) & \(=\varnothing\) \\
warõ \(=a\) & \(=\boldsymbol{n i}\) & hãyõkoroma & \(=a\) & \(=\boldsymbol{n i}\) & kõa & \(=\varnothing\) \\
man \(=\) SG & \(=\) ERG axe & \(=\) SG & \(=\) INS & firewood & \(=\varnothing\)
\end{tabular}
ayõki
pahikimama
\(a y \tilde{o}=\quad k \dot{\boldsymbol{i}}=\) pahiki \(=m a \quad=m a\)
CLN:firewood \(=3\) PL \(=\) shattered \(=\) CAUS \(=P S T\)
'The man was cutting the firewood in pieces with an ax.' (s_chck_hoax)

In YMA, the difference between the instrumental and causal arguments (both marked with \(=n \dot{t}\) ) seems to be simply semantic, i.e. they display the same morphosyntactic properties. Nevertheless, there is a tendency (probably due to semantics as well) for instrumental arguments to appear in transitive clauses, as in (48a) while causal arguments are more likely to occur in intransitive clauses (48b-c).

'My old relative did not kill them with a rifle, he did not shoot them with arrows, he killed them with a wood stick/spear.' (PDYP_B_07_06)
b. yamaki rõmihipëama xawara a wainë
yamaki= rõmihipë =o =ma xawara =a =wai =nё
1PL \(=\) scrawny \(=\) STV \(=\) PST epidemic \(=\) SG \(=\) DEPRC \(=\) CAUSE
'We were scrawny due to epidemics.' (PDYP_MIC_B_08_01)
```

 c. hai kiki xuuni kama=\emptyset e
 hai =kiki =xuu =ni kama=\emptyset e=
 fruit =CLN:collective =CLN:sap, juice =CAUSE 3 =Ø DIF.PART=
 imiki pree wakë naha ruoma yaro [...]
imiki= pree wakë naha= ru =o =ma =yaro
hand= also red V.PTC= fluster =STV =PST =CNJ.EXPLV
'For her fingers were confusingly red also due to the juice of the hai fruit [...]' (wtx_tẽrẽma)

```

This is certainly true in most of the cases, but we can still find instrumental arguments in intransitive clauses, such as (49). On the other hand, we were not able to elicit or to find in the corpus any example of a causal argument in a transitive clause.
\[
\begin{array}{lll}
\text { pore nahasini } & y a \quad \text { iarayoma }  \tag{49}\\
\text { pore }=\text { nahasi } & =\boldsymbol{n i} & \text { ya= ia }=\text { rayu }=m a \\
\text { ghost }=\text { nail } & =\mathbf{I N S} & 1 \mathrm{SG}=\text { eat }=\mathrm{PFV} 1=\mathrm{PST}
\end{array}
\]
'I ate (intrs.) with a fork.' (elicited) (note: ghost's nail = fork)

As a final comment, note from the examples (45a), (44a), (47) and (48a) that the position of instrumental argument in the transitive clause is prototypically between the ergative and the absolutive argument. However, this position is not as strict as the pre-verbal position of the absolutive argument since we do find examples of the instrumental argument being placed, for instance, after the verb, as the example in (50) shows.
\begin{tabular}{lllll} 
waa & \multicolumn{3}{c}{ tikiri } & \multicolumn{3}{c}{ poo ani } \\
\(w a=\) & \(a=\quad\) tiki & \(=r i \quad\) poo \(=a\) & \(=\boldsymbol{n i}\) \\
\(2 \mathrm{SG}=\) & \(3 \mathrm{SG}=\) prick & \(=\) PFV1 knife \(=\mathrm{SG}\) & \(=\mathbf{I N S}\)
\end{tabular}
'Stab it, with the knife!' (PDYP_MIC_A_06_07)

\subsection*{7.4.4. Additive \(=x o\)}

The comitative case marker \(=x o\) can appear in predicates with all types of verbs. It identifies two or more arguments that are co-participants in that predicate. In predicates with monovalent verbs, additive arguments can refer to co-subjects (51), or co-instruments/causes of the predicate (52), even though the latter is rare.


404 Yanomama clause structure
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline b. pei & uhurupë & exo & & pë & \(a a\) & \\
\hline pei & uhurupë= & \(=e\) & \(=x 0\) & \(p \ddot{e}=\) & \(a\) & \(=a\) \\
\hline INDEF & son= & \(=\) DIF.PART & \(=\) ADD & \(3 \mathrm{PL}=\) & go & \(=\) PFV.VWL \\
\hline \multicolumn{7}{|l|}{rayohuruma} \\
\hline & =rayu = & =huru & & & & \\
\hline rwards & = PFV1 = & =DIR.AND & & & & \\
\hline
\end{tabular}
'With her son, they then went away.' (wtx_tẽrẽma)
```

(52) hura pëxo thoko pëxo yamaki
hura =pë =xo thoko =pë =xo yamaki=
malaria =PL =ADD coughing =PL =ADD 1PL=

```
nomaproma
```

noma =pro =ma
die =DRV =PST

```
'We died due to malaria and coughing.'

In transitive predicates, the additive \(=x o\) can flag either co-agents (53a) or copatients (53b) of transitive predicates. Note in (53b) that anaphoric pronoun \(\tilde{t} h \tilde{t}\) is the actual absolutive NP of the clause. The same happens in (51a) and also in (60). Despite its high productivity, the pronoun is not obligatory.

'They made the airstrip with the people from the River Mucajai.'

Tẽrema's nail \(=\) digger \()\)

Multiple instrumental arguments can also be flagged with the additive \(=x o\), as in the elicited example in (54).

'They made the airstrip with diggers and axes.'

Even though \(=x o\) marks co-participants, in several examples in our corpus, there is only one explicit argument being marked \(=x o\), as in (53a) or (55). This would not suggest that \(=x o\) is also a comitative case marker, in the sense that it would identify only the accompanee of a predicate controlled by the companion. This may be true at the semantic and even pragmatic levels (i.e. the 'Hare Krishnas' could be regarded as the accompanee, while 'they' as the companion), but that is not what happens from a syntactic perspective. The 3 rd person plural index \(p \ddot{e}=\) refers not only the companion 'they' but to the combination of companion 'they'+ accompanee 'Hare Krishnas.' In (55), there is one argument marked with \(=x o\) that is not explicit but is understood. Both arguments have the same syntactic status in the clause, and none of them control alone the indexes on the verb. Consequently, these indexes are always non-singular.
Hare Krishna pëxo \(\quad\) pë huama
Hare Krishna \(=p \ddot{e} \quad=x \boldsymbol{p o} \quad\) pë= hua \(=m a\)
Hare Krishna =PL =ADD 3PL= wander =PST
'They wandered with Hare Krishnas.' (PDYP_MIC_B_10_02)
b. Funai axo pë huma

Funai \(=a=x \boldsymbol{p} \quad p \ddot{=} h u=m a\)
Funai \(=\) SG \(=\) ADD 3 PL= go \(=P S T\)
'They went with the [people from] FUNAI.' (PDYP_MIC_B_10_02)

In (56), I present an example in which it is clearer that one co-argument is being omitted. Note that the verb is indexed with the 1st person dual marker, which refers to the combination of 3rd person 'he' (overtly expressed by the nominal phrase kama axo) and 1st person 'I' (whose noun phrase is omitted in the example below).
 [...]
'She and I, for we are married [...]' (to hold/possess = to be married to) (PDYP_MIC_B_09_02)

The additive \(=x o\) is frequently found in constructions with the reciprocal morpheme \(=y u\). As we will see in \(\S 9.6 .4\) and as its name suggests, this morpheme indicates that two independent participants are reciprocal agents and patients of a predicate. These reciprocal participants are marked with \(=x o\), as in the examples in (57).
(57) a. Mateus axo yamaki hiramayoma
mateus \(=a \quad=x \boldsymbol{y}\) yamaki= hirama \(=y \boldsymbol{y} \quad=m a\)
Mateus =SG =ADD 1PL= teach =RECP =PST
'With Mateus, we two taught each other.' (PDYP_MIC_B_07_06)


The derivation with the reciprocal \(=y u\) is one of the few contexts where we can observe ditransitive verbs behaving differently from monotransitive verbs. With ditransitive verbs derived with \(=y u\), there are two participants that are simultaneously the agent and the recipient (not the theme) of the predicate. This difference is important because syntactically the recipients of those verbs are coded as oblique arguments, while the theme is a core argument (absolutive). In the derived predicate, the reciprocal agent-recipient arguments are flagged with \(=x o\), as in the example in (58).

'The jaguar and the armadillo, the two exchanged with each other their teeth.' (n026_opotihi)

The only type of multiple arguments that the additive \(=x o\) cannot mark is the oblique. When there are several arguments in the oblique position, all of them have to take the oblique marker, as in (59). The use of the additive \(=x o\) in this context results in ungrammatical constructions.

\begin{tabular}{lll} 
hiki & \(=o\) & \(=m a\) \\
already & \(=\) STV & \(=\) PST
\end{tabular}
'I have already been in Boa Vista, Manaus, and São Paulo.'

This restriction does not apply to goal- or location-like arguments of the example in (59). This is a syntactic and not a semantic restriction, as the examples in (60) show. In (60a), we have multiple theme arguments marked with \(=x o\) that are the syntactic patients of the transitive predicate hipiit 'to give.' In (60b), we have the same multiple theme arguments, but now they are syntactically the oblique argument of the transitive predicate top \(\ddot{\boldsymbol{i}}\) 'to present,' which project a beneficiary-like argument as a syntactic patient of the clause. The use of =xo to mark various oblique theme arguments is ungrammatical (60c).
(60) a. xinaru upëxo
\begin{tabular}{|c|c|c|c|c|}
\hline xinaru \(=u\) & \(=p \ddot{e}=x o\) & tёрё & \(=k i k i\) & =xo \\
\hline cotton =CLN:cotton & \(=\mathrm{PL}\) = ADD & glass bead & LN:collective & =ADD \\
\hline = thëpë & hipikemahe & & kami yamakiha & \\
\hline Ø thë= \(\quad \quad \quad \ddot{e}=\) & hipi \(=k i\) & \(=m a \quad=h e\) & kami =yamaki & \(=h a\) \\
\hline Ø CLN.GNR= 3PL= & give =PFV2 & \(=\mathrm{PST} \quad=3 \mathrm{PL}\) & L 1 =1PL & \(=\mathrm{OBL}\) \\
\hline
\end{tabular}
'Cotton, glass beads, they gave those things to us.'

'Cotton, glass beads, they presented us with those things.'
c. * xinaru upëxo , tёрё
xinaru \(=u \quad=p \ddot{e}=x \boldsymbol{t}=\) tёрё
cotton =CLN:cotton =PL =ADD glass bead
kikixo
ťhñ thëpëha yamaki
\(=k \dot{k} k i \quad=x \boldsymbol{o}\) ťh \(\tilde{t}\) thë \(=p \ddot{e}=h a\) yamaki=
\(=\) CLN:collective =ADD ANA CLN.GNR =PL =OBL 1PL= topiremahe
\begin{tabular}{llll} 
top \(\dot{t}\) & \(=r i\) & \(=m a\) & \(=h e\) \\
present & \(=\) PFV1 & \(=\mathrm{PST}\) & \(=3 \mathrm{PL}\)
\end{tabular}
'Cotton, glass beads, they presented us with those things.'

As a final note, there does not seem to be a limitation on the number of arguments that can be marked with \(=x o\) in a single clause, as the example in (61) suggests.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline (61) & Ivalnildo axo & & Davi axo & & kami & yaxo & & \(a i\) \\
\hline & Ivalnildo \(=a\) & =xo & Davi \(=a\) & =xo & kami & \(=y a\) & =xo & \(a i\) \\
\hline & Ivanildo \(=\) SG & \(=\mathbf{A D D}\) & Davi \(=\) SG & =ADD & 1 & \(=1 \mathrm{SG}\) & = ADD & other \\
\hline yano & ama yamakixo & & yamaki hut & & & tëhë & [...] & \\
\hline yano & \(a m a=y a m a k i\) & =xo & yamaki= hu & & \(=i\) & = tëhë & & \\
\hline yano & \(\mathrm{ami}=1 \mathrm{PL}\) & \(=\) ADD & \(1 \mathrm{PL}=\mathrm{go}\) & \(=\mathrm{CEL}\) & = DYN & =REL. & & \\
\hline
\end{tabular}
'When we were going, we Ivanildo, Davi, I, other Yanomama people.'
(PDYP_MIC_B_10_02)

\subsection*{7.4.5. Obliques \(=h a\) and \(=h a m i\)}

The arguments flagged with the oblique case marker are never co-referenced in the verb by a pronominal index. All oblique arguments are, in this sense, non-core arguments. Oblique arguments can play a wide range of thematic roles in the predicate depending on the lexical semantics of the verb. One recurrent role that they can play in virtually any verbal predicate is the location where the event takes place, as in (62).
\begin{tabular}{|c|c|c|c|c|c|}
\hline (62) a. urihiha & & wakëri & & thai & \\
\hline urihi & \(=h a\) & wakë= & & tha & \(=i\) \\
\hline forest & =OBL & CLN:fire= & HON & do; make & = DYN \\
\hline
\end{tabular}
xoama
\begin{tabular}{lll}
\(x o a\) & \(=o\) & \(=m a\) \\
continue & \(=\) STV & \(=\) PST
\end{tabular}
'[He + REV] was then lighting the fire in the forest.' (s_chck_cesa)
b. kihami ai thë urihi hami ya ha
kihamí ai =thë =urihi =hami \(y a=h a=\)
there other \(=\) CLN.GNR \(=\) forest \(=\mathbf{O B L} \quad 1 \mathrm{SG}=\) REL.PST \(=\)
nomaprarini \(\quad[. .\).
noma \(=p r a=r i=n \dot{t}\)
die =DRV =PFV1 =REL.PST
'When I get drunk in other land/forest.' (m006_arok_mari) (note: to die = to get drunk)

With motion verbs, oblique arguments also frequently indicate the direction towards which the event is heading or its end point or goal. I present in (63) some examples of this usage.
```

(63) a. thuwë eha a waithëri rërëkema
thuwë =e =ha a= waithëri rërë =ki =ma
woman =DIF.PART =OBL 3SG= fierce run =PFV2 =PST
makii
[...]
ma= ku =i
FOC.CONC= COP =REL
'[He] ran angrily after his wife [...]' (s_chck_marc)

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & b. \(\mathfrak{\text { trã }}\) tëhë & & \(a\) & \(a a\) & & \\
\hline & п̈ht & =tëhë & \(a=\) & \(a\) & \(=a\) & \\
\hline & ANA & \(=\) REL.PRS & \(3 \mathrm{SG}=\) & go & = PFV.VWL & \\
\hline kõrac & ahuruma & & & & yano aha & \\
\hline kõ & \(=r a a\) & = huru & & \(=m a\) & yano \(=a\) & \(=\boldsymbol{h a}\) \\
\hline again & = PFV1 & \(=\) DIR.A & & \(=\) PST & house \(=\) SG & \(=\mathrm{OBL}\) \\
\hline
\end{tabular}
'Then [she] went away towards the house.' (s_chck_marc)


Predicates with motionless verbs that are marked for associated motion can also have an oblique argument which indicates the direction or goal of the action, as the example in (64) shows.
ai yano hami ipa xaraka \(=\varnothing\) a tëruhuru
ai yano =hami ipa xaraka \(=\varnothing\) a \(=\) të =ru =huru
other house \(=\mathbf{O B L} 1\) POS arrow \(=\varnothing\) SGG take \(=\) PFV1 \(=\) DIR.AND
kure
\(k u=r e\)
COP =PRE.HOD
'He took my arrow to another house.' (PDYP_MIC_A_06_08)

Oblique arguments of predicates with motion verbs can also refer to the means-of-transportation used to carry out the action, as in (65).
\[
\begin{align*}
& \text { apiama ahami rope kipë }  \tag{65}\\
& \text { apiama }=a \quad=\text { hami } \\
& \text { rope } \\
& \text { kipë= } \\
& \text { airplane }=\mathrm{SG} \\
& =\mathbf{O B L} \\
& \text { quick }
\end{align*} 3 \mathrm{DU}=
\]
kopohuruma
\begin{tabular}{llll}
\(k o\) & \(=p i\) & \(=h u r u\) & \(=m a\) \\
go_home & \(=\) PFV3 & \(=\) =DIR.AND & \(=\) PST
\end{tabular}
'They two quickly went away by plane.' (PDYP_MIC_B_08_01)

\[
\begin{aligned}
& \text { c. } \mathfrak{h h t ̃} \text { tëhëe pei mahu hami pë huи tëhë [...] } \\
& \tilde{t} h \tilde{t}=t e ̈ h \ddot{e} \quad \text { pei =mahu =hami } p \ddot{e}=h u \quad=\dot{i} \quad=t e ̈ h e ̈ ~ \\
& \text { ANA =REL.PRS INDEF =toe =OBL 3PL= go =DYN =REL.PRS }
\end{aligned}
\]
'When they go on feet [...]' (m003_manu_gari)

It is worth noting that the oblique arguments in (65) could not have been marked with the instrumental case \(=n i\). That is, means-of-transportation is always an oblique argument in YMA not instrumental. The same applies to the means-of-communication used to perform the action, which is also marked as an oblique argument. In (66), I offer examples of this type of oblique argument.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline (66) a. ih & ihã & kurani & & & & & radio & aha & & рёã & \\
\hline & เhã & ku & \(=r a\) & & \(=n \dot{t}\) & & radio & \(=a\) & \(=\boldsymbol{h a}\) & & \(\tilde{a}=\) \\
\hline haa th & there & exist & \begin{tabular}{l}
\[
=\mathrm{LOC}
\] \\
haxoa
\end{tabular} & & \(=\) REL & ST r & radio & & & 3PL= & sound= \\
\hline ha & \(=a\) & & \(h a=\) & xoa & & \(=r i\) & & \(=n \dot{i}\) & & & \\
\hline speak & \(=\) PFV & V.VWL & REL.PS & cont & tinue & & FV1 & \(=\) REL & & & \\
\hline
\end{tabular}

Chapter 7 - Argument marking: word order, flagging and indexing
'Then after they had spoken on the radio [...]' (m002_cesa_gari)
```

 b. utupë taamotima aha ya thë
 итирё taa =mи =tima =a =ha ya= thë=
 image see =INTRZ =NMLZ =SG =OBL 1SG= CLN.GNR=
 taariwei [...]
taa =ri =wei
see =PFV1 =NMLZ

```
'What I saw in the television [...]' (s_ball_kami)

The recipient-like arguments of several verbs that convey material or unmaterial transfers are also coded as oblique arguments. This applies to recipients of the verbs hipii 'to give' (67b) and ximai 'to send' (67b).
\begin{tabular}{rlll} 
(67) a. Maneyasi eha & \begin{tabular}{l} 
yũu \\
Maneyasi \(=e\)
\end{tabular}\(\quad=\boldsymbol{h a}\) yũu & \(=\varnothing\) ya & thuku \\
(
\end{tabular}

Maneyasi =DIF.PART =OBL cotton hammock = ( 1 SG= CLN:hammock= hipikema
```

hipi =ki =ma
give =PFV2 =PST

```
'I gave a hammock to Maneyasi.' (m006_arok_mari)
b. kaho wa ehami ipa =Ø yathãa
kaho =wa =e =hami ipa =Ø ya thë \(\quad\) ä
\(2=2 \mathrm{SG}=\) DIF.PART \(=\mathbf{O B L} \quad 1 \mathrm{POS}=\varnothing\) 1SG CLN.GNR sound
ximai
xima \(=i\)
send =DYN
'I am sending you my words.' (m006_arok_mari)

Some verbs of communication also specify the recipient with the oblique marker, such as wã haí 'to speak' (68a) and thãa wëaì 'to explain, to expound' (68b).

\section*{414 Yanomama clause structure}

'I am expounding to Tixopona.' (m003_manu_gari)

Nevertheless, the semantics of some particular verbs that imply a transfer may impose different argument structures on the clause, in which the theme is treated as an oblique and the recipient or beneficiary is coded as an absolutive argument (core argument). This is the case of predicates with verbs topiit 'to present' in (69a) and pairiprai 'to help out, to help with' (69b).

'The women from Parimiu presented us with skirts.' (PDYP_MIC_B_01_17)
```

 b. thuwë =Ø yama thëрё pairiprai tёрё
 thuwë =Ø yama= thë= p\ddot{= pairi =pra =i tëpë}
 woman =Ø 1PL= CLN.GNR= 3PL= help =DRV =DYN glass bead
 kikiha
=kiki =ha
=PL =OBL

```
'We help the women [out] with glass beads.' (PDYP_MIC_B_12_05)

The theme-like argument of several intransitive verbs that express mental states or processes is flagged with the oblique marker as well, as in the examples in (70).

'My thoughts about you already got small.' (i.e. 'I have already forgotten you') (m006_arok_mari)

xoa
xoa \(=a\)
continue \(=\) POST
'I am still waiting for any news [lit. 'with my ears in place'] about the child.' (m006_arok_mari)
\[
\begin{array}{rlllll}
\text { c. } \text { kama } & \text { xapuri } & \text { aha } & & \text { wa pihi } & \text { xatia } \\
\text { kama } & \text { xapuri }=a & =\boldsymbol{h a} & \text { wa }=\text { pihi }= & \text { xati } & =a \\
3 & \text { shaman }=\text { SG } & =\mathbf{O B L} & 2 \mathrm{SG}=\text { V.PTC:thought }=\text { stick } & =\text { POST }
\end{array}
\]
'You have your mind focused on the shaman/shamanic spirit.' (PDYP_A_MIC_07_19)

The argument playing the role of the stimulus of an intransitive experiential verb is also syntactically treated as an oblique, receiving the marker \(=h a\) or \(=h a m i\), as in (71).
(71) a. marãria aha yamaki ha
marãria \(=a \quad=\boldsymbol{h a} \quad\) yamaki \(=h a=\)
malaria \(=\mathrm{SG}=\mathbf{O B L}\) 1PL= \(=\) REL.PST \(=\)
kirirarini
kiri \(=r a \quad=r i \quad=n \dot{i}\)
be_scared =DISTR =PFV1 =REL.PST
'After we got scared with malaria [...]' (PDYP_MIC_A_18_02)
b. ihã Funai aha yamaki pihi yei
ihã Funai \(=a \quad\) ha yamaki \(=\) pihi \(=\quad\) yei
there Funai \(=\) SG \(=\) OBL 1PL= V.PTC:thought= true
toaì kõoma
toa \(=i \quad k \tilde{o} \quad=o \quad=m a\)
be happy =DYN again =STV =PST
'Then we were again happy with Funai.' (PDYP_MIC_A_03_18)
As we will see in \(\S 9.5 .2\), when a transitive predicate undergoes a causative derivation, the oblique marker indicates the causee argument, i.e. the original ergative argument of the non-derived construction. In (72b), I present a causative construction extracted from a traditional narrative, and in (72a) the correspondent non-derived construction. Note that in (72a) the ergative argument is iwari ani 'the ancestor caiman' is moved to an oblique position when the predicate is derived in (72b). I will present more examples of this derivation in Chapter 9.

\begin{tabular}{|c|c|c|}
\hline b. iwari & eha & wakë \(=\varnothing\) \\
\hline Iwari & \(=e \quad=\) & \(=h a \quad w a k \ddot{e}=\emptyset\) \\
\hline ancestor caiman & \(=\) DIF.PART \(=\) & \(=\) OBL fire \(=\varnothing\) \\
\hline hopramaremahe & & . \\
\hline \(a=\) hopra =ma & \(=r i \quad=m a\) & \(a \quad=h e\) \\
\hline \(3 \mathrm{SG}=\) expel \(=\) CAUS & \(=\) PFV \(1 \quad=\) PST & \(\mathrm{T}=3 \mathrm{PL}\) \\
\hline
\end{tabular}

Note in the examples (72b), (70b) (68a-b) and (67a-b) the oblique marker appears in combination with the different participant marker \(=e\). This extramorpheme indicates in this context that the argument refers to a highly animate entity (prototypically a human). The "different participant" sense comes from the contrast with other highly animate participants whose arguments are in a core position in the clause. In the example (72b), this other participant is 'they.' Since the different participant marker also appears in the verbal domain to express switch-reference (see §7.5.5), I do not consider it to be a case marker itself in YMA. However, it does seem to have been fused with the oblique marker in Yãnomami (Ramirez: 1994, 200) to create the oblique \({ }^{5}\) case marker \(=i h a /=i h a m i\), used exclusively with humans.

Interestingly, the oblique case marker is not used for expressing the origin of a motion predicate. Moreover, there is no case marker that can do it alone. To indicate this type of peripheral argument, the speaker has to combine an oblique argument with a grammaticalized type of relative clause with the copular element \(k u\) 'to exist' plus the location and tense morphemes of the relative construction. In the example in (73) this relative clause is kurani. This construction has partially undergone

\footnotetext{
\({ }^{5}\) Ramirez call it référentiel.
}
grammaticalization which already led to the loss of the person indexes in the predicate \({ }^{6}\) and its meaning can be roughly translated as "being in \(\mathrm{X} . .\). ", where X is the oblique argument that immediately precedes the relative clause.

'Being in Pista Moral (an airstrip made by the miners), they went first on foot [to another place] [...]' (m005_wawa_gari)

The difference between the two oblique markers \(=h a\) and \(=h a m i\) is not clear for me. I know from elicitation and discussions with native speakers that the two forms are not interchangeable in several contexts, but it has been quite difficult to formulate a rule. While we identify some preference patterns in the use of one or the other form, counter-examples prevents us from making a categorical generalization. The form \(=h a m i\), for instance, is much more frequent with arguments performing a goal or direction role in predicates that imply a displacement, such as (62b), (64) and (67b). On the other hand, there are examples such as (64a), where the goal argument is being marked with \(=h a\). The comparison between (64a) and (63) could suggest that definiteness may be playing a role in the choice of the markers. In (64a) we have a relatively definite entity being marked with \(=h a\), while in (63) the oblique argument marked with \(=h a m i\) is indefinite. This could also explain why in (65a) a speaker chose \(=h a m i\) while in (65b) another speaker chose \(=h a\), both specifying a very similar argument (means-of-transportation in this case). However, examples like (67b) and (70a), where we have highly definite referents (2nd person), seems to contradict this

\footnotetext{
\({ }^{6}\) This is found in other domains of the grammar, such as the expression of evidentiality. For more on this construction, please refer to the explanation on the \(k\)-words in §11.3.1.1.
}
analysis as well. Our honest conclusion is that more investigation is needed before we can confidently generalize on the usage of these two forms.

As a final note, the oblique markers =ha and =hami can be attached to clauses derived with deverbalizing morpheme \(=p e \ddot{e}\) indicating that the whole nominalized clause is an oblique argument of the main or next clause. In these cases, this oblique argument only express location or goal, as the example in (74) shows.


In order to be able to perform the other roles that are associated with the oblique argument, a clause has to be derived with a different morpheme, such as the nominalizer \(=\) wei. In (75), I offer an example of this construction.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline urihi \(=\varnothing\) a & wãriai & & & wei & thëna & \\
\hline urihi \(=\varnothing\) a \(=\) & wãri & \(=a\) & \(=i\) & \(=w e i\) & \(=t h e ̈\) & \(=h a\) \\
\hline forest \(=\) Ø \(3 \mathrm{SG}=\) & spoil & \(=\) DISTR & = DYN & = NMLZ & \(=\) CLN.GNR & \(=\) OBL \\
\hline
\end{tabular}
yamaki hixio
yamaki= hixi \(\quad=o\)
\(1 \mathrm{PL}=\) angry \(=\mathrm{STV}\)
'We are angry with him destroying the forest.' (PDYP_MIC_A_14_02).

However, I will not deal with these oblique nominalized arguments in this study, neither with the predicates with relational verbs which do not need to undergo any derivation to have access to the oblique marker and become a locative arguments of another clause. These verbs are formally positional or attributive stems and usually, denote a relative position or distance. In (76), I offer two examples of clauses with
these verbs in the oblique position. We will, unfortunately, have to leave the description of these verbs for a future study when dealing with multiclausal constructions.

'It was laying [on the floor] below the ancestor caiman.' (wtx_iwa)
\begin{tabular}{rllll} 
b. pora pë kasiha & & \(p i\) & thëp \(\ddot{e}\) & \\
pora pë \(=\) & kasi & \(=\boldsymbol{h a} \quad\) pi= & thë \(=\) & pë \(=\) \\
ball 3PL \(=\) fringe & \(=\) OBL FOC. \(\mathrm{INT}=\) & CLN.GNR \(=\) & 3PL \(=\)
\end{tabular}
kerayoma
\(k e=r a y u=m a\)
fall PFV1 =PST
'They fell on the side of the waterfalls.' (n043_ware)

In the next section, we will turn to the study of the other morphological mechanism that specifies the grammatical relations of a predicate: the verb indexing system.

\subsection*{7.5. Verb Indexing}

As I showed in §7.3, most of the YMA clauses of our sample are nounless, i.e. they do not display a single nominal argument. The fact that the speakers can so often prescind the nouns and the nominal morphology from most of the clauses is probably explained by the richness of verbal morphology of YMA. We saw in Chapter 6 that the language has an extense set of bound morphemes that specifies several tense, aspectual and spatial categories on the predicate. In this section, I will deal with the morphology that expresses on the verb the syntactic relations of the arguments. The
language has two sets of morphemes that express such relations. The first set (Set 1) appears obligatorily in every clause, regardless the valency of its verb, while the second set (Set 2 ) co-occurs with Set 1 exclusively in predicates with transitive verbs. The alignment of the two sets follows the ergative-absolutive pattern for most of the persons and configurations, i.e. while the first set specifies either the subject (S) of intransitive clauses or the patient (P) of transitive ones, the second set only indicates the agent (A) of transitive predicates. There are several exceptions to this general characterization, though, which will be discussed later in this section. First, let's take a look at the markers of each set, beginning in 7.5.1 with markers that are used to index absolutive arguments, i.e. subject of intransitive predicates and patients of transitive ones.

\subsection*{7.5.1. Set \(\mathbf{1}\) - Subject ( \(\mathbf{S}\) ) and Patient ( \(\mathbf{P}\) ) markers}

In Table 7.9, I present the person indexes that refer to the subject of intransitive predicates or the patient of the transitive one. Throughout this study, I will refer to the absolutive set of markers on the verb as Set 1, and occasionally, the markers of the subject or the patient.

Table 7.9 - Set 1 of Pronominal Indexes (S and P)
\begin{tabular}{|c|c|c|c|}
\hline & singular & dual & plural \\
\hline 1 & \(y a=\) & \(y a h a=k i=\) & yama \(=k \dot{i}=\) \\
\hline 2 & \(w a=\) & waha \(=k i=\) & wama \(=k i=\) \\
\hline 3 & \(a=\) & \(k i p e ̈=\) & \(p \ddot{e}=\) \\
\hline 3CLN & CLN \(=\) & CLN \(=k \dot{p} p \ddot{e}=\) & \(\mathrm{CLN}=p \ddot{e}=/ \mathrm{CLN}=k i=\) \\
\hline
\end{tabular}

Note that the non-singular markers for 1 st and 2 nd persons are not monomorphemic but composed of an enclitic that expresses person and number followed by the non-singular marker \(=k i\). In Section \(\S 4.3 .4\), I showed that the same combination of morphemes is present in the personal pronouns. And similarly to what
happens there, in some few contexts, other enclitics may appear in between these morphemes, such as the different participant marker, which indicates then a shift in the discursive prominence of the participants, as a new non-topicalized one is introduced. I offer an instance of this usage in (77). The example was extracted from an interview in which the speaker is explaining the traditional procedures that should be carried out after a death in the community. She then starts enumerating several tasks and tells how the community organized itself to complete them. The sentence in (77) is part of that to-do list and was uttered just after a sentence in which she explains how the community (always referred by the speaker as "we") should correctly cremate the dead body. After the cremation of the body, other people of the community (also "we") may ask about the preparation of the funeral parties, and that is what the sentence in (77) is about.

""Brother, what are the things you will make [them] do?" other ones among us then say.' (PDYP_MIC_A_06_08)

However, since these contexts are indeed rare, and for the sake of economy of space in the glossing lines, I will consider the morpheme combinations yaha=ki=, yama \(=k i=\), waha \(=k i=\) and wama \(=k i=\) as single morphemes (yahaki=, yamaki=, wahak \(i=\) and wamak \(i=\) ) and gloss them accordingly, as the examples in (78) illustrate.
(78) a. wahaki kõimai
\begin{tabular}{llll}
\(\boldsymbol{w a h a k}=\) & \(k \tilde{o}\) & \(=i m a\) & \(=\boldsymbol{i}\) \\
2DU \(=\) & again & \(=\) DIR.VEN & \(=\) DYN
\end{tabular}
'You two come here!' (n027_haya)
b. kami yamaki huu
kami yamaki= hu =i
\(1 \mathbf{1 P L}=\) go \(=D Y N\)
'We are going.' (m007_geni_kona)

It is also worth noting that the markers of a 3rd person may vary according to the type of noun that they refer to. While nouns of Type 1 are indexed by the number morphemes alone (79a), nouns of Type 3 are additionally co-referenced on the verb by the noun classifier (79b). This only applies, nevertheless, to classified nouns in plural, since the noun classifier is not compatible with the singular morpheme \(=a\) (79c).
(79) a. kariperu yama pë piximaimi
kariperu yama \(=p \ddot{\boldsymbol{e}}=\) pixima \(=\) imi
miner 1PL= 3PL= want \(=\) NEG
'We do not want the miners.' (m002_gari_cesa)


One of the indexes of the set 1 is present in every clause in YMA, disregarding the valency of the verb. The markers of this set always refer to the zero case argument of the clause, i.e. to the absolutive argument. Hence in predicates with monovalent verbs, Set 1 indicates the syntactic subject of the predicate, whether this predicate is
unaccusative (80a), unergative (80b) or a state (80c). There is no split in this marking pattern.
(80) a. îh wãrõkõxi una kerayoma
t̃h \(\mathfrak{t}\) wãrõkõxi una= \(k e=r a y u=m a\)
ANA sp._of_fruit CLN:???= fall PFV1 =PST
'The fruit warokoxi una (Duguetia eximia) fell.' (s_ms10_arok)
\[
\begin{aligned}
& \text { b. oxe thëkipë rë̈ët hëimama } \\
& \text { oxe thë= kipë= rërë =i hë =ima =ma } \\
& \text { youngster CLN.GNR= DU }=\text { run }=\text { DYN remain =DIR.VEN }=\text { PST } \\
& \text { 'Two children came running.' (s_chck_marc) }
\end{aligned}
\]

As we saw in §7.4.1, only some impersonal intransitive predicates do not have an explicit or recoverable NP as their subjects. This is the single context where a person index from Set 1 is not in co-reference with an argument outside the predicate. In this cases, the person index is invariably the generic classifier \(t h \ddot{e}=\), as in the example in (81).
```

thë haruimatayuu
th\ddot{e}= haru =imatayu =i
CLN.GNR= dawn =PRG =DYN
'It is dawning.' (n021_yaaremape)

```

Set 1 markers are also obligatorily present on every bivalent verb and always refer to the non-marked argument of the clause, i.e. its syntactic patient. Even though the subjects of intransitive and patients of transitive predicates are indexed with the same forms, the two types of argument differ for the patient of transitive never refer
to a participant with high agentivity or volition in carrying out the event, as subjects of intransitive unergative predicates may do, as we saw in 7.4.1. Semantically, the syntactic patient can only be either a patient (82a), theme (82b), or the beneficiary/recipient (82c).
(82) a. yaro ya p\(\quad\) niama
yaro \(y a=\quad\) pë \(=\) nia \(=m a\)
animal \(1 \mathrm{SG}=\mathbf{3 P L}=\) shoot \(=\) PST
'I shot [used to shoot] animals.' (m004_paya_gari)

'You [can] only see the sky.' (PDYP_MIC_A_16_01)
\(\begin{array}{rllll}\text { c. } a i & \text { thëpëni } & \text { pei } & \text { heãropë } \\ a i & =\text { thë } & =p \ddot{ }=n \dot{t} & \text { pei } & \text { heãropë }\end{array}\)
other \(=\) CLN.GNR \(=\) PL \(=\) ERG INDEF husband
ethëpë
pairipraì
\begin{tabular}{llcll}
\(\boldsymbol{e}=\) & \(\boldsymbol{t h} \ddot{\boldsymbol{e}}=\) & \(\boldsymbol{p} \ddot{\boldsymbol{e}}=\) pairi & \(=p r a\) & \(=\dot{\boldsymbol{t}}\) \\
DIF.PART \(=\) & CLN.GNR \(=\) & \(\mathbf{3 P L}=\) help & \(=\) DRV & \(=\) DYN \\
makihi & {\([\ldots]\)} & &
\end{tabular}
\(m a=\quad k i=h e=i\)
FOC.CONC \(=\) COP \(=3\) PL =REL
'Even though others helped their husbands [...]' (PDYP_MIC_B_09_12)

As a final comment, the tense and aspect markers have no influence on the use of Set 1 markers. Likewise, the markers do not vary in the dependent clauses or in different participant configurations, as the Set 2 markers do. The markers of the Set 1 are obligatory in all those contexts.

In the next section, I will show that all indexes of Set 1 have a clear and synchronically recoverable origin.

\subsection*{7.5.2. Origins of Set 1: procliticization of the enclitics of the absolutive argument}

As mentioned in Chapter 3, the whole Set 1 markers (Table 7.9) have their enclitic counterpart on the nominal Cluster A (see Tables 3.6 and 3.8). Indeed, the markers for 1 st and 2 nd persons match exactly with the enclitics that appear with personal pronouns while the markers for a 3rd person are simply the number markers or the noun classifiers that regularly occur with the nouns of Types 1 and 3 . According to my analysis, this is not a coincidence: the entire enclitic Cluster A changes its binding directionality, becoming proclitics of the Cluster B when the noun that would otherwise host them is the absolutive argument of a predicate. In (83a), for instance, the singular marker \(=a\) becomes the index of 3rd person singular, and in (83b), the pronominal enclitic =yamaki turns to the marker for 1st person plural on the verb.
\begin{tabular}{|c|c|c|c|c|c|}
\hline (83) a. rẽa & \(\sin\) i & & koraha \(=\varnothing\) a & hatetepoma & \\
\hline rẽa & \(=s i\) & \(=n \dot{t}\) & koraha \(=\varnothing\) a= & hatetepo & \(=m a\) \\
\hline mouse & \(=\) CLN:small & \(=\) ERG & banana \(=\) Ø 3SG= & keep in the pocket & = PST \\
\hline 'The m & ouse had a b & nana in & he pocket.' (m- & s09_suka) & \\
\hline
\end{tabular}

> b. \(k a m i=\emptyset\) yamaki kiri
> kami \(=\varnothing\) yamaki= kiri
> 1 =Ø 1PL= be_scared
> 'We are scared.' (m002_cesa_gari)

At this point, one could question the validity of this interpretation and argue that the examples would be better glossed as in (84), i.e. considering the singular marker \(=a\) and the bound pronoun =yamaki as part of the nominal phrase. Hence the verb would not be marked for person.

'The mouse had a banana in the pocket.' (m_ms09_suka)
```

b. kami yamaki kiri
kami =yamaki kiri
1 =1PL be_scared
'We are scared.' (m002_cesa_gari)

```

In this section, I will present three pieces of evidence that support the first analysis. Let's take obligatoriness as a first parameter. While the markers of the Set 1 are obligatory in every predicate, even in the minimal clause (see §4.2.6), the nouns (the free words) can be omitted without turning the clause ungrammatical. That is, the free morphemes koraha and kami can be omitted in (83) or (84). If we admitted that the morpheme separation in (84) is the correct one, we would have a representational problem in the minimal clause for the morphemes \(=a\) and \(=y a m a k i\) would be bound to nothing/nowhere. I do not believe, nonetheless, that this is a property of the clitics in YMA, considering the behavior of those morphemes in all the remaining contexts, where they clearly have to be hosted by a free word.

The second piece of evidence comes from the behavior of the 3rd person markers of the Set 1 when coexisting with the SAP Set 2 markers in transitive verbs. In these contexts, the markers of the Set 2 are placed in between the free morpheme and its clitic, as shown in the examples (85). If we assume that the clitic is still bound to its original noun, we would have to postulate that YMA displays in this context not only discontinuous noun phrases but discontinuous verbal phrases as well, since the Set 2 markers are assumedly bound to the verb (or where would they otherwise be bound to?). I believe this analysis is not only wrong but awfully uneconomic for the description of the language.
(85) a. xinaru wama uрё
\begin{tabular}{lllll} 
xinaru wama \(=u=\) & \(p \ddot{e}=y \tilde{a}\) & \(=a\) & \(=m a\) & \(=\dot{i}\) \\
cotton 2PL \(=\) & CLN:cotton \(=\) & \(\mathrm{PL}=\) be tied & \(=\mathrm{DRV}\) & \(=\mathrm{CAUS}\) \\
\(=\mathrm{DYN}\)
\end{tabular}
'Tie the cotton strands!' (PDYP_MIC_A_01_27)
\begin{tabular}{lllll} 
b. napë yama & pë taarema \\
napë & yama \(=\) & \(p \ddot{e}=\) taa & \(=r i \quad=m a\) \\
white person 1PL \(=\) & \(3 \mathrm{PL}=\) & see & \(=\mathrm{PFV} 1\) & \(=\mathrm{PST}\)
\end{tabular}
'We saw the white people.' (n006_masipe)

The third piece of evidence is that the Cluster B morphemes interact phonologically with clearly verbal markers, such as the volitional riäa and the verbal particles of compound verbs, like \(n \dot{i}=\) or \(p i h i=\). The reverential \(=r \tilde{i} / r \tilde{l}=\) and the diminutive \(=i / i=\), for instance, appear after those verbal morphemes, as we can see by the examples in (86). Note in (86b) that the verbal particle pihi \(=\) assimilates the nasality of the reverential, and in (86c), the diminutive provokes the vowel of the verbal particle \(n \dot{i}=\) to change to ë, i.e. [ə]. This shows these morphemes are in the same cluster. Since the verbal particles are being hosted by the verbs, we have to conclude that the person clitics are being hosted by verbs too.
```

(86) a. a riã rĩ wani [...]
a= ri\tilde{\boldsymbol{a}}= =r\tilde{\imath}}\mathrm{ wa =ni
3SG= VOL= =HON eat =REL.PST
'Wanting [he+REV] to eat it. [...]' (s_chck_ces)
b. îh\tilde{t}\mathrm{ tëhë piñĩrĩ}
\tilde{th}\tilde{t}=tëhe\ddot{ a}\quada= p\tilde{\imath}h\tilde{\imath}=\quadr\tilde{\imath}=
ANA =REL.PRS 3SG= v.PTC:thought= HON=
xuhuritarioma
xuhuri =ta =rio =ma
sadness =CEL =PFV1 =PST

```
'Then he [+REV] soon got annoyed.' (s_pear_cesa)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline c. iha & enëi & & & aipërayoma & & \\
\hline iha & \(e=\) & \(\boldsymbol{n i}=\) & & aipë & \(=r a y u\) & \(=m a\) \\
\hline there & DIF.PART= & V.PTC= & DIM & be different & = PFV1 & \(=\) PST \\
\hline
\end{tabular}
'There the little one got transformed/metamorphosed.' (n032_omamayesie)

In the next section, we will turn to the description of the markers of the Set 2, used to index agents on the verb.

\subsection*{7.5.3. Set 2 - Agent (A) markers}

The indexes of Set 2 - presented in Table 7.10 - are used only with bivalent verbs and they are always co-referential with an NP marked with the ergative \(=n i\) in the clause.There is a strong consistency in this correlation, with no exceptions.

Table 7.10 - Set 2 of Pronominal Indexes (A)
\begin{tabular}{llll}
\hline & singular & dual & plural \\
\hline 1 & \(y a=\) & \(y a h a=\) & yama \(=\) \\
2 & \(w a=\) & waha \(=\) & wama \(=\) \\
3 & --- & \(=p \dot{t}\) & \(=h e\) \\
\hline
\end{tabular}

This set of markers has the particularity of being made of both proclitics and enclitics. While the markers for agent SAPs are proclitics from Cluster B, the markers for agent 3rd persons are enclitics from Cluster C. In this sense, we could say that there are two systems, one for SAP and another for 3rd persons. For I do not find this division useful for the description of the language (since there are not clear contexts where these two systems behave differently), I will treat both sets of markers as part of the same paradigm.

Another particularity of Set 2 is the absence of an overt marker for 3rd person singular agent. But it not to say that it is not an ergative argument. The verb is still bivalent. There is no restriction to an animate 3rd person to be the ergative argument of the clause. This restriction exists only for the inanimate 3rd person, which can only play the instrumental or causal roles in a bivalent clause, never the role of the agent. Animate 3rd person singular does occupy the ergative position of the clause, as the example in (87) clearly shows (note the ergative case marker \(=n i\) in both sentences).
```

(87) a. aho thuwë anë pisima kiki rapuи
aho thuwë =a =në pisima kiki= rapu =i
2POS woman =SG =ERG loin-cloth CLN:collective= wear =DYN
tha?
=tha
=PTC.INT
‘Does your wife wear loin-cloths?’ (PDYP_MIC_B_10_01)

```
\begin{tabular}{cccc} 
b. hapai naha & warõ ani & & hapa \\
hapai \(=\) naha & warõ \(=a\) & \(=n \dot{1}\) & hapa
\end{tabular}
thë \(=\quad\) tha \(=m a\)
CLN.GNR \(=\) do; make \(=\) PST
'First, the man did the following [...]' (s_chck_anto)

Even though the Set 2 markers for 3rd person dual and plural are both enclitics, they do not display the same position in the Cluster C. While the 3rd person plural marker \(=h e\) follows all tense, aspectual and derivational morphemes, the 3rd person dual marker only follows the derivational morpheme (sub-Cluster CA) and precedes all tense-aspect markers (sub-Cluster CB). In (88), we have two examples that illustrate the different positions of these markers in the predicate. Note that in (88a), the index \(=p u\) appears before the perfective \(=r i\) and the past \(=m a\), while in (88b) the index \(=h e\) goes after these same morphemes.
(88) a. ťhñ tëhë pora a tëpirema
\begin{tabular}{llllll}
\(\tilde{t} h \tilde{t}\) & \(=t e ̈ h e ̈ \quad\) pora \(a=t e ̈ \quad=\boldsymbol{p} \quad=r i\) & \(=m a\) \\
ANA & \(=\) REL.PRS ball \(3 \mathrm{SG}=\) take & \(=\mathbf{3 D U}\) & \(=\mathrm{PFV} 1\) & \(=\mathrm{PST}\)
\end{tabular}
'Then they two took the ball.' (s_ball_kami)
b. \(\tilde{t} h \tilde{t}\) pëni \(\quad a \quad\) pairipraremahe
\(\tilde{h} h \tilde{t}=p \ddot{e}=n \dot{i} \quad a=\) pairi \(=p r a=r i \quad=m a=h e\)
\(\mathrm{ANA}=\mathrm{PL} \quad=\mathrm{ERG} 3 \mathrm{SG}=\) help \(=\mathrm{DRV}=\mathrm{PFV} 1=\mathrm{PST} \quad \mathbf{= 3 P L}\)
'Those ones helped him.' (s_pear_arok)

The marker for 3rd person plural agent \(=h e\) does not occur in the last position of the clause only with the conjunction/connectives \(=t e ̈ h e ̈ ~ o r ~=k u t a y o=n i\). . In these cases, the index goes before \(=t e ̈ h \ddot{e}(89 a)\), and in between the two clitics that form the reason conjunction \(=k u t a y o=n \dot{t}(89 \mathrm{~b})\).
\[
\begin{align*}
& \text { a. } y a \text { mäi maa he tëhë [...] }  \tag{89}\\
& y a=x \ddot{e} \quad=i \quad=o \quad=h e=t e ̈ h e ̈ \\
& 1 \mathrm{SG}=\text { beat; kill =DYN not_exist =STV =3PL =REL.PRS } \\
& \text { 'If they don't kill me [...]' (m005_wawa_gari) }
\end{align*}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline b. mercurio pë & kãyo huu & & kutayohe & & \\
\hline mercurio pë= & \(k a ̃ y o=h u\) & \(=i\) & = kutayo & \(=h e\) & \(=n \dot{t}\) \\
\hline mercury PL= & APPL \(=\) go & \(=\mathrm{DYN}\) & =REAS & \(=3 \mathrm{PL}\) & \(=\) REAS \\
\hline
\end{tabular}
'For they go [bringing with them] mercury [...]' (note: mercury is used for gold mining) (m002_cesa_gari)

Except for these two conjunctions, the marker \(=h e\) goes after all remaining clitics, including other conjunctions, such as =yaro (90a), and the nominalizer \(=w e i\) (90b). Note that the vowel of \(=h e\) harmonizes with the last vowel of \(=w e i\), which is elided in this context.
(90) а. napë pëni
thãa
nарё \(=p \ddot{e}=n \dot{i}\) th \(\tilde{a}=\quad \tilde{a}=\) hira \(=\dot{i}\)
white person \(=3\) PL \(=\) ERG CLN.GNR \(=\) sound \(=\) transport \(=D Y N\)
wehi [...]
=wei \(=h e\)
\(=\) NMLZ \(=3 P L\)
'The things the white people teach [...]' (m007_geni_kona)
```

 b. kama thëpën\dot{ }
 3 =CLN.GNR =PL =ERG CLN.GNR= know =DYN continue
 yarohe [...]

$=$ yaro	$=\boldsymbol{h e}$
$=$ CNJ.EXPLV	$=\mathbf{3 P L}$

'For they still know it [...]' (m011_joan_tihi)

```

There is no restriction on the use of the markers for 3rd person agent regarding the participant configuration of the predicate, occurring both in the external and mixed constructions. That is, it does not matter whether the patient of the clause is also a 3rd person (external construction) (91b), or a SAP (mixed construction) (91b). The markers for SAP agent display a different behavior in this respect.
```

(91)a. \tilde{th\tilde{t}}\mathrm{ pëni a yaxuremahe}
\tilde{t}
tilde{t}=pë =n\dot{t}}\boldsymbol{a}=\mathrm{ yaxu =ri =ma =he
ANA =PL =ERG 3SG= repel =PFV1 =PST =3PL

```
    'Those ones expelled him.' (PDYP_MIC_B_03_18)
b. ipa uhuru kipëni ya wasupï
ipa uhuru =kìpë =ni ya= wasu =pi =i
1POS child =DU =ERG 1SG= forbid =3DU =DYN
makii [...]
\(m a=\quad k i=i\)
FOC.CONC= COP =REL
'Even though my two children discourage me [...]' (PDYP_MIC_A_02_11)

While the marker for 3rd person plural lies at the extreme right end of the verbal phrase, the Set 2 markers for SAP appear in the very beginning of it. These markers have a fixed position in the first slot of the verbal phrase, preceding all proclitics from Cluster B.
```

(92)a.rope yama pë riã patamaï yaro [...]
rope yama= p\ddot{e}= ri\tilde{a}= pata =ma =i =yaro
quick 1PL= 3PL= VOL= big =CAUS =DYN =CNJ.EXPLV
'For we want to make them grow quickly [...]' (PDYP_A_01_26)

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline b. \(e i\) & asima & waa & & kãyõi & \\
\hline \(e i\) & asima & \(\boldsymbol{w a}=\) & \(a=\) & \(k a ̃ y o z=\) & \(i=\) \\
\hline this & son & \(2 \mathrm{SG}=\) & \(3 \mathrm{SG}=\) & APPL & \\
\hline
\end{tabular} kõtapuhuru
\begin{tabular}{llll}
\(k \tilde{o}\) & \(=t a\) & \(=p u\) & \(=h u r u\) \\
again & \(=\) CEL & \(=\) CSVT & \(=\) DIR.AND
\end{tabular}
'You go [back home] with my child.' (wtx_terema)

However, differently from the 3rd person markers, there is a restriction of occurrence for the SAP indexes on the verb based on the participant configuration of the predicate. These markers only appear in mixed configurations, i.e. when SAP is the agent and a 3rd person is the syntactic patient, or vice-versa. In local constructions, where only SAP are involved, the Set 2 markers never occur, as the examples in (93) indicate. Note in these examples that the indexes on the verb are from Set 1 and exclusively refer to to the absolutive argument, i.e. these forms are not portmanteaus.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline a. kam & akini & & wamaki & nakanimi & & \\
\hline kami & \(=y a m a k i\) & \(=n \dot{t}\) & wamaki= & naka & \(=n\) & \(=i m i\) \\
\hline 1 & \(=1 \mathrm{PL}\) & =ERG & 2PL= & call; ask & \(=\) PST & =NEG \\
\hline
\end{tabular}
'We did not call you.' (PDYP_MIC_A_14_02)
\begin{tabular}{|c|c|c|}
\hline b. Funai wamakini & & kami yanomama yamaki \\
\hline Funai \(=\) wamaki & & kami yanomama yamaki= \\
\hline Funai \(=2 \mathrm{PL}\) & =ERG & yanomami 1PL \\
\hline
\end{tabular}
pairipraì maa tëhë [...]
pairi =pra =i ma =o =tëhë
help =DRV =DYN not_exist =STV =REL.PRS
'If you people from Funai do not help us Yanomama people [...]' (m002_cesa_gari)

As I discussed before, there is no marker for 3rd person singular agent. The lack of a verb index for this person is not explained by the same reasoning that explains the lack of verb indexes in the local construction. They are two distinct phenomena. As shown in Table 7.10, Set 2 has no index for 3rd person singular in its paradigm. Ergative arguments that refer to 3rd person singular entities are never indexed in the verb in any participant configuration. In contrast, 1 st and 2 nd ergative arguments are indexed on the verb when the other participant is a 3rd person. Only when the absolutive argument is also a SAP is that the SAP Set 2 markers do not appear in the predicate. Our analysis is that there is an argumental hierarchy in the local construction, according to which the absolutive argument always outranks the ergative argument in the verb indexation.

As a final comment, I have not identified yet the origins of the markers for 3rd person dual and 3rd person plural. The source for the markers for SAP is again the clitic part of the personal pronouns. But differently from the Set 1 markers, which correspond perfectly to the clitic part of the pronoun, the markers of non-singular SAP of Set 2 do not display the non-singular morpheme \(=k i\) at their end. Even though we can identify the source of these markers, we still do not understand, nevertheless, how they acquired the property of indexing ergative arguments on the verb. Since we do not have synchronic clues, I believe that only a comparative study of the person indexes among the languages of the family could yield an explanation of this process.

\subsection*{7.5.4. Morphosyntactic alignment of Sets 1 and 2}

The person indexing markers on the verbs, presented again in Table 7.11 below, display an ergative-absolutive alignment for most persons and configurations. This was expected since Set 1 is used to co-reference subjects and patients while Set 2 indexes agents. Some exceptions are discussed now.

Table 7.11 - Pronominal indexes - Sets 1 and 2
\begin{tabular}{|c|c|c|}
\hline & Set 1 & Set 2 \\
\hline 1SG & \(y a=\) & \(y a=\) \\
\hline 1DL & yahaki= & yaha \(=\) \\
\hline 1PL & yamaki= & yama \(=\) \\
\hline 2SG & \(w a=\) & \(w a=\) \\
\hline 2DL & wahaki= & waha \(=\) \\
\hline 2PL & wamaki= & wama \(=\) \\
\hline 3SG & \(a=, \mathrm{CLN}=\) & \(\varnothing\) \\
\hline 3DL & \(k i p \ddot{=}=, \mathrm{CLN}=k i p \ddot{e}=\) & \(=p \dot{t}\) \\
\hline 3PL & \[
\begin{aligned}
& p \ddot{e}=, \mathrm{CLN}=p \ddot{e}=, \\
& \mathrm{CLN}=k \dot{i}=
\end{aligned}
\] & \(=h e\) \\
\hline
\end{tabular}

First, as we saw in \(\S 7.5 .3\), there is no marker for 3rd person singular in the Set 2. Therefore, the alignment of the indexes of this person is absolutive, not ergativeabsolutive, in the sense that the absolutive arguments are indexed while the ergative argument remains unmarked on the verb.

Furthermore, we saw in 7.5 .3 that the Set 2 markers do not appear in the local construction. That is, only the absolutive argument is co-referenced on the verb. In this context, the person indexes display an absolutive alignment for all SAP.

Finally, the markers of 1st and 2nd person singular of Set 1 are the same as Set 2. For SAP singular, we thus have a neutral alignment of the verbal indexes, that is, the same marker ( \(y a=\) for 1 st person and \(w a=\) for 2 nd ) is used to co-reference either the subject \((\mathrm{S})\), the patient \((\mathrm{P})\) or the agent \((\mathrm{A})\). On the other hand, if we consider that in the local construction the markers for A are not realized, then the alignment of the verbal indexes for SAP singular in this context becomes absolutive (i.e. with a nonmarked ergative). Hence the alignment of the markers for 1st and 2nd person singular
is neutral in mixed configurations (SAP \(\rightarrow 3\) or \(3 \rightarrow \mathrm{SAP}\) ) and absolutive in the local ones (SAP \(\rightarrow\) SAP).

In Table 7.12 I present a summary of these analysis indicating the alignment of the verbal markers of each person in the three configurations.

Table 7.12 - Alignment of the person indexes on the verb in different configurations
\begin{tabular}{llll}
\hline Person & \begin{tabular}{l} 
external \\
\((3 \rightarrow 3)\)
\end{tabular} & \begin{tabular}{l} 
mixed \\
\((\mathrm{SAP} \rightarrow 3\) or \(3 \rightarrow \mathrm{SAP})\)
\end{tabular} & \begin{tabular}{l} 
local \\
\((\mathrm{SAP} \rightarrow \mathrm{SAP})\)
\end{tabular} \\
\hline 1SG & --- & neutral & absolutive \\
2SG & --- & neutral & absolutive \\
3SG & absolutive & absolutive & --- \\
1DU & --- & ergative-absolutive & absolutive \\
2DU & --- & ergative-absolutive & absolutive \\
3DU & ergative-absolutive & ergative-absolutive & --- \\
1PL & --- & ergative-absolutive & absolutive \\
2PL & --- & ergative-absolutive & absolutive \\
3PL & ergative-absolutive & ergative-absolutive & --- \\
\hline
\end{tabular}

\subsection*{7.5.5. The different participant marker \(e=\)}

The different participant marker \(=e / e=\) has multiple functions. We already saw in Chapter 4 (§4.2.4) that it is used in possessive constructions in which the possessor is a 3rd person singular. Also, I mentioned in \(\S 7.4 .5\) that the enclitic version of this morpheme flags oblique arguments that refer to highly animate entities. As a proclitic of Cluster B, this morpheme can still be used as a type of switch-reference marker, indicating the introduction of a new (highly animate) participant at the absolutive position of a predicate (either the subject or the patient). It is not required that the
participant is absolutely unmentioned before in the conversation, but only that she is not a participant of the preceding predicate. Differently from its use in possessive construction, as a switch-reference marker, the enclitic \(e=\) can be used either with singular (94a) or non-singular arguments (94b). It can even be used with a 1 st or 2 nd person, as shown in example (77). Note in (94a) that the singular marker \(a=\) does not appear when the different participant is present.

'[She] arrived where her husband was working.' (s_pear_marc)

'When he was settling down over there, two others came running afterwards [...]' (s_ball_niki)

Since most of the clauses do not have explicit noun phrases, like (94b), this marker seems to play a major role in clarifying the information structure at the discursive level. This importance is illustrated in the example in (95) where the morpheme is clearly the sole responsible for specifying that different subjects performed the two predicates.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline (95) & \multicolumn{2}{|l|}{ẑhz̃ tëhë} & \multicolumn{6}{|l|}{mamo yapaa} \\
\hline & ¢fh \(\tilde{t}\) & \(=t e ̈ h e ̈ ~\) & mamo & yapa & \(=a\) & & & \\
\hline & ANA & \(=\) REL.PRS & eye & be_back & \(=\mathrm{PF}\) & VWL & & \\
\hline kõtari & ma & & & च̂ht̃ tëhë & & \(\boldsymbol{e}\) & rërër & \\
\hline kõ & \(=t a\) & \(=\) rio & \(=m a\) & \(\tilde{t} h \tilde{t}\) & \(=t\) ёhë & \(e=\) & rërë & = rayu \\
\hline \begin{tabular}{l}
again \\
wei
\end{tabular} & \[
\begin{aligned}
& =\text { CEL } \\
& {[\ldots . .}
\end{aligned}
\] & \(=\mathrm{PFV} 1\) & \(=\) PST & ANA & =REL.P & DIF & & = PFV1 \\
\hline
\end{tabular}
'Then he looked back again and then the other ran away [...]' (s_ball_tome)
There is much more to be said about this morpheme on this matter, but I will leave the full account of its discursive uses to future study, where I will describe multiclausal constructions and discuss the discursive patterns of YMA.

\subsection*{7.6. Concluding remarks}

We saw in this chapter that YMA is a double-marking language at the clause level. On the one hand, it has a small case marking system that leaves the absolutive arguments unmarked and flags the remaining constituents with one of the four lastposition enclitics of the paradigm. Considering how the core participants are marked, the system displays an ergative alignment for all persons and configurations.

On the other hand, the language also marks the verb with morphemes that indicate the grammatical person of the main participants of the predicate. Compared to the case system, the person indexing system is much more diverse regarding the types of bound morpheme that comprise it: most of the markers are proclitics that appear in the first position in the verbal phrase, but there are two enclitics as well. Moreover, the markers of this system do not display only one single alignment pattern in all contexts but vary according to the person and the participant configuration of the predicate. The markers for 1st and 2nd person singular, for instance, are neutrally aligned, if we consider only the mixed settings, while they display an absolutive alignment if we analyze them in the local construction instead. We also saw that the

\section*{Chapter 7 - Argument marking: word order, flagging and indexing}
person indexing system is somehow more "important" than the other argument marking devices, as most of the clauses of the language only have verbs (see §7.3). That is, the speaker cannot use the word order and the case system to make sense of the grammatical relations of the clause, having to rely exclusively on the pronominal indexes on the verb for that matter.

In this chapter, I was solely concerned with verbal predicates and did not touch upon how the language treats the arguments of the non-verbal predicates, i.e. nominal predicates that dispense with any verbal lexeme to occur. These types of predicate will be the subject of the next chapter.

\section*{8. Non-verbal predication}

\subsection*{8.1. Introduction}

In the previous chapter, I discussed the formal properties of basic predicates with transitive and intransitive verbs, namely the morphosyntactic strategies that mark the argument structure of the YMA clauses. I described the nominal case and person indexing systems there, and the word order patterns of the language. I skipped the description of some types of predication, however, that lack a prototypical verb. The aim of this chapter is precisely the characterization of these verb-less constructions. I will investigate how YMA structures some of the predication types that the typological literature on the subject (Payne 1997; Vallejos 2010) indicate as most likely to be purely nominal clauses, such as proper inclusion (This is a bow or \(X\) is a teacher), equative (The teacher is \(X\), or \(X\) is my father), existential (There are \(X\), in \(Y]\) ), locative ( \(X\) is in \(Y\) ), and attributive ( \(X\) is hungry) predications. We will see that very few of those predication types are expressed by nominal constructions in YMA. Moreover these constructions are properly verbless in present and affirmative contexts only (a copular verb is required in all other contexts).

The chapter begins in section 8.2 with the description of the equative and proper inclusion constructions, which seem to be indistinguishable in the language. In Section §8.2.3, I will focus on a particular type of equative predicates, which has a possessive NP as one of the parts of the equation, as in 'this is my X.' We will see that only these two types of predicates - proper inclusion and equative- are truly verbless constructions in the language, and only in the present tense and with positive polarity. As already mentioned, in non-present and negative contexts a copular element will always be required. In Section \(\S 8.3\), I will deal with locative predication, which may also be expressed by constructions with the copular element \(k u\), but more often make use of lexically richer verbs, mainly positional verbs. In section 8.4, we will see that the construction with the copular element \(k u\) 'to exist' is also the most frequently used to express an existential predication, but disregarding the tense and polarity of the clause, in contrast with the previous types of predications. In Section
§8.5, I will point out some aspects of attributive predicates. I will do so very briefly since most of the important features of this construction were already described in detail in the chapter on verb stems (§5.4.1; see also §4.3.6).

\subsection*{8.2. Proper inclusion and equative predicates}

\subsection*{8.2.1. Proper inclusion}

Proper inclusion predicates make an assertion stating that a particular entity is identified with the "class of items specified in the nominal predicate" (Payne 1997: 114). 'Ararima is a Yanomami person' or 'Kunathoi is a teacher' are examples of such constructions in English, which makes use of the copular/existential verb to be in all tensed contexts. In YMA, such examples are translated dispensing, in the present, with the utilization of any verb or copular element, as the examples in (1) show.
(1) a. Ararima yanomama a

Ararima yanomama \(=a\)
Ararima yanomami \(=3\) SG
'Ararima is a Yanomami person.'
b. Kunathoi hiramatima \(a\)
kunathoi hirama -tima \(=a\)
Kunathoi teach -NMLZ \(=3 \mathrm{SG}\)
'Kunathoi is a teacher.'

The morphosyntactic strategy used in YMA, in this case, is the left dislocation of the noun referring to the particular entity followed by the noun that refers to the class of items, which then hosts the clitics from Cluster A.

\section*{Schema 8.1 - Proper inclusion construction (present and affirmative contexts)}
\[
\mathrm{NP}_{\text {entity }} \mathrm{NP}_{\text {class }}=\text { Cluster } \mathrm{A}
\]

The NP that refers to the particular entity ( \(\mathrm{NP}_{\text {entity }}\) ) is prototypically an anthroponym, like in (1), or a hyponym, i.e. a specific term that can be subsumed under a general or superordinate term, as in (2).
(2) a. xama yaro \(a\)
xama yaro \(=a\)
tapir animal \(=3 \mathrm{SG}\)
'Tapir is game meat.'
b. mamori yuri a
mamori \(\quad\) yuri \(=a\)
catfish sp. fish \(=3 \mathrm{SG}\)
'The catfish mamori is a fish.'

Another canonical arrangement of this predicate is to have a pronoun, either personal (4) or demonstrative (3), as the \(\mathrm{NP}_{\text {entity }}\).
(3) a. kihi xaraka a
kihi xaraka \(=a\)
that arrow \(=3 \mathrm{SG}\)
'That is an arrow.'

> b. hei hiramatima pë
> hei hirama -tima =pë
> this teach \(\quad-\mathrm{NMLZ}=3 \mathrm{PL}\)
> 'Those are teachers.'
(4) a. kama wãro a
kama wãro \(=a\)
3 man \(=3 \mathrm{SG}\)
'He is a man.'

\section*{444 Yanomama clause structure}
    'We are Yanomami people.'
\begin{tabular}{rl} 
c. kaho napë & wahaki. \\
kaho napë & \(=\) wahaki
\end{tabular}
    2 white person \(=2 \mathrm{DU}\)
    'You two are white-people.'

The first NP ( \(\mathrm{NP}_{\text {entity }}\) ) can always be omitted in the sentence when it is sufficiently clear from the discourse context e.g. when it was overtly expressed in the previous sentence. The answers to the questions 'What is this?', 'Who are them?' or 'What is a mamori?', for instance, do not need to recover the demonstrative or personal pronoun, or the noun about which is the question (such as the word mamori in the third question). These questions can be answered well as in (5). See Chapter 12 (§12.3) for an account on how questions are formulated in YMA.
a. xaraka a
\[
\begin{align*}
& \text { xaraka }=a  \tag{5}\\
& \text { arrow }=3 \mathrm{SG}
\end{align*}
\]
'[It is] an arrow.'
b. hiramatima pë
hirama -tima \(=p \ddot{ }\)
teach \(\quad-N M L Z=3 P L\)
'[They are] teachers.'
c. yuri a
yuri \(=a\)
fish \(=3 \mathrm{SG}\)
'[It is] a fish.'

In non-present contexts, proper inclusion constructions require the copular element \(k u\) 'to exist' to host the tense morpheme (6a). The noun that refers to the entity keeps being dislocated to the left and followed by the noun that indicates the class. However, in this case, the clitics are not hosted by the noun on the right (the "class of items") anymore but by the copular element \(k u\), since they become proclitics from Cluster B, according to our analysis (see \(\S 4.2 .5\) and \(\S 7.5 .2\) for more on this incorporation of the clitic cluster by the verb). The construction still accepts aspectual morphemes, such as perfective \(=\) rio, but often requires for that a previous derivation of the copular element with the deriving morpheme \(=p r a(6 b)\).

\section*{(6) a. Kunathoi hiramatima a kuoma}
kunathoi hirama -tima \(a=\boldsymbol{k} \boldsymbol{u}=o \quad=m a\)
Kunathoi teach -NMLZ 3SG= exist =STV =PST
'Kunathoi was a teacher.'
\begin{tabular}{llllll} 
b. Ararima napë & \(a\) & \multicolumn{2}{c}{\(\boldsymbol{k u p r a r i o p e ̈}\)} & & \\
Ararima napë & \(a=\quad \boldsymbol{k} \boldsymbol{u}\) & \(=p r a\) & \(=\) rio & \(=p \ddot{ }\) \\
Ararima white person & \(3 \mathrm{SG}=\) & exist & \(=\mathrm{DRV}\) & \(=\mathrm{PFV} 1\) & \(=\mathrm{FUT}\)
\end{tabular}
'Ararima will become a white-person.'

The copular element is also required when the proper inclusion predicate has negative polarity, like in the examples ( \(7 \mathrm{a}-\mathrm{c}\) ).
\begin{tabular}{llll} 
a. Kunathoi napë & \(a\) & \(\boldsymbol{k} \boldsymbol{k}\) uimi \\
kunathoi napë & \(a=\quad \boldsymbol{k} \boldsymbol{u} \quad=\) imi \\
Kunathoi white person & \(3 \mathrm{SG}=\) & exist & \(=\) NEG \\
'Kunathoi is not a white-person.'
\end{tabular}
b. hee yaro a kuimi
hee yaro \(a=\boldsymbol{k} \boldsymbol{u}=\) imi
bat animal \(3 \mathrm{SG}=\) exist \(=\mathrm{NEG}\)
'Bat is not game meat.'

\section*{446 Yanomama clause structure}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline c. Ararima hirama & & \(a\) & kuon & & & \\
\hline Ararima hirama & -tima & \(a=\) & ku & \(=0\) & \(=n\) & \(=i m i\) \\
\hline Ararima teach & -NMLZ & \(3 \mathrm{SG}=\) & exist & \(=\mathrm{STV}\) & \(=\) PST & \(=\) NEG \\
\hline
\end{tabular}
'Ararima was not a teacher.'

In present contexts, there is yet an alternative construction that makes use of the attributive stem mii 'not to be/exist' \({ }^{1}\), as in (8a-b). Interestingly, this stem does not cooccur with tense and aspect morphemes. The construction in (8c) is not grammatical.

'Ararima was not a teacher.'

The Schema 8.2 below represents the proper inclusion construction with the copular element \(k u\) 'to exist', used in non-present and negative contexts. As the comparison between Schema 8.1 and Schema 8.2 tells us, the Cluster A has disappeared from the clause, as its enclitics became proclitics of Cluster B and are

\footnotetext{
\({ }^{1}\) There is also the positional version of this root maa 'not to exist'.
}
hosted by the copular element. This element also hosts the enclitics of Cluster C, which are responsible for marking tense, aspect and polarity categories, among others.

\section*{Schema 8.2 - Proper inclusion construction (non-present and negative contexts)}
\[
\mathrm{NP}_{\text {entity }} \mathrm{NP}_{\text {class }} \quad \text { Cluster } \mathrm{B}=\mathrm{COP}=\text { Cluster } \mathrm{C}
\]

It is worth mentioning that, according to some native speakers, the use of the copular verb \(k u\) in present affirmative context results in ungrammaticality, but other speakers give a different opinion. All of them agree, nevertheless, that such constructions have an artificial and stilted flavor. To make the same statement using a verb stem, the speakers often rely on the irregular verb paxio to be evident, obvious', as in the examples in (9). This construction is slightly more emphatic than the verbless construction.
(9) a. kami hiramatima yamaki paxio
kami hirama -tima yamaki= paxi =o
1 teach -NMLZ 1PL= be obvious =STV
'We are evidently/obviously teachers.'
b. Ararima warõ a paxio

Ararima warõ \(a=\) paxi \(=\) o
Ararima man \(3 \mathrm{SG}=\) be obvious \(=\mathbf{S T V}\)
'Ararima is evidently/obviously a man.'

Another, also emphatic alternative is to focus the \(\mathrm{NP}_{\text {entity }}\) with a \(k\)-word, as in (10). As we will see in Chapter 11 ( \(\S 11.3 .1 .1\) ), this is formally a relative construction with the copular element \(k u\) 'to exist.' This construction is marked for evidentiality, tense, and space. In (10a), the relative clause that focalizes the NP is marked as an eye-witnessed, present and nearby event. In (10b), the relative clause is marked as a non-eye-witnessed event that occurred upriver in the past.
\begin{tabular}{lll} 
hei thëka & \multicolumn{1}{c}{\(\boldsymbol{k i i}\)} & warõ \(a\) \\
hei thë \(=\) & \(k a=\) & \(\boldsymbol{k} \boldsymbol{u}\)
\end{tabular}\(=i \quad\)\begin{tabular}{l} 
warõ \(=a\)
\end{tabular}
'This one who is here is a man.'
b. hei thë ka
hei thë \(=\quad k a=\)
this CLN.GNR= FOC=
kuoharayonii , Ararima a
ku =o =harayu =ni =i Ararima \(a=\)

COP =STV =LOC:upriver =HOD.NON.WIT =REL Ararima 3SG= kuoma
\begin{tabular}{lll}
\(k u\) & \(=o\) & \(=m a\) \\
exist & \(=\) STV & \(=\) PST
\end{tabular}
'That one, who was up there (non-witnessed), was Ararima.'

\subsection*{8.2.2. Equative}

Equative predicates are those in which an entity is entirely identified with "the entity specified in the predicate nominal, e.g. He is my father" (Payne 1997: 114). In this context, an \(\mathrm{NP}_{\text {entity1 }}\) is equated, not to a general class term, but to a very specific or unique member of this group (mine, not someone else's father), which we will call the \(\mathrm{NP}_{\text {entity2. }}\) The examples in (11) illustrate this construction.
(11) a. Kunathoi ipa hepara a

Kunathoi ipa hepara \(=a\)
Kunathoi 1POS brother \(=3\) SG
'Kunathoi is my brother.'
b. kihi aho rakama thuku
kihi aho rakama =thuku
that 2POS hammock =CLN:hammock
'That is your hammock.'
```

c. hei Ararima a
hei Ararima =a
this Ararima =SG
'This is Ararima.'
d. kami Kunathoi ya
kami Kunathoi =ya
1 Kunathoi =1SG
'I am Kunathoi.'

```

YMA does not distinguish equative predicates from proper inclusion ones. That is, the equative function is also expressed in present contexts by verbless clauses which have one NP dislocated to the left followed by another NP that hosts the morphemes from Cluster A.

\section*{Schema 8.3 - Equative construction (non-present and negative contexts)}
\[
\mathrm{NP}_{\text {entity } 1} \mathrm{NP}_{\text {entity } 2}=\text { Cluster } \mathrm{A}
\]

As the examples in (11) suggest, \(\mathrm{NP}_{\text {entity }}\) is prototypically an anthroponym, as in (11a), a demonstrative pronoun, as in (11b-c), or a personal pronoun, as in (11d). Similarly to proper inclusion constructions, this \(\mathrm{NP}\left(\mathrm{NP}_{\text {entityl }}\right)\) can also be omitted, given the adequate discursive context. The answers to the questions "Who is Kunathoi?", "Whose hammock is that?", "Who is he?" and "Who are you?" can be well formulated omitting the \(\mathrm{NP}_{\text {entityl }}\) mentioned in the question, as in (12). Compare this construction with those in (11).
(12) a. ipa hepara a
ipa hepara \(=a\)
1 POS brother \(=3 \mathrm{SG}\)
' \([\mathrm{He}]\) is my brother.'
```

b. aho rakama thuku
aho rakama =thuku
2POS hammock =CLN:hammock
'[That is] your hammock.'
c. Ararima a
Ararima $=a$
Ararima $=$ SG
'[This is] Ararima.'
d. Kunathoi ya
Kunathoi $=y a$
Kunathoi $=1$ SG
‘[I am] Kunathoi.'

```

On the other hand, the \(\mathrm{NP}_{\text {entity } 2}\) may also be an anthroponym, as in (11c-d), but is quite frequently a possessed noun, such as (11a-b). This makes the \(\mathrm{NP}_{\text {entity } 2}\) potentially very diverse since the possessive constructions themselves are diverse in YMA, varying significantly in their morphosyntax according to the grammatical profile of the possessor (whether singular or plural, or 1st, 2nd or 3rd person) and the possessed entity (whether alienable or not). In the next section, I will show how these various types of possessive constructions behave in equative predicates.

\subsection*{8.2.3. Equative predicates with possessive constructions}

As we saw in Chapter 4 (§4.2.4), the first type of possessive construction makes use of the possessive pronouns (POS.PRO) ipa 'my' or aho 'your', which precede the possessed entity ( \(\mathrm{NP}_{\text {possessed }}\) ). In this construction, the possessed entity cannot be a meronym (noun of Type II), such as he 'head' or imi 'finger', but only an alienable noun, that is, a noun of Type I or Type III. The possessive constructions in the examples (11a-b) are of this type. Schema 8.4 represents this construction.

\section*{Schema 8.4 - Equative predicates with possessive NPs (Type I)}
\[
\mathrm{NP}_{\text {entity1 }} \frac{\text { POS.PRO } \mathrm{NP}_{\text {possessed }}}{\mathrm{NP}_{\text {entity } 2}}=\text { Cluster A }
\]

If the possessed entity is focalized, its NP takes the demonstrative pronoun as the determiner and the possessive pronoun (ipa 'my', in the example below) becomes the sole nominal element of the \(\mathrm{NP}_{\text {entity } 2}\).
```

(13) a. hei xaraka a kii ipa a
hei xaraka a= ku =i ipa =a
this arrow 3SG= COP =REL 1POS = 3SG
'This arrow here is mine.'

```

The possession with possessive nouns is, nevertheless, available only when the possessor is 1 st or 2 nd person singular. There is no other possessive pronoun in the language. If the possessor is a 3rd person singular, the morphosyntactic mechanism used is the juxtaposition of the \(\mathrm{NP}_{\text {possessor }}\) and \(\mathrm{NP}_{\text {possessed }}\), in this order, alongside the different participant marker \(=e\), a proclitic from Cluster A . In the equative predicate, the \(\mathrm{NP}_{\text {entity1 }}\) is equated to this complex \(\mathrm{NP}_{\text {entity2. }}\) Schema 8.5 represents the morphosyntactic structure of this construction.

\section*{Schema 8.5 - Equative predicates with possessive NPs (Type II)}
\[
N P_{\text {entity } 1} \underbrace{N P_{\text {dit }}}_{\mathrm{NP}_{\text {possessor }} \mathrm{NP}_{\text {possessed }}}=\text { DIF.PART }=\text { Cluster A }
\]

In (14) we have examples of an \(\mathrm{NP}_{\text {entity } 2}\) that express a possessive relation where the possessor is a 3 rd person singular. In (14a), the \(\mathrm{NP}_{\text {entity1 }}\) is a demonstrative pronoun while in (14b) is an anthroponym. Note that the different participant marker \(=e\) does not cooccur with the singular marker \(=a(14 \mathrm{~b})\), but only with non-singular ones, such as the plural marker \(=p \ddot{e},(14 a)\).
(14) a. hei Ararima xaraka epë
hei Ararima xaraka \(=\boldsymbol{e} \quad=p \ddot{ }\)
this Ararima arrow =DIF.PART =PL
'These are Ararima's arrows.'
b. Ararima Kunathoi hepara e

Ararima Kunathoi hepara \(=\boldsymbol{e}\)
Ararima Kunathoi brother =DIF.PART
'Ararima is Kunathoi's brother.'
c. hei Tixopona rakama ethuku
hei tixopona rakama \(=\boldsymbol{e} \quad=\) thuku
this Tixopona hammock =DIF.PART =CLN:hammock
'It's Tixopona's hammock.'

The possessed entity of this construction can also be focalized with a \(k\)-word, as in (15).
```

hei xaraka a ka kii Ararima e
hei xaraka a=ka= ku =i Ararima =e
this arrow 3SG FOC= COP =REL Ararima =DIF.PART

```
'This arrow is Ararima's.'

When possessors are multiple entities, i.e. plural, there is only one morphosyntatic mechanism to express this relation, which is the derivation of the possessed NP in an attributive stem by the verbalizing morpheme \(=p \ddot{e}\). In this construction the possessed entity becomes an attribute of the possessor, which in turn becomes the subject of this attributive predicate. From a morphosyntactic perspective, this construction is not a possessive construction stricto sensu, but an attributive predication which gets a possessive reading. In the equative predicate, therefore, the \(\mathrm{NP}_{\text {entityl }}\) is equated to the possessor, as the literal translations of the examples in (16) indicate.
(16) a. hei kami yamaki urihipë
hei kami yamaki \(=\) urihi \(=\boldsymbol{p} \ddot{\boldsymbol{e}}\)
this 1 1PL= forest \(=V B L Z\)
'This is our land/forest.' (lit: ‘This is us "forested"')
b. hei kami wamaki kõputatopë
hei kami wamaki= kõputato \(=p \ddot{e}\)
this \(1 \quad 2 \mathrm{PL}=\) computer =VBLz
'This is your computer.' (lit: 'This is you "computered"')

In Schema 8.6 below, we have diagram of the morphosyntactic structure of equative predicate with this type of possessive construction.

\section*{Schema 8.6 - Equative predicates with possessive NPs (Type III)}


Even though this is the only procedure available for plural possessors, it is not exclusive to them, as it can be used with all types of possessors as well, i.e. first, second or third persons and singular or plural.
```

hei kami ya kõputatopë
hei kami ya= kõputato =p\ddot{}
this 1 1SG= computer =VBLZ

```
'This is my computer.' (lit: ‘This is me "computered"').

We will see in §8.4.2 that a similar construction, also with the possessed entity derived in an attributive stem, can also acquire an existential reading.

In the examples above, the possessed entities were always alienable. They were either a noun of Type I or Type III. The last type of possessive constructions involves unalienable nouns or nouns of type II. Those nouns are clitics in the language (from Cluster A) and they attach to the noun that refers to the whole entity to which they belong, as represented in the diagram of Schema 8.7.

\section*{Schema 8.7 - Equative predicates with possessive NPs (Type IV)}
\[
\mathrm{NP}_{\text {entity1 }} \frac{\mathrm{NP}_{\text {whole }}=\mathrm{NP}_{\text {part }}}{\mathrm{NP}_{\text {entity2 }}}=\text { Cluster A }
\]

In (18) we have examples of this type of possesive construction in equative predicates.
\[
\begin{array}{rll}
\text { a. } \text { mihi warë } & \text { kiki } & \text { mãyo }  \tag{18}\\
\text { mihi warë }=k \dot{k} \dot{i} & =\text { mãyo } \\
\text { that peccary }=\text { CLN:collective }=\text { trace } \\
\text { 'Those are traces of peccaries.' }
\end{array}
\]
b. hei tihi \(\quad w a ̃ a\)
hei tiht \(=w a ̃ a\)
this jaguar =sound
'This is the voice of a jaguar.'

If the whole entity is 1 st or 2 nd person, the part term is attached to the personal pronoun, like in the example (19).
(19) hei kami ya kanasi
hei kami =ya =kanasi
this \(1=1 \mathrm{SG}=\) garbage
'This is my piece of work.' (lit: 'this is my garbage.')

\subsection*{8.3. Locative predicates}

As its name suggests, a locative predication is a statement identifying the location of a particular entity (Payne 1997: 112). It is the "basic locative construction" (Levinson and Wilkins 2006:15), that is, the answer to the question "Where is X?". In YMA, this function is expressed by an intransitive clause which has the NP that indicates the location \(\left(\mathrm{NP}_{\text {location }}\right)\) as its oblique argument while the NP that refers to the entity \(\left(\mathrm{NP}_{\text {entity }}\right)\) is treated as its syntactic subject, i.e. the non-marked absolutive argument.

Prototypically, the intransitive verb used in this construction is a positional verb. Schema 8.8 represents this construction.

Schema 8.8 - Morphosyntactic structure of locative predications
\[
\mathrm{NP}_{\text {location }}=\mathrm{OBL} \quad \mathrm{NP}_{\text {entity }} \text { Cluster } \mathrm{B}=\mathrm{V}_{\text {positional }}=\text { Cluster } \mathrm{C}
\]

The copular verb \(k u\) 'to exist' is morphosyntactically a positional verb, so it can also be used in this construction, as in (20).
(20) hutukana hami Ararima a
hutukana =hami Ararima \(a=\)
garden \(=\mathrm{OBL}\) Ararima 3SG=
kuatayaa
\[
\begin{array}{lll}
\boldsymbol{k} \boldsymbol{u}=a & =\text { taya } & =a \\
\text { exist =POST } & \text { =LOC:__b_bit_faraway } & =\text { POST }
\end{array}
\]
'Ararima is in the garden.'

Nevertheless, in locative predicates the speakers of YMA often prefer a positional verb with more lexical content than the copula \(k u\), such as roa 'to squat'/ 'to be visiting' or upraa 'to stand up', as in the examples in (21).
(21) a. Sikamapiu ha Kunathoi a roa

Sikamapiu \(=\) ha Kunathoi \(a=\) ro \(=a\)
Sikamapiu \(=\) OBL Kunathoi \(\mathrm{SG}=\) squat \(=\) POST
'Kunathoi is visiting Sikamapiu.' (lit. 'Kunathoi is squatting at Sikamapiu'.)
b. hutukana hami Ararima a upraa
hutukana =hami Ararima \(a=\) upra \(=a\)
garden =OBL Ararima \(3 \mathrm{SG}=\) stand_up \(=\) POST
'Ararima is standing up in the garden.'

Semantically specified positional verbs are particularly required in predicates with non-animate entities.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline (22) a. xîk \({ }^{\text {a }}\) & hami & ipa & xaraka & & rakëa & & \\
\hline xikã & = hami & ipa & xaraka & \(a=\) & rakë & & \\
\hline inner & \(=\) OBL & 1POS & arrow & & lean & & \[
=\mathrm{PO}
\] \\
\hline
\end{tabular}
'My arrows are leaning on the wall.'
b. kiha aho wana a piria
kiha aho wana a \(=\) piri \(=a\)
there 2 POS case \(3 \mathrm{SG}=\) lie \(=\mathrm{POST}\)
'Your case (of arrow-points) is lying there (on the hammock).'
The NP that refers to the location marked as an oblique argument of the clause can be replaced by one of the locational adverbs of the language, such as heami 'here', mihami 'there' (near the hearer)' and kihami 'there (far from hearer and speaker)'.
\begin{tabular}{lll} 
kihami Ararima \(a \quad\) kuatayaa & \\
there Ararima \(a=\quad\) kua \(=\) taya & \(=a\) \\
there Ararima \(3 \mathrm{SG}=\) exist & \(=\) LOC: a_bit_faraway & \(=\) POST \\
'Ararima is there.'
\end{tabular}

Following the tendency of ommiting all nominal arguments of clauses (see §7.3), the NP referring to the entity \(\left(\mathrm{NP}_{\text {entity }}\right)\) is also frequently deleted in natural conversation when the referent is sufficiently clear. In any event, this NP is always recoverable by the number and personal proclitic of Cluster B, which is still obligatory even when the NP is deleted. In the example (24) the clitic \(a=\), in bold, refers to 3rd person singular, whose NP was not realized in that clause.
(24) heami a kua
heami \(\boldsymbol{a}=\quad k u \quad=a\)
here \(\mathbf{3 S G}=\) exist \(=\) POST
' \(\mathrm{He} /\) she is here.'

It is worth mentioning that, even though the prototypical locative verbs are positional, the question "Where is X?" may be well answered in YMA with a dynamic
predicate as well, describing the activity that the entity is performing in that location. The example in (25) illustrates this possibility.
(25) hutukana hamí Ararima a kiãtayuu
hutukana =hami Ararima \(a=\) kiã =tayu \(=\boldsymbol{i}\)
garden =OBL Ararima \(3 \mathrm{SG}=\) work =LOC:__bit_faraway =DYN
'Ararima is working in the garden.'
This type of predicate is often marked for evidentiality, as in (26a), marked as an eye-witnessed event with the use of a \(k\)-word, or in (26b), marked as an event that was heard happening.
(26) a. kihami a kua rë kuratuni
\begin{tabular}{llllll} 
there & \(a=k u\) & \(=a\) & \(r e ̈=\) & \(\boldsymbol{k} \boldsymbol{u}\) & \(=\boldsymbol{r a t u}\) \\
there & \(3 \mathrm{SG}=\) exist & \(=\mathrm{POST}\) & \(\mathrm{FOC}=\mathbf{C O P}\) & \(=\) not_faraway & \(=\mathbf{H O D}\)
\end{tabular}
'He/she is there (+witnessed).'
b. hutukana hami Ararima wãa kuatayaa
hutukana =hami Ararima wãa \(=\) kua =taya \(=a\)
garden =OBL Ararima sound= exist =LOC:a_bit_faraway =POST
'Ararima is in the garden (+auditory source).'

\subsection*{8.4. Existential predicates}

\subsection*{8.4.1. First strategy}

Existential predicates make an assertion about the existence of a particular entity or a group of them, frequently in a specific location. In YMA, there are two types of existential predicates. The first type is basically a locative construction, frequently with the copular verb kua 'to exist', as in (27a), even though positional verbs can also occupy the head position of this type of existential predicates, as in (27b).
\begin{tabular}{rllll} 
(27) a. yokoto ahate hami warë & \(k i k i\) & kua & \\
yokoto ahate \(=\) hami & warë & \(k i k i=\) & \(\boldsymbol{k} \boldsymbol{u}\) & \(=\boldsymbol{a}\) \\
swamp near & \(=\) OBL & peccary & CLN:collective= & exist
\end{tabular}\(=\) POST 'There are peccaries near the pond.'
```

 b.kihi hehu hami momo hipë
 kihi hehu =hami momo hi= pë=
 that mountain =OBL momo fruit CLN:tree= PL=
 thouhua
thouhu =a
be_abundant =POST

```
'In that mountain trees of momo fruit are abundant.'

In YMA, the difference between this construction and a locative construction is purely semantic and depends on the definiteness of the predicated entity. While in locative predicates the \(\mathrm{NP}_{\text {entity }}\) refers to a particular and more definite entity, the \(\mathrm{NP}_{\text {entity }}\) of existential predicates tends to be indefinite and to have a generic meaning. Schema 8.9 below is a representation of the morphosyntactic structure of this type of existential predicate.

\section*{Schema 8.9 - Morphosyntactic structure of existential predications (Type I)}
\[
\left[\mathrm{NP}_{\text {location }}=\mathrm{OBL}\right] \mathrm{NP}_{\text {entity }} \text { Cluster } \mathrm{B}=\mathrm{V}_{\text {positional }}=\text { Cluster } \mathrm{C}
\]

Existential predicates are often marked for evidentiality and location with a \(k\) word, as in (28).
\begin{tabular}{llllll} 
(28) yokoto ahate hami & warë & \(k i k \dot{i}\) & \(k u a\) & & \(r \ddot{e}\) \\
yokoto ahate \(=\) hami & warë & \(k i k \dot{i}=\) & \(k u\) & \(=a\) & \(r \ddot{e}=\) \\
swamp near \(=\) OBL & peccary & CLN:collective \(=\) & exist & \(=\) POST & FOC= \(=\)
\end{tabular}

\section*{kuratuni}
\begin{tabular}{lll}
\(k u\) & \(=r a t u\) & \(=n i\) \\
COP & \(=\) LOC: \(a\) bit faraway & \(=H O D\)
\end{tabular}
'There are peccaries near the pond over there (+witnessed).' (i.e. 'I have seen peccaries in the pond.')

I would like to mention that several clauses which seem to play a purely existential function in the discourse do not have a positional but a dynamic verb as their head, generally a verb that indicates the typical manner of motion of the entity involved in the predication. In (29) we have an example with the verb huai 'to wander' of a dynamic predicate being used as an existential predicate.
\begin{tabular}{lllll} 
(29) yokoto ahate hami warë kiki & \\
& yokoto ahate \(=\) hami warë kiki=
\end{tabular}
'The peccaries wander near the pound over there (+witnessed).' (i.e. 'I often see peccaries wandering near that pound.')

\subsection*{8.4.2. Second strategy}

The second type of existential predicates is formally an attributive predication in which the noun that refers to the entity whose existence is being predicated is derived in a complex attributive stem with the enclitic \(=p e ̈\) and the proclitic \(=n \dot{i}\), while the NP that refers to the place where that entity exists becomes the absolutive argument of the intransitive clause. The formal difference between this construction and the possessive construction exemplified in (16) resides in the fact that the resulting attributive stem of this derivation is morphologically more complex, since it makes use not only of verbalizer \(=p \ddot{e}\), but also the verbal particle \(n \dot{i}=\), a proclitic of Cluster B that frequently appears in other complex stems (see Chapter 5, §5.5.2). In (30) we have two examples of this type of attributive predicate with existential reading.
(30) a. hei pata u ni yuripë
hei pata \(u=\quad \boldsymbol{n i}=\quad\) yuri \(=p \ddot{\boldsymbol{e}}\)
this big CLN:liquid= V.PTC= fish =VBLZ
'There are fishes in this river.' (lit 'This river is "fished".')
\(\begin{array}{lll}\text { b. } \text { kihi urihi } & \boldsymbol{n i} & \text { yaropë } \\ \text { kihi urihi }= & \boldsymbol{n i}= & \text { yaro }=\boldsymbol{p} \ddot{\boldsymbol{e}} \\ \text { that CLN:forest }= & \mathbf{V . P T C}= & \text { animal }\end{array}=\mathbf{= v B L Z}\)
'There are animals in that forest.' (lit 'That forest is "animaled".')

Schema 8.10 represents this construction.

\section*{Schema 8.10 - Morphosyntactic structure of existential predications (Type II)}
\[
\mathrm{NP}_{\text {location }} \text { Cluster } \mathrm{B}=n \dot{i}=\mathrm{NP}_{\text {entity }}=\mathrm{VBLZ}
\]

As the literal translations of the examples in (30) suggest, the entity is presented in this construction as an attribute of the location. One bit of strong evidence in support of this analysis is that the noun derived with \(=p e ̈\) can be replaced by a native attributive stem, such as temi 'to be healthy' in the example (31) below.
\begin{tabular}{ll} 
hei urihi & \(\boldsymbol{n i} \quad\) temi \\
hei urihi \(=\quad \boldsymbol{n i}=\quad\) temi \\
this CLN:forest= \(=\) & V.PTC= \(=\) healthy \\
'This forest is healthy.'
\end{tabular}

\subsection*{8.5. Attributive predicates}

As we saw in Chapter 5, the words that express attributes in YMA share a lot of formal properties with verbs and are essentially a type of verb in the language. Unsurprisingly, the attributive function is expressed in YMA by lexically rich verbal clauses, dispensing with any help from a copular element. In (32), I present an example of an attributive predicate.
aho hutukana a wãrapata.
aho hutukana \(a=\) wãrapata
2POS garden \(3 \mathrm{SG}=\) aged
'Your garden is old.' (i.e. 'not productive')

One of the properties shared between attributive words and other types of verbs is their position in simple predicates. While nouns, in their non-derived version, always occupy the position before the first clitic cluster of the clause (i.e. before Cluster A), verbs have their canonical position after Cluster B and before Cluster C. Moreover, in attributive predicates, and differently from nominal clauses in YMA, there is no left dislocation of the predicated entity, which becomes, in the attributive predicate, the sole absolutive argument of an intransitive clause, and is not marked, therefore, with any case morpheme. In purely nominal clauses of YMA (proper inclusion and equative predicates in present affirmative, see \(\S 8.2\) ), and even in those where a copular element (i.e. a verbal element) is required, there is always dislocation to the left of a NP. Schema 8.11 represents a typical attributive predicate. Note that the attibutive word ( \(\mathrm{V}_{\text {attributive }}\) ) occupies the exact same position of the copular element or a positional verb of the Schema 8.3, Schema 8.8 and Schema 8.9.

\section*{Schema 8.11 - Morphosyntactic structure of attributive predicates}
\[
\mathrm{NP}_{\text {entity }} \text { Cluster } \mathrm{B}=\mathrm{V}_{\text {attributive }}=\text { Cluster } \mathrm{C}
\]

Attributive words are true verbs in the language and do not need any extra morpheme or copular verb to express tense, aspect and polarity categories, as they can host the morphemes that mark such categories themselves, as in (33). On the other hand, nouns have to rely on verbal elements (lexical or copular) to express them, as a comparison with examples in (6) and (7) shows.
(33) a. aho hutukana a wãrapatarayoma
aho hutukana \(a=\) wãrapata =rayu =ma
2 POS garden \(3 \mathrm{SG}=\) old \(=\) PFV \(=\) PST
'Your garden got old.'
\begin{tabular}{|c|c|c|c|c|}
\hline b. aho aho & hutukana a hutukana \(a=\) & wãrapata wãrapata & \(=0\) & \(=m a\) \\
\hline 2POS & garden \(3 \mathrm{SG}=\) & & =STV & = PST \\
\hline \multicolumn{5}{|l|}{'Your garden was old.'} \\
\hline \multicolumn{5}{|l|}{c. aho hutukana a wãrapataimi} \\
\hline 2 POS & garden 3SG= & old & = NEG & \\
\hline 'Your & garden is not old & & & \\
\hline
\end{tabular}

\subsection*{8.6. Final remarks}

In this chapter, we investigated some types of predicates that are the most frequently expressed in the languages of the world by purely nominal clauses. Nevertheless, we saw that very few of those predicate types allow a strictly nominal construction in YMA, namely proper inclusion and equative predicates, and only in present tense and with positive polarity. In other grammatical contexts, these predicates types also require a verbal element \(-k u\) 'to exist' - to host the tense, aspectual and polarity morphemes of the clause. Moreover, and excepting existential predicates, which canonically also make use of the copular verb, all other predicate types are preferably constructed with semantically richer verbs. Positional verb stems are particularly frequent in locative predicates. This chapter showed that attributive words behave very differently from nouns in predication, once more setting them far apart from each other in the word class spectrum of the language.

In the next chapter, we will turn to the description of the morphosyntactic mechanisms available in YMA to alter the basic argument structure projected by the verbs.

\section*{9. Valency and Voice changing mechanisms}

\subsection*{9.1. Introduction}

This chapter describes the morphosyntactic mechanisms available for the speakers of YMA to alter the valency of a predicate or to reorganize its argument structure. YMA has a relatively rich morphology that can produce this type of alternations. There are four morphemes that (by themselves or combined) increase the number of core arguments of a predicate and two that decrease it. We will see that all these valencychanging mechanisms also entail the argument restructuring of the predicate by the introduction of new arguments and the demotion or conflation of others. On the other hand, we will see that there is one type of voice changing mechanism that does not alter the valency of the predicate, but only reorganizes its argument structure. In this construction, a content-like argument is promoted to a core position, which was being occupied in the non-derived construction by a container-like argument, now demoted to an oblique argument. This type of change in the predicate diathesis is of particular interest, as it seems to be very rare in the languages of the world. Indeed, I have not found a mention of a similar morphological phenomenon in the literature about voice changing mechanisms yet (see Haspelmath \& Mueller-Bardy, 2004; Kulikov, 2010; Peterson, 2007; Jeong, 2006). This chapter also includes a description of the denominalization of possessed nouns, which is a quite productive device in the language and also produces a shift in the argument structure of the predicate by promoting the possessor argument to a core position and "demoting" (actually deriving) the possessed noun to the predicate's head.

The chapter will begin with the analysis of the few existing cases of lexical causative alternations (§9.2), and labile causative alternations (§9.3). The first type of alternation is somewhat rare in the language, and only a couple of examples could be provided. The second type is a little bit more productive although also restricted to some positional stems in perfective contexts and a few other examples.

Section §9.5.1 describes the properties of the causative morpheme \(=m a\) and its semantic functions. The types of causer arguments introduced with causative \(=m a\) are
very diverse and include direct, indirect, directive, intentional and accidental causer, among others. The following section (§9.5.2), describes how the introduction of a new causer argument affects the diathesis of both transitive and intransitive predicates. This description will be contrasted with the case paradigm proposed by Comrie (1976; 1985) and developed by others later on (Palmer, 1994, Shibatani, 2009).

Section \(\S 9.5 .3\) shows why the transitivizer \(=p r a\) should not be considered a causative morpheme even though it may create transitive verbs from intransitive ones.

Section §9.5.4 is dedicated to two types of applicative derivations and one voice changing mechanism. Section §9.5.4.1 describes the associative applicative morpheme \(k \tilde{a} y o=\), and Section §9.5.4.2 the goal-promoter applicative napë= \(k \tilde{a} y o=.\). Section §9.5.4.3 discusses the typologically unusual construction with pihi=kãyõ= that promotes a content-like argument to core argument. I include this construction morpheme in the applicative derivation section because one of the morphemes that take part in it is \(k \tilde{a} y \tilde{o}=\), a form that also appears in the two other real applicative derivations, by which there is indeed an increase of the valency of the predicate, and not only a change in the voice.

Section \(\S 9.6\) describes the properties of the intransitivizer morpheme \(=m u\), which appears in a broad range of syntactic contexts, including antipassive, reflexive, reflexive-causative and middle voice constructions. Section \(\S 9.6 .3\) pays particular attention to reflexive-causative constructions in, which combine the causative and reflexive markers. The resulting reorganization of the argument structure of this doubly derived construction resembles a passive construction superficially, and should be distinguished from an actual passive. Section \(\S 9.6 .4\) deals with the other valency-decreasing morpheme of YMA, reciprocal \(=y u\), and Section \(\S 9.7\) with the denominalization of possessed nouns.

Section \(\S 9.8\) summarizes the valency- and voice-changing mechanisms and presents final remarks.

\subsection*{9.2. Lexical causatives}

YMA relies on morphological rather than lexical means to create causative constructions. The language does not provide any pair of non-derived verb stems
which could be regarded as perfect anticausative and causative counterparts. Even the pair presented in (1) is not an undisputable example, as the causative verb xëprait 'to kill' (which also means 'to hit, to beat') has a more restricted meaning than its anticausative counterpart, only referring to deaths produced by punching, hitting or shooting a weapon. It cannot be used, for instance, to describe the killing off of plants or pathogenic agents (louse, worms) by poison or medicine. In this situation, the morphological derivation with causative \(=m a\) is required, as in (1c).
\(\begin{array}{ll}\text { a. nomaì } & \text { to die' } \\ \text { b. xëpraì } & \text { to kill' }\end{array}\)
c. nomamai to kill, to let or to make die'

There are yet other lexical pairs of intransitive and transitive stems with closely related meanings which, nevertheless, do not produce an inchoative/causative or anticausative/causative alternation, but rather an antipassive/active alternation, like the ones in (2) and (3).
a. \(i a i\)
to eat' (intr)
b. wai to eat' (trans)
(3) a. ãrihimuи to drink' [beer] (intr)
b. koai to drink' (trans)

\subsection*{9.3. Labile causative allternation}

A true labile causative is a verb stem that can be used either intransitively or transitively in all syntactic contexts, with the exact same form or without the need of an extra morpheme to indicate its valency status. A real labile causative verb also conveys the same essential meaning in both transitive and intransitive versions; differing only in the number of arguments that each of them projects in the clause. The intransitive version projects one participant and corresponds to the inchoative,
self-caused version ('the bananas ripened') or to the anticausative version ('the glass shattered') of the event, while the transitive version refers to a causative situation, an externally caused or non-self-caused event ('I ripen the bananas' or 'the boy shattered the glass'). There is no example in the corpus of a verb stem of this type, although some candidates can be pointed out. The first one is the verb niai, which can be used in intransitive predicates with the meaning of 'to spring', and in transitive predicates, meaning 'to shoot'. Although the meanings of these two versions resemble each other, there are some differences that prevent us from analyzing them as a labile causative pair. The main difference is related to the animacy restriction that the intransitive verb displays. Inanimate entities cannot occupy the subject position of this intransitive version (4c), which is restricted to animate ones (4b).
\begin{tabular}{lllll} 
a. xaraka ya a & \multicolumn{3}{c}{ niãrema } & \\
xaraka ya & \(a=\) & niã & \(=r i\) & \(=m a\) \\
arrow & 1 SG & \(3 \mathrm{SG}=\) & shoot & \(=\mathrm{PFV} 1\)
\end{tabular}\(=\mathrm{PST}\) 'I shot an arrow.'
b. ya niãrayoma
\(y a=n i a \tilde{a}=r a y u=m a\)
\(1 \mathrm{SG}=\) shoot \(=\mathrm{PFV} 1=\mathrm{PST}\)
'I sprang.'
c.* xaraka a niãrayoma
xaraka \(a=\) niã =rayu =ma
arrow \(3 \mathrm{SG}=\) shoot \(=\mathrm{PFV} 1=\mathrm{PST}\)
'The arrow sprang out.'

There are other similar false labile causative pairs of this type in the language, such as xoa. This verb has two non-derived intransitive versions - one positional (5ab) and another dynamic (5c) - and one non-derived transitive version (5d). Note that the transitive version is not the causative version of any of the possible intransitive meanings, which is only possible by an overt derivation with causative \(=m a(5 e)\).
\begin{tabular}{llll} 
a. kama yano ehamit \(a\) & xoaa & \\
kama yano ehamí \(a=\) & xoa & \(=a\) \\
3 & house here \(3 \mathrm{SG}=\) continue & \(=\mathrm{POST}\)
\end{tabular}
'He stays/remains at home.'
b. kama yano ehami a xoakema
kama yano ehami \(a=\) xoa \(=k i \quad=m a\)
3 house here \(3 \mathrm{SG}=\) continue \(=\mathrm{PFV} 2=\mathrm{PST}\)
'He stayed at home.'
c. kama yano ehami a xoarayoma
kama yano ehami \(a=\) xoa \(=r a y u=m a\)
3 house here 3SG= pass out PFV1 =PST
'He passed out at home.'
d. kama yano ehami ya xoarema
kama yano ehami ya \(=\) xoa \(=r i \quad=m a\)
3 house here \(1 \mathrm{SG}=\) invite \(=\mathrm{PFV} 1=\mathrm{PST}\)
'He invited me to his house.'
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline e. kama yano & chami ya a & & xoamaren & & & \\
\hline kama yano & ehami ya & \(a=\) & xoa & \(=\boldsymbol{m a}\) & \(=r i\) & \(=m a\) \\
\hline house & here 1SG & \(3 \mathrm{SG}=\) & continue & \(=\) CAUS & =PFV1 & =PST \\
\hline
\end{tabular}
'He made me stay at his house.'

Another type of false labile causative alternation is exemplified by the verb xë̈, which means 'to hit', in both transitive and intransitive versions. Although the intransitive version of the pair does convey an anticausative meaning (6a), the transitive version does not express an external causation of the same event. Example (6b) is ungrammatical. To add an external causer to the event of (6a), the intransitive stem \(x \ddot{\ddot{t}} \boldsymbol{i}\) must be derived with the causative marker \(=m a(x e ̈ m a \dot{t})\), as in \((6 \mathrm{c})(\) see §9.5.1 for more on this morpheme). The meaning of the non-derived transitive version of the pair (xët) is also 'to hit', (6d) but it implies an agent with much more volition in bringing off the causative event. The example in (6e) shows a derivation of this
transitive version with the morpheme \(=p r a\), which changes the meaning of the verb from 'to hit' to 'to kill'.
(6)

'I missed the shot because the bow hit in the tree (when I was shooting the arrow).'

'I missed the shot because I hit the bow in the tree (when I was shooting the arrow).'

'I missed the shot because I hit the bow in the tree (when I was shooting the arrow).'
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline d. raa sihini & & hiima ya a & & xërema & & \\
\hline raa \(=\) sihi & \(=n \dot{i}\) & hiima ya & & \(x \ddot{ }\) & \(=r i\) & \(=m a\) \\
\hline bow =CLN:bow & \(=\) INS & dog 1SG & \(3 \mathrm{SG}=\) & beat; kill & =PFV1 & \(=\) PST \\
\hline
\end{tabular}
'I hit the dog with the bow.'
\begin{tabular}{|c|c|c|c|c|c|}
\hline e. \(r a a\) & sihini & \multicolumn{4}{|c|}{hiima ya a} \\
\hline raa & =sihi & & hiima & & \(a=\) \\
\hline bow & =CLN: bow & \(=\) INS & & 1 SG & \(3 \mathrm{SG}=\) \\
\hline \multicolumn{6}{|l|}{rarema} \\
\hline & =pra =ri & & ma & & \\
\hline t; kill & = DRV =PF & \(1=\) & PST & & \\
\hline
\end{tabular}

I killed the dog with the bow (hitting it with the bow).'

The last candidate pairs for labile causative alternation are some verb stems that end in pra. One example of this type of stem is këpraí/kepruu 'to break', which may have an anticausative (and, therefore, intransitive) reading (7a), and a causative (transitive) one (7b), apparently with the same form.
\[
\begin{array}{rllll}
\text { a. } \text { ipa } & \text { xaraka } a & \text { këprarioma } & &  \tag{7}\\
\text { ipa } & \text { xaraka } a= & \text { kë } & =\text { pra } & =\text { rio }
\end{array}=m a
\]
'My arrow broke.'

'Ararima broke my arrow.'
The examples in (8) show, nevertheless, that the transitive and intransitive forms of the stem, although identical in some contexts (particularly in perfective predicates), constitute different complex morphological structures. The transitive version is decomposable into the root \(k \ddot{e}\) plus the transitive enclitic \(=p r a\), while the intransitive version can be segmented as the same root \(k e \ddot{e}\) and the intransitive enclitic \(=p r[o, a, u]\). This intransitive morpheme, in contrast with its transitive counterpart, is susceptible to phonological processes of vowel harmonization, as with the dynamic \(=i\) in example
(8b). The meaning of the root \(k \ddot{e}\) without doubt is 'to break', but it cannot occur alone as a verb stem.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline a. ipa & xaraka a & këpruи & & & pihio & \\
\hline ipa & xaraka \(a=\) & kë & =pru & \(u\) & pihi & = 0 \\
\hline 1 POS & arrow \(3 \mathrm{SG}=\) & break & = DRV & \(=\) DYN & & =STV \\
\hline
\end{tabular} 'My arrow will break.' (lit: 'It wants to break')
```

 b. Ararima ani ipa xaraka a këprai
 Ararima =a =n\dot{i}}\mathrm{ ipa xaraka a= kë =pra =i
 Ararima =SG =ERG 1POS arrow 3SG= break =DRV =DYN
 pihio
pihi =o
will =STV
'Ararima wants to break my arrow.'

```

In Table 9.1, I present several other pairs of transitive/intransitive stems that display a similar contrast between the transitive derivational morpheme \(=p r a\) and the intransitive one \(=\operatorname{pr}[a, o, u]\). In all these examples, there is also an anticausative/causative semantic alternation, implying that the intransitive version of the pair is an unaccusative type of verb, that is, with a subject with a low level of agentivity or, as I showed in Chapter 7 (see §7.4.2), a low level of animacy. The intransitive stems of the pairs \((\mathrm{g})\) and (h) should not, therefore, be read as a reflexive derivation, in which a certain degree of agentivity is assumed. The prototypical subjects of these intransitive verbs are inanimate entities. To get an actual reflexive reading for these roots, derivation with the intransitivizer morpheme \(=т и\) : аитии 'to clean oneself' and hereтии 'to wet oneself' is required.

Table 9.1 - Anticausative and causative versions of roots derived with =pr[a,o,u] and \(=p r a\)
\begin{tabular}{|c|c|c|}
\hline Anticausative & Causative & Meaning \\
\hline a. homopruи & homoprai & to explode \\
\hline b. thãihipruu & thãihiprai & to stretch \\
\hline c. karopruu & karoprait & to open \\
\hline d. hehupruu & hehuprait & to close \\
\hline e. he îhopruu & he îhoprai & to submerge \\
\hline f. rëpruи & rëprai & to spill out, to pour \\
\hline g. aupruu & auprai & to clean, to whiten \\
\hline h. herepruи & hereprait & to wet \\
\hline i. heetehepruu & hêteheprai & to lighten (weight) \\
\hline j. hãthohopruu & hãthohoprai & to ease, to slacken \\
\hline
\end{tabular}

Table 9.2 - Stative version of the verbal roots of Table 9.1
\begin{tabular}{ll|l|l}
\multicolumn{2}{|c|}{\begin{tabular}{l} 
Stative or non- \\
dynamic
\end{tabular}} & Verb stem type & Meaning \\
\hline a. & homoa & positional & to be exploded \\
b. & thãihia & positional & to be stretched \\
c. & karoa & positional & to be opened \\
d. & hehua & positional & to be closed \\
e. & hi ǐhoa & positional & to be submerged \\
f. & rëa & positional & to be spilled out \\
g. & au & adjective & to be clean/cleaned/white \\
h. & here & adjective & to be wet \\
i. & hẽtehe & adjective & to be light (weight) \\
j. & hãthoho & adjective & to be ease, to be mild
\end{tabular}

\subsection*{9.4. Restricted labile alternation among positional stems}

Positional stems are the only type of verbs that can consistently take part in labile causative alternation but only in a very restricted context. This feature arises only in perfective contexts. The pair of examples in (9) illustrates this.
\[
\begin{array}{llll}
\text { a. } \text { oxe thë } \quad \text { pirikema } &  \tag{9}\\
\text { oxe thë } \quad \text { piri }=\boldsymbol{k i} & =m a \\
\text { youngster } & \text { CLN.GNR }=\text { lie }=\text { PFV2 } & =\text { PST } \\
\text { 'The child lied down on the floor.'. }
\end{array}
\]
b. oxe yathë pirikema
oxe \(y a=\) thë \(=\) piri \(=k i \quad=m a\)
youngster 1SG= CLN.GNR= lie =PFV2 =PST
'I laid down the child on the floor.'

These verbs, nevertheless, lose their labile ability in imperfective contexts and the valency status of the verb (intransitive or transitive) must be overtly indicated by a morpheme, the intransitivizer \(=m u\) in the inchoative/middle voice version (10a), and the transitivizer \(=m a\) in the causative version (10b).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline (10) a. & & pirim & & & tëhë & hãhã & ya \(a\) & \\
\hline & \(y a=\) & piri & \(=\boldsymbol{m u}\) & \(=u\) & = tëhë & hãhã & \(y a\) & \(a=\) \\
\hline & \(1 \mathrm{SG}=\) & lie & \(=\) INTRZ & \(=\) DYN & =REL.PRS & spider & & \(3 \mathrm{SG}=\) \\
\hline piria & & taar & ma & & & & & \\
\hline pirì & \(=a\) & taa & \(=r i\) & \(=m a\) & & & & \\
\hline lie \(=\) & \(=\) POST & see & = PFV1 & \(=\mathrm{PST}\) & & & & \\
\hline
\end{tabular}
'While I was in the process of lying down in the hammock, I saw a spider lying on the hammock.'


\subsection*{9.5. Valency-increasing mechanisms}

\subsection*{9.5.1. Causative marker \(=m a\)}

The derivation with causative marker \(=m a\) is the most productive grammatical mechanism for expressing causation in YMA. Virtually all types of verbs can be derived with this morpheme: positional (11a), adjective (11b), intransitive dynamic (11c), and transitive dynamic verbs (11d).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (11) a. eha \(y a\) & \(u\) & tëkën & & & pario & \\
\hline eha \(y a=\) & \(u=\) & tëkë & \(=m a\) & = \(i\) & pari & = 0 \\
\hline here \(1 \mathrm{SG}=\) & CLN:cotton= & sit & \(=\) CAUS & \(=\mathrm{DYN}\) & & =STV \\
\hline
\end{tabular}
'Here I will first sit (i.e. put) one thread of cotton!' (PDYP_MIC_A_04_20).'
\begin{tabular}{ccl} 
b. wapë & pihiki wakëmai & ! \\
\(w a=\) & \(p \ddot{e}=\) pihiki wak \(=m a\) & \(=\dot{\boldsymbol{e}}\) \\
\(2 \mathrm{SG}=\) & \(\mathrm{PL}=\) face red \(=\mathrm{CAUS}\) & \(=\mathrm{DYN}\)
\end{tabular}
'Paint their faces [make their faces red]!' (PDYP_MIC_A_01_26).
 [...]
'Because I'm feeding my children again [make them eat] [...]'
(PDYP_MIC_A_01_43).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{d. yama yama=} & kiki & \multicolumn{3}{|l|}{hareamai} & \multicolumn{3}{|c|}{pihio} \\
\hline & \(k i k i=\) & hare & \(=a\) & \(=m a\) & \(=i\) & pihi & \(=0\) \\
\hline \[
\begin{array}{cc} 
& 1 \mathrm{PL}= \\
\text { tëhë } & {[\ldots]}
\end{array}
\] & CLN:serpentiform= & hang & \(=\mathrm{DRV}\) & = CAUS & \(=\) DYN & & = STV \\
\hline =tëhë & & & & & & & \\
\hline \(=\) REL.PRS & & & & & & & \\
\hline
\end{tabular}
'When we want to make [them] use it [necklace with magical seeds] [...]' (PDYP_MIC_A_01_25).

Semantically, this derived construction covers a wide range of causation situations (Shibatani and Pardeshi, 2002), including direct or manipulative causation (12), assistive causation (to help someone do something) (13), supervised causation (to ensure that someone does something) (14), and directive causation (to ask someone to do something) (15). It is worth mentioning that the causative marker \(=m a\) does not express prototypical situations of associative causation, like joint-action associative causation.

MANIPULATIVE CAUSATION

'Burning [he] the garden [...]' (PDYP_MIC_A_01_24).
```

 b. apiama wama hoxosi utitimai
 apiama wama \(=\) hoxo \(=\quad\) utiti \(=m a=i\)
 airplane 2PL= CLN:airstrip= V.PTC= be weak =CAUS =DYN
 tëhë
=tëhë
=REL.PRS

```
'When you were flattening [lit: 'making it weak'] the airstrip [...]' (PDYP_MIC_A_03_18).
```

 c. mori ya u riã prahamaì ha
 mõri \(y a=u=\quad\) riã \(=\) praha \(=m a \quad=i \quad h a=\)
 one \(1 \mathrm{SG}=\) CLN:cotton= VOL= far =CAUS =DYN REL.PST=
 хоапё
[...]
$x o a=n e ̈$
continue =REL.PST

```
'I want to put apart one of cotton thread [...]' (PDYP_MIC_A_04_03).

ASSISTIVE CAUSATION
```

rope yama pë riã patamaì yaro [...]
rope yama= pë= ri\tilde{a}= pata =ma =i =yaro
quick 1PL= 3PL= VOL= big =CAUS =DYN =CNJ.EXPLV

```
'Because we want to make them grow quickly [...]' (referring to the children that are using magical necklaces) (PDYP_MIC_A_01_25).

SUPERVISED CAUSATION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline wapë & & mokor & & & huo & \\
\hline wa= & \(p \ddot{e}=\) & moko & \(=m a\) & \(=i\) & hu & = 0 \\
\hline \(2 \mathrm{SG}=\) & PL= & girl & = CAUS & \(=\mathrm{DYN}\) & alone & =STV \\
\hline
\end{tabular}
'That you make them girls [after I had left]!' (i.e 'You raise them after my death') (PDYP_MIC_A_01_26).

476 Yanomama clause structure

\section*{DIRECTIVE CAUSATION}
(15)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline . yamaki & teosimom & & & \(n \dot{1}\) & õhõtac & \\
\hline yamaki= & teosimo & \(=m a\) & \(=\dot{i}\) & \(n \dot{i}=\) & ôhõtaa & \(=m a\) \\
\hline \(1 \mathrm{PL}=\) & pray & \(=\) CAUS & \(=\) DYN & V.PTC= & suffer & \(=\mathrm{PST}\) \\
\hline
\end{tabular}
'[He] made us pray in a suffering manner.' (PDYP_MIC_A_03_18).
b. [ Ararima eha ] ipa hutu ya kana

Ararima \(=e \quad\) ha ipa hutu ya= kana \(=\)
Ararima =DIF.PART =OBL 1POS garden 1SG= CLN:garden= iximamarema
\begin{tabular}{lllll}
\(i x i\) & \(=m a\) & \(=m a\) & \(=r i\) & \(=m a\) \\
burn & \(=\) CAUS & \(=\) CAUS & \(=\) PFV1 & \(=\) PST
\end{tabular}
'I made Ararima/asked Ararima to burn my garden.'
The new argument introduced in the derivation (the causer) can display different levels of intentionality, even with the same basic lexical root, spanning from unintentional or accidental causers (16), to clearly intentional ones (17).

ACCIDENTAL CAUSERS
(16) a. ̂nht̃ tëhë piskreta \(a \quad h a\)
\(\tilde{\text { th } h \tilde{t}}=\) = ëhë piskreta \(a=\quad h a=\)
ANA =REL.PRS bicycle 3SG= REL.PST=
kemarinë , thhã tëhë ahõi kiki
\(k e=m a=r i=n e ̈ \quad \tilde{t h} h \tilde{t}=t e ̈ h e ̈ \quad a h o ̃ i \quad k i k i=\)
fall =CAUS =PFV1 = REL.PST ANA =REL.PRS avocado CLN:collective= rëprarioma
\(\begin{array}{llll}r e ̈ & =p r a & =r i o & =m a \\ \text { spill out } & =\text { DRV } & =\text { PFV1 } & =\text { PST }\end{array}\)
'Then, after he had made the bicycle fall, then the avocados spilled out.'
(s_pear_cesa).

'[The miners] quickly 'put' an epidemic disease, they 'drop' it.'
(m005_wawa_gari)

INTENTIONAL CAUSERS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & . ya \(a\) & \multicolumn{4}{|c|}{tiremarini} & & \multicolumn{3}{|c|}{, yaa} \\
\hline & \(y a\) & \(a=\) & tire & \(=m a\) & & \(=r i\) & \(=n \dot{t}\) & \(y a\) & \(a=\) \\
\hline & 1SG & \(3 \mathrm{SG}=\) & high & \(=\) CAUS & & = PFV1 & \(=\) REL.PST & 1SG & \(3 \mathrm{SG}=\) \\
\hline \multicolumn{2}{|l|}{kemait} & \multicolumn{4}{|c|}{yapai} & kõo & & & \\
\hline ke & \(=m a\) & = i & y & & =i & kõ & = 0 & & \\
\hline fall & = CAUS & & N go & back & & YN ag & =STV & & \\
\hline
\end{tabular}
‘Throwing it up first, I make it fall back again.' (s_ms10_raim)

'Making the liana fall down again.' (n_011_yoasiyaxuru)

The causer, nevertheless, must be necessarily animate, as it will always occupy the ergative position, which cannot be filled by an inanimate argument as a general restriction in the language. The hypothetical example in (18a) is, therefore, ungrammatical. The same event can only be expressed by an intransitive clause, with maa a 'rain', as an instrument/cause argument, as in (18b). Note that the case marker for instrument/cause is the same as the ergative, but differently from the ergative argument, the instrument/cause argument cannot be marked on the verb, reason why it is not considered a core argument. The absence of the causative marker and the use
of the intransitive perfective marker = rayu also indicates once more that (18b) is an intransitive predicate with only one core argument.

\begin{tabular}{|c|c|c|c|c|c|}
\hline b. maa ani & & apiama a ker & yoma & & \\
\hline maa & \(=n \dot{1}\) & apiama \(a=\) & ke & =rayu & ma \\
\hline rain \(=\) SG & =CAUSAL & airplane \(\mathrm{SG}=\) & fall & =PFV1 & \(=\) PST \\
\hline
\end{tabular}
'The airplane fell because of the storm.'

The enclitic \(=m a\) is also used for creating transitive verbs from nouns. For the description of this use, see Chapter 5 (§5.6.10).

\subsection*{9.5.2. Argument restructuring and Comrie's "paradigm case"}

YMA conforms quite exactly to the "paradigm case" predictions described by Comrie (1976: 264-266). The language 1) does not display any syntactic restriction regarding the formation of causative constructions; 2) does not allow doubling of core arguments, and the argument structure must be rearranged in causative constructions; 3) always demotes the embedded subject (intransitive subject or transitive agent) down the hierarchy in the derived construction; 4) always demotes the embedded subject stepwise down the hierarchy to the nearest vacant position. The case hierarchy proposed by Comrie is the following one:
subject \(>\) direct object \(>\) indirect object \(>\) oblique constituent

According to this approach, when there is a causative derivation of an intransitive verb, for instance, the original subject is demoted to the direct object position, while the introduced new argument (the causer) takes this now vacant subject (transitive subject/agent) position. The examples in (19) show this rearrangement in YMA.
(19) a. hiima a nomarayoma
hiima \(a=\) noma =rayu =ma
\(\operatorname{dog} 3 \mathrm{SG}=\) die \(=\) PFV1 \(=\) PST
‘The dog died.'
CAUSER CAUSEE
b. napë ani hiima a nomamarema napë \(=a=n \dot{t}\) hiima \(a=\) noma \(=m a=r i \quad=m a\) foreigner \(=\mathrm{SG}=\) ERG \(\operatorname{dog} 3 \mathrm{SG}=\) die \(=\) CAUS \(=\mathrm{PFV} 1 \quad=\mathrm{PST}\) 'The white person let/make the dog die.'

When the causative derivation is applied to a monotransitive verb, the original transitive subject/agent (the causee) is demoted to the indirect object position, as the direct object position has already been occupied by the original direct object, which remains the same in the causative construction. In (20), we can see that the transitive subject/agent of the non-derived predicate (kami ya 'I') appears as the indirect object/oblique in the derived construction, while the original object/patient (iwa 'caiman) does not change its syntactic status. The causer argument is always introduced as the syntactic transitive subject/agent of the clause.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline (20) a. yokoto aha & \multicolumn{3}{|r|}{kami yani} & & iwa & \multicolumn{2}{|l|}{yaa} \\
\hline yokoto \(=a\) & \(=h a\) & kami & \(=y a\) & \(=n \dot{t}\) & iwa & \(y a\) & \(a=\) \\
\hline swamp = SG & =OBL & 1 & \(=1 \mathrm{SG}\) & = ERG & caiman & & \(3 \mathrm{SG}=\) \\
\hline
\end{tabular} taarema
```

taa =ri =ma
see =PFV1 =PST

```
'I saw a caiman in the pond.'
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & b. yokoto aha & & & yae & & & Ararima \\
\hline & yokoto =a & \(=h a\) & kar & i ya & \(=e\) & \(=h a\) & Ararima \\
\hline & swamp \(=\) SG & \(=\mathrm{OB}\) & 1 & 1 SG & \(=\) DIF.PART & \(=\mathrm{OBL}\) & Ararima \\
\hline ani & iwa & \(a\) & taan & arema & & & \\
\hline \(a\) & \(=n \dot{t} \quad i w a\) & \(a=\) & taa & \(=m a\) & \(=r i\) & \(=m a\) & \\
\hline \(=\) SG & = ERG caiman & \(3 \mathrm{SG}=\) & see & =CAU & = PFV1 & \(=\mathrm{PST}\) & \\
\hline
\end{tabular}
'Ararima showed me the caiman in the pond.'

When a ditransitive verb is derived with the causative morpheme, the following happens: the original transitive subject/agent is demoted to the next-highest position that is still available, which, in this case, is also the oblique position, since there is no syntactic difference between an oblique and an indirect object in the language. The examples in (21) illustrate the argument rearrangement in the derivation with this type of verb.

'Ararima gave the hammock to Kunathoi.'

'I asked/made/ordered Ararima to give the hammock to Kunathoi.'

The patterns of argument structure rearrangement found in YMA causative derivations can be summarized as in Table 9.3.

Table 9.3 - Patterns of argument structure rearrangement in causative constructions (extracted from Comrie, 1976)
\begin{tabular}{|c|c|c|}
\hline & Basic & Causative \\
\hline \multirow[t]{2}{*}{intransitive} & \multirow[t]{2}{*}{Subj} & Subj \\
\hline & & DO \\
\hline \multirow{3}{*}{monotransitive} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Subj } \\
& \text { DO }
\end{aligned}
\]} & Subj \\
\hline & & DO \\
\hline & & IO \\
\hline \multirow{4}{*}{ditransitive} & \multirow[b]{2}{*}{Subj} & Subj \\
\hline & & DO \\
\hline & & IO \\
\hline & IO & OBL \\
\hline
\end{tabular}

We have seen that YMA complies exactly with Comrie's predictions for argument structure reorganization in causative constructions. However, this approach, in spite of being correct, is not quite elegant for describing what happens in the YMA case. In the remaining part of this section, I will present an alternate view of this rearrangement, which I think is more adequate for YMA.

This alleged lack of elegance of Comrie's paradigm case for describing YMA causation constructions is probably due to the fact that the language is ergativeabsolutive (and not nominative-accusative), where the properties of the subject of an intransitive predicate do not match with those of the subject of a transitive predicate. Instead, the subjects of intransitive predicates are formally more similar to the objects of transitive predicates, both occupying the absolutive position of the clause. For the analyses of the causative constructions, the relevance of this parallel treatment given by the language to intransitive subjects and transitive objects resides in the fact that intransitive subjects are "demoted" to the object position in causative derivations, according to Comrie's prediction, as we have seen in (20b) and (21b). The point I am trying to make here is that there is no actual "demotion" of the intransitive subject in causative derivation, as it remains in the same original absolutive position. On the
other hand, the argument introduced by the derivation (the causer) is allocated in the ergative position, which is inexistent in the non-derived intransitive predicate. For Comrie, this position is filled by the intransitive subject, which, from an internal YMA perspective, is not true.

Moreover, as we have seen in Chapter 7 (§7.4.5), YMA does not give any special treatment to indirect objects, compared to the treatment given to oblique arguments, i.e. both are considered oblique arguments in the language \({ }^{1}\). This is important when analyzing the causative derivations of monotransitive and ditransitive verbs. In constructions with monotransitive basic verbs, the original subject/agent of the predicate (which is the ergative argument) is demoted to the indirect object position (in Comrie's prediction), while with ditransitive basic verbs it is demoted to the oblique position. As the language does not distinguish indirect objects and oblique arguments (in the syntax), granting equal treatment to both, it is useless to treat the causative constructions with monotransitive and ditransitive basic verbs differently. In both constructions the original ergative is demoted to an oblique position.

As I have shown, at least two redundancies emerge when Comrie's case hierarchy is applied to YMA. For the sake of descriptive economy, these redundancies could be easily avoided by treating the transitive agent differently from the intransitive subject, and by conflating the intransitive subject and the transitive object under the same general case (absolutive). Also, the indirect object and the oblique argument can be treated as a general oblique case. In (22) I present this alternate and non-redundant schema of the grammatical cases in YMA.


\footnotetext{
\({ }^{1}\) There is a clear preference from the native speakers to place semantic indirect objects after semantic oblique arguments (location, time...). However, there are a lot of counter-examples to this general preference, which indicates that this feature is not fully grammaticalized in the language.
}

The (non-redundant) case hierarchy in YMA is presented in (23). The brackets on the absolutive case indicate that this position is not altered by a causative derivation.
\[
\begin{equation*}
\mathrm{ERG}>[\mathrm{ABS}]>\mathrm{OBL} \tag{23}
\end{equation*}
\]

I have argued in this section that the rules governing argument restructuring in causatives constructions are as follows:
1) The absolutive arguments of a causative construction and its non-causative counterpart are always the same;
2) When a new argument (causer) is introduced by a causative derivation, it inevitably occupies the higher position in the hierarchy (the ergative position);
3) If the ergative position is already occupied (when the non-causative counterparts are monotransitive or ditransitive), the original ergative argument is demoted to the oblique case.

In Table 9.4, I restate the information of Table 9.3, now adapted to YMA.

Table 9.4 - Patterns of argument structure rearrangement in YMA causative constructions (non-redundant version)
\begin{tabular}{lll}
\hline Basic & Causative \\
\hline intransitive & \(\mathrm{ABS} \longrightarrow\) & ERG \\
& & ABS \\
& & ERG \\
\begin{tabular}{l} 
monotransitive \\
and ditransitive
\end{tabular} & \(\mathrm{ABS} \longrightarrow \mathrm{ABS}\) \\
& {\([\mathrm{OBL}] \longrightarrow \mathrm{OBL}\)} \\
& & {\([\mathrm{OBL}]\)}
\end{tabular}

\section*{Schema 9.1 - Argument rearrangement of causative derivation of intransitive predicates}
new argument
causer
[ABS]
ERG remains the same

General schema (Causative of transitive verbs):

Schema 9.2-Argument rearrangement of causative derivation of monotransitive and ditransitive predicates


\subsection*{9.5.3. Transitive morpheme =pra}

We saw in Chapter 5 (§5.6.6) that the transitivizing morpheme \(=p r a\) is a productive resource for creating new transitive verbs in the language. This morpheme can create new verbs from nouns (24a), and other verbs, either transitive (24b), or intransitive ones (24c).
(24) a. атоã ya thãa napëprarema
aтоа̃ \(y a=\) th \(\tilde{a}=\tilde{a}=\) nарё \(=p r a \quad=r i \quad=m a\)
song \(1 \mathrm{SG}=\) CLN.GNR \(=\) sound= foreigner =DRV =PFV1 =PST
'I translated the song (to Portuguese).'
b. hei napë ya thãa hĩrpraimi
hei nарё \(\quad y a=\) thã \(=\quad \tilde{a}=\) hĩri =pra =imi
this white person 1SG= CLN.GNR= sound= hear =DRV =NEG
'I don't understand the language of this white person.'
```

 c. thuë thëpëni ya
 thuë =thë =p\ddot{e}=n\dot{t}\quadya=
 woman =CLN.GNR =PL =ERG 1SG=
 wakëpraremahe
wakë =pra =ri =ma =he
red =DRV =PFV1 =PST = 3PL

```
'The women painted me.'

Example (24c) may suggest that the marker =pra is also a causative marker. This marker may be indeed replaced by a true causative marker \(=m a\) in some contexts, as in (25a). In (25b-c) we have another instance of the possible alternation between \(=p r a\) and causative \(=m a\).
\begin{tabular}{|c|c|c|c|c|}
\hline a. thuwë & thëpëni & & & \(y a\) \\
\hline thuwë & \(=t h e ̈\) & \(=p \ddot{ }\) & & \(y a=\) \\
\hline woman & \(=\) CLN.GNR & \(=\mathrm{PL}\) & = ERG & \(1 \mathrm{SG}=\) \\
\hline maremahe & & & & \\
\hline \(=m a\) & \(=r i\) & \(=m a\) & =he & \\
\hline = CAUS & = PFV1 & \(=\mathrm{PST}\) & \(=3 \mathrm{PL}\) & \\
\hline
\end{tabular}
‘The women painted me.'
b. wa thë ahatemari
\(w a=t h \ddot{e}=\quad\) ahate \(=\boldsymbol{m a}=r i\)
2SG= CLN.GNR= near =CAUS =PFV1
'Move it close.'
\(\begin{array}{lll}\text { c. } w a \text { thë } & \text { ahateprari } & \\ w a=\text { thë }= & \text { ahate }=\text { pra } & =r i \\ 2 \mathrm{SG}=\text { CLN.GNR }=\text { near }=\mathbf{D R V} & =\text { PFV1 }\end{array}\)
'Move it close.'

The analysis of =pra as a causative is correct for examples (24c) and (25), as the derived form is indeed the causative version of the basic verb. With other verb types, it is not accurate . First, when this marker attaches to transitive stems, it does not yield their causative version. Indeed, this marker does not alter the valency or the diathesis
of transitive verbs (which is always the case with the causative marker =ma), but only changes their meaning, as in (26b) and (27b). The causative version of transitive stems is only possible by a derivation with \(=m a(26 \mathrm{c})\).
\begin{tabular}{llll} 
(26) a. napë \(y a \tilde{a}\) & hirii \\
napë & ya \(\quad \tilde{a}=\quad\) hiri & \(=i\) \\
white person & 1 SG & sound= hear & \(=\mathrm{DYN}\) \\
'I am listening the white person.'
\end{tabular}
\begin{tabular}{llllll} 
b. napë & \(y a\) & thãa & \multicolumn{3}{c}{ hĩripra \(\dot{t}\)} \\
napë & \(y a=\) & thã \(=\) & \(\tilde{a}=\) & hiri \(=\boldsymbol{p r a}\) & \(=\dot{i}\) \\
white person & \(1 \mathrm{SG}=\) & CLN.GNR \(=\) & sound \(=\) & hear \(=\) DRV & \(=\mathrm{DYN}\)
\end{tabular}
'I understand the white person's language.'
\begin{tabular}{|c|c|c|}
\hline c. nарё & yaã & \\
\hline парё & \(y a\) & \(\tilde{a}=\) \\
\hline white person & & sou \\
\hline thuwë thëpëha & & \\
\hline thuwë thë & \(=p \ddot{ }\) & \(=h a\) \\
\hline woman CLN.GNR & = P & = OB \\
\hline
\end{tabular}
'I am making the women listen to the white person.'
(27) a. hiima ya a

хёrema
hiima ya \(a=x \ddot{e} \quad=r i \quad=m a\)
\(\operatorname{dog} \quad 1 \mathrm{SG} \quad 3 \mathrm{SG}=\) beat; kill \(=\mathrm{PFV} 1=\mathrm{PST}\)
'I hit the dog.'
b. hiima ya a xëprarema
hiima ya \(a=x \ddot{e} \quad=p r a \quad=r i \quad=m a\)
\(\operatorname{dog} 1 \mathrm{SG} \quad 3 \mathrm{SG}=\) beat; kill =DRV =PFV1 =PST
'I killed the dog.'

In a few contexts, this marker may change the diathesis of the clause when compared to the original non-derived predicate, like in (28). The diathesis reorganization of the derivation with \(=p r a\) is, nevertheless, incidental and not as
consistent and systematic as the derivation with \(=m a\), i.e. this diathesis changing is not replicable with other verbs.
(28) a. xaraka an

'I shot the tapir with the arrow.'
\begin{tabular}{llllllll} 
b. xama aha & \multicolumn{4}{c}{ xaraka ya } & \multicolumn{3}{c}{ niarema } \\
xama \(=a\) & \(=h a\) & xaraka ya & \(a=\) & nia & \(=r i\) & \(=m a\) \\
tapir & \(=\mathrm{SG}\) & \(=\mathrm{OBL}\) & arrow & 1 SG & \(3 \mathrm{SG}=\) & shoot & \(=\mathrm{PFV} 1\)
\end{tabular}\(=\mathrm{PST}\)
'I shot the arrow into the tapir.'

A more detailed description of the semantic and formal properties of the derivational enclitic \(=p r a\) can be found in the chapter on verb stems, under Section §5.6.5.

\subsection*{9.5.4. Applicative derivations}

\subsection*{9.5.4.1. Associative applicative \(k \tilde{a} y \tilde{o}=\)}

The grammatical morpheme \(k \tilde{a} y \tilde{o}=\) is a proclitic of Cluster B that appears in several types of constructions. This morpheme acquires the associative applicative meaning only when combined with intransitive verb stems \({ }^{2}\). The resulting derivation does not produce a significant change in the basic lexical meaning of the verb other than increasing the number of core arguments projected in the clause. Semantically, the two arguments projected by the derived construction play similar roles in the predicate, namely as subjects/experiencers/undergoers of the action expressed by the verb. In (29), we can see this derivation taking place: the clause in (29a) contains the

\footnotetext{
\({ }^{2}\) And only when this morpheme is not in Cluster B, indicating that there is a secondary predication (see Chapter 10, §10.2.2), or in combination with other valency- or voice-changing morpheme (see ahead §9.5.4.2 and §9.5.4.3).
}
basic version of the verb, and the one in (29b), the associative applicative derived version.
(29) a. thuë thëpë \(\quad\) herii
thuë thë \(\quad\) pë \(=\) heri \(=i\)
woman CLN.GNR \(=\quad 3 \mathrm{PL}=\mathrm{chant}=\mathrm{DYN}\)
'The women are singing.'
```

 b. thuë thëрёni napë a kayõ herii
 thuë =thë \(=p \ddot{e}=n \dot{t}\) napë \(a=\) kayõ \(=\) heri \(=i\)
 woman =CLN.GNR =PL =ERG foreigner 3SG= APPL= chant =DYN
 he
$=h e$
$=3 \mathrm{PL}$

```
'The women are singing with the white person.'

The two arguments are ranked differently, nevertheless, for one of them is perceived as the main argument responsible for bringing about the action, while the other is just a co-performer or associate participant of the verbal predicate. This hierarchy is syntactically expressed by promoting the main participant, which was the sole argument of the non-derived construction, to the ergative position of the derived clause, while the co-participant, which is the newly introduced argument, occupies the absolutive position. The argument restructuring complies with the schema below.
\[
\text { MAIN PARTICIPANT+ERG } \quad \text { ASSOCIATED PARTICIPANT }+\varnothing \quad k \tilde{a} y \tilde{o}=\mathrm{V}
\]

Schema 9.3-Argument rearrangement of associative applicative derivation


Interestingly, although the verb derived with \(k \tilde{a} y o=\) behaves, in several respects, as a regular transitive \(\mathrm{verb}^{3}\), it preserves at least one formal feature of intransitive verbs. The applied construction does not take the transitive perfective morpheme \(=r[V]\), but its intransitive counterpart \(=r a y u /=\) rio instead. This contrasts with the causative derivation of intransitive verbs, which are authentic transitive verbs in all respects. Example (30a) shows an associative applicative construction in which the intransitive perfective morpheme can be attested, and example (30b) a causative construction with the same verbal root, in which the transitive perfective morpheme is required.

\section*{kãyo ithorayoma}
thë \(=\quad k \dot{t}=k \tilde{a} y o=\) itho \(=r a y u \quad=m a\)
CLN.GNR \(=\mathrm{PL}=\mathrm{APPL}=\) alight \(=\) PFV1 \(=\mathrm{PST}\)
'He came down [on the floor] with them (the fruits).' (s_marc_pear)


It is worth mentioning that there is no simple clause that can perfectly paraphrase the derived construction. That is, the introduced argument (the co-participant) cannot be always expressed in the non-derived construction, sometimes not even by an oblique argument. The construction with the additive/associative case morpheme, (31b) and (32b), is the closest that we can get to it, but the differences in the participants' responsibility for the action is then lost. Only a few derived constructions, particularly those with positional stems, can be paraphrased as in (32c), where the introduced argument can indeed be expressed by an oblique argument in

\footnotetext{
\({ }^{3}\) Take notice of the two argument markers in the verb in the clause (29b), for instance.
}
the basic non-derived predicate. As the literal translation suggests, this construction does not exactly paraphrase the applicative construction.
(31) a. kami yaní

Ararima ya a kãyo huи
kami \(=y a=n \dot{i}\) Ararima ya \(a=\boldsymbol{k} \tilde{\boldsymbol{a}} \boldsymbol{y} \boldsymbol{o}=h u \quad=u\)
\(1=1 \mathrm{SG}=\mathrm{ERG}\) Ararima 1 SG 3SG= APPL= go =DYN
pihio
pihi \(=o\)
will =STV
'Ararima is going with me.'

'Ararima and I are going.'
(32) a. Kunathoi ya a kãyo piria

Kunathoi ya \(a=\) kãyo \(=\) piri \(=a\)
Kunathoi \(1 \mathrm{SG} \quad 3 \mathrm{SG}=\mathbf{A P P L}=\) lie \(=\) POST
'I'm living with Kunathoi.'


In spite of one of the arguments being perceived as the main responsible for carrying out the event, there is no restriction regarding the intentionality of this responsibility. That is, the main participant may execute the action either intentionally (33a), or by accident (33b). In all cases, nevertheless, the main participant must be an
animate being, as the derived construction is a transitive predicate and complies with the restrictions expected for the ergative argument of this type of predicate, i.e. it does not allow an inanimate entity in the ergative position (see Chapter 7, §7.4.2). The made-up construction (33c) is, therefore, ungrammatical.

\section*{INTENTIONAL MAIN PARTICIPANT (UNERGATIVE SUBJECT)}

'Then, running [he] again with the ball [...]' (s_ball_alfr).

ACCIDENTAL MAIN PARTICIPANT (UNACCUSATIVE SUBJECT)
\begin{tabular}{|c|c|c|c|c|c|}
\hline b. \(\grave{\text { hat tëhe }}\) & & [ napë ani & & & ] wamotima \\
\hline ¢ิh & =tëhë & napë & \(=a\) & \(=n \dot{t}\) & wamotima \\
\hline ANA & =REL.PRS & foreigner & \(=\) SG & =ERG & food \\
\hline & kãyo & kerayoma & & & \\
\hline & \(k \dot{i}=k \tilde{a} y o=\) & ke =rayu & \(=m a\) & & \\
\hline .GNR \(=\quad \mathrm{P}\) & PL \(=\) APPL \(=\) & fall PFV1 & \(=\mathrm{PST}\) & & \\
\hline
\end{tabular}
'Then [the white person] fell with the food.' (s_pear_jose).
\[
\begin{aligned}
& \text { c. * } \mathfrak{t} h \tilde{t} \text { tëhë namotima thëkint napë a } \\
& \text { च̂hn =tëhë wamotima thë }=k \dot{t}=n \dot{t} \text { napë } a= \\
& \text { ANA =REL.PRS food CLN.GNR =PL =ERG foreigner 3SG= } \\
& \text { kãyo kerayoma } \\
& \text { kãyo }=k e \quad=r a y u \quad=m a \\
& \text { APPL }=\text { fall PFV1 }=\text { PST }
\end{aligned}
\]
'Then the white person fell with the food.'

On the other hand, there is also a great deal of diversity regarding the intentionality or volition of the co-participant in co-performing the action expressed by the verb. This newly introduced participant can display full intention of taking part in the event (34a), or just be a mere undergoer of the event, with no intention (34b). The co-participant can be either an animate (34a) or an inanimate entity (34b).

Yanomama clause structure

INTENTIONAL ASSOCIATED PARTICIPANT

pihio
pihi \(=o\)
will =STV
'Ararima is going with me.'

ACCIDENTAL ASSOCIATED PARTICIPANT

'Then [the Xiriana people] arrived with loincloths?' (PDYP_MIC_A_03_18).

When the co-participant is an inanimate entity, like in (34b) or in the examples in (35), the clause inevitably acquires a causative-associative reading.

'Then, the two running with it [the ball] [...]' (s_ball_suka).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline b. pë & kãyõ & praiai & & xoamahe & & \\
\hline \(p \ddot{=}=\) & kãyõ= & praia & \(=i\) & xo & =ma & \(=h e\) \\
\hline \(3 \mathrm{PL}=\) & APPL= & present_onself_dancing & \(=\mathrm{DYN}\) & continue & \(=\mathrm{PST}\) & \(=3 \mathrm{PL}\) \\
\hline
\end{tabular}
'[The women] dance with them [the belts with rattles]'
(PDYP_MIC_A_13_07).
```

 c. [haro] kiki ki kãyõi
 haro kiki= kãyõ= i=
 magical necklace CLN:serpentiform= APPL = DIM =
 patahuruu
?
pata =huru =u
big =DIR.AND =DYN
'[He/she] will grow with that [necklace with magical seeds]?'
(PDYP_MIC_A_01_24)

```

With animate entities, however, this meaning is only incidental or contextual. The clause in (36a), for instance, is part of an interview with a Yanomama woman from Papiu, in which she tells about the contact with the first missionary and how he taught them to pray (while also praying himself). Just after this sentence, however, the interviewee person restates the sentence as a pure causative construction with the derivational morpheme \(=m a\), (36b). In other words, and differently from other languages of the Amazon (Guillaume and Rose, 2010), there is no dedicated morpheme in YMA which unambiguously conveys a causative-associative meaning.
(36) a. \(\mathfrak{\text { tht̃në } y a m a k i ~ k a ̃ y o ̃ ~ t e o s i m o m a ~}\)
thh \(\quad=n e ̈ \quad\) yamaki \(=k \tilde{a} y \tilde{o}=\) teosimo \(=m a\)
ANA \(=\) ERG 1 PL \(=\) APPL \(=\) pray \(=\) PST
'That one prayed with us.' (PDYP_MIC_A_03_18)

Moreover, YMA does not allow the promotion of an instrument-like argument through an applicative derivation, which is also a peripheral argument in YMA with no effect on the verb. The argument semantically closest to an instrument that can be introduced as a core argument by this derivation are the comitative-causee arguments, as in (37), which are not actual instruments.


\subsection*{9.5.4.2. Goal/locative applicative napë= \(k \tilde{a} y \tilde{o}=/ n a m o=k \tilde{a} y \tilde{o}=\)}

The goal/locative applicative derivation makes use of a combination of two morphemes of Cluster B: (a) nap \(\ddot{e}={ }^{4}\) (or namo \(=\) in some dialects), which do not appear in any other syntactic context, and (b) \(k \tilde{a} y o=\), which, as mentioned before, is used in a variety of constructions, including applicative constructions. Like the associative applicative, the combination of these derivational morphemes is also restricted to intransitive verbs. Differently from the former, however, this derivation does not only change the valency of the verb, increasing the number of projected arguments on the clause with one, but it also alters the basic lexical meaning, adding a clear purpose for what is being done or performed by the subject of the non-derived construction. The introduced argument is perceived as somehow related to the general purpose of the action. In the example below, it is implied that the 1 st person is going to do something to another participant (Kunathoi) or something together with him.
(38) a. kami ya piria
kami ya= piri \(=a\)
\(1 \quad 1 \mathrm{SG}=\) lie \(=\) POST

\footnotetext{
\({ }^{4}\) The same form napë can appear outside Cluster B, as a noun of Type 1 (a free morpheme, therefore), with the meaning of 'white person' or 'non-Yanomama indigenous person'. The applicative morpheme probably comes from this noun, but the grammaticalization path that it took to become a grammatical morpheme is not entirely clear and, synchronically, the two forms do not share properties nor are they perceived as related by native speakers.
}
'I'm lying (in the hammock).'
\begin{tabular}{lllllll} 
b. kami yani & & Kunathoi ya & napë & kãyo & piria
\end{tabular}\(l\).
'I'm waiting for Kunathoi while lying.' (lit: 'I'm lying for Kunathoi')

In some examples of the corpus, the introduced argument conveys a location (and not an entity), which may be where the action is taking place, (39), or the final destination of a motion verb, (40). In both cases, it is also implied that the original subject has a clear purpose for reaching the place or realizing the action there.
(39) a. hutukana hamí ya kiãí
hutukana =hami ya=kiã =i
garden \(=\mathrm{OBL}\) 1SG= work =DYN
'I am working in the garden.'
\begin{tabular}{|c|c|c|c|c|c|}
\hline b. hutukana ya a & & nap & kãyo & kiai & \\
\hline hutukana ya & \(a=\) & napë= & kãyo= & kia & = \(i\) \\
\hline garden 1SG & \(3 \mathrm{SG}=\) & APPL= & APPL= & work & \(=\) DYN \\
\hline
\end{tabular}
'I am working in the garden (because I want to plant on it).'


katituu pihiohe
katitu \(=u\) pihi \(=o \quad=h e\)
walk =DYN will =STV =3PL
'The teachers are going to Boa Vista (and they have something to do there).'

It is very common to find the detailing of this purpose in spontaneous texts in the clauses subsequent to the applicative construction, as we can see in the examples in (41).

'After they had arrived at us, they will kill us, that's how I think [...]' (m003_manu_gari)

'Then he walked towards it [the fruit], and although he smelled it [...]' (i.e.
'Although he went towards the fruit with the intention of smelling it')

Similarly to what happens in the associative applicative construction, the aspectual markers that appear in this construction are not from the transitive paradigm, in spite of the fact that the number of arguments of the predicate is increased and that the verb becomes transitive in this sense. In the examples in (42) we can see the perfective markers =rio and =rayu from the intransitive paradigm being used in applicative constructions.
\[
\begin{aligned}
& \text { (42) a. } \mathrm{t} h \tilde{t} \text { a napë kayõ yootoario wehi } \\
& \text { च̂hz̃ } a=\text { napë }=\text { kayõ }=\text { yooto }=a \quad \text { rio =we }=h i \\
& \text { ANA 3SG= APPL= APPL= squat =DISTR =PFV1 =NMLZ =3PL } \\
& \text { '[While] they sat waiting for him.' (n015_krukunari) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { b. hiramatima pëni Poapixita a napë kãyo } \\
& \text { hirama -tima =pë }=n \dot{t} \text { poapixita } a=\text { napë= kãyo= } \\
& \text { teach }-\mathrm{NMLZ}=\mathrm{PL} \quad=\mathrm{ERG} \text { Boa Vista 3SG= APPL= APPL= } \\
& \text { katiti =rayu =ma =he } \\
& \text { walk =PFV1 =PST =3PL }
\end{aligned}
\]
'The teachers went to Boa Vista (and they have something to do there).'

As we have seen in this section, the goal applicative construction is a derivation of an intransitive verb in which the original subject of the predicate is promoted to the ergative position of the derived clause, while a new argument is introduced in the vacant absolutive position. The new argument is always related to the purpose or the goal of accomplishing the action. This purpose can be represented by an animate or inanimate entity (with which the main participant wants to do something) or by the location (or the direction) in which the purpose will be realized. The rearrangement of the argument structure can be outlined as below.

General schema:

MAIN PARTICIPANT+ERG GOAL \(+\varnothing\) napë=kãy \(\tilde{o}=\) Vintrans

\section*{Schema 9.4 - Argument rearrangement of goal applicative derivation}


\subsection*{9.5.4.3. Content promoter 'applicative' pihi= kãy \(\tilde{o}=/\) mihi \(=k \tilde{a} y \tilde{o}=\)}

YMA has a type of a diathesis-changing derivation which seems to be very rare among natural languages, as there is no mention of a similar process in the specialized literature (see Haspelmath \& Mueller-Bardy, 2004; Kulikov, 2010; Peterson, 2007; Jeong, 2006). This deriving mechanism does not change the valency of the predicate, but only reorganizes its argument structure, introducing 'content-like participants' as core arguments while coding 'container-like participants' as oblique arguments. We can see the voice reorganization generated by the derivation taking place in the two pairs of examples below: the absolutive arguments (in bold) of the non-derived constructions of (43a) and (44a) are demoted to an oblique position (also in bold) in the derived clauses (43b) and (44a), while a new argument is presented as the core argument.
(43) a. wii \(a\) thomirihuruma
wii \(a=\) thomi \(=r i \quad=h u r u \quad=m a\)
basket \(3 \mathrm{SG}=\) steal \(=\) PFV1 =DIR.AND =PST
'He took away the basket.' (elicited)

thomirihuruma
thomi \(=r i \quad=h u r u=m a\)
steal =PFV1 =DIR.AND =PST
'He took away fruits in the basket.' (s_chck_rica)
\(\begin{array}{rlllll}\text { (44) a. } \text { karoti } a & \text { ithaatapëha } & & \\ \text { karoti } a= & \text { itha }=a & =t a & =p \ddot{e} & =h a \\ \text { cask } 3 \mathrm{SG}= & \text { stand }=\mathrm{POST} & =\mathrm{HAB} & =\mathrm{NMLZ} & =\mathrm{OBL}\end{array}\)
'Where the cask was 'standing up' [...]' (elicited)
```

 b. ирё pihi kãyo ithaatapëha
 uрё \(=\quad\) pihi \(=k \tilde{a} y o=\) itha \(=a \quad=t a \quad=p \ddot{e}=h a\)
 \(\mathrm{CLN}:\) liquid \(=\mathrm{APPL}=\mathrm{APPL}=\) stand \(=\mathrm{POST}=\mathrm{HAB}=\mathrm{NMLZ}=\mathrm{OBL}\)
 karoti aha [...]
karoti $=a \quad=h a$
cask =SG =OBL

```
'Where the water was 'standing up', in the cask [...]' (s_chck_marc)

The voice reorganization complies with the following schema: the original intransitive subject or transitive patient (the absolutive argument), which semantically must be a container- or means-of-transportation-like entity, is demoted from its core position in the clause to an oblique one, while a new participant, which is a contentor transported-like entity, is introduced to the now vacant core position. This schema is represented below.

General schema:
\[
\text { CONTAINER }+ \text { OBL } \quad \text { CONTENT }+\emptyset \quad p i h i=k \tilde{a} y \tilde{o}=\text { Vintrans }
\]
\[
\text { AGENT+ERG CONTAINER+OBL } \quad \text { CONTENT }+\varnothing \quad \text { pihi }=k \tilde{a} y \tilde{o}=\mathrm{V} \text { trans }
\]

\section*{Schema 9.5 - Argument rearrangement of 'content promoter' derivation}


It is worth noting that the demoted argument (the container) is frequently omitted in the derived construction, (45b). On the other hand, the new argument introduced by the derivation (the content) is not an actual argument (neither core nor oblique) of the basic clause, i.e. it cannot be expressed in the non-derived construction as a simple
argument. For recovering this argument in a construction without pihi kãyo, another clause (a subordinate one) is required, (45c).
```

(45) а. huи ya tihi tiyë̈
huи ya= tihi= tiyë =i
tree 1SG= CLN:tree= cut_down =DYN
'I'm cutting a tree.'

```

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline c. huu tihiha & õi & ирё & уёёо & & wei & \\
\hline huu \(=\) tihi & \(=h a \quad \tilde{o} i\) & ирё= & уëtë & \(=0\) & = wei & \(y a=\) \\
\hline \[
\begin{aligned}
& \text { tree }=\text { CLN:tree } \\
& \quad \text { tiyë̈̈ }
\end{aligned}
\] & \(=\) OBL bee & CLN:liquid= & grip & =STV & = NMLZ & \(1 \mathrm{SG}=\) \\
\hline tiyë & \(=i\) & & & & & \\
\hline : tree= cut_down & \(=\mathrm{DYN}\) & & & & & \\
\hline
\end{tabular}
'I'm cutting the tree where the honey is gripped.'

This derivation can be applied to both intransitive (46) and transitive (47) predicates with no influence over the native valency of the verb.

INTRANSITIVE
(46) a. ז̂h̃̃ tëhë misikreta ahami ai a pihi kãyo
\(\tilde{\text { tht }} \quad=t e ̈ h e ̈ \quad\) misikreta \(=a \quad=h a m i\) ai \(\quad a=\) pihi \(=\) kãyo \(=\)
ANA = REL.PRS bicycle \(=\mathrm{SG}=\mathrm{OBL}\) other \(3 \mathrm{SG}=\mathrm{APPL}=\) APPL= rërëimaì
\begin{tabular}{lll} 
rërë & \(=\) ima & \(=\dot{i}\) \\
run & \(=\) DIR.VEN & \(=\mathrm{DYN}\)
\end{tabular}
'Then another one... another one came [in a mean of transportation], by bicycle.' (s_chck_niki)
b. ai yãa hanaki ãriki pihi kãyo
ai yãa hanaki= ãriki pihi= kãyo= other leaf CLN:bush= smoked APPL= APPL=
praapëha
\begin{tabular}{llll} 
pra & \(=o\) & \(=p \ddot{e}\) & \(=h a\) \\
lie & \(=\) STV & \(=\) NMLZ & \(=\mathrm{OBL}\)
\end{tabular}
'Where some dry leaves [that were on the branches] were lying on the floor.' (s_chck_hoax)

TRANSITIVE

'Break this other [branch with] fruits, my son, I'm also hungry!'
(n035_amathayoma)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline b. îhã tëhë & & thëki & & pihi kä & & tëkëa & \\
\hline fihn & \(=t\) ẗhë & thë= & & pihi= & kãyo= & tëkë & \(=a\) \\
\hline ANA & \(=\) REL.PRS & CLN.GNR= & \(\mathrm{PL}=\) & APPL= & APPL \(=\) & & \(=\) PFV.VWL \\
\hline
\end{tabular}
kõmakiwei
\begin{tabular}{llll}
\(k o ̃\) & \(=\boldsymbol{m a}\) & \(=k i\) & \(=w e i\) \\
again & \(=\) CAUS & \(=\) PFV2 & \(=\) NMLZ
\end{tabular}
'Then he 'sat' the [container of] fruits down. (s_pear_niki).'

\subsection*{9.6. Valency-decreasing mechanisms}

Among the derivational morphemes that can alter the valency of a predicate in YMA, the intransitivizer \(=m u\) stands out by the diversity of constructions in which it can appear. Although the derivation with this morpheme usually results in the decrease of the verb valency (if we compare it with the non-derived version), the change in the diathesis entailed by the valency-decrease does not display a single, homogenous and predictable pattern in all tokens. The alternations in (48) and (49) exemplify this
phenomenon. In (48b), we see that the sole core argument of the predicate - the syntactic subject of the derived clause, kami ya ' I ' - is the syntactic agent of the nonderived construction, (48a), while the underlying patient of these predicates, aho hiima 'your dog', is the syntactic patient in (48a) and appears as an oblique argument in (48b). Example (49) shows the reverse situation: the syntactic (and semantic) agent in (49a) - wai pë 'enemies' - becomes the oblique argument in the predicate derived with \(=m u\), (49b), while the syntactic (and semantic) patient of (49a) - thuwë \(a\) 'the woman' - remains in the core position (intransitive subject) in the derivation (49a). As the translations indicate, the pair of examples in (50) do not refer to the same event. The clause in (50a) is transitive and has two different participants as core arguments - Kunathoi is the patient and kami ya ' I ' is the agent - while (50b) is an intransitive clause with only one argument - Kunathoi - which is both the underlying agent and patient of the depicted event.

hëtëma
hëtë =ma
look for \(=\) PST
'I looked for your dog in the forest.'
b. urihi ha aho hiima a ha kami ya
urihi \(=\) ha aho hiima \(=a\) ha kami ya=
forest \(==\) OBL 2POS dog \(=\mathrm{SG}=\mathrm{OBL} 1 \quad 1 \mathrm{SG}=\)
hëtëmoma .
\begin{tabular}{lll} 
hëtë & \(=\boldsymbol{m u}\) & \(=m a\) \\
look for & \(=\mathbf{I N T R Z}\) & \(=\) PST
\end{tabular}
'I looked for your dog in the forest.'
(49) a.wai pëni thuë a huwëpraremahe.
\begin{tabular}{lllllll} 
wai \(=p e ̈ ~\) & \(=n \dot{i}\) thuë \(a=\) huwë \(=p r a\) & \(=r i\) & \(=m a\) & \(=h e\) \\
enemy \(=\mathrm{PL}\) & \(=\) ERG woman \(3 \mathrm{SG}=\) grab & \(=\mathrm{DRV}\) & \(=\mathrm{PFV} 1\) & \(=\mathrm{PST}\) & \(=3 \mathrm{PL}\)
\end{tabular}
'The enemies caught the woman.'
```

b.wai pëha thuë a
wai =p\ddot{e}=ha thu\ddot{e}\quada=
enemy =PL =OBL woman 3SG=
huwëpramorayoma

huwë $=p r a$	$=\boldsymbol{m u}$	$=r a y u$	$=m a$
grab	$=\mathrm{DRV}$	$=\mathbf{I N T R Z}$	$=\mathrm{PFV} 1$

```
'The woman let herself be caught by the enemies.'
\begin{tabular}{rlllllll} 
(50) a. \(T V\) & \(a h a\) & & \multicolumn{2}{c}{ kami yani } & \multicolumn{3}{c}{ Kunathoi yaa } \\
\(T V\) & \(=a\) & \(=h a\) & kami \(=y a\) & \(=n \dot{i}\) & Kunathoi ya= & \(a=\) \\
television & \(=\mathrm{SG}\) & \(=\mathrm{OBL}\) & 1 & \(=1 \mathrm{SG}\) & \(=\) ERG & Kunathoi \(1 \mathrm{SG}=\) & \(3 \mathrm{SG}=\)
\end{tabular} taarema
```

taa =ri =ma
see =PFV1 =PST
'I saw Kunathoi on TV.'

```
\begin{tabular}{rlllllll} 
b. kara & aha & & Kunathoi \(a\) & taamorayoma & & \\
kara \(=a\) & \(=h a\) & Kunathoi \(a=\) & taa \(=\boldsymbol{m u}\) & \(=\) rayu & \(=m a\) \\
mirror & \(=\mathrm{SG}\) & \(=\mathrm{OBL}\) & Kunathoi \(3 \mathrm{SG}=\) see & \(=\mathbf{I N T R Z}\) & \(=\mathrm{PFV} 1\) & \(=\mathrm{PST}\)
\end{tabular}.
'Kunathoi saw himself in the mirror.'

A hasty analysis of these three pairs of examples might suggest that the YMA has antipassive (48b), passive (49b) and reflexive (50b) constructions, all of them formed through the use of the same derivational mechanism with the enclitic \(=m u\). Besides being typologically unusual, I will show that such an analysis would be wrong for the YMA case. In this section, I will argue that (48b) and (50a) are indeed antipassive and reflexive derivations, respectively, but constructions such as (49b) must be analyzed as a special type of reflexive construction or causative construction. Actually, I will show that (49b) is a reflexive-causative construction, whose apparent passive configuration comes from the combined application of the diathesis- and valency-changing rules that characterize regular causative and reflexive derivations in YMA. I will show how this construction differs from a truly passive one, pointing out its formal and semantic properties.

For the use of the enclitic \(=m u\) as a denominalizer, please refer to Section §5.6.10 in the chapter on verb stems.

\subsection*{9.6.1. Antipassive \(=\boldsymbol{m} u\) or \(=a=m u\)}

An antipassive construction is a decreasing valency derivation in which the underlying patient of a native or derived transitive predicate is demoted from its core position to an oblique one, while the original agent is treated as the sole argument of the derived predicate, i.e. an intransitive subject. In the pair of elicited examples below, (51), we can see this derivation taking place. The construction in (51a) has a native transitive verb, wa 'to eat', which projects two core arguments in the clause: xama 'tapir,' the patient of the clause, and oxe thëpë 'children', the agent of the predicate marked in the verb by \(=h e\). The clause in (51b) presents the same verb now derived with the nonpunctual marker \(=a\) and the intransitivizer \(=m u\), and has only one core argument projected on it (the underlying agent oxe thëpë 'the children'), while the original patient is dislocated to the periphery and treated just like the other oblique arguments.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline a. oxe & thëpëni & & & xama & & waih & & \\
\hline oxe & =thë & \(=p \ddot{e}\) & \(=n \dot{t}\) & xama & \(=a\) & wa & = i & =he \\
\hline youngster & \(=\) CLN.GNR & \(=\mathrm{PL}\) & \(=\) ERG & & \(=\) SG & eat & \(=\mathrm{DYN}\) & \(=3 \mathrm{PL}\) \\
\hline
\end{tabular}
'The children are eating tapir.'
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{b. xama aha} & \multicolumn{2}{|l|}{oxe} \\
\hline & \(a=a\) & =ha ox & oxe & \\
\hline & =SG & =OBL y & youngster & \\
\hline thëрё & & тии & & \\
\hline thë= & \(p \ddot{e}=w a\) & & \(=m u\) & \(=u\) \\
\hline CLN.GNR \(=\) & \(3 \mathrm{PL}=\) eat & \(=\) DISTR & TR =iNTRZ & \(=\mathrm{DYN}\) \\
\hline
\end{tabular}
'The children are guzzling the tapir.'

It is not entirely clear for me what is the full range of functions that this derivation can play, but some recurrent patterns can be deduced from the native speakers' explanations about its meaning. According to them, the first function of this derivation is to magnify the action carried out by the agent, indicating that it was done
intensively or several times. The pair of examples in (52) convey essentially the same meaning, except for in (52b) the agent is not just asking, but clearly demanding information about the project. That is, there is a gradation emphasis in these two construction.
```

(52) a. napë pëha projeto ya thãa
nарё $\quad=$ pë $=$ ha projeto $y a=$ thã $=\quad \tilde{a}=$
white person $=\mathrm{PL} \quad=\mathrm{OBL}$ project $1 \mathrm{SG}=$ CLN.GNR $=$ sound $=$
wãrii pihio
wãri $=i \quad$ pihi $=o$
ask =DYN will =STV
'I want to ask the white people about the project.'

```
\begin{tabular}{cll} 
b. napë & pëha & projeto thãaha \\
napë & \(=p \ddot{e}=h a\) & \begin{tabular}{l} 
projeto \(=\) thë
\end{tabular}\(=\tilde{a}\)
\end{tabular} \begin{tabular}{l} 
ya
\end{tabular}
    white person \(=\mathrm{PL} \quad=\mathrm{OBL}\) project \(=\) CLN.GNR \(=\) sound \(=\mathrm{OBL} 1 \mathrm{SG}=\)
wãrimuu
        pihio
wãri =mu \(=u\) pihi \(=o\)
ask =INTRZ =DYN will =STV
'I want to demand the white people about the project.'

In (53b) the antipassive derivation with \(=a=m u\) produces similar semantic changes, underlying that the action will be carried out with more intensity.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline a. naxi & \(y a\) & kohiu & koai & & pihio & \\
\hline naxi & \(y a=\) & kohiu \(=\) & koa & \(=i\) & pihi & = \(o\) \\
\hline cassava & \(1 \mathrm{SG}=\) & CLN:beer= & drink & \(=\) DYN & & \(=\mathrm{STV}\) \\
\hline
\end{tabular}

pihio
pihi \(=o\)
will \(=S T V\)
'I want to drink [a lot of]/guzzle cassava beer.'

This intensification of the action is probably made possible by the non-punctual marker \(=a\). Even though this marker is present in most antipassive derivations, it cannot alter the valency or the diathesis of a predicate by itself. This morpheme appears by itself in derivations with either intransitive (54b) or transitive (55b) verbs, having no effect over the argument structure of the clause or the number of projected arguments in it. In those cases, the morpheme only alters the lexical aspect of the verb by adding the features activity/atelicity/diffuseness to its semantic inventory. In both (54) and (55), the morpheme changes the punctual meaning of 'to go' and 'to give' to a non-punctual activity 'to wander around' and 'to distribute'.
(54) a. Boa Vista hami ya huи pihio

Boa Vista =hami ya= huu pihi \(=o\)
Boa Vista \(=\) OBL \(1 \mathrm{SG}=\) go will =STV
'I want to go to Boa Vista.'
b. Boa Vista hami ya huait pihio

Boa Vista =hami ya= hu =a \(=\boldsymbol{a}\) pihi \(=o\)
Boa Vista \(=\) OBL \(1 \mathrm{SG}=\) go =DISTR =DYN will =STV
'I want to wander around in Boa Vista.'
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (55) a. Kayanau thëripëha & & & kama & matihi & ерё & \\
\hline Kayanau thëri & \(=p \ddot{ }\) & & kama & matihi & \(e=\) & \(p \ddot{=}=\) \\
\hline Kayanau inhabitant & \(=\mathrm{PL}\) & \(=\mathrm{OBL}\) & 3 & belongings & DIF.PART= & \(\mathrm{PL}=\) \\
\hline \multicolumn{7}{|l|}{hipikema} \\
\hline hipi \(=k i \quad=m a\) & & & & & & \\
\hline give =PFV2 = \({ }^{\text {PST }}\) & & & & & & \\
\hline \({ }^{\prime} \mathrm{He}\) gave his goods to & e pe & le fro & m Kay & anau.' & & \\
\hline
\end{tabular}
\begin{tabular}{lllllll} 
b. Kayanau thëripëha & & kama matihi & epë & \\
Kayanau thëri & \(=p \ddot{e}\) & \(=h a\) & kama matihi & \(e=\) & \(p \ddot{e}=\) \\
Kayanau inhabitant & \(=\mathrm{PL}\) & \(=\mathrm{OBL}\) & 3 & belongings & DIF.PART \(=\) & \(\mathrm{PL}=\)
\end{tabular} hipiakema
\begin{tabular}{llll}
\(h i p i\) & \(=\boldsymbol{a}\) & \(=k i\) & \(=m a\) \\
give & \(=\) DISTR & \(=\) PFV2 & \(=\) PST
\end{tabular}
'He distributed his goods to the people from Kayanau.'

We could conclude from this that the main or even sole morpheme responsible for altering both the valency and the voice in the antipassive derivation is the intransitivizer \(=m u\). This analysis is in part consistent with the derivational functions that this morpheme displays in other contexts, such as the reflexive and reflexivecausative contexts (see \(\S 9.6 .2\) and \(\S 9.6 .3\) below). Nevertheless, the intransitivizer \(=m u\) produces an antipassive derivation by itself only with a very small number of verbs, like in (56).
(56) a. thht thëpëni projeto a noa waxu
\(\tilde{t} h \tilde{t}=\) thë \(\quad=p \ddot{e}=n \dot{i}\) projeto \(a=\) noa \(=\) waxu
ANA \(=\) CLN.GNR \(\quad=\mathrm{PL} \quad=\) ERG project \(3 \mathrm{SG}=\mathrm{V} . \mathrm{PTC}=\) explain
totihionoohe , kua yaro kami
totihi \(=o \quad=n o \quad=o\) he \(k u \quad=a \quad\) yaro kami
good; nice \(=\) STV = RESULT \(=\) STV \(=3\) PL exist \(=\) POST \(=\) CNJ.EXPLV 1
ya nakamuu pihio [...]
\(y a=\) naka \(=\boldsymbol{m} \boldsymbol{u}=u \quad\) pihi \(=o\)
\(1 \mathrm{SG}=\) call; ask \(=\mathbf{I N T R Z}=\) DYN will =STV
'[As] those people explained us the project very well, so I want to ask for [it].' (PDYP_MIC_13_07)
\(\begin{array}{rllll}\text { b. } \text { pei } & \text { иһигирё } & e & \text { maa } & \\ \text { pei } & \text { uhurupë }= & =e & m a & =a \\ \text { INDEF } & \text { son }= & = & =\text { DIF.PART } & \text { not_exist }\end{array} \quad=\) PFV.VWL

'[He] with his wife, they two searched the place where their child had disappeared in the morning.' (wtx_sinaheoma)

With most verbs, the absence of the non-punctual morpheme \(=a\) prevents the antipassive reading of the construction, allowing only the reflexive or the reflexivecausative ones. The pair of examples in (57) illustrates this restriction for an
antipassive interpretation when the non-punctual \(=a\) is not present. In both sentences in (57) we have the exact same argument in the periphery of the clause, which is the nominalized clause pata thëpë ka kuani naha thë 'the way ancient people lived', marked with the oblique case marker \(=h a\). Semantically, this is the theme of both events. On the other hand, the argument kami ya 'I', despite occupying the same syntactic position (absolutive) in both clauses (57a-b), plays different semantic roles in each of them. As the translations indicate, in (57a) ' \(I\) ' is the underlying agent of the event of 'researching how ancient people lived' (the one who will ask), while in (57b) 'I' is the patient (the one whom will be asked) or the reflexive-causer (the one who let himself be asked). These two constructions are not interchangeable. It is not entirely clear for me why the verbs in (56) allow the antipassive reading with \(=m u\) alone, and the one in (57) does not. It is possibly related to the fact that a reflexive or reflexivecausative interpretation for these verbs (nakai 'to call' and hëtëï 'to look for') is those specific contexts is not logically possible given the argument markers of those clauses. This topic of the YMA remains open for future research.
```

(57) a. pata thëpë ka kuani
pata thë $=\quad p \ddot{=}=k a=k u \quad=a \quad=n i$
elder CLN.GNR $=3$ PL $=$ FOC $=$ exist =POST =PRE.HOD.NON.WTNS
naha thëha ya wãriamuu
$=n a h a=t h e ̈ \quad=h a \quad y a=w a ̃ r i=a \quad=\boldsymbol{m} \boldsymbol{u}=u$
$=$ thereby $=$ CLN.GNR $=$ OBL 1SG= ask $=$ DISTR $=\mathbf{I N T R Z ~}=$ DYN
pihio
pihi $=o$
will =STV

```
'I will start extensive research on how the ancient people used to live.' (It implies that I do not know it, that I am a young Yanomama researcher, for instance).

'I will let to be asked [by other people] about how the ancient people used to live.' (It implies that I know it, that I am an elder, for instance].

It is worth mentioning that antipassive constructions do not seem to be very common in Amazonian languages. Among a sample of 51 Amazonian languages, Birchall (2013) found only 10 languages that display a morphological marker capable of producing this type of derivation. None of these languages is spoken in the YMA's immediate neighborhood, with Arawakan Lokono, spoken in Suriname, and Cariban Tiriyó, also spoken in Suriname and in the Brazilian states of Para and Amapá, as the geographically closest languages (nearly 750 kilometers distant from the Yanomamiland) that display this feature. Among the languages with morphological antipassive constructions in Birchall's sample, six of them conflate the antipassive marker with the reflexive one, just like YMA does.

In the next sections ( \(\S 9.6 .2\) and \(\S 9.6 .3\) ) I will present the use of \(=m u\) as reflexive and reflexive-causative marker.

\subsection*{9.6.2. Reflexive \(=\boldsymbol{m} \boldsymbol{u}\)}

For semantic reasons, the derivation with the enclitic \(=m u\) only acquires a reflexive reading when applied to a transitive dynamic stem. Moreover, as I showed in §9.6.1, some derivations with transitive stems can also result in antipassive verbs. Only when the underlying agent of a transitive clause coincides with its patient do we have a truly reflexive construction. Example (58a) shows a transitive non-reflexive construction and (58b) a reflexive one.
(58) a. TV
\begin{tabular}{llllllll}
\(T V\) & aha & & Kunathoi yaa & \multicolumn{3}{c}{ taarema } & \\
\(T V\) & \(=a\) & \(=h a\) & Kunathoi ya= & \(a=\) & ta & \(=r i\) & \(=m a\) \\
television & \(=\mathrm{SG}\) & \(=\mathrm{OBL}\) & Kunathoi \(1 \mathrm{SG}=\) & \(3 \mathrm{SG}=\) & see & \(=\mathrm{PFV} 1\) & \(=\mathrm{PST}\)
\end{tabular} 'I saw Kunathoi on the TV.'
\begin{tabular}{llllllll} 
b. \(T V\) & aha & & kami ya taamorayoma & & \\
\(T V\) & \(=a\) & \(=h a\) & kami \(y a=\) & taa & \(=\boldsymbol{m u}\) & \(=r a y u\) & \(=m a\) \\
television & \(=\mathrm{SG}\) & \(=\mathrm{OBL}\) & 1 & \(1 \mathrm{SG}=\mathrm{see}\) & \(=\mathbf{I N T R Z}\) & \(=\mathrm{PFV} 1\) & \(=\mathrm{PST}\)
\end{tabular}.
'I saw myself on the TV.'

The intransitive perfective marker \(=r a y u\) in (58b) demonstrates the syntactic intransitivity of the verb. Indeed, the derivation with the reflexive marker \(=m u\) always produces a full feature intransitive stem, with only one argument projected in the clause and with all morphosyntactic properties of a typical intransitive verb. The solely projected argument always occupies the absolutive position, for it is the only existing core position in intransitive predicates. The Schema 9.6 below represents the argument restructuring that the reflexive derivation produces.

\section*{Schema 9.6-Argument rearrangement of the reflexive derivation}


We have seen in Chapter 4 that body part terms are a particular type of nouns in the language (nouns of Type 2). These nouns are not free words in the language, but clitics, which are incorporated into the predicate when they are the semantic subject of an intransitive verb or the patient of a transitive one. In those constructions, the entity to which that part belongs is either the actual syntactic intransitive subject or the transitive patient of the clause. When this whole entity is the semantic agent of the transitive clause, the reflexive derivation is also required. Note that in (59b) the noun kanasi 'garbage' is treated as a body-part (a noun of Type 2), just like usiki 'shin,' in (59a).

hёратота
\begin{tabular}{lll} 
hёрa & \(=\boldsymbol{m u}\) & \(=m a\) \\
touch & \(=\mathbf{I N T R Z}\) & \(=\) PST
\end{tabular}
'His shin hurt, [and then] he scratched his shin.' (s_pear_hoax)
\begin{tabular}{llll} 
b. îh \(t\) tëhë & kama & kanasi \\
thh & \(=t e ̈ h e ̈ ~\) & kama & kanasi \(=\) \\
ANA & \(=\) REL.PRS 3 & garbage
\end{tabular}
ĩthãatamorayupëha [...].
ith \(=a \quad=t a \quad=\boldsymbol{a} \boldsymbol{u}=r a y u \quad=p \ddot{\quad}=h a\)
stand =POST =HAB =INTRZ =PFV1 =NMLZ =OBL
'Where he usually kept his trash [can] [...]' (s_ms09_suka)
 attributive verb while its possessor becomes the subject of the derived verb. In (60) we have an example of this verbalization, where 'fish' become an attributive stem 'to be fished', i.e. 'to have fishes'.
(60) Kunathoi a yuripë
kunathoi \(a=\) yuri =pë
Kunathoi 3SG= fish =VBLZ
'Kunathoi has fishes.' / '[These are] Kunothoi’s fishes.' [lit.: ‘Kunathoi is "fished""]

Like any attributive stem, the verbs derived with =pë can appear together with other stems in constructions with secondary predication. The attributive stem is always the secondary predicate in these cases. When the primary verb is an intransitive one, the possessor remains as the subject of the clause, (61a). However, when the verb is transitive, the possessor becomes the patient of the clause, (61b). Therefore, when the promoted possessor coincides with the agent of the clause, the transitive argument structure of the clause must be reorganized, and the verb must take \(=m u\), with the
reflexive meaning, ( \(61 \mathrm{c}-\mathrm{d}\) ). Note that beneficiaries are often coded as possessors, which is the case for the examples below.
\begin{tabular}{rllllll} 
(61) a wiit & aha & & Kunathoi \(a\) & yuripë & titia & \\
wiit & \(=a\) & \(=h a\) & kunathoi \(a=\) & yuri & \(=p \ddot{ } \quad\) titi & \(=a\) \\
basket & \(=\mathrm{SG}\) & \(=\) OBL Kunathoi \(3 \mathrm{SG}=\) fish & \(=\) VBLZ insert & \(=\) PFV.VWL
\end{tabular}
'Kunathoi's fishes are in the basket.'
\(\begin{array}{llllll}\text { b. } \text { Kunathoi yaa }\)\begin{tabular}{lllll}
\text { yuripë } & \multicolumn{2}{c}{\text { rëkërarema }} & & \\
\text { kunathoi ya }\(=\quad a=\) & \text { yuri }\(=p e ̈ ~ r e ̈ k e ̈ ~\) & \(=r a\) & \(=r i\) & \(=m a\) \\
\text { Kunathoi } \(1 \mathrm{SG}=\) & \(3 \mathrm{SG}=\text { fish }=\mathrm{VBLZ} \text { pull }\) & \(=\mathrm{DISTR}\) & \(=\mathrm{PFV} 1\) & \(=\mathrm{PST}\) \\
\text { 'I caught Kunathoi's fishes.' }
\end{tabular} & & & & \end{array}
c. Kunathoi a yuripë rëkëpramorayoma
kunathoi \(a=\) yuri =pë rëkë =pra =mu =rayu =ma
Kunathoi 3 SG \(=\) fish \(=\) VBLZ pull \(=\) DRV \(=\) INTRZ \(=\) PFV1 \(=\) PST
'Kunathoi caught fishes for himself.'
d. Kunathoi a rakãma thothopë
kunathoi \(a=\) rakãma =thotho =pë
Kunathoi 3SG= hammock =CLN:hammock =VBLZ
tiyëpramorayoma
\(\begin{array}{lllll}\text { tiyë } & =p r a & =\boldsymbol{m u} & =r a y u & =m a \\ \text { cut_down } & =\text { DRV } & =\mathbf{I N T R Z} & =\text { PFV1 } & =\text { PST }\end{array}\)
'Kunathoi wove a hammock for himself.'

This derivation with \(=p e \ddot{e}\) is particularly productive with kinship terms, as we will see ahead in \(\S 9.7\), and so is their use in reflexive constructions. In (62), the underlying patients of the clause are kinship terms derived into an attributive stem with \(=p \ddot{e}\). This derivation promotes the 'possessor' or the other person of the kinship relation to the core absolutive position of the clause. As this other person (the 'possessor) is also the underlying agent of the event, the construction requires the intransitivizer \(=m u\) and acquires a reflexive status, at least syntactically.
(62) а. kama а heparapë xëтотауота
kama \(a=\) hepara =pë \(x \ddot{\quad=\boldsymbol{e} \boldsymbol{u}}=\) rayu \(=m a\)
3 3SG= brother =VBLZ beat; kill =INTRZ =PFV1 =PST 'He hit his brother.'
b. kaho wa uhurupë tikipramorayoma
kaho wa= uhuru =pë tiki =pra =mи =rayu =ma 2 2SG= child =VBLZ prick =DRV =INTRZ =PFV1 =PST 'You gave your son an injection.'

It is worth noting that there is no restriction for a denominalized noun to appear together with a noun of Type 2 as the underlying absolutive argument of the clause. In these cases, and when the possessor is the underlying agent, the reflexive construction is also required, as in (63).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (63) & thëpë & \multicolumn{3}{|c|}{kiãharayu} & \multicolumn{2}{|r|}{tëhë} \\
\hline & thë= & \(p \ddot{e}=\) & kiã & = harayu & \(=u\) & =tëhë \\
\hline & CLN.GNR= & \(3 \mathrm{PL}=\) & work & = DIR:upstre & am = DY & =REL.PRS \\
\hline ropent & & thëpë & & kanasi & xawarap & \\
\hline rope & \(=n \dot{1}\) & thë= & \(p \ddot{e}=\) & kanasi= & xawara & \(=p \ddot{ }\) \\
\hline quick & = ADVLZ & CLN.GNR & \(=3 \mathrm{PL}=\) & garbage & \(=\) epidemic & \(=\mathrm{VBLZ}\) \\
\hline xeeah & muwwei & & & & & mau \\
\hline xee & \(=a\) & \(=h a\) & \(=\boldsymbol{m} \boldsymbol{u}\) & =u & = wei & mau \\
\hline throw & \(=\) DISTR & = DRV & = INTRZ & \(=\) DYN & = NMLZ & water \\
\hline pata u & & & ] [...] & & & \\
\hline pata & \(=u\) & \(=h a\) & & & & \\
\hline big & = CLN:liqui & id \(=\) OBL & & & & \\
\hline
\end{tabular}
'When they [the miners] work upriver, they quickly start to throw away their pestilent garbage [in the river].' (m005_wawa_gari)

\subsection*{9.6.3. 'Pseudopassive' or reflexive-causative markers \(=m u\) or \(=m a=m u\)}

YMA does not have passive derivations. Nevertheless, there is a type of construction in the language that formally very much resembles a passive. The examples below illustrate this. In (64a) an active transitive predicate has an underlying agent realized

\section*{514 Yanomama clause structure}
as the syntactic agent (a core argument) of the clause, while the semantic and the syntactic patients coincide. In (64b), the syntactic and underlying arguments do not coincide. The clause is intransitive: the core argument - kami ya 'I' - is the subject, while the underlying agent - thuwë pë 'the women' - is an oblique argument.

'The women painted me.'
\begin{tabular}{llll} 
b. thuwë thëpëha & & \multicolumn{2}{c}{\(y a\)} \\
thuwë thë & \(=p \ddot{e}\) & \(=h a \quad y a=\) \\
woman CLN.GNR & \(=\mathrm{PL}\) & \(=\mathrm{OBL}\) & \(1 \mathrm{SG}=\)
\end{tabular}
wakëpramorayoma
wakë =pra =mи =rayu =ma
red =DRV =INTRZ =PFV1 =PST
'I had the women paint me.'

One of the reasons for not considering this a passive construction lies in the fact that not all types of nouns can occupy the absolutive position in the derived clause. Inanimate entities, for instance, cannot be the subject of this 'passive' clause. The hypothetical example in (65b) is ungrammatical. When confronted with this construction, a speaker mockingly asked this researcher whether houses were able to talk and ask to be burnt.
\begin{tabular}{lllll} 
a. warõ thëpëní & & & yano \(a\) \\
warõ \(=\) thë & \(=p \ddot{e}\) & \(=n \dot{1}\) & yano \(a=\) \\
man \(=\) CLN.GNR & \(=\mathrm{PL}\) & \(=\) ERG house \(3 \mathrm{SG}=\)
\end{tabular}
ixipraremahe
ixi =pra =ri =ma =he
burn =DRV =PFV1 =PST =3PL
'The men burnt the house.'
\[
\begin{array}{rlrl}
\text { b. * } & \text { warõ pëha } & & \text { yano } a \\
\text { warõ }=p \ddot{e} & =h a & \text { yano } a= \\
\text { man }=\mathrm{PL} & =\mathrm{OBL} \text { house } 3 \mathrm{SG}=
\end{array}
\]
ixipramorayoma
\begin{tabular}{llll} 
ixi & \(=p r a\) & \(=\boldsymbol{m u}\) & \(=r a y u\) \\
burn & \(=\) DRV & \(=\) INTRZ & \(=\) PFV1 \\
b PST
\end{tabular}
'The house was burnt by the men.'

As the translations in (64) suggest, this pair of examples do not perfectly match regarding their semantics, even though I ended up being painted in both events. In (64a), nevertheless, it is not clear whether I had let or asked them to paint me, whereas (64b) makes explicit that I had done it. Semantically, the construction in (64b) resembles the analytic construction found in French called 'reflexive-causative.' This construction makes use of the reflexive version of verb faire 'to do', the verb (in its non-reflexive version) regularly used in French for causative constructions. In the examples (66a-b) we have the same meaning as in (64) translated into French. Note that example (66c) is a passive construction, which semantically matches with (66a) but not with (66b).
(66) a. Les femmes m'ont peint.
'The women painted me.'
b. Je me suis fait peindre par les femmes.
'I let them paint me.'/‘I asked them to paint me.'
c. J'ai été peint par les femmes.
'I was painted by the women.'

Note that, similarly to what happens in YMA, in French there is also a restriction for non-animate entities to occupy the position of the reflexive causer. The example in (67a), a translation of the example (65b), will also sound quite strange for a native speaker of French unless it was found in a clear metaphorical context. The active construction, (67b), or the passive one, (67c), are the only grammatically acceptable versions of this.
(67) a. *La maison se fait incendier par des hommes.
'The house had itself be burnt by the men.'
b. Les hommes ont incendié la maison.
'The men burnt the house.'
c. La maison a été incendiée par des hommes.
'The house was burnt by the men.'

This semantic restriction, which is also found in YMA, is crucial to understand why this construction is not a passive. In YMA, every type of noun, regardless its animacy, can be the subject of intransitive predicates. Moreover, there are a lot of anticausative stems of which the prototypical subject is inanimate. The verb ixipra in example (65a), for instance, is the causative version of the basic anticausative stem ixi 'to burn'. In (68a) we have the same situation of (65a) depicted as an agentless event (anticausative). Conversely, as we have seen in other sections of this grammar, there is a strong restriction in the language for inanimate entities to be the syntactic agent of a transitive clause. Moreover, as I mentioned before, the restriction is to inanimate entities to be the ergative argument of a clause, not the absolutive. This is the clue that indicates that the example (64b) has, at least in this sense, a transitive status - which (68) does not have - and that the absolutive argument of the example (64b) is also categorized, at least partially, as an agentive argument.
(68) \begin{tabular}{l} 
yano \(a \quad\) ixirayoma \\
yano \(a=\) ixi \(=\) rayu \(=m a\) \\
house \(3 \mathrm{SG}=\) burn \(=\mathrm{PFV} 1=\mathrm{PST}\) \\
'The house burnt.'
\end{tabular}

This semantic restriction can be explained by the fact that this construction always entails a certain responsibility on the syntactic subject's part for the outcome of the event, which ultimately affects himself. This requires that the participant in the subject position should be at least a living creature with volition and consciousness. Actually, consciousness seems to be even more important in the characterization of
the reflexive causer than volition, since there are several examples in the corpus of undesired self-inflicted (or perceived as self-inflicted) actions coded as reflexivecausative. This construction is frequently heard, for instance, in the context of war or a fight - in which the participant consciously or voluntarily had engaged - to describe a resulting or related event that affects him. If he gets hit or killed in this event, the reflexive-causative will be used describe it. Also, when the participant does something despite the advice of others not to do so, or engages in something notoriously dangerous, or performs something remarkably careless, any outcome event that has 'himself' as the underlying patient/object will be syntactically expressed as reflexivecausative. Therefore, the semantic feature that explains the usage of this construction is not related to willingness/volition itself, but to something like 'responsibility.' Note that the semantic features associated with the reflexive causer are very similar to those found in the non-reflexive causer of simple causative constructions, as in (12)-(17). In (69), I present other three examples of the reflexive-causative construction.

'After the woman had angrily run away to the forest, she let herself be killed by the enemies (she shares the responsibility for her death because she decided to go to the forest).'
\begin{tabular}{|c|c|c|c|}
\hline b. Kunathoi eha & & Ararima a & \(x \ddot{ }\) \\
\hline kunathoi \(=e\) & \(=h a\) & Ararima \(a=\) & \(x \ddot{ }\) \\
\hline Kunathoi = DIF.PART & \(=\) OBL & Ararima 3s & beat; \\
\hline
\end{tabular}
morayoma
\begin{tabular}{lll}
\(=\boldsymbol{m} \boldsymbol{u}\) & \(=r a y u\) & \(=m a\) \\
\(=\) INTRZ & =PFV1 & \(=\) PST
\end{tabular}
'Ararima let himself be beaten by Kunathoi.' (Ararima was somehow responsible for being beaten by Kunathoi, as he voluntarily entered into a fight with him, for instance)

'I am speaking out because I do not want to be killed by the white people.' (PDYP_MIC_A_18_02).

When speakers were confronted with the hypothetical sentence in (70), they did not fully reject it in terms of its grammaticality, but asked whether this was taken from a traditional narrative (where animals usually behave like humans) or whether Ararima was a type of animal. According to their explanations the dog does not have enough awareness or responsibility over what it is doing to be blamed when there is a bad outcome. Using the same analogy presented by them, it is like blaming a child for falling from his mother's arms, even if he bounced around a lot.
\[
\begin{align*}
& \text { * hiima ani Ararima a ha warini }  \tag{70}\\
& \text { hiima }=a \quad=n \dot{i} \text { Ararima } a=\quad h a=\quad w a=r i \quad=n \dot{t} \\
& \operatorname{dog}=\mathrm{SG}=\text { ERG Ararima 3SG= REL.PST= eat =PFV1 =REL.PST } \\
& \text { huи tihini } \quad a \quad \text { xeepramorayoma } \\
& \text { huи =tihi } \quad \text { ni } a=\text { xee =pra =mu =rayu =ma } \\
& \text { tree }=\text { CLN:tree }=\text { INS 3SG= throw =DRV =INTRZ =PFV1 =PST }
\end{align*}
\]
'After the dog had bitten Ararima, he beat it with a stick.'
Interestingly, the reflexive-causative constructions, probably because of this resemblance to passives, can play some of the functions typically associated with passive constructions, such as foregrounding the underlying patient of a clause or backgrounding an indefinite or diffuse agent. In the examples below we have two
instances of agentless (or causeeless, to be more precise) reflexive-causative clauses. In both cases, the deleted causee is unknown or indefinite, and the role of the remaining participant in bringing about the event is being underlined.

'Although they had said that, and because 'my white person' did not obey, he let himself be spoiled, he let himself be killed.' (PDYP_MIC_B_08_05)

xapuri Yurina wããha=ku \(=o \quad=w e i=a \quad=n e ̈ \quad p \ddot{=}=\)
shaman Yurina name \(=\) exist \(=\) STV \(=\) NMLZ \(=\) SG \(=\) ERG 3 PL \(=\)

'Although the shaman named Yurina had prohibited them, and after they had not listened to it, they let themselves be shot.' (PDYP_MIC_B_10_02)

Even though the semantics can help us to decide whether the analysis of this construction as reflexive-causative is correct, we do not need to rely exclusively on it, for the language also provides some formal pieces of evidence that support this analysis. The first formal hint that this is not a passive construction can be found through the comparison of the argument restructuring pattern of this derivation with
non-reflexive-causative constructions, i.e. with simple causative or reflexive constructions. Example (72a) shows a simple causative derivation with the enclitic \(=m a\), where the causer and the causative patient are distinct entities. On the other hand, in (72b) we have reflexive-causative derivation with \(=m u\) in which the causer and causative patient coincide (kami ya 'I'). Note that, in both utterances, the causee (wai pë 'the enemies') is given similar treatment as an oblique argument. The absolutive position that the reflexive causer takes in (72b) can be easily explained by the argument restructuring regularly found in reflexive derivations. As I show in §9.6.2, in the reflexive derivation, the verb is made intransitive with \(=m u\), and the sole argument projected in the clause, which conflates the underlying agent and patient, is absolutive.

'Not to let the enemies catch the chicken, I hid it.'
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & b. wai pëha & & \(y a\) & riã & huw & ram & тии \(u\) & & & \\
\hline & wai \(=p \ddot{ }\) & \(=h a\) & \(y a=\) & riã \(=\) & huwë & \(\ddot{\text { e }}=\) & \(=p r a\) & \(=\boldsymbol{m u}\) & & =u \\
\hline & enemy \(=\) PL & =OBL & \(1 \mathrm{SG}=\) & VOL= & grab & & \(=\mathrm{DRV}\) & \(=\) INTR & & \(=\mathrm{DYN}\) \\
\hline ha & maani & & & & \(y a\) & hõy & vakema & & & \\
\hline \(h a=\) & ma & = 0 & \(=n \grave{1}\) & & \(y a=\) & hõya & a \(=\) & & \(=m a\) & \\
\hline REL. & PST \(=\) not_exist & =STV & \(=\) REL & L.PST & \(1 \mathrm{SG}=\) & hide & e \(=P\) & V2 & \(=\) PST & \\
\hline
\end{tabular}
'Not to let the enemies catch myself, I hid.'

According to this analysis, in reflexive-causative constructions, the argument structure of the clause undergoes two successive reorganizations. First the argument structure acquires the typical organization of a causative construction and then it is rearranged as a reflexive. In both processes, only the canonical rules of regular
causative and reflexive derivations are necessary to explain what happens. Below, Table 9.5 illustrates this double reorganization of the argument structure.

Table 9.5 - Patterns of argument structure rearrangement in YMA reflexivecausative constructions
\begin{tabular}{|c|c|c|c|}
\hline & Basic & Causative & Reflexive-causative \\
\hline intransitive & AB & ERG ABS & \[
\begin{aligned}
& \text { ERG } \\
& \text { ABS }
\end{aligned}
\] \\
\hline monotransitive and ditransitive & \begin{tabular}{l}
ERG \\
ABS \\
[OBL]
\end{tabular} &  & \begin{tabular}{l}
ABS \\
OBL \\
[OBL]
\end{tabular} \\
\hline
\end{tabular}

The final bit of evidence that morphosyntax provides us with in support of a reflexive-causative interpretation of these constructions is related to the fact that the enclitic \(=m u\) can be replaced, only in these contexts, by the combination of \(=m a=m u\) without any change in meaning. This combination is formed by causative \(=m a\) and intransitivizer \(=m u\) and has, therefore, a transparent iconic relationship with the double nature of this complex derivation (CAUS+REFLX). Even though this combination is rarely realized in spontaneous texts, for all the examples above native speakers claim that the substitution by these combined morphemes was perfecty possible. The examples in (64b) and (72b) could be restated, with no semantic loss, as in (73a) and (73b). In (74), I present another example of possible replacement of \(=m u\) by \(=m a=m u\) in reflexive-causative contexts.
\[
\begin{array}{rlll}
\text { (73) a. } \text { thuë } & \text { pëha } & & y a \\
\text { thuë } & =p e ̈ & =h a & y a= \\
\text { woman } & =\mathrm{PL} & =\mathrm{OBL} & 1 \mathrm{SG}=
\end{array}
\]
wakëpramamorayoma
\begin{tabular}{lllll} 
wakë \(=\) pra & \(=\boldsymbol{m a}\) & \(=\boldsymbol{m} \boldsymbol{u}\) & \(=r a y u\) & \(=m a\) \\
red \(=\) DRV & \(=\) CAUS & \(=\) INTRZ & \(=\) PFV1 & \(=\) PST
\end{tabular}
'I let the women paint myself.'

522 Yanomama clause structure

'Not to let the enemies catch myself, I hid.'
(74) a. wai pëha Kunathoi a nomamorayoma.
wai =pë =ha Kunathoi \(a=\) noma =mu =rayu =ma
enemy \(=\mathrm{PL} \quad=\mathrm{OBL}\) Kunathoi \(3 \mathrm{SG}=\) die \(=\mathbf{I N T R Z}=\) PFV \(=\) PST
'Kunathoi let the enemies kill himself.'

'Kunathoi let the enemies kill himself.'

It is worth noting that, differently from the simple reflexive derivation, the reflexive-causative derivation allows either transitive or intransitive stems to take part in the construction. With transitive verbs the resulting predicate always has ditransitive valency - with the causee moved to the oblique position. When the derived verb is intransitive, the resulting construction may be monotransitive without a causee - , like in (75a), or ditransitive - with an oblique causee - like in (75b).

ke(ma)morayoma
ke (=ma) =mu =rayu =ma
fall (=CAUS) =INTRZ =PFV1 =PST
'When Ararima started to play on the top of the tree, he fell on the floor. (It is implicit that Ararima was playing in an obviously dangerous manner, or that he was warned not to climb the tree or not to play on the top of it).'

'When Ararima and Kunathoi started to play on the top of the tree, Ararima let himself be dropped down on the floor by Kunathoi. (It is implicit that Ararima was himself trying to drop Kunathoi, or that they were playing in an obviously dangerous manner or that Ararima was warned not to climb the tree or not to play on the top of it with Kunathoi).'

Example (76a) is the monotransitive version of the ditransitive clauses in (74) and helps us understand the semantic differences between the two constructions. As the translations in (76a) show this construction can refer to an event where the participant literally killed himself (by drinking poison) or to event where he was
obviously killed by others (but somehow shares some responsibility). That is, when the construction is monotransitive a more strictly reflexive reading of the event is allowed, without the mediation of a causee. Nevertheless, the interpretation of a mediated event is not ruled out, as long as this causee is indefinite, unknown or general ('the enemies', 'the foreigners', 'the white people'...). In (76b) we have the nonreflexive anticausative version of this clause.
(76) a. Kunathoi a noma(ma)morayoma.

Kunathoi \(a=\) noma (=ma) =mu =rayu \(=m a\)
Kunathoi \(3 \mathrm{SG}=\) die (=CAUS) \(=\mathbf{I N T R Z ~ = P F V ~ = P S T ~}\)
'Kunathoi killed himself (suicide).'/'Kunathoi let be killed (by the unknow people or for being carefulless).'

> b. Kunathoi \(a \quad\) nomarayoma. \(\begin{array}{llll}\text { Kunathoi } a= & \text { noma } & =\text { rayu } & =m a \\ \text { Kunathoi } 3 \mathrm{SG}=\text { die } & =\mathrm{PFV} & =\mathrm{PST} \\ \text { 'Kunathoi died.' }\end{array}\)

The use of the reflexive-causative markers \(=m u\) or \(=m a=m u\) with intransitive verbs should not be mistaken for the intransitive marker \(=m u\) (and only \(=m u\) in this case, not \(=m a=m u\) ) that obligatorily appears with positional stems in imperfective contexts. The examples in (10) above illustrate this usage. Nevertheless, the reflexivecausative derivation can still be used with positional stems, as the examples (76b-c) show. Note that the (76b) has two possible literal meanings: one that considers the derived verb ditransitive and takes pei nee 'his mother' as the causee, and another that sees the verb as monotransitive and considers the oblique argument pei nee 'his mother' as an adverbial argument (place or company). The example (76c), nevertheless, admits only the monotransitive interpretation of the proposition (i.e. one without a causee), as 'the participant letting the enemies hide him [from the enemies]' would not make any sense. These examples show that the context, the intrinsic semantic features of each participant and the lexical meaning of the verb are all important parameters (alongside with the morphology) in determining the correct argument structure of a particular proposition.
\begin{tabular}{|c|c|c|c|c|c|}
\hline (77) a. ipa & thuwë eha & & kami ya & yakaa & \\
\hline ipa & thuwë & \(=h a\) & kami \(y \mathrm{a}=\) & yaka & \(=a\) \\
\hline 1 POS & woman = DIF.PART & \(=\) OBL & \(11 \mathrm{SG}=\) & lie_tgthr_with sbd & = POST \\
\hline
\end{tabular} 'I'm lying in the hammock with my wife.' (him_krep_ex)
\begin{tabular}{rlll} 
b. pei nee & eha & & Ararima \(a\) \\
pei nee & \(=e\) & \(=h a\) & Ararima \(a=\) \\
INDEF his_mother & \(=\) DIF.PART & \(=\) OBL Ararima & \(3 \mathrm{SG}=\)
\end{tabular}
yakamuu
yaka =mu \(=u\)
lie_tgthr_with_sbd =INTRZ =DYN
'Ararima is lying in the hammock with his mom.' (lit: ‘Ararima is making himself lie with his mother' or 'Ararima is making his mother lay him [with her]) (him_krep_ex).

'Not to let myself be caught by the enemies, I hid myself.'

\subsection*{9.6.4. Reciprocal \(=y u\)}

There are very few contexts in which ditransitive verbs differ from monotransitive ones. The derivation with the reciprocal marker \(=y u\) is one of these. Only dynamic mono and ditransitive stems can be derived with reciprocal \(=y u\), but differently from the intransitivizer \(=m u\), the resulting verb does not always project an intransitive argument structure into the clause. While the derivation of a monotransitive stem produces a intransitive verb, like in (78a), the derivation a ditransitive stem results in a 'semi'-transitive stem, like in (78b).

'The women distributed among themselves the glass beads.'

The reason for calling (78b) a 'semi'-transitive lies in the fact that these derived verbs display ambiguous behavior as to their morphosyntactic properties. On the one hand, they project a transitive argument structure in the clause, with two noun phrases being allowed as core arguments - one marked ergative (thuë thëpëni 'the women') and one absolutive (tëpë kiki 'glass beads') -, and two slots vacant in the verb for argument markers \(-k i k i=\) for 3 rd person plural patient and \(=h e\) for 3rd person plural agent. On the other hand, the derived verb does not take the typical perfective morphology of a transitive verb, i.e. it does not take transitive perfective \(=r e\), but intransitive =rayu instead. In non-perfective contexts, nevertheless, the verb behaves as a regular transitive.

The reassignment of semantic roles to syntactic functions that this derivation produces also varies according to the level of transitivity of the basic verb. When it is monotransitive, the diathesis rearrangement of the derived clause has the following features. The participants (always more than one) are conflated into a single nonmarked absolutive argument with plural semantics (80), or listed one by one in overtly marked additive/comitative arguments (79). Nevertheless, the verb acquires intransitive valency in both cases as only one argument is marked on the verb (inevitably a non-singular marker). Semantically the participants bring about an action over other participants while they are simultaneously the object of the same action that is being reversely carried out by the other participants. In other words, and like
the reflexive situation, the agent and patient arguments coincide. In this case, the coinciding arguments must refer to more than one participant, who are separetedly performing an action affecting not themselves reflexively, but the co-performers.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{(79) a. hõõkiãrĩxo} & \multicolumn{3}{|c|}{trarixo} & & & kipë \\
\hline & kiãrı̃ & \(=x 0\) & trari & & \(=x 0\) & \(p i=\) & \(k \dot{\text { kie }}=\) \\
\hline & of puma & =ADD & spirit of & jaguar & =ADD & FOC= & \(3 \mathrm{DU}=\) \\
\hline poayu & & & xioma & & & & \\
\hline poa & = \(\boldsymbol{y} u\) & \(=u\) & & \(=0\) & \(=m a\) & & \\
\hline plow, cut & = RECP & \(=\mathrm{DYN}\) b & obvious & =STV & \(=\) PST & & \\
\hline
\end{tabular}
'The spirits of the jaguar and of the puma, they two evidently stab each other.' (n034_oeki)
\begin{tabular}{|c|c|c|c|c|}
\hline b. Xirianapëxo xiriana & \(=p \ddot{ }\) & & yam & \\
\hline Xiriana person & \multirow[t]{2}{*}{\(=\mathrm{PL}=\)} & \multirow[t]{2}{*}{\(=\) ADD} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline iamayoma & & & & \\
\hline & \(=m a\) & & & \(=m a\) \\
\hline nt_onself_dancing & = CAUS & & ECP & \(=\) PST \\
\hline
\end{tabular}
'With the Xiriana people, we made each other present ourselves in the festival.' (i.e. 'The Xiriana people and us, we invited each other to our respective festivals') (PDYP_MIC_A_03_18).

'Although we had almost shot each other [...]' (PDYP_MIC_B_10_02).

'Because we treated each other friendly, because we treated each other as allies [...]' (PDYP_MIC_B_07_06).

The argument structure projected by monotransitive verbs derived with reciprocal \(=y u\) follows the Schema 9.7 below.
[PARTICIPANT1+COM] [PARTICIPANT2+COM]... ABS(DU/PL) V=yu

\section*{Schema 9.7 - Argument rearrangement of reciprocal derivations with monotransitive verbs}


When the basic verb is ditransitive, the reciprocal derivation projects two arguments in the clause, one absolutive, which corresponds to the original theme argument of the non-derived clause (also absolutive), and one ergative, which conflates the agent and the recipient arguments.
\begin{tabular}{rlll} 
a. pata thëpëni & & & lthuwë \(p \ddot{e}\) \\
pata \(=\) thë & \(=p \ddot{\boldsymbol{e}}\) & \(=\boldsymbol{n i}\) & thuwë \(p \ddot{e}=\) \\
elder \(=\) CLN.GNR & \(=\mathrm{PL}\) & \(=\mathbf{E R G}\) & woman 3PL=
\end{tabular}
hiptayomahe
hipi \(=a \quad=\boldsymbol{y} \boldsymbol{u}=m a=h e\)
give =PFV.VWL = RECP =PST =3PL
'[The ancestors] gave each other their woman.' (n003_hakimuwei)
```

b. [...] thëkii toayu
thë ki= i toa =a =yu
CLN.GNR PL= DIM take =PFV.VWL =RECP
xoarayomahe
xoa =rayu =ma =he
continue =PFV1 =PST =3PL
'[...] [And] they took them [the fruits] from each other.' (s_pear_marc)

```

In other words, when applied to a ditransitive verb, the derivation fuses the ergative argument (the Agent) and the oblique argument (the recipient) of the nonderived argument structure, keeping intact the absolutive one (the theme). With monotransitive verbs, the conflation is between the ergative and absolutive arguments. Schema 9.8 below represents the argument restructuring that the reciprocal derivation produces with ditransitive verbs.

\section*{Schema 9.8 - Argument rearrangement of reciprocal derivations with ditransitive verbs}


In (82) I present other verbs that behave as ditransitives in the reciprocal derivation. Note that not all these verbs project a recipient-like argument besides the agent argument. Sometimes this argument is semantically closer to a source, like in (82b) and (82c). In all cases with ditransitive verbs, nevertheless, this other argument (source or recipient) is conflated with the agent argument, and is syntactically realized in the clause as the ergative argument. In the clauses below, the ergative argument is only recoverable by the third person plural and dual agent markers, \(=h e\) and \(=p i\).
(82) a. projeto tha \(a\)
projeto tha \(\tilde{a}=\) wë \(=a \quad=y u\)
project CLN.GNR \(=\) sound \(=\) explain =PFV.VWL =RECP
xoamahe
\begin{tabular}{lll}
\(x o a\) & \(=m a\) & \(=\boldsymbol{h e}\) \\
continue & \(=\) PST & \(=\mathbf{3 P L}\)
\end{tabular}
'They explained each other the project.'
b. amoã thëрёã
hĩriayu
aтоã thë \(=\quad\) pë \(=\quad \tilde{a}=\quad\) hiri \(=a \quad=y u\)
song CLN.GNR \(=3 \mathrm{PL}=\) sound= hear =PFV.VWL =RECP
xoamahe
\begin{tabular}{lll}
\(x o a\) & \(=m a\) & \(=\boldsymbol{h e}\) \\
continue & \(=\mathrm{PST}\) & \(=\mathbf{3 P L}\)
\end{tabular}
'Then they listened each other's songs.' (lit.: 'They listened the songs from each other')
c. projeto thããa wariayu
projeto thë \(=\quad \tilde{a}=\quad\) wãr \(=a \quad=y u\)
project CLN.GNR \(=\) sound \(=\) ask \(=\) PFV.VWL \(=\) RECP
xoapima
xoa \(=\boldsymbol{p i}=m a\)
continue \(=\mathbf{3 D U}=\mathrm{PST}\)
'Then they two asked each other about the project.'

As we saw in \(\S 4.2 .5\) and \(\S 7.5 .2\), when the semantic patient of an event is a bodypart, its possessor appears as the syntactic patient of the clause, i.e. in the absolutive position. When there is an event where the different agents do something over each other's body-parts, we will also have a syntactic coincidence between agent and patient arguments, and the verb must be derived with reciprocal \(=y u\). Example (83) is one instance of this configuration.
\begin{tabular}{lllll} 
thëpë & \multicolumn{1}{c}{ pariki xëyoma } & \\
thë \(=\) & pë \(=\) pariki xë & \(=y u\) & \(=m a\) \\
CLN.GNR \(=\) & \(3 P L=\) chest beat; kill & \(=\mathrm{RECP}\) & \(=\mathrm{PST}\)
\end{tabular}
'They beat each other's chest.' (PDYP_MIC_A_17_01)

This 'promotion' of the body-part possessor to the absolutive position of the clause helps us understand why the derived clauses in (84), which have the same ditransitive verb as in (78b) and (81a), do not require two arguments to be marked in the verb. In examples (84), not only the reciprocal agents and the recipients are the same, but also the theme (which is in the absolutive position). The reciprocal construction in this case has a truly intransitive argument structure, just like if it was derived with a monotransitive verb. Otherwise, the marker \(=p \dot{i}\) for third person dual agent would be expected in the examples (84), like the marker \(=h e\) for third person plural agent appears in the example (78b) and (81a).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (84) a. \(t\) thi & axo & & opo & axo & & kipë & naki & & ka \\
\hline tihi & \(=a\) & \(=x o\) & opo & \(=a\) & = \(x 0\) & kipë= & \(n \boldsymbol{a}=\) & & \(k a=\) \\
\hline jaguar & \(=S \mathrm{G}\) & = ADD & armadillo & & \(=\mathrm{ADD}\) & \(3 \mathrm{DU}=\) & tooth= & \(\mathrm{PL}=\) & FOC= \\
\hline hipiayoni & & & & [...] & & & & & \\
\hline hipi \({ }^{\text {a }}=a\) & & & & & & & & & \\
\hline give = DISTR & \(=\) & CP & AS.REM & & & & & & \\
\hline
\end{tabular}
'The jaguar and the armadillo, they two exchanged their teeth [...]' (n026_opotihi)


\subsection*{9.6.5. Intransitive morpheme \(=p r u\)}

Like its transitive counterpart \(=p r a\), the morpheme \(=p r u\) can change the valency of a predicate but should not be considered a valency-changing marker per se. This marker may indeed decrease the valency of a transitive verb, as in (85a). On the other hand, it also derives intransitive verbs only altering their lexical meaning, as in (86) . This change in the lexical meaning is frequently a very subtle semantic modulation without any alteration in the valency or voice of the verb. As the translation indicates, the sentences in (86) mean literary the same thing, but are used in completely different contexts. Therefore, the intransitive marker \(=p r u\), as its transitive counterpart \(=p r a\), should rather be analyzed as morphological resources for creating new lexical meanings than as morphosyntactic devices to reorganize argument structure or change the number of arguments of a proposition. Note that the vowel \(=p r u\) is centralized as \(a\) when adjacent to the perfective morpheme =rio. We know that in the examples below it is indeed the intransitive morpheme \(=p r u\) and not the transitive \(=p r a\) because the perfective marker =rio is not compatible with transitive stems.
(85) a. huи tihini
huи =tihi =ni yano \(a=x \ddot{e}=\) pra =rio =ma
tree \(=\) CLN:tree \(=\) CAUSE house \(3 \mathrm{SG}=\) beat; kill =DRV =PFV1 =PST
'The house was destroyed because of the tree.'
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline b. huи tihinì & & hiima yaa & & xërema & & \\
\hline huu =tihi & & hiima \(y=\) & & \(x e ̈\) & =ri & \(=m a\) \\
\hline tree =CLN:tree & \(=\) INS & \(\operatorname{dog} 1 \mathrm{SG}=\) & \(3 \mathrm{SG}=\) & beat; kill & \(=\mathrm{PFV} 1\) & \(=\mathrm{PST}\) \\
\hline
\end{tabular} 'I hit the dog with the stick.'
\begin{tabular}{llll} 
c. huu tihini & & hiima yaa & \\
huи \(=\) tihi & \(=n \dot{t}\) & hiima \(y a=\) & \(a=\) \\
tree \(=\) CLN:tree & \(=\mathrm{INS}\) & \(\operatorname{dog}\) & \(1 \mathrm{SG}=\)
\end{tabular}\(\quad 3 \mathrm{SG}=\)
xёprarema
\begin{tabular}{llll}
\(x \ddot{e}\) & \(=p r a\) & \(=r i\) & \(=m a\) \\
beat; kill & \(=\) DRV & \(=\) PFV1 & \(=\) PST
\end{tabular}
'I killed the dog with the stick.'
(86) a. ya pihi xaarirayoma
\(y a=\) pihi \(=\) xaari =rayu =ma
\(1 \mathrm{SG}=\mathrm{V} . \mathrm{PTC}:\) thought= right =PFV1 =PST
'I made my mind [about something] (intr).'/ 'I am sure [about something] (intr).' (lit.: 'I made my thought straight').
\begin{tabular}{lllll} 
b. \(y a\) & pihi & xaariprarioma & \\
\(y a=\) & pihi \(=\) & xaari \(=\) pra & \(=\) rio & \(=m a\) \\
\(1 \mathrm{SG}=\) & V.PTC \(:\) thought \(=\) right & \(=\) DRV & \(=\) PFV1 & \(=\) PST
\end{tabular}
'I am aware of/educated/informed [about something] (intr).' (lit.: 'My thought got straight').

For more uses of \(=p r u\) as a mechanism for creating new intransitive verbs from nouns and other verbs, please refer to \(\S 5.6 .5\) and \(\S 5.6 .10\) in the chapter on verb stems.

\subsection*{9.7. Possessor promotion and possessed denominalization}

As I have shown in \(\S 4.2 .4\) and \(\S 8.2 .3\), there are only three productive pronominal morphemes in YMA that can indicate a possession relationship between two arguments. These are the two possessive pronouns, ipa 'my' and aho 'your', and the different participant marker \(=e / e=\), a clitic from both clusters A and B. Prototypically, these pronouns and the different participant marker are used exclusively with singular possessors, the pronouns for 1 st and 2 nd persons, (87a-b), and the different participant marker for 3rd person singular, (87c).
(87) a. ipa yano a
ipa yano \(=a\)
1POS house \(=\) SG
'My house.'
b. aho yano a
aho yano \(=a\)
2POS house \(=\) SG
'Your house.'

\section*{534 Yanomama clause structure}
```

c. Ararima yano \boldsymbol{e}
Ararima yano $=\boldsymbol{e}$
Ararima house =DIF.PART
'Ararima’s house.'

```

There are some cases in which, at least semantically, the usage of the possessive pronouns (but not the different participant marker) can be extended to plural person possessors: the examples (87a) and (87b) could, in some very restricted contexts, be translated as 'our house' and 'your (plural) house', respectively. However, this is not the prototypical way of conveying this meaning. To truly express a possession relationship between a plural possessor and an alienable entity a previous derivation is required of the possessed argument into an adjective verb with denominalizing \(=p \ddot{e}\), making the possessor argument the subject of this denominalized verb, (88).
(88) a. kami yamaki yanopë
kami yamaki= yano =pë
1 1PL= house =VBLZ
'Our house.' (lit: ‘We are housed')
b. kaho wahaki yanopë
kaho wahaki= yano =pë
2 2DU= house =VBLZ
'The house of you two.' (lit: 'You two are housed')
c. nарё pë yапорё

парё \(\quad\) рё \(=\) yапо \(=\) рё
foreigner 3PL= house =VBLZ
'The white people's house.' (lit: 'The white people are housed')

Although this is the prototypical mechanism for expressing possession by plural possessors, the construction is not restricted to these persons and can also be used with singular possessors, (89).
(89) kami ya horemapë
kami ya= horema =pë
1 1SG= threadworm =VBLZ
'I have worms.' (lit: ‘I am wormed’)

The resulting construction is not a nominal predicate, like in (87), but a legitimate attributive verb stem, with the same formal features of this type of verb. These denominalized verbs must take, for instance, the stative vowel \(=o\) in imperfective contexts (90a), and can have an inchoative version, being able to take the dynamic morpheme \(=i(90 \mathrm{~b})\), or the perfective marker \(=\) rayu, \((90 \mathrm{c}-\mathrm{d})\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (90) a. kami ya kami \(y a=\) & \begin{tabular}{l}
hõreтарёо \\
hõrema
\end{tabular} & \(=p \ddot{ }\) & \(=0\) & \[
\begin{aligned}
& \text { tëhë } \\
& =\text { tëhë }
\end{aligned}
\] & \[
\begin{aligned}
& \text { naxi } \\
& \text { naxi }
\end{aligned}
\] & \(y a\)
\[
y a=
\] \\
\hline \(1 \quad 1 \mathrm{SG}=\) & threadworm & \(=\) VBLZ & =STV & =REL.PRS & cassava & \(1 \mathrm{SG}=\) \\
\hline kohiu koaimi & & & & & & \\
\hline kohiu \(=\) koa & = imi & & & & & \\
\hline CLN:beer= drink & \(=\) NEG & & & & & \\
\hline
\end{tabular}
'When I have worms I don't drink cassava beer.'
\begin{tabular}{clllllll} 
b. \(y a\) & horemapëi & & \(t a\) & \(y a\) & pihi \(k u u\) & \\
\(y a=\) & horema & \(=p \ddot{e}\) & \(=\boldsymbol{i}\) & \(=t a\) & \(y a=\) & pihi \(k u\) & \(=u\) \\
\(1 \mathrm{SG}=\) & threadworm & \(=\mathrm{VBLZ}\) & \(=\mathbf{D Y N}\) & \(=\mathrm{CMPLZ}\) & \(1 \mathrm{SG}=\) & think & \(=\mathrm{DYN}\)
\end{tabular}
'I think I am getting worms.'
c. kami ya horemapërayoma
kami \(y a=\) horema \(=p \ddot{\quad=r a y u ~=m a ~}\)
1 1SG= threadworm =VBLZ =PFV1 =PST
'I got worms.' (lit: 'I became wormed')
d. kama imiki misikipërayoma
kama imiki \(=\) misiki \(=p e ̈ \quad=r a y u \quad=m a\)
3 hand= thorn =VBLZ =PFV1 =PST
'His hands got thorns.' (s_ms10_arok)

Another adjective stem feature that these derived verbs acquire is the ability of taking part in secondary predications, with either transitive or intransitive verbs as the main predicate. When the main predicate is an intransitive verb, the possessor remains the syntactic subject of the clause, (91a), while is treated as object when the main predicate is transitive, (91b). Syntactically, the semantic possessor therefore always occupies the absolutive position in the derived clause.
(91) a. kami yamaki yanopë ixirayoma
kami yamaki= yano \(=p \ddot{e}\) ixi =rayu =ma
1 1PL= house =VBLZ burn =PFV1 =PST
'Our house has burnt.' (lit: 'We housed burned')
b. proro pëni kami yamaki yanopë
proro \(=p \ddot{e}=n \dot{t}\) kami yamaki \(=\) yano \(=p \ddot{e}\)
miner \(=\mathrm{PL} \quad=\mathrm{ERG} 1 \quad 1 \mathrm{PL}=\) house \(=\mathrm{VBLZ}\)
iximaremahe
\(\begin{array}{lllll}i x i & =m a & =r i & =m a & =h e \\ \text { burn } & =\text { CAUS } & =\text { PFV1 } & =\text { PST } & =3 \text { PL }\end{array}\)
'The miners burnt our house.' (lit: 'The miners burned us housed')

In secondary predication with transitive main predicates, when the described event is semantically such that the possessor performs an action on the possessed entity (which is formally a verb now), the whole construction is reorganized as a reflexive one, and the main verb must be derived with the intransitivizer \(=m u(92)\).

'Then, when their food is over, they will look for their game meat [...].'
(m004_paya_gari)

Schema 9.9-Argument rearrangement of the possessor promotion derivation


This derived construction can be used not only to express a possession relationship between two entities, but also to convey a beneficiary-benefit relationship. The example (61b) shows this feature, which is not exclusive of the 'possessor promotion' construction, but common among all types of possession constructions, including the ones with the possessive pronouns and the different participant marker, as in (93):

'I caught Kunathoi’s fishes.' (i.e. 'I caught fishes for Kunathoi')

Interestingly, when this derivation takes place, the semantically possessed entity, which is now a verb, cannot be marked for number anymore. The resulting construction is, therefore, transnumeral or invariable for number, and can refer to a single possessed entity or to several ones. The examples below exemplify this feature. In (94a), the number of possessed entities is clearly plural, while in (94b) is singular (we know that that person is married with just one Waika woman).

'The women (from Papiu) also made strong friendship with the Xiriana people's women.' (PDYP_MIC_B_07_06)


It must be noticed, nevertheless, that kinship terms display ambiguous behavior when derived with this denominalizing suffix. Although the derived kinship terms can be used as attributive stems, (much like any other type of derived alienable noun in YMA), there are a lot of examples in my corpus in which these (derived) words are being used as a regular (non-derived) noun of Type 1, appearing before Cluster B clitics. The examples in (95) reveal this extended usage of the derived forms, while those in (96) show the prototypical use of them as an attributive verb. In the examples below, the clitics from Cluster B are bold. Note the variable position of the derived kinship. This ambiguous behavior is only attested with kinship terms.
```

(95) a. pei heãropë eri ohi hari pihio
pei heãropë e= ri= ohi hari pihi =o
INDEF husband DIF.PART= HON= be_hungry cook will =STV
yaro [...]
=yaro
=CNJ.EXPLV

```
'Because she wanted to cook the food for her husband.' (s_chck_jose)
\begin{tabular}{llll} 
b. pei thuwëpë \(\boldsymbol{e}\) & warokema & \\
pei thuwëpë \(\boldsymbol{e}=\quad\) waro \(=k i\) & \(=m a\) \\
INDEF wife DIF.PART= arrive \(=\) PFV2 & \(=\) PST \\
'His wife arrived.' (s_chck_jose) & &
\end{tabular}
\begin{tabular}{rllllll} 
c. pei & heãropë \(\boldsymbol{e}\) & ha & hixurini & & [...] \\
pei & heãropë \(\boldsymbol{e}=\) & \(\boldsymbol{h a}=\) & hixu & \(=r i\) & \(=n \dot{i}\) \\
INDEF & husband & DIF.PART \(=\) & REL.PST \(=\) & angry & \(=\) PFV1 & \(=\) REL.PST
\end{tabular}
'After her husband had got mad [...]' (s_chck_arir)
 'His wife came afterwards. (s_chck_arir).'
```

(96) a. [kama] a thuwëpë maa paxio
kama $\boldsymbol{a}=$ thuwë $=p \ddot{\quad}$ ma $=o$ paxi $=o$
3 3SG= woman =VBLZ not_exist =STV be obvious =STV
wei [...]
=wei
=NMLZ

```
'His wife does not exist [...]' (i.e. 'He does not have a wife') (n018_yari)

'They evidently protect their women from each other (i.e. they are stingy about them)' (n003_hakimuwei)

540 Yanomama clause structure
```

 c. [kaho] wamaki thuwëрë noãmayu
 kaho wamaki= thuwë= =pë noãma =yu =u
 2 2PL= woman =VBLZ protect =RECP =DYN
 yaro
[...]
=yaro
=CNJ.EXPLV

```
'Because you all protect your women from each other.' (i.e. 'you are stingy about them') (n003_hakimuwei)

The kinship term derived with = \(p e \ddot{\text { en }}\) can eve in the ergative position of the clause, when it is the underlying agent of the event, taking the ergative morpheme \(=n i\). The sentences in (97), which were extracted from spontaneous texts, illustrate this feature.

'Then his wife took with her the small pieces of dry firewood.' (s_chck_jose)
```

 b. pei heãropë erinë pixata a
 pei heãropë \(=e \quad=r i \quad=n \ddot{e}\) pixata \(a=\)
 INDEF husband =DIF.PART =HON =ERG ground \(3 \mathrm{SG}=\)
 poapëha [..].
poa $=p \ddot{\quad=h a}$
plow, cut $=$ NMLZ $=$ OBL

```
'Where her husband was plowing the earth [...].' (s_chck_jose)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{c. \(\tilde{t} h \tilde{t}\) tëhë} & kama pei & ayõpë & \(e n i\) & \multicolumn{2}{|r|}{kama} \\
\hline \(\tilde{t} h \tilde{t}\) & \(=t e ̈ h e ̈\) & kama pei & ауо̃рё & \(=e\) & \(=\boldsymbol{n i}\) & kama \\
\hline ANA & \(=\) REL.PRS & 3 IND & EF older_b & \(=\) DIF.PART & \(=\) ERG & 3 \\
\hline heprapë e & \multicolumn{2}{|r|}{ora titia} & & & & \\
\hline heprapë \(e=\) & \multicolumn{2}{|r|}{ora \(=\) titi} & \(=a\) & & & \\
\hline brother DIF.P & \multicolumn{2}{|l|}{PART \(=\) neck \(=\) insert} & \(=\mathrm{PFV} . \mathrm{VWL}\) & & & \\
\hline xoamakema & & & . & & & \\
\hline xoa = & \(=m a\) & \(k i \quad=m\) & & & & \\
\hline afterwards = & \(=\) CAUS \(=\) & PFV2 = PS & & & & \\
\hline
\end{tabular}
'Then the older brother made his brother put on the T-shirt.' (s_tree_arir)

\subsection*{9.8. Summary and final remarks}

In this chapter, I presented several valency- and diathesis-changing mechanisms found in YMA. These mechanisms reorganize the argument structure of the clause, most of the times also changing the number of arguments required by the verb. In all these mechanisms, a derivational marker or a combination of them characterizes the construction from a morphological perspective. In the Table 6 , I present a summary of these markers, with the type of derivation associated with them and the types of verbs to which this derivational morpheme can be applied. As the last line of the table indicates, the derivation with \(=p \ddot{e}\), which promotes the possessor to a core position, is the only non-verbal derivation among the valency- and voice-changing mechanisms, although it has a similar impact on argument structure of the clause in several contexts.

Table 6 - Valency- and voice-changing markers (Summary)
\begin{tabular}{|c|c|c|c|}
\hline Markers & Type of derivation & Valency change & Type of word that can be derived with \\
\hline \(=m a\) & Causative & +1 & any verb \\
\hline kãyõ= & Associative applicative & +1 & intransitive verbs \\
\hline \[
\begin{aligned}
& \text { napë }=k \tilde{a} y o= \\
& (\text { namo }=k \tilde{a} y o=)
\end{aligned}
\] & Goal/location applicative & +1 & intransitive verbs \\
\hline \[
\begin{aligned}
& \text { pihi }=k \tilde{a} y o= \\
& (\text { mihi }=k \tilde{a} y o=)
\end{aligned}
\] & 'Content promoter/ container demoter ' & 0 & any verb \\
\hline \((=a)=m u\) & Antipassive & -1 & transitive verbs \\
\hline \(=m u\) & Reflexive & -1 & transitive verbs \\
\hline \((=m a)=m u\) & Reflexive-causative & -1 & intransitive and transitive verbs \\
\hline \(=y u\) & Reciprocal & -1 & monotransitive and ditransitive verbs \\
\hline \(=p \ddot{ }\) & Denominalization of possessed nouns/ promotion of possessor & 0 & alienable nouns \\
\hline
\end{tabular}

Several questions remain to be answered, such as the origin of each one of these markers and their development over time. Moreover, it is also important to have a clearer panorama of the semantic and lexical restrictions involved in each type of derivation with these morphemes, especially with the multifunctional intransitivizer \(=m u\). This diachronic study allied with a lexical-semantic survey will possibly help us to better understand these derivations with \(=m u\) and more accurately predict the argument structure of the resulting constructions.

In the next chapter, we will move on to description of the multi-verbal clauses, i.e. clauses that display more than one verb in its predicate. We will see that the applicative morpheme \(k \tilde{a} y o=\) is required in one of those multi-verbal constructions: non-canonical depictive secondary predication.

\section*{10. Multi-verbal clauses}

\subsection*{10.1. Introduction}

In YMA, it is not uncommon for clauses to have more than one verb stem in their predicate but only one set of argument markers. Indeed, in our sample of 2011 clauses, \(858(42.7 \%)\) of them are of this type. This number does not correspond, nevertheless, to a single grammatical phenomenon in YMA. Rather, it concerns semantically and formally very diverse constructions, such as depictive secondary predication (1a), adverbial modification (1b), serialized verbs (1c), and some types of complementation (1d) and (1e). Note that the arguments are marked only once in the predicate (the argument indices in the verb are in bold).

DEPICTIVE SECONDARY PREDICATION (DSP)
(1) a. Ararima anỉ xama a wĩte xëprarema

Ararima \(=a \quad=n \dot{i}\) xama \(\boldsymbol{a}=\) wĩte xë \(=p r a=r i \quad=m a\)
Ararima \(=\) SG \(=\) ERG tapir 3SG= be_fat kill \(=\mathrm{DRV} \quad=\mathrm{PFV}_{1} \quad=\mathrm{PST}\)
'Ararima killed a fat tapir.'

ADVERBIAL MODIFICATION
\begin{tabular}{llllllll} 
b. Ararima ani & & xama \(\boldsymbol{a}\) & rope xëprarema & & \\
Ararima \(=a\) & \(=n \dot{t}\) & xama \(\boldsymbol{a}=\) & rope \(\quad\) xë & \(=p r a\) & \(=r i\) & \(=m a\) \\
Ararima \(=\) SG & \(=\) ERG & tapir & \(\mathbf{3 S G}=\) & be_quick kill & \(=\mathrm{DRV}\) & \(=\mathrm{PFV}_{1}\) & \(=\mathrm{PST}\)
\end{tabular}
'Ararima killed the tapir quickly (in a quick manner).'

SERIAL VERBS CONSTRUCTION (SVC)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Kunathoi ani kunathoi \(=a\) & \[
=n \dot{1}
\] & \begin{tabular}{l}
aho \\
aho
\end{tabular} & \begin{tabular}{l}
xaraka \\
xaraka
\end{tabular} & & hipi̇a
hipit & \(=a\) \\
\hline & Kunathoi \(=\) SG & = ERG & 2 POS & arrow & & give & \(=\) PFV.VWL \\
\hline yapaa & & kõkema & & & & & \\
\hline yapa & \(=a\) & kõ & & \(=k i\) & \(m\) & & \\
\hline be_back & \(\mathrm{k}=\) PFV.VWL & return_h & ome & \(=\mathrm{PFV}_{2}\) & =PS & & \\
\hline
\end{tabular}
'Kunathoi gave you your arrow back [again].'

\section*{COMPLEMENTATION I}
d. kihamí proro ya përeit taarema kihami proro \(\mathbf{y a}=\mathbf{p} \boldsymbol{e}=k i a \quad=\dot{i} \quad\) taa \(=r i \quad=m a\)
there miner \(\mathbf{1 S G}=\mathbf{3 P L}=\) work \(=\mathrm{DYN}\) see \(=\mathrm{PFV}_{1} \quad=\mathrm{PST}\) 'I saw miners working over there.'

COMPLEMENTATION II

'Tixopona looks sick.'

The constructions above contrast with clearly biclausal ones, in which there is also more than one verb stem in the sentence, but two distinct and independently marked argument structures as well. The biclausal constructions in (2) have, in each clause, a different set of person indexing morphemes from Cluster B (in bold). These biclausal constructions, including all types of subordination and coordination, are beyond the scope of this study and will be described in detail in the future.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline a. \(\boldsymbol{y a} \quad\) ohi & makii & & & \(y a\) & kiãi & \\
\hline \(\boldsymbol{y} \boldsymbol{a}=\) ohi & \(m a=\) & \(k i\) & \(=i\) & \(y \mathrm{a}=\) & kiã & \(=i\) \\
\hline 1SG= be_hungry & FOC.CONC= & & & 1SG= & work & \(=\) DYN \\
\hline
\end{tabular}

'Kunathoi is fishing while squatting.'
```

 c. proro pëni
 miner =PL =ERG gold 3PL= take =DISTR =PFV = NMLZ =3PL
 ya thë
taarema
ya= th\ddot{\boldsymbol{e}}=\quadtaa =ri =ma
1SG= CLN.GNR= see =PFV = =PST
'I saw the miners extracting gold.'

```

In this chapter, the expression multi-verbal clause is an umbrella and ad hoc term to refer to very different phenomena in the language: unlike the sentences in (2), all clauses in (1) are multi-verbal clauses, . To include such distinct constructions under the same analytic category is justified by of their shared formal properties already pointed out- i.e. they all have more than one verb stem and only one full set of argument marking and TAME morphemes. In some cases, the sentences are therefore morphosyntactically ambiguous. The pair of examples in (3) illustrates the potential ambiguity that multi-verbal clauses can produce: both sentences have the same morphosyntactic structure and lexical components. As suggested by the translation, (3a) is secondary predication, in which the main verb is kõo 'to leave/to go back' and ohi 'to be hungry' is a simultaneous but independent predicate (i.e. 'I am leaving, and I am hungry'). The sentence in (3b) is a serial verb construction: the main predicate is ohi 'to be hungry', and the verb stem kõo only adds an aspectual/adverbial meaning 'again' to the main event, not conveying an actual independent predicate.
\begin{tabular}{lll} 
a. \(y a \quad\) ohi \(k o ̃ o ~\) & \\
\(y a=o h i \quad k o ̃\) & \(=o\) \\
\(1 \mathrm{SG}=\) & be_hungry & return_home \(=\) STV \\
'I am leaving/going back home hungry.'
\end{tabular}
\begin{tabular}{llll} 
b. \(y a\) & ohi & kõo & \\
\(y a\) & \(=\) ohi & \(k \tilde{o}\) & \(=o\) \\
1 SG & \(=\) be_hungry & again & \(=\) STV
\end{tabular}
'I am hungry again.'

Example (4) is another instance of polysemy in multi-verbal clauses.The first one, in (4a), reads as a motion with purpose construction: the main verb is a motion verb (yapaai 'to return'), complemented by another predicate encoding the action carried out after the motion. The complement predicate is usually perceived as the aim of the motion predicate. By contrast, the translation of the example in (4b) shows that the same sentence can still refer to completely different event, in which motion is not necessarily involved. The sentence in (4b) may refer, for instance, to a context in which Ararima started working again in his garden after a brief pause just sitting down on the ground on the same spot where he was working before. This is a serial verb construction (SVC) which has kiai 'to work' as the main predicate, while yapaai 'to return' is not participant- but event-oriented, only adding an aspectual meaning of 'repeated instance' to the event described by the main predicate.
a. Ararima \(a \quad\) kiai \(\quad\) yapaai
Ararima \(a=\quad\) kia \(=\boldsymbol{i} \quad\) yapa \(\quad=a \quad=i\)
Ararima \(3 \mathrm{SG}=\) work \(=\mathrm{DYN}\) be_back \(=\mathrm{DRV}=\mathrm{DYN}\)
'Ararima is returning to work. (motion with purpose).'
\begin{tabular}{|c|c|c|c|c|c|}
\hline b. Ararima a & kiaì & & yapaai & & \\
\hline Ararima \(a=\) & kia & \(=i\) & yapa & \(=a\) & \(=\dot{i}\) \\
\hline Ararima 3SG= & work & \(=\) D & be_back & \(=\mathrm{DRV}\) & \(=\) DYN \\
\hline
\end{tabular}

These ambiguities should not give the false impression, nevertheless, that these multi-verbal constructions are indistinguishable in YMA. Quite on the contrary, we are going to see in this chapter that these polysemous examples are incidental and restricted to just a few aspectual contexts (namely imperfective) and only attested with very few verb stem combinations. The constructions subsumed under the term multiverbal clauses are indeed very distinct constructions in YMA, not only from a semantic point of view but also, and most importantly, from a formal perspective. In order to better understand their similarities and differences, I decided to analyze them all in the same chapter. To make the characterization comparable, I chose a set of
common parameters to be checked in each multi-verbal clause. Some of these parameters are related to the criteria presented by Schultze-Berndt and Himmelmann (2004) to identify a genuine depictive secondary predication (DSP) in any language, which turned out to be also helpful, at least in YMA, to characterize other types of constructions. Additional parameters were still required,to distinguish all structures in the language. In section \(\S 10.2\) I will refer specifically to Schultze-Berndt and Himmelmann's criteria when discussing depictive secondary predicates. The parameters examined in all constructions are the following:
- The order of the verbs in each construction ( \(\mathrm{V}_{1}\) vs. \(\mathrm{V}_{2} ; \mathrm{V}_{\text {matrix }} \mathrm{vs}\). \(\mathrm{V}_{\text {complement...); }}\);
- The types of verb stem that can take part in them (attributive, positional or dynamic stems) and the valency of these verb stems;
- The arguments that can control the constructions (ergative, absolutive or oblique);
- The independence of each verb stem/predicate in the constructions (whether an adjunct, co-predication, complex predication...);
- The semantic orientation of the verb stem/predicate (participant or event oriented);
- The semantic change patterns, if any, of each verb stem type in the complex construction.

The chapter will begin with the description of structures with secondary predication in section \(\S 10.2\). In \(\S 10.2 .1\), I examine the typological criteria presented by Schultze-Berndt and Himmelmann (2004) to identify depictive secondary predication. I will show that in YMA only secondary predicates with attributive stems comply with them entirely. Moreover, I will show in §10.2.2. that there is another multi-verbal construction in YMA which is also a co-predication with depictive semantics, even though it does not fully match the criteria from a formal point of view. Now following Aissen and Zavala (2010: 29), I will consider this other construction the non-canonical depictive secondary predication construction in YMA.

In section §10.3 I will deal with constructions with adverbial modification, showing how they differ from depictive predication.

We will see in \(\S 10.4\) that serial verbs constructions are also able to express typically adverbial meanings such as intensity. I will show, nevertheless, that serial verbs constructions are not only formally quite distinct from truly adverbial constructions but also convey meanings that adverbs are not able to in YMA. Section §10.4.1 describea the morphosyntactic aspects involved in the serial verbs construction while section \(\S 10.4 .2\) discusses the meanings conveyed by SVCs, comparing the semantics of the verb in the series and as a sole verb.

In \(\S 10.5\) some types of highly integrated complementation constructions will be described. We will see that one of these constructions have interestingly inverted orders of matrix and complement verbs. The structures described in \(\S 10.5 .1\) to \(\S 10.5 .3\) have the complement verb before the matrix while the construction in §10.5.4 positions the verbs the other way around.

Finally, in \(\S 10.6\), I will summarize the differences and similarities between all types of multi-verbal clauses and, in \(\S 10.7\), present some final remarks on the subject.

\subsection*{10.2. Secondary predication}

\subsection*{10.2.1.Canonical depictive secondary predicates}

In this section, I will identify the depictive construction as defined by Schultze-Berndt and Himmelmann (2004). According to these authors, a canonical depictive secondary predication (canonical DSP) must comply with the following criteria (SchultzeBerndt and Himmelmann, 2004: 77-78):
i. "It contains two separate predicative elements, the main predicate and the depictive, where the state of affairs expressed by the depictive holds within the time frame of the eventuality expressed by the main predicate.
ii. The depictive is obligatorily controlled, i.e., there exists a formal relation to one participant of the main predicate, the controller,
which is usually interpreted as a predicative relationship (i.e., the depictive predicates an eventuality of the controller). The controller is not expressed separately as an argument of the depictive.
iii. The depictive makes a predication about its controller which is at least in part independent of the predication conveyed by the main predicate, i.e., the depictive does not form a complex or periphrastic predicate with the main predicate.
iv. The depictive is not an argument of the main predicate, i.e., it is not obligatory.
v. The depictive does not form a low-level constituent with the controller, i.e., it does not function as a modifier of the controller.
vi. The depictive is non-finite (to be understood as not marked for tense or mood categories), or the dependency of the depictive on the main predicate is indicated in other formal ways.
vii. The depictive is part of the same prosodic unit as the main predicate."

Having in mind only the criteria i., and ii., I selected from our corpus four examples of clauses that seemed candidates for depictive secondary predication constructions (5). Those candidate clauses had at least two verb stems in their predicate and only one set of morphemes from Cluster B, which automatically excluded loosely integrated biclausal constructions, as the one illustrated in (2). Moreover, as required by the criteria, those clauses had to express two separate but co-temporal predicates (including here attributive predicates). I believe that the criterion vii. is irrelevant in YMA since all verbs in multi-verbal clauses seem to be part of the same prosodic unit.

The selected clauses are in (5). In (5a), the two predicates are expressed by the verb stems \(h u\) 'to go' and taa 'to see', being the intransitive subject of \(h u\) 'to go' the same transitive object of taa 'to see'. In (5b), we have the same coincidence between the subject of the intransitive verb wakë 'to be ripe' and the object of the transitive hatëtëpu 'to keep in the pocket.' The sentences in (5c) and (5d) exhibit only intransitive verbs, and there is also overlap between the arguments of the verbs, i.e.
the same subject controls both predicates. In (5c) the subject of taamu 'to seem/to look like' is the same of totihi 'to be good, nice,' while in (5d) the intransitive verbs rërë 'to run' and iki 'to cry' also share the same subject.
\[
\begin{align*}
& \text { a. yamaki huu }  \tag{5}\\
& \text { yamaki }=\text { taari } h u \quad \text { wei }=\dot{i} \text { taa }=r i \quad=\text { wei } \\
& \text { 1PL }=\text { go =DYN see }=\text { PFV }_{1}=\text { =NMLZ } \\
& \text { '[When] he saw us going [...]' (PDYP_A_06_07) }
\end{align*}
\]
\begin{tabular}{rlllll} 
b. paho ani & & paixima & \(k \dot{k} \dot{k}\) & wakë \\
paho & \(=a\) & \(=n \dot{t}\) & paixima & \(k \dot{k} k \dot{i}=\) & wakë \\
mouse & \(=\) SG & \(=\) ERG & esp. banana & CLN:collective \(=\) & be_ripe
\end{tabular}
hatëtëpoma
hatëtëpo =ma
keep_in_the_pocket =PST
'The mouse kept ripe bananas [in his pocket/belt].' (s_ms09_alfr)
\begin{tabular}{rl} 
c. kama xapuri thëpë & \multicolumn{1}{c}{ taamuи } \\
kama xapuri thë \(=\) & pë \(=\begin{array}{l}\text { taa }=m u \quad=\dot{i}\end{array}\) \\
totihi
\end{tabular}
3 shaman CLN.GNR \(=3 \mathrm{PL}=\) see \(=\) INTRZ \(=\) DYN be_good
'The shamanic spirits seem handsome.' (PDYP_MIC_A_07_19)
d. \(a\) pata nomai \(\quad\) kãyo huimai
\(a=\) pata noma \(=\dot{i} \quad k a \tilde{y o}=h u=i m a \quad=\dot{i}\)
3SG= elder die; be_drunk =DYN APPL= go =DIR.VEN =DYN
wei [...]
\(=w e i\)
=NMLZ
'He came drunk.' (PDYP_A_06_07)

Criterion i. rules out as secondary predication constructions candidates nonsimultaneous predicates such as motion with purpose constructions, like in (4a) above or (6) below. In these constructions, the motion predicate - yapai 'to return' in (4a)
and huimai - 'to come' in (6) - logically precedes the purpose predicate - kiai 'to work' and koaí, respectively.


\section*{koama huimama}
\(\left.\begin{array}{llll}k o ̃ a & =m a & h u & =i m a\end{array}=m a\right\}\)
'The woman also came to take the pieces of firewood.' (s_chck_suka).

Criterion i. also excludes SVCs such as (3b) and (4b) above or (7) below, for not containing two actually separate predicates. We will see in §10.4 that SVCs in YMA are of the asymmetric type (Aikhenvald, 2006: 22), i.e. they denote a single event described by one of the verbs in the series (called major verb), which also determines the overall argument structure and valency of the construction. The other verbs in the series (the minor verbs or coverbs) do not convey actual predicates themselves, but only "provide a modificational specification" (Aikhenvald, 2006: 22). In YMA, the major verb is always in the first position in the string. The translations of the sentences in (3b) and (7) seem to confirm this analysis.
\begin{tabular}{llll} 
pei thuwëpë erĩ & \multicolumn{2}{c}{ pree waroa } \\
pei thuwëpë \(e=\) & \(r \tilde{\imath}=\) & pree waro \(=a\) \\
INDEF wife DIF.PART \(=\) & HON \(=\) & also arrive \(=\) PFV.VWL
\end{tabular}
hetukema
\begin{tabular}{lll} 
hetu & \(=k i\) & \(=m a\) \\
lay_above & \(=\) PFV2 & \(=\) PST
\end{tabular}
'[...] his wife 'for her part' also arrived.' (s_chck_cesa)

SVCs as in (7) and (3b) are not DSP for they do not comply with criterion iii either. Minor verbs of SVCs are not independent of the complex predicate they form with the main verb. Even though most of the minor verbs in YMA can appear alone as the head of a predicate, as in (8), their meaning often differs from their use as minor
verbs. We have already mentioned that the verb stem kõo 'to return home' acquires the sense of 'repeated instance' when used as a minor verb. The minor verb in (7) is hetu and means 'also' in this context; when employed as the main positional verb, nevertheless, it means 'to be above something', frequently used to describe a situation in which two hammocks are tied one above one another, as in (8).
\begin{tabular}{lllll} 
Ararima eha & & ipa rakama thuku \\
Ararima \(=e\) & \(=h a\) & ipa rakama thuku= \\
Ararima \(=\) DIF.PART & \(=\) OBL & 1POS hammock CLN:hammock=
\end{tabular} hetua
\begin{tabular}{ll} 
hetu & \(=a\) \\
lay_above & \(=\) POST
\end{tabular}
'My hammock is [tied] above Ararima's.'

By criterion iv, two of the constructions in (5) should also be ruled out as not being DSP. This criterion says that the depictive secondary predication is not an argument of the main predicate. In the sentences (5a) and (5c) the verbs huu 'to go' and totihi 'to be good, nice' are the complement arguments of the verbs taait 'to see' and taатии 'to seem/to look like,' respectively. The sentences (5a) and (5c) are not, therefore, depictive secondary predication constructions but complement constructions, as the analyses above suggest. I will deal with these constructions in two different sections of this chapter since they are different types of complement constructions, placing their complements in different positions regarding the main predicate. Complement constructions as in (5a) will be described in §10.5.3, while the constructions like (5c) will be dealt with in §10.5.4. On the other hand, nomai 'to be drunk' is not the complement of huimai 'to come' in (5d) nor is the intransitive verb wakë 'to be ripe' the patient argument of hatëtëрии 'to keep in the pocket' in (5b).

Criterion v. says that the secondary predicate is not a modifier of the controller. One could argue that by this criterion the constructions (5b) and (5d) should be excluded as DSPs since wakë 'to be ripe' and nomai 'to be drunk' modify koraha 'banana' and ipa uhuru 'my child.' This analysis is not correct, however. We saw in §4.3.6 that in order for attributive and dynamic stems to directly modify a noun within
the noun phrase, they need to undergo a previous derivation with -rima with attributive stems (such as wakë 'to be ripe'), and =wei with dynamic ones (such as nomai 'to be drunk'). Furthermore, we also saw that, when acting as modifiers of the noun, these forms have to appear before the proclitics of cluster B, that is, outside the verbal phrase. Both the position in which wakë 'to be ripe' and nomaí 'to be drunk' appear in (5b) and (5d) and the morphology that they display indicate that those forms do not have a modification function.

At this point, only two constructions stood up our scrutiny and remain candidates for DSP constructions, the examples (5b) and (5d). The last remaining criterion (criterion vi.), nevertheless, excludes one of them. It states that the verbs acting as secondary predicates (P2) should not appear in their finite version, that is, with the inflectional morphemes of tense, aspect or mood. Indeed, the attributive stem wakë 'to be ripe' does not receive any morpheme in (5b), which was actually expected since it is an attributive stem. In that construction, the information concerning tense, aspect, and mood (and also polarity) of the clause is exclusively conveyed by the morphemes that appear in the main predicate. On the other hand, nomai 'to be drunk' in (5d) has it is own tense-aspectual morpheme \(=i\), which is an imperfective morpheme, as we saw in Chapter 6. One could argue that this is not a real problem since the general aspect of the clause in (5d) is also imperfective. However, even when the main predicate is marked for perfectiveness in constructions similar to (5d), the verb functioning as P 2 is always inflected with the dynamic vowel, as the example in (9) shows.
\begin{tabular}{lllll} 
xama ya hërët & kãyo xëprarema & & \\
xama \(y a=\) hërë \(=\dot{t} \quad k a \tilde{a} y o=x \ddot{e} \quad=p r a \quad=r i \quad=m a\) \\
tapir \(1 \mathrm{SG}=\) swim \(=\mathrm{DYN}\) APPL \(=\) beat; kill & \(=\mathrm{DRV}\) & \(=\mathrm{PFV} 1\) & \(=\mathrm{PST}\) \\
'I killed the tapir [while it was] swimming.'
\end{tabular}

Thus according to Schultze-Berndt and Himmelmann, only the construction in (5b) is a true DSP. I will claim, nevertheless, that both (5b) and (5d) are DSP constructions in YMA. The two constructions differ evidently in that in (5b) the two predicates are merely juxtaposed without any morpheme intervening between them
while in (5d) the P 2 has the dynamic vowel \(=i\) and the main predicate is derived with the morpheme \(k \tilde{a} y o=\), used in the applicative constructions of the language, as we saw in Chapter 9 (§9.5.4). Construction (5d) also does not comply with one of the criteria postulated by Schultze-Berndt and Himmelmann.

Following Aissen and Zavala (2010: 29), who found similar situations in Mesoamerican languages, particularly among the Mayan varieties, I will consider the construction in (5b) the canonical construction while sentences such as (5d) will be regarded as the non-canonical DSP construction of the language. The greater level of markedness of the construction (5d) is also an indication that this is not the canonical one. This latter construction will be described in the next section (§10.2.2.) In the remaining part of this section, I will be concerned with the formal and semantic properties of the canonical DSP. I will begin presenting a representation of the morphosyntactic structure of this construction in Schema 10.1.

Schema 10.1 - Morphosyntactic structure of the canonical DSP
\[
\left[\mathrm{NP}_{\mathrm{ERG}}\right] \mathrm{NP}_{\mathrm{ABS}} \text { Cluster } \mathrm{B}=\mathrm{V} 2_{\text {atrributive }} \mathrm{V} 1=\text { Cluster } \mathrm{C}
\]

As pointed out above, only attributive stems can function as V2 of the construction of the Schema 10.1. Hence the range of meanings that P2 can convey in the canonical DSP is the same as the attributive stems discussed in §5.4.1. The only exception is some attributive stems that convey categories of value (good, bad, correct), strength (strong or weak) and velocity (fast and slow): they may get an adverbial reading in multi-verbal clauses (see §10.3). Below I present two instances of such a construction, the first (10a) using kohipë 'to be strong' as the secondary verb of the clause, and the second (10b) with rope 'to be quick' in the same position. Note that in both examples the attribution is event-oriented and does not refer to an argument of the clause. I would not say, nevertheless, that the DSP construction itself imposes any sort of semantic restriction to these stems to be the P2. Indeed, the speakers confirm that the constructions in (10) may still be read as DSP with the meaning 'I am strong and want to speak out' and 'They took the fast ones,' respectively, even though it was clearly not the case in those examples.
\begin{tabular}{cccc} 
(10) a. kami yã & kohipë hai & pihio \\
kami ya \(\quad \tilde{a}=\quad\) kohipë \(h a\) & \(=\dot{i} \quad\) pihi \(=o\) \\
\(1 \quad 1 \mathrm{SG}\) & sound= \(=\) be_strong pass_through & \(=\mathrm{DYN}\) will \(=\) STV \\
'I want to speak strongly.' (m003_manu_gari) & &
\end{tabular}
\begin{tabular}{rllll} 
b. \(p \ddot{e}\) rope kõremahe & & \\
\(p \ddot{e}=\) & rope \(k \tilde{o} \quad=r i\) & \(=m a\) & \(=h e\) \\
\(3 \mathrm{PL}=\) & be_quick take \(=\mathrm{PFV} 1\) & \(=\mathrm{PST}\) & \(=3 \mathrm{PL}\)
\end{tabular}
'They took them quickly.' (m004_paya_gari)

Another bit of evidence that the constructions in (10) can potentially be read as DSP is that we do find instances of multi-verbal clauses in our corpus where this type of attributive stems (that express concepts of value, strength, and velocity) appears as a genuine P 2 , as in (11). We still have to investigate whether there is any prosodic difference between the two cases, though. As far as I can establish, the lexical context of the clause (i.e. the verb items that take part in the construction either as a main or secondary verb) plays the major role in indicating which reading is the adequate one.
\begin{tabular}{lllll} 
raa yama sihipë & kohipë tharari & & \\
raa yama \(=\) sihi \(=\) & pë \(=\) & kohipë tha & \(=r a\) & \(=r i\)
\end{tabular}

In any event, when the construction is indeed a DSP, the absolutive argument of the clause is always the controlling argument of the P2, i.e. the attribution predicated by the attributive stem always refers to the absolutive argument of the clause. When the main predicate is intransitive the sole argument of the clause is, therefore, the subject of both predications, as in the examples in (12).
\begin{tabular}{l} 
(12) a. hei apiama yaa hote hupai
\end{tabular} \begin{tabular}{l} 
pihioimi
\end{tabular}\(\quad\).
```

b. [paho] a marixi rakioti tëhë [...]
paho a= mãrixi raki =o =ti =tëhë
mouse 3SG= sleepy lean =STV =DUR =REL.PRS

```
'When the mouse was leaning asleep [...]' (s_ms10_marc)

When the main verb is transitive (or ditransitive), the subject of the depictive predications always coincides with the object of the main predicate. That is, the subject/agent of (di)transitive verbs, which syntactically is the ergative argument of the clause, never controls the depictive predication. Example (13shows secondary predication constructions with main transitive verb .

'His wife breaking the dry leaves [...]' (s_chck_hoax)
b. thëki pesi kõa
thë \(=\quad k \dot{t}=\) pesi \(k \tilde{a} a \quad=a\)
CLN.GNR \(=\) PL= package take \(=\) PFV.VWL

\section*{kõretayoma}
\begin{tabular}{llll}
\(k o\) & \(=r i\) & \(=\) tayo & \(=m a\) \\
again & \(=\) PFV \(_{1}\) & \(=\) LOC:a_bit_faraway & \(=\) PST
\end{tabular}
'(She) went there to bring the wrapped thing.' (s_chck_hoax)

Some constructions are syntactically ambiguous with respect to their status as DSP or complementation constuctions. This ambiguity is particularly frequent with transitive sensorial verbs such as taaí 'to see' and hirrii 'to hear,' and due to the absolutive alignment of secondary predication. The examples in (14) below illustrate this situation.

'And for annoyingly seeing [that] the pieces of firewood [were] few [...]' or 'And for annoyingly seeing the few pieces of firewood [...]' (s_chck_cesa)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline b. \(\mathfrak{t h} \mathfrak{t}\) & tëhë & thëkirı & & & mii & taar & & \\
\hline тิh & =tëhë & thë & \(k i=\) & \(r i=\) & mii & taa & \(=r i\) & \(=m a\) \\
\hline ANA & \(=\) REL.PRS & CLN.GNR & PL= & HON= & not_be & & \(=\mathrm{PFV}_{1}\) & \(=\mathrm{PST}\) \\
\hline
\end{tabular}
'And then (he + REV) saw [that] they [were] missing' or 'And then (he + REV) saw them missing.' (s_chck_cesa)

On the one hand, we can be sure that not only the secondary predication reading is possible for the other types of verb stems (and not only attributive) that can take part in this construction as a \(\mathrm{V}_{\text {comp. }}\). In (15a), we have an instance of a positional verb functioning as head of the complement predicate, and in (15b) we have an example of a dynamic verb in that position.

'[He] saw the jacket laying on the mango tree.' (s_tree_alf)
```

 b. thuwë thëpëha pisima wa kiki yai
 thuwë thë \(=p \ddot{e}=h a \quad\) pisima \(w a=k i k \dot{k}=\quad y a i\)
 woman CLN.GNR =PL =OBL loin-cloth 2SG= CLN:fabric= true
 уагерии taari wei [...]
уагери $=i \quad$ taa $=r i \quad=w e i$
wear $=$ DYN see $=\mathrm{PFV}_{1}=$ NMLZ
'[When] you really (i.e. first) saw the women wearing loin-cloths.'
(PDYP_A_09_03)

```

We know the examples in (15b) are not DSPs for positional stems, such as araa 'to be lying', and dynamic stems, like yarepuи 'to wear' cannot be head of a canonical depictive secondary predication. The examples in (16) with an intransitive verb as the main predicate are not grammatical.
a. \begin{tabular}{lll} 
Ararima a araa & & mio \\
Ararima \(a=\quad\) ara & \(=a \quad m i\) & \(=o\) \\
Ararima \(3 \mathrm{SG}=\) & be_on_sth & \(=\) POST \\
sleep & \(=\) STV
\end{tabular}
'Ararima is sleeping [while] laying [on the bed].'
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & thëpëni & & & pisima & \(k i k i\) \\
\hline & thuë & \(=t h e ̈\) & \(=p \ddot{ }\) & \(=n \dot{t}\) & pisima & kiki= \\
\hline & woma & \(=\) CLN.GNR & \(=\mathrm{PL}\) & = ERG & loin-cloth & CLN:fabric= \\
\hline уагерии & & heri & he & & & \\
\hline уагери & \(=i\) & heri & \(=h e\) & & & \\
\hline wear & \(=\) DYN & brother-in-la & \(=3 \mathrm{PL}\) & & & \\
\hline
\end{tabular}
'The women are singing [while] wearing loin cloths.'

On the other hand, we can be sure that the examples in (14) can also be read as DSP constructions, for the non-canonical construction is also possible in this context. As we will see in \(\S 10.2\).2, only dynamic verbs can be the head of non-canonical construction with the help of the applicative marker kãyo=. Example (15b), which is clearly a complementation construction as I explained above, can be restated as a DSP construction, as in (17).


Before we move on to the description of the non-canonical construction, which has a dynamic verb as the P2, I would like to contrast that construction with examples like (18), in which a dynamic verb (manït 'to chop') also appears to be the P2. Note nonetheless that this verb is not dynamic in (18), but rather derived with \(=n o\) and with a resultative meaning. Thus the P 2 of the construction is not a dynamic verb but a derived attributive stem.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline (18) & ayõki & & manin & & hiraa & & wei \\
\hline & ayõ= & & mani & = \(n 0\) & hira & = 0 & \(=w e i\) \\
\hline & CLN:firewood= & \(3 \mathrm{PL}=\) & & \(=\) RES & tran & & \(=\mathrm{NM}\) \\
\hline & \multicolumn{7}{|l|}{'Carrying/transporting [she] the chopped firewood [...]' (s_chck_marc)} \\
\hline
\end{tabular}

\subsection*{10.2.2.Non-canonical depictive secondary predicates}

To be the head of a DSP, dynamic stems require the main predicate to be derived with proclitic kayo \(=\) (the same element is used in applicative constructions), as in example
Ararima \(a \quad\) amoamuи \(\quad\) kãyo yurimoma \(\quad\).
Ararima \(a=\) amoamu \(=\dot{i} \quad\) kãyo \(=\) yurimo \(=m a\)
Ararima \(3 \mathrm{SG}=\) sing \(\quad=\mathrm{DYN} \mathrm{APPL}=\) fish \(\quad=\mathrm{PST}\)
'Ararima fished singing.'

This type of predicate falls under the following general schema:

\section*{Schema 10.2 - Morphosyntactic structure of non-canonical DSP}
[ERG] ABS Cluster \(\mathrm{B}=\mathrm{V} 2_{\text {dynamic }}=i \quad k a ̃ y o=\mathrm{V} 1=\) Cluster C
Only intransitive dynamic stems can occupy the position of \(\mathrm{V}_{2}\) in this construction. Transitive dynamic stems and all remaining types of verb stems require multi-clausal constructions to convey simultaneity with another predicate. As we can see by the examples below, which are all ungrammatical, neither irregular (20a), nor positional (20b), nor attributive stems (20c) can be the head of a non-canonical depictive secondary predicate. In the hypothetical examples in (20), I am using the basic morphology associated with each type of stem (i.e. \(=o\) for irregular, \(=a\) for positional and no morpheme with attributive stems) but these sentences would also be ungrammatical if I had employed the dynamic vowel \(=i\) instead, as indicated in Schema 10.2.

IRREGULAR
(20) a. * Ararima a mio kãyo tëkëoтa Ararima \(a=m i=o \quad\) kãyo \(=\) tëkë \(=o \quad=m a\)

Ararima 3SG= sleep \(=\) STV APPL= sit \(=\) STV \(=\) PST
'Ararima slept [while] sitting.'

POSITIONAL
\begin{tabular}{|c|c|c|c|c|c|}
\hline b. * Ararima a & tëkëa & & kãyo & yurim & \\
\hline Ararima \(a=\) & tëkë & \(=a\) & kãyo= & yurimo & \(=m a\) \\
\hline Ararima 3SG= & sit & \(=\mathrm{POST}\) & APPL \(=\) & fish & \(=\) PST \\
\hline
\end{tabular}
'Ararima fished [while] sitting.'

\section*{ATTRIBUTIVE}

'Ararima was hungry [while] sitting.'

To convey the meaning intended in (20), we would need two clauses for each sentence in (20a) and (20b), and the canonical construction of DSP for (20c). In (21a), I present one grammatical way of expressing the example (20b), and the grammatically acceptable version of (20c) in example (21b).
(21) a.
\begin{tabular}{llllll} 
ararima \(a \quad\) tëkërani & , \(a \quad\) yurimoma \\
Ararima \(a=\) tëkë \(=r a n \dot{t}\) & \(a=\) & yurimu \(=m a\) \\
Ararima \(3 \mathrm{SG}=\) stand_up \(=\) REL.PRS & \(3 \mathrm{SG}=\) & fish & \(=\mathrm{PST}\) \\
'While sitting, Ararima fished' & & &
\end{tabular}
b. Ararima \(a \quad\) ohi tëkëoma
Ararima \(a=\) ohi tëkë \(=o \quad=m a\)
Ararima \(3 \mathrm{SG}=\) be_hungry sit \(=\) STV \(=\mathrm{PST}\)
'Ararima was hungry [while] sitting.'

Similarly to what happens in the canonical construction, the controller of the P2 is an argument of the main predicate in the non-canonical DSP and it also has an absolutive alignment, that is, it is either the subject when the main intransitive predicate, as in (22), or the patient of a transitive, as in (22).
(22) a. Ararima a nasi kei kãyo pirioma

Ararima \(a=\) nasi \(=k e=i \quad k a ̃ y o=p \dot{t r i}=o \quad=m a\)
Ararima \(3 \mathrm{SG}=\) urine \(=\) fall \(=\mathrm{DYN}\) APPL \(=\) lie \(=\mathrm{STV}=\mathrm{PST}\)
'Ararima peed laying on the hammock.' (i.e. 'He peed when was asleep')
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline b. tũruamotima ya a & & kei & & kãyo & huwër & & \\
\hline tũrũamotima \(y a\) & \(a=\) & ke & \(=i\) & kãyo= & huwë & \(r i\) & \(=m a\) \\
\hline computer 1SG & \(3 \mathrm{SG}=\) & fall & \(=\mathrm{DYN}\) & APPL \(=\) & grab & \(=\mathrm{PFV} 1\) & \(=\) PST \\
\hline
\end{tabular}
'I caught the computer [when it was] falling.'

There is an alternative construction in our corpus for the non-canonical DSP. In this other construction, the dynamic verb appears with the linking morpheme \(=m a\) instead of the dynamic vowel, as in (23).


The following schema would represent this second non-canonical DSP construction:

\section*{Schema 10.3 - Morphosyntactic structure of non-canonical DSP (alternative)}
\[
\text { [ERG] ABS Cluster } \mathrm{B}=\mathrm{V} 2_{\mathrm{dynamic}}=\text { ma } k \tilde{a} y o=\mathrm{V} 1=\text { Cluster } \mathrm{C}
\]

Note that in this parallel construction, P 2 is not marked for tense, aspect or mood and, in this sense, complies with criterion vi., which excluded the construction represented in Schema 10.2 as a DSP. Considering that this construction is still much more marked than the DSP with attributive stems, I will still regard it as the noncanonical.

The speakers do not report any semantic difference between the two possible ways of elaborating the non-canonical construction. So far, I did not identify any discursive or morphosyntactic context in which one of them is the only grammatical possibility. The role of the dialectal variation should still be investigated. According to my knowledge, the linking morpheme \(=m a\) is employed in only one other construction, namely in the complement of a motion predicate. Indeed, the only morpheme that prevents us from reading the example in (23) as a motion with purpose construction is the morpheme \(k \tilde{a} y o=\). If it is suppressed, the sentence will become a regular motion with purpose complementation construction, as in (24).
```

(24) [ipa uhuru] a f̂kima rërëimama kami
ipa uhuru a= \tilde{k}k\dot{t}=ma rërë =ima =ma kami
1POS child 3SG= cry =LINK run =DIR.VEN =PST 1
yahami
=ya =hami
=1SG =OBL
'[And my son] ran towards me to cry.' (motion with purpose)

```

I will deal with this type of predicate in \(\S 10.5 .1\). In the next section, I will turn to the description of clauses with adverbial modification.

\subsection*{10.3. Adverbial modification}

Adverbial modification constructions in YMA are multi-verbal clauses in which one of the verbal items modifies the whole "predication rather than assigning a specific property to one participant of the main predicate" (Schultze-Berndt and Himmelmann; 2004: 61). This verb item is always a subtype of attributive stem. As we saw in 10.2.1, this construction may be formally identical to a secondary predication. In (25), I present two more examples that show this resemblance. Note that totihi 'to be good' and xaari 'to be straight' are attributive stems and both are placed in the exact position of P2 in a DSP. We can only tell that these examples are adverbial modification constructions by the semantics of the lexemes \({ }^{1}\).
(25) a. Maria Teresa ani yamaki totihi hirimama

Maria Teresa \(=a \quad=n \dot{i} \quad\) yamaki \(=\) totihi hiri \(=m a \quad=m a\)
Maria Teresa \(=\) SG =ERG 1PL= be_good heal =CAUS =PST
'Maria Teresa healed us nicely.' (PDYP_MIC_B_08_01)

\footnotetext{
\({ }^{1}\) There could be a prosodic difference between a DSP and adverbial modification constructions, but I am not entirely sure about it.
}
```

b. yamaki xaari kiãi
yamaki $=$ xaari kiã $=\dot{i}$
$1 \mathrm{PL}=$ straight work $=$ DYN
'We work correctly.' (m007_geni_kona)

```

Nevertheless, when an attributive stem is functioning as an adverbial, it acquires greater mobility within the clause. The lexical items totihi 'to be good' and xaari 'to be straight' of (25) could have been placed, for instance, after the main predicate and the clause would still have the same meaning. In (26), I present a pair of examples that illustrate these two alternative positions of the adverbial word. Note that in (26a) the verb stem yãniki 'to be slow' appears after the main predicate, while in (26b) it precedes it.
\begin{tabular}{lllll} 
(26) a. [ waika & thëpëã & & pree \\
waika & thë \(=\) & p \(\ddot{=}=\quad \tilde{a}=\quad\) pree \\
Waika person & CLN.GNR \(=\) & \(3 \mathrm{PL}=\) & sound \(=\) & also
\end{tabular}
hai yãniki
ha \(\quad=\dot{i} \quad \boldsymbol{y} \tilde{a} n \boldsymbol{n} \boldsymbol{k} \boldsymbol{i}\)
pass_through =DYN slow
‘The Waika people also speak slow(ly).' (PDYP_B_07_06)
\begin{tabular}{|c|c|c|c|c|}
\hline b. \(p \ddot{e}\) & yanniki hiraa & & kõpii & \\
\hline \(p \ddot{e}=\) & yãniki hira & & kõ & \(=p i\) \\
\hline \(3 \mathrm{PL}=\) & slow transport & & return_home & =PFV3 \\
\hline
\end{tabular}

Interestingly enough, several examples in our corpus of these adverbial words are being used even outside the borders of the verbal phrase. As I postulated in §3.5, the verbal phrase comprises everything in between and including the proclitics of the Cluster B and the enclitics of Cluster C. The examples in (27) illustrate this usage. In this case, the adverb is clearly being underlined by a prosodic stress.
(27) a. totihi thëpë \begin{tabular}{l} 
wamoní \\
totihi thë \(=\quad\) pë \(=\) wamu \(=n \dot{t}\)
\end{tabular}
be_good CLN.GNR \(=3 \mathrm{PL}=\) have_sex \(=\) REL.PST
'Having [they] sex nicely [...]' (n045_xuwe)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline b. xaari & kami & & & \(y a\) & \(p \ddot{ }\) & noa & thai & \\
\hline xaari & kami & \(=y a\) & \(n i\) & \(y a=\) & \(p \ddot{e}=\) & noa \(=\) & tha & \(i\) \\
\hline straight & & \(=1 \mathrm{SG}\) & =ERG & \(1 \mathrm{SG}=\) & \(3 \mathrm{PL}=\) & V.PTC= & talk & \\
\hline
\end{tabular}
    'I advise them correctly.' (m007_geni_kona)

We will see in §10.4.1. that SVCs may resemble constructions with adverbial modification for serialized verbs also typically convey adverbial meanings. Moreover, all the lexical items that can function as adverbs can also be used as minor verbs in SVCs. In some tense and aspectual contexts, the two constructions are also indistinguishable. I will explain the reasons for this formal and semantic neutralization in the next section.

\subsection*{10.4. Serial verb constructions (SVCs)}

Serial verb constructions (SVC) are the most productive type of clause with more than one verb in YMA. Among the 2011 clauses of our sample, \(38.3 \%\) of them have at least one serial verb in it and \(4.5 \%\) display two or more. Furthermore, a great diversity of verbs (over 30 different verb stems) was found in the serial position (see Table 10.2 below).

The YMA SVC conveys one simple predicate expressed by the main verb (always the first one of the series) which is followed by one or more minor verbs that add grammatical meanings to that main predicate. In (28), we have a example of such a construction.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline (28) MDM рё & \(k i a ̃ i\) & & he & yatio & & xoama & & \\
\hline \(M D M\) pë= & kiã & \(=\dot{i}\) & \(h e=\) & yati & \(=0\) & xoa & \(=0\) & \(=m a\) \\
\hline MDM 3PL= & work & \(=\) DYN & V.PTC & persist & =STV & continue & =STV & =PST \\
\hline
\end{tabular}

After that, the people from MDM (Médecins du Monde) continued to work. (PDYP_MIC_B_08_01)

Following Aikhenvald's typology, the YMA SVCs are of the asymmetrical type, in the sense "they consist of one verb from a relatively large, open, or otherwise unrestricted class, and another from a semantically or grammatically restricted (or closed) class." (Aikhenvald; 2006: 21). The YMA SVC resembles the asymmetrical SVCs described in Toqabaqita (Oceanic) by Lichtenberk (2006: 254-272) in several respects. It is important to mention that not all authors agree on considering such constructions as SVCs, precisely because of their semantic asymmetry. Haspelmath recently voiced this opposition stating the need for the "additional requirement that the verbs in a SVC must be INDEPENDENT VERBS i.e. they must be able to occur on their own without another verb" [emphasis is given by the author] (Haspelmath 2016: 303). Indeed, as we will see in 10.4.2, most minor verbs do not appear independently with the same meaning as the one displayed in SVCs. Haspelmath would probably call them coverbs or simply auxiliary verbs, just like will in English, in the sentence 'I will go to the party' (Haspelmath 2016: 303). The great difference between English auxiliaries and the YMA serial verbs is that the latter are much more diverse and can appear together with other serial verbs in a string of up to four verbs. In any event, it must be clear at this point that I am using the expression "serial verbs" in this study not as a "comparative concept" but as a "descriptive category" (Haspelmath 2010: 664) whose local meaning arises from the contrast with other grammatical categories of the language. In the next subsections, I will do precisely this, i.e. contrast SVCs with other similar constructions. I will discuss the formal ( \(\S 10.4 .1\) ) and semantic ( \(\S 10.4 .2\) ) properties that characterize this construction, highlighting the differences between this and other types of multi-verbal clauses in YMA.

\subsection*{10.4.1.Morphosyntax of SVCs}

To provide elements for a discussion on the formal properties of SV, I present three examples of what I consider to be an SVC in the language in (29).
```

(29) a. wama \tilde{r}ri
pairimaï nõho
wama= a= r\tilde{\imath}= pairi =ma =i nõho
2PL= SG= HON= take part in =CAUS =DYN be_subsequent
'You shall help her next (following her that had already helped you).'
(PDYP_MIC_A_02_11)

```
```

 b. ihit tëhë pixataha una kea
 ihi =tëhë pixata =ha una= ke \(=a\)
 ANA =REL.PRS ground =OBL CLN:???= fall =PFV.VWL
 kõmaki [...]
$k \tilde{o} \quad=m a \quad=k i$
again $=$ CAUS $=$ PFV2

```
'Then [the mouse] makes it [the spiny fruit] fall on the ground again [...]' (s_ms10_alfr)
\begin{tabular}{rlll} 
c. hapa mahi kipë & niahuu & & \\
hapa mahi kipë= nia & \(=\boldsymbol{h u}\) & \(=\dot{\boldsymbol{i}}\) \\
before much \(3 \mathrm{DU}=\) jump, spring & \(=\mathrm{DRV}\) & \(=\mathrm{DYN}\)
\end{tabular}
parioma
```

parì =o =ma
be_first =STV =PST

```
'They two first jumped.' (s_tree_marc)

From these examples, we can identify the first characteristic feature of the serial verb constructions. Different from secondary predication, which have the canonical position of \(\mathrm{V}_{2}\) (or P2) before \(\mathrm{V}_{1}\) (or P1), the order of the verbs in serial construction is \(\mathrm{V}_{1} \mathrm{~V}_{2}\), that is, the main verb - in bold in (29) - precedes the minor verbs. Note that we identify \(\mathrm{V}_{1}\) not on semantic but on syntactic grounds, even though we will see in \(\S 10.4 .2\) that the semantics of the minor verbs \(\left(\mathrm{V}_{2}, \mathrm{~V}_{3} \ldots\right)\) clearly tends to be bleached in the construction while the one of the main verb \(\left(\mathrm{V}_{1}\right)\) remains unaltered. Syntactically, V1 is the verb that determines the overall valency and argument structure of the clause. The examples in (30) demonstrate the first position of \(\mathrm{V}_{1}\) (also
in bold). Note that the replacement of the intransitive verb \(a\) 'to go' of (30a) by the transitive tha 'to do, to make' in (30b) affects the valency of the clause, and that in (30b) there are two main arguments in the predicate. In SVCs, the verbs that go after the main verb never have this effect on the valency of the clause. Conversely, as we saw in \(\S 10.2\), especially for the examples in (12) and (13), the verb that can affect the valency of the clause in a secondary predication construction is always in the second position in the string of verbs, following the order \(V_{2} V_{1}\) in those constructions.
\begin{tabular}{lllll}
\(e\) & \(\boldsymbol{a} a\) & xeererahuruma \\
\(e=\quad \boldsymbol{a}=a \quad\) xeere & \(=r a a\) & \(=h u r u \quad=m a\) \\
DIF.PART \(=\) go \(=\) PFV.VWL split, divide \(=\) PFV1 \(=\) DIR.AND & \(=\) PST \\
'[He] went, splitting [from his wife].' (s_chck_marc)
\end{tabular}

> b. Õmama ani yamaki tha a
> Õmama \(=a \quad=n \dot{t} \quad\) yamaki \(=\) tha \(\quad=a\)
> Õmama \(=\) SG \(=\) ERG \(1 \mathrm{PL}=\) do; make =PFV.VWL
> xeereki wei [...]
> xeere \(=k i=w e i\)
> split, divide \(=\) PFV2 \(=\) NMLZ
> ‘Õmama made us separately [...]' (PDYP_MIC_A_13_13)

We will see in §10.5.4 - considering that \(\mathrm{V}_{\text {matrix }}\) is the main verb in complementation constructions - that only one complementation type displays a similar order of verbs, that is, \(\mathrm{V}_{\text {matrix }} \mathrm{V}_{\text {complement }}\). All remaining complementation types display the inverse order, i.e. \(\mathrm{V}_{\text {complement }} \mathrm{V}_{\text {matrix }}\). We will see in that section that the criteria to determine which verb is the main verb in complementation constructions are differentfrom those used with serial verbs and secondary predication constructions, since in all complementation types both matrix and complement verbs can project a marked argument structure in the clause.

Another important formal feature of SVCs concerns the number of the verb stems that can take part in the construction. Secondary predication allows only one verb besides the main verb, and so do all complementation constructions, as we will
see in \(\S 10.5\). On the other hand, serial verbs constructions do not seem to restrict the number of minor verbs in the predicate. In our corpus, we have examples of up to three coverbs after the main verb, as in (31).

'[He] made the ball pass back again under the [other's] legs.' (s_ball_alfr)
(note: tapir's bladder = ball)

'[The woman] who? was running towards here and getting closer [...]' (s_pear_kami)

Similarly to other multi-verbal clauses discussed in this chapter, clauses with serial verbs have more than one verb stem in the predicate but have only one set of argument markers. As we saw in \(\S 10.2\) and \(\S 10.3\), secondary predication and adverbial modification constructions also display only one set of tense and aspectual markers. Serial verbs constructions also have only one full set of tense and aspectual morphemes, which is hosted by the last coverb of the series. Nevertheless, and differently from the mentioned constructions, all non-final verbs in the serial verbal chain, including the main verb, have to host an aspectual marker, which always agrees with the general aspect of the clause. If the clause is marked for perfectiveness, for instance, as in the examples in (32), all verbs in the SVC that are not in the final position have to be inflected with the perfective vowel \(=a\) (in bold). This perfective
morpheme is exclusively used in SVCs. Note that the last minor verb of the string does not receive this morpheme but takes the regular perfective markers \(=r i\) or \(=k i\) (also in bold).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline a. \(a i\) & kiki & hukëa & & kõrar & & & \\
\hline ai & \(k i k i=\) & hëkë & \(=a\) & kõ & ra & = & \\
\hline other & CLN:C & pick & \(=\mathrm{PF}\) & again & \(=\) DISTR & & \\
\hline
\end{tabular}
\begin{tabular}{rlllll} 
b.wãrõkõxi \begin{tabular}{llll} 
una & tirea & & yapaa \\
wãrõkõxi & una \(=\) & tire & \(=\boldsymbol{a}\)
\end{tabular} & yapa & \(=\boldsymbol{a}\) \\
sp._of_fruit & CLN:??? \(=\) & be_high & \(=\) PFV.VWL & go_back & \(=\) =PFV.VWL
\end{tabular}
kõmarii
[...]
\(k \tilde{o} \quad=m a \quad=r i\)
be_again =CAUS =PFV1
'[the mice] Making the spiny fruit spring back again high [into the air] [...]'
(s_ms10_alfr)
c. \(a\) pree rërëa yapaa
\(a=\) pree rërë \(=\boldsymbol{a}\) yapa \(=\boldsymbol{a}\)
\(3 \mathrm{SG}=\) also run =PFV.VWL be_back =PFV.VWL
hetua kõkema
\(\begin{array}{lllll}\text { hetu } & =\boldsymbol{a} & k o ̃ & =\boldsymbol{k i} & =m a \\ \text { lay_above } & =\text { PFV.VWL take } & =\text { PFV2 } & =\text { PST }\end{array}\)
'[He] (for his side) also ran back again.' (s_ball_cesa)

Things get a little bit more complicated when it comes to clauses with imperfective reading. There are two possibilities for elaborating SVCs. The first one simply consists in each verb stem type in the series (both major and minor verbs) taking the class morpheme regularly according to the tense context or the independence of the clause. In present tense readings, for instance, dynamic stems receive \(=i\) (33a), positional verbs take \(=a\) (33b), irregular stems take \(=o\) (33c), and
attributive stems do not take any maker (33d), as we saw in §5.3.1. In the examples below, the different types of minor verbs are in bold.

DYNAMIC
(33) a
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline a. yamaki & sautemuи & & yapai & & kõo & \\
\hline yamaki= & sautemu & & yapa & \(=i\) & kõ & \(=0\) \\
\hline \(1 \mathrm{PL}=\) & work with health issues & = DY & be_back & = D & again & =STV \\
\hline
\end{tabular} POSITIONAL
\begin{tabular}{|c|c|c|c|c|c|}
\hline b. \(\mathfrak{h}\) inni & & tёрё & \(k i k i\) & pou & \\
\hline \(\tilde{\text { anh }}\) & \(=n \dot{1}\) & tёрё & kiki \(=\) & po & \(=i\) \\
\hline ANA & & glass & CLN: & hold & \(=\mathrm{DYN}\) \\
\hline
\end{tabular}

\section*{hetua}
hetu \(\quad=a\)
lay_above =PFV.VWL
'That one also has glass beads.' (PDYP_MIC_A_07_19)

IRREGULAR
c. yama thëpë thaì k̃o
yama \(=\) thë \(=\quad\) pë \(=\) tha \(=\dot{i} \quad k \tilde{\boldsymbol{o}}=\boldsymbol{o}\)
\(1 \mathrm{PL}=\) CLN.GNR \(=3 \mathrm{PL}=\) do; make =DYN again =STV
'We make them [the loin cloths] again.' (PDYP_MIC_A_02_11)

ATTRIBUTIVE

'Then [she] grabs it [the chicken] strongly [...]' (s_chck_marc_from_alfr2)

In both past imperfective contexts and dependent clauses, the non-final verbs in the SVC receive the same marking as they typically do in dependent clauses (see
§5.3.3). That is, the dynamic vowel takes \(=i\) while all the remaining types take the stative vowel \(=O\), as the examples in (34) show.
(34) a. ihã Xokotha aha ya pirio kõoma
ihã Xokotha =a =ha ya= piri =o kõ =o =ma
there Xokotha \(=\) SG \(=\) OBL 1SG \(=\) lie \(=\) STV again \(=\) STV \(=\) PST
'[Then] I lived there again in Xokatha village.' (PDYP_MIC_A_14_02)

'We want to make those things [Western-like hammocks] disappear back again' (PDYP_MIC̀_B_10_02)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline c. yamaki & urihipë & & \multicolumn{3}{|l|}{һиёротии} & \multirow[b]{2}{*}{\(=i\)} \\
\hline yamaki= & urihi & \(=p \ddot{ }\) & huë & = po & \(=m u\) & \\
\hline \(1 \mathrm{PL}=\) & forest & =VBLZ & grab & =PFV3 & \(=\) INTRZ & \(=\) DYN \\
\hline kohipëo & mahiõ & & pihio & & yaro & [...] \\
\hline kohipë & mahi & \(=0\) & pihi & \(o\) & = yaro & \\
\hline be_strong =STV & v much & \(=\) STV & will & = STV & =CNJ.EXPLV & \\
\hline
\end{tabular}
'Because we want to hold/grab/grip our forest [i.e. protect it] very strongly
[...]' (PDYP_MIC_A_01_43)

As regards the second possibility, which is available only when the major verb is either dynamic or irregular, the stative stem types (i.e. positional and attributive) that function as coverbs are derived as dynamic or irregular verbs, with the corresponding marker. In this context, the derivation in dynamic stems requires the morpheme \(=a\), as in (35a), while the derivation in irregular stems is not overtly marked and the stative vowel \(=o\) is the only signal that a derivation happened, as in (35b). Note that both examples in (35) basically have the same lexical items and the
same syntactic function: pihi kuu 'to think' is the main verb in both sentences in which hetu 'lay above; be also' is the coverb.
\begin{tabular}{rlllll} 
(35) a. hapai naha & kami ya & pihi & pree kuu & \\
hapai \(=\) naha & kami ya \(=\) & pihi \(=\) & pree \(k u \quad=i\) \\
CAT & \(=\) thereby 1 & \(1 \mathrm{SG}=\) & V.PTC:thought= & also say & \(=\mathrm{DYN}\)
\end{tabular}
hetuai
hetu \(=a \quad=i\)
lay_above =DRV =DYN
'I also think the following.' (m006_arok_mari)
b. \(y a\) pihi pree kuu hetuo
ya \(a\) pihi \(=\) pree \(k u=i\) hetu \(=o\)
\(1 \mathrm{SG}=\mathrm{APPL}=\) also say =DYN lay_above =STV
'I also think [that].' (n004_morithue)

I still do not understand this variation. Is there any formal or semantic motivation for it or is it just a matter of dialectal differences or stylistic preferences of the speakers? In any event, I underline that it can be found with several other lexical items that appear as coverbs. In (36), I offer a pair of examples with he yati 'persistently.' In (36a), this coverb is treated as an irregular verb while in (36b) is derived in a dynamic stem. Note that the main verb (wã haí 'to speak') is the same in both constructions.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline a. kami yã & & hai & & he & yatio & \\
\hline kami ya & \(\tilde{a}=\) & ha & \(=i\) & \(h e=\) & yati & \(o\) \\
\hline 1SG & sound= & speak & \(=\mathrm{DYN}\) & V.PTC= & persist & \(=\mathrm{STV}\) \\
\hline
\end{tabular}

'Some of you keep talking (saying things).' (m010_tibi_kona_02)

We also found some cases in our corpus in which the derivation in dynamic stems is made through the intransitivizer \(=m u\) instead of the dynamizer \(=a\), as in the example in (37).

'Because I'm becoming old, I work weakly [...]' (PDYP_MIC_A_02_11)

In Table 10.1, I present a summary of the morphology that each type of verb stem takes in SVCs when it is not the ultimate verb. These morphemes appear both in main and minor verbs of the construction. The only exception is the last verb (always a minor verb), which takes the regular tense and aspectual morphology found in nonSVCs.

Table 10.1 - Summary of the SVC morphology
\begin{tabular}{|c|c|c|c|c|}
\hline & DYN & POST & ATTR & IRREG \\
\hline \multirow{2}{*}{imperfective present} & \multirow{3}{*}{\(=\dot{i}\)} & \(=a\) & \(\varnothing\) & \multirow{2}{*}{\(=0\)} \\
\hline & & \multicolumn{2}{|r|}{\(=a \dot{t} /=m u u /=o\)} & \\
\hline past imperfective/dependent & & \multicolumn{3}{|c|}{\(=0\)} \\
\hline perfective & \multicolumn{4}{|c|}{\(=a\)} \\
\hline
\end{tabular}

In the Schema 10.4, I present a visual representation of the structure of SVCs in the YMA. The abbreviation ASP indicates the aspectual vowel that every non-final verb stem of the string must take, according to the general aspect of the sentence.

\section*{Schema 10.4 - Morphosyntactic structure of SVCs}
[ERG] ABS Cluster B= V1 \(=\) ASP V2 \(=\) ASP... ...Vn \(=\) Cluster C
We will now move on to the discussion of the semantic aspects of SVCs in YMA.

\subsection*{10.4.2.Semantics of SVCs}

One of the most distinctive features of SVCs in comparison with other multi-verbal predicates in YMA regards the semantic asymmetry between the main and the minor verbs. While the main verb always retains its literal or lexical meaning, the minor verbs that appear in the string often undergo significant semantic bleaching, losing their primitive lexical meaning to acquire a more grammatical one. The examples in (38) illustrate this. In (38a), we have verb xoa as the head of a predicate, with the meaning of 'to continue'. However, as a minor verb, it acquires the aspectual meaning 'still' in imperfective predicates, as in (38b), and 'afterwards' in predicates marked for perfectiveness, as (38c).
(38) a. \(\mathfrak{\text { thh }}\) hãyõkoroma \(a\) xoa makii
thht hãyõkoroma \(a=\) xoa \(=\boldsymbol{a}\) makii
ANA axe \(\quad 3 \mathrm{SG}=\) continue \(=\) POST CONCS
'Even though the axe continues [...]' (i.e. 'It exists.') (n011_yoasiyaxuru)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & c. ирё & yipip & & & koima & & & wei \\
\hline & ирё= & \(y \dot{p} \dot{t}\) & \(=p u\) & & ko & \(=i m a\) & \(=\dot{i}\) & =wei \\
\hline ирё & \[
\begin{gathered}
\text { CLN:liquid }= \\
\text { tua }
\end{gathered}
\] & & \(=\mathrm{CSVT}\) & & \begin{tabular}{l}
again \\
kema
\end{tabular} & \(=\) DIR.VEN & \(=\mathrm{DYN}\) & \(=\) NMLZ \\
\hline ирё= & \(t u\) & & \(a\) & xo & & \(=k i\) & & \\
\hline CLN:li & iquid \(=\) be ove & r the & re \(=\) PO & T co & tinue & = PFV2 & & \\
\hline
\end{tabular}
'The water that [she] carried back, she put it afterward on the fire.'
(s_chck_arir)

In (39) we can observe an interesting example of xoa being used twice in the same SVC, first as the main verb (in bold) in its literal meaning, and then as a serial verb with its more specific meaning.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline (39) a. heha \(a\) & ixirayu & & wei & \(a\) & xoa & & xoa & \\
\hline heha \(a=\) & ixi & = rayu & \(=w e i\) & \(a=\) & xoa & \(=a\) & xoa & \(a\) \\
\hline here \(3 \mathrm{SG}=\) & burn & =PFV1 & =NMLZ & \(3 \mathrm{SG}=\) & continue & & still & \\
\hline
\end{tabular}
'The one who burned still continues here.' (i.e. 'The one who burned is still here.') (PDYP_MIC_A_01_42)

In (40), we have two examples that show the bleaching of the coverb. In this process, one semantic feature of the lexical meaning, such as the underlying directionality of verb yapa(a) \(\dot{i}\), which literally means 'to return'/'to be back', as in (4a), is selected as its most relevant feature, while the remaining features are simply bleached out. In (40a), we can see that when yapa \((a) i\) is used as a SV, it means just 'back' (40a). (40b), we have an example with the verb of pë(a) \(\dot{\boldsymbol{t}}\), literally 'to appear', but it changes its meaning to 'suddenly,' 'accidentally' or 'without an apparent reason' when it occurs as a coverb in a SVC.
\[

\]
yaparema
\begin{tabular}{lll} 
yapa & \(=r i\) & \(=m a\) \\
be_back & \(=\) PFV1 & \(=\) PST
\end{tabular}
'The man threw it back.' (s_chck_marc)
b. \(\tilde{t} h \tilde{t}\) ya thãa hĩria
च̂h \(\tilde{t}\) ya \(=\) th \(\tilde{a}=\quad \tilde{a}=\quad\) hĩri \(=a\)

ANA \(1 \mathrm{SG}=\) CLN.GNR \(=\) sound \(=\) hear \(=\) PFV.VWL
pëtarema
\(p \ddot{e} \quad=t a \quad=r i \quad=m a\)
appear \(=\) CEL \(=\) PFV1 \(=\) PST
'I heard that accidentally.' (PDYP_MIC_B_08_01)

As consequence of this bleaching, the minor verbs cannot be independent predicates. They only occur with the grammatical meanings described above in SVCs. When these forms appear as head of the predicate (i.e. independently), their meaning is always the lexical one.

At this point, it is worth mentioning that not all verbs display a significant change in their meaning when used as a coverb. Most of the coverbs that express spatial and attributive categories, for example, have a very similar meaning when used as a main verb. The verb ní õhõtaai means 'to suffer' when it is the head of the predicate, and 'in a suffering manner' when used as a coverb.
(41) a. yamaki ní pree ôhõtaama
yamak \(=n \dot{i}=\quad\) pree õhõtaa \(=m a\)
\(1 \mathrm{PL}=\quad\) V.PTC \(=\) also suffer \(=\) PST
'We also suffered.' (PDYP_MIC_A_02_11)
 [...]
'For they said [it] in a suffering manner.' (PDYP_MIC_A_02_11)

However, the main semantic difference between the two uses (as the main verb or a coverb) lies in the scope of the verb affectedness, i.e. on which component of the clause is being affected by the verb. While an absolutive argument is the affected constituent when the form is used as the main verb, the whole predicate is the scope of the modification when it appears as a coverb. In other words, the coverbs of SVCs are always event- and not participant-oriented. In this sense, SVCs resemble adverbial modifiers; their scope is also the predicate itself.

The resemblance between SVCs and adverbial modification does not stop here. Several coverbs also look like adverbial words as regards the meanings they add to the main predicate, which are typically adverbial in some cases, such as intensity (42a), spatial orientation, (42b), or the period of the day in which the event occurred (at night or in the morning), (42c).
\begin{tabular}{lllllll}
\(a\) & kiãi & & kohipëo & & wei & {\([.]\).} \\
\(a=\) & \(k i a\) & \(=i\) & kohipë & \(=o\) & \(=w e i\)
\end{tabular}
'The one who works hard [...]' (m011_joan_tihi)

pëhëthëkini
pëhëthë \(=k \dot{e} \quad=n \dot{t}\)
below =PFV2 =REL.PST
'The [other] arriving below [at the bottom of the tree] [...]'. (s_pear_marc)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline c. \(a\) & ximia & & henakema & & & makii \\
\hline \(a=\) & ximi & \(=a\) & hena & \(=k i\) & \(=m a\) & makii \\
\hline \(3 \mathrm{SG}=\) & send & \(=\mathrm{PF}\) & in the morning & \(=\mathrm{PFV} 2\) & \(=\) PST & CONCS \\
\hline
\end{tabular}

Indeed, some of the coverbs can function as adverbial words as well, with the same formal properties. We saw in (26), the lexeme yãniki 'to be slow/calm' being used as an adverb. The great freedom of this form within the clause is evidence of its categorization as an adverbial word. Nevertheless, when this word occurs after the main verb, as in (26a), it actually has an ambiguous status concerning its categorization and can be regarded either as an adverb or a coverb. Since all adverbial words are also attributive verbs, it was expected that yaniki would not receive any morpheme in that position if it was a SVC, i.e. when functioning as a coverb. We can be sure that this analysis is valid for examples such as in (43), where the clause has a perfective morphology. In this context, yaniki behaves exactly like any other minor verb in the final position of a SVC, i.e. it receives all the enclitics of cluster C, while the preceding verbs are only inflected with the perfective vowel \(=a\). Thus there is a morphosyntactic and semantic ambiguity in imperfective multi-verbal constructions in which the secondary verb is an adverbial word. The imperfective construction can always be regarded either as an adverbial modification or a serial verb construction.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(43)} & \multirow[t]{2}{*}{\(a\)
\(a=\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{kãyo piria}} & & \multicolumn{4}{|l|}{yãnikiarioma} \\
\hline & & & & \(=a\) & yãniki & \(=a\) & = rio & \(=m a\) \\
\hline & \(3 \mathrm{SG}=\) & APPL \(=\) & lie & \(=\mathrm{PF}\) & slow & = D & \(=\mathrm{PFV} 1\) & = PST \\
\hline
\end{tabular}
'Then she settled down with him.' (i.e. 'They moved permanently to that place') (n031_omamayesie1)

The range of meanings conveyed by SVs still includes the specification of the main predicate in relation to a previous predicate or a participant outside the clause. We saw in (38c) that the minor verb xoa means 'afterwards' when the clause is marked with a perfective morpheme. The minor verb noho 'to be subsequent' also indicates that the main predicate (either perfective or imperfective) was carried out as a
sequence of another predicate, but in this case, it requires the participant of the previous predicate to be different, such as in (44a). The verb nomihit, which literally means 'to replace, to exchange,' has a similar meaning, but in this case, it implies that the previous predicate was identical to the main predicate, i.e. it indicates that the new participant is replacing the previous one, like in (44b).

'Mom, when you talked to them, what did they say then?'
(PDYP_MIC_A_06_06)
b. Maria Teresa arini kami ya pree tëa

Maria Teresa \(=a \quad=r i n \quad\) kami \(y a=\) pree të \(\quad=a\)
Maria Teresa \(=\mathrm{SG} \quad=\mathrm{HON}=\) =ERG 1 1SG= also take =PFV.VWL
nomihia
kõrema
nomihi \(=a \quad k \tilde{} \quad=r i \quad=m a\)
exchange =PFV.VWL go_home =PFV1 =PST
'Maria Teresa also 'took' me [i.e. married me'].' (PDYP_MIC_B_08_01) (It implies that the speaker was married to a different person by the time Maria Teresa married him).

There are more verbs that express such relations. The verb paa, which literally means 'to debouch [river],' for instance, when used as a serial verb, indicates that the participant performed the main predicate when encountering another participant, as in (45a). On the other hand, the verb hëa, which literally means 'to remain, to be left,' conveys the idea that the main action was performed by the participant alone or after other participants had left, such as in (45b). The minor verb huo has this same basic
meaning but implies that the participants who left will not return soon or at all, like in (45c).

'[They] showed the burned caterpillar to that one [when they encountered that one].' (wtx_iwa)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline b. pei & thuwëpë & & huu & & hëimai & & \\
\hline pei & thuwëpë & \(e=\) & hu & \(=\dot{i}\) & hë & \(=\) ima & \(=\dot{i}\) \\
\hline \[
\begin{aligned}
& \text { INDEF } \\
& {[\ldots . .]}
\end{aligned}
\] & wife & DIF.PART= & go & \(=\) DYN & remain & \(=\) DIR.VEN & \(=\mathrm{DYN}\) \\
\hline
\end{tabular}
'His wife coming alone [after he had left] [...]' (s_chck_marc)

'You who are going to defend alone your forest [after I had died] [...]' (n055_kahikianoamai)

Some minor verbs still convey phasal aspect, such as terminative, as in (46a), and inceptive, as in (46b).

'When they were about to finish making the tails (i.e., the loin cloths) [...]' (PDYP_MIC_06_06)
```

 b. kama ãrinë thëki̇rĩ hanï̀
 kama \(=a \quad=r \tilde{i} \quad=n e ̈ \quad\) thë \(=\quad k \dot{t}=r \tilde{\imath}=\) hani \(=\dot{i}\)
 3 =SG =HON =ERG CLN.GNR= PL= HON= cut =DYN
 kuki wei [...]
$k u \quad=k i \quad=w e i$
exist $=\mathrm{PFV}_{2}=\mathrm{NMLZ}$
'[She] (+REV) starting to cut it (the food) [...]' (s_chck_hoax)

```

SVCs can also express polarity and possibility. While the use of the positional stem maa 'not to exist' as a serial verb gives negative polarity to the main predicate, such as in (47a), the verb hathõo indicates uncertainty on the part of the speaker (47b).

'While they don't kill me, while I am not dead [...]' (m005_wawa_gari)
\[

\]
'They will possibly kill us.' (m007_niki_kona)

In Table 10.2, I present the most common SVs in YMA, followed by the indication of their literal semantics (when traceable) and the meaning they convey when used as SVs.

Table 10.2 - Semantics of the minor verbs and their literal meaning (I)
\begin{tabular}{lll}
\hline form & literal meaning & meaning in SVC \\
\hline xoa & to stay; to continue & still \\
xi= wari & to entangle & always \\
he= yati & to continue, to insist & insistingly \\
he= tato & to recede, to give up & give up \\
kõ & to go/leave back home & again \\
yapa & to return & back \\
pari & to be at the front & firstly \\
ku & to be, to exist & to begin \\
ke & to fall & to begin \\
hura & to finish & to finish \\
pihi & to think & to want \\
ahate & to be near & near \\
praha & to be far & far \\
heaka & to be on the top & on the top \\
kasi & to put/be aside & beside \\
pëhëthë & to be below & below \\
xokë & be circular, make a circle & in a circular path \\
utiti & weakly \\
\hline
\end{tabular}

584 Yanomama clause structure

Table 3 - Semantics of the minor verbs and their literal meaning (II)
\begin{tabular}{lll}
\hline form & literal meaning & meaning in SVC \\
\hline kohipë & to be strong & strongly \\
mahi & to be many & much \\
maa & to not exist & NEG \\
hathõ & to be possible & maybe \\
hë [hëai, huo] & to be left, to remain & alone \\
hetu & to be (tied) above & for oneself side \\
noho & to be subsequent & subsequently \\
nomihí & to exchange & subsequently \\
paa & to debouch (waterway) & after encountering someone else \\
xeere & to split & separately \\
nikere & to mix & variously, confusingly \\
yakë & to make a mistake & mistakenly, carelessly \\
xaari & to be straight, to be right & straightly, rightly, \\
totihi & to be good & well \\
ní= wãya & to be distressed & annoyingly, disgracefully \\
ní= kirihi & to be scary & terribly, awfully \\
toko & --- & unfortunately \\
nëhë= ruai & to disturb & to suffer
\end{tabular}

\subsection*{10.5. Complementation}

In the following sections, I will present four types of complementation constructions in YMA. There are still several other strategies in the language that will not be described here for they consist of loosely integrated sentences made of two or more clauses. Here I will be exclusively concerned with the monoclausal complementation type. I will start with the constructions that express motion with purpose.

\subsection*{10.5.1.Type 1 - Motion with purpose}

In YMA, a predicate that conveys motion may accept a verb as its goal complement and integrate it into the main predicate. This multi-verbal construction is highly specialized in the language, only used to express this function. Several exclusive features characterize this construction. From a morphological perspective, the most evident feature is the linking morpheme \(=m a\), which appears only in this construction and in the alternative non-canonical secondary predication construction, as we saw in §10.2.2. In (48), I present an instance of this construction.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (48) & च̂hz tëh & & \(a i\) & eini & & & pora & & \\
\hline & \(\tilde{h} h \tilde{t}\) & \(=t e ̈ h e ̈\) & \(a i\) & \(=e\) & \(=i\) & \(=n \dot{i}\) & pora & \(a=\) & \(i=\) \\
\hline & ANA & \(=\) REL.PR & S other & \(=\) DIF.PART & \(=\) DIM & = ERG & & \(3 \mathrm{SG}=\) & DIM \(=\) \\
\hline kõama & & rëerahu & ıruma & & & & & & \\
\hline kõa & \(=m a\) & rëë = & raa & \(=h u r u\) & \(=m a\) & & & & \\
\hline take & \(=\) LIN & run = & PFV1 & \(=\) DIR.AND & \(=\mathrm{PST}\) & & & & \\
\hline
\end{tabular}
'And then one youngster ran to take/pick up the ball.' (s_tree_marc).

As we can see by this example, the complement verb ( \(\mathrm{V}_{\text {comp }}\) ) precedes the matrix verb ( \(\mathrm{V}_{\text {matrix }}\) ), which is always intransitive and can be any type of motion verb, such as rërëі - 'run', ukuи 'walk', a 'go/leave to', huи 'go', huimai 'come', karëi 'float, go by canoe', and yë̈ 'fly'. The achievement verb waroo 'to arrive' can also be the \(\mathrm{V}_{\text {matrix }}\) of this construction. On the other hand, \(\mathrm{V}_{\text {comp }}\) is always a dynamic stem (or the dynamic version of an attributive or positional stem) and it can be either transitive, as in (48), or intransitive, as in (49).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline thuwë & \(p \ddot{ }\) & okomoma & & \(a a\) & & heturayu & \\
\hline thuwë & \(p \ddot{e}=\) & okomu & \(=m a\) & \(a\) & \(=a\) & hetu & \(=r a y u\) \\
\hline woman & \(3 \mathrm{PL}=\) & crab-pick & \(=\) LINK & go & = PFY & lay_above & \(=\mathrm{PFV} 1\) \\
\hline 'The wo & men & their side & ave to & cra & -pick & YP_B_02 & \\
\hline
\end{tabular}

Interestingly, the nominal argument shared between the motion and the complement predicates does not display absolutive alignment, as in other multi-verbal constructions, but nominative alignment instead. That is, the subject of the motion predicate coincides with the subject of the intransitive complement predicate or with the agent of the transitive one. In (48), for instance, the syntactic agent of the verb kõai 'to take' is also the subject of rërë̈̀ 'to run,' while in (49) the subject of okomuи 'to crab-pick' matches the subject of the motion predicate aai 'to go.' This is one of the few morphosyntactic contexts in which the language does not display (ergative-) absolutive alignment. And as a consequence of this alignment, motion with purpose constructions can display a transitive argument structure when the complement predicate is transitive. We already saw in (48) that one of the arguments (ai einit 'other little one') of the clause is marked with the ergative case marker \(=n \dot{i}^{2}\). And when the ergative argument is plural or a SAP, the predicate is also marked with a person index, as illustrated in (50) and (51). In (50a) the morpheme \(=h e\) (in bold) indicates that a 3rd person plural is both the agent of the complement predicate and the subject of the motion verb, while in (50b) the proclitic \(y a=\) (also in bold) tells that the 1st person is performing the same syntactic roles.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline a. wãro pëni & & yaro & pë & niama & & aa & \\
\hline \(w a ̃ r o=p e ̈\) & \(=n \dot{1}\) & yaro & \(p \ddot{e}=\) & & \(=m a\) & \(a\) & \(=\) \\
\hline man =PL & = ERG & anima & & shoot & \(=\) PST & & \\
\hline
\end{tabular}
heturayuhe
hetu =rayu =he
lay_above =PFV1 =3PL

\footnotetext{
\({ }^{2}\) We saw in Chapter 7 that there is no person index on the verb for 3rd person singular agent.
}
'The men for their side leave to shoot animals.' (PDYP_B_02_01)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline b. tёрё & \(y a\) & kiki & toama & & waroke & & \\
\hline тёрё & \(\boldsymbol{y a}=\) & kiki= & toa & \(=m a\) & waro & \(=k i\) & \(=m a\) \\
\hline glass bead & 1SG= & CLN: C & & \(=\) LINK & arrive & \(=\mathrm{PFV} 2\) & \(=\) PST \\
\hline
\end{tabular}

Since the \(\mathrm{V}_{\text {comp }}\) receives the linking morpheme \(=m a\), it is not marked for tense or aspect. Indeed, it is the \(\mathrm{V}_{\text {matrix }}\) that hosts all the morphemes from Cluster C . The index for the 3 rd person dual agent is only one exception to this rule; it is always hosted by the \(\mathrm{V}_{\text {comp }}\), as we can see in (51). We saw in (50a) that the 3 rd person plural agent marker \(=h e\), which is also an enclitic from Cluster C , attaches to the \(\mathrm{V}_{\text {matrix }}\).

'They two went to pick up another wood stick.' (s_tree_marc)

Schema 10.5 is a visual representation of highly integrated complementation constructions that express motion with purpose inYMA.

\section*{Schema 10.5 - Morphosyntactic structure of complement construction Type A3}
[ERG] ABS Cluster \(\mathrm{B}=\mathrm{V}_{\text {comp }}[=3 \mathrm{DU}]=\mathrm{LINK} \mathrm{V}_{\text {motion-matix }}=\) Cluster C
Notice that even though the general valency of the clauses in (51) and (50a) is transitive, the perfective morpheme that the predicate takes is not \(=\) re but \(=\) rayu, which is the intransitive perfective morpheme of the Series I, as we saw in Chapter 6. On the one hand, it is the \(V_{\text {comp }}\), not the \(V_{\text {matrix }}\) that determines the argument structure of the clause and the number of person indexes on the predicate. On the other hand, it is the \(V_{\text {matrix }}\), always intransitive, that specifies the aspectual morphology of the predicate. The only other context where this morphosyntactic discrepancy is observed is in the reciprocal derivation of ditransitives verbs, as explained in §9.6.4. In the next section, we will see another type of complementation construction of which the
general valency is also determined by the \(\mathrm{V}_{\text {comp }}\). In this case, however, there is no apparent inconsistency between valency and aspectual morphology since the aspect marker used in this later construction is always from Series II, which does not vary according to the valency of the predicate.

\subsection*{10.5.2.Type 2 - Verbs tai 'to know' and wapai 'to try'}

The most striking feature of this complementation construction is that the valency of \(\mathrm{V}_{\text {matrix }}\) has to agree with the valency of the \(\mathrm{V}_{\text {comp }}\). As far as I know, the only two verbs that can function as \(\mathrm{V}_{\text {matrix }}\) in this construction are the verbs tait 'to know' and wapai 'to try,' both of which are originally transitive in YMA. We can attest the transitivity of these verbs by examples such as (52) where the object arguments of these constructions are exclusively made of nouns. The primary evidence for considering these predicates transitive is that both constructions may display two person indexes. Moreover, in (52b) the predicate takes the perfective morpheme \(=r i\), which is the prototypical marker for transitive predicates.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline a. napë & yama & pëã & & \(t a \dot{t}\) & & hikio & \\
\hline nарё & yama= & \(p \ddot{e}=\) & \(\tilde{a}=\) & \(t a\) & \(=i\) & hiki & \(=0\) \\
\hline white person & \(1 \mathrm{PL}=\) & 3PL= & sound & know & & already & \(=\mathrm{STV}\) \\
\hline
\end{tabular}
b. Manaus hami pizza yaa waparema
\begin{tabular}{lllll} 
Manaus \(=\) hami pizza \(\mathbf{y a}=\) & \(\boldsymbol{a}=\) & wapa & \(=\boldsymbol{r i}\) & \(=m a\) \\
Manaus \(=\) OBL pizza \(\mathbf{1 S G}=\) & \(\mathbf{3 S G}=\) try & \(=\mathbf{P F V 1}\) & \(=\mathrm{PST}\)
\end{tabular}
'I tried pizza in Manaus.'

In any event, when these verbs have another predicate as their complement, i.e. when they are the \(\mathrm{V}_{\text {matrix }}\) of a complementation construction, their morphosyntactic valency has to coincide with the valency of the \(\mathrm{V}_{\text {comp }}\). That is, when the \(\mathrm{V}_{\text {comp }}\) is transitive, the \(\mathrm{V}_{\text {matrix }}\) keeps it transitive argument structure and corresponding morphology, as in the example (53a); when the \(\mathrm{V}_{\text {comp }}\) is intransitive, nevertheless,
\(\mathrm{V}_{\text {matrix }}\) has to undergo a previous derivation with the intransitivizer \(=m u\) to decrease its valency, as in (53b).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (53) a. \(\mathfrak{\text { inht }}\) ¢ \(\quad\) ëni & & sãhẽsãhẽ pë & hãxãremaì & & \(t a i\) & \\
\hline \(\tilde{t} h \tilde{t}=p \ddot{ }\) & \(=n \dot{t}\) & sãhẽsãhẽ pë= & hãxãrema & \(=i\) & \(t a\) & \(=i\) \\
\hline \[
\begin{aligned}
& \text { ANA }=\text { PL } \\
& \text { mahi yarohe }
\end{aligned}
\] & = ERG & foliage 3 PL= & sweep & = DY & know & \(=\mathrm{DYN}\) \\
\hline mahi =yaro & \(=h e\) & & & & & \\
\hline much =CNJ.EXPLV & \(=3 \mathrm{P}\) & & & & & \\
\hline
\end{tabular}
'For those ones know how to sweep the foliage.' (wtx_iwa)
```

 b. \(y a \tilde{a}\) haì taтии
 \(y a=\tilde{a}=h a \quad=i \quad t a \quad=m u \quad=i\)
 \(1 \mathrm{SG}=\) sound= pass_through =DYN know =INTRZ =DYN
 yaro , ya pihi kиu taтии
=yaro $y a=p i h i=\quad k u \quad=\dot{i} \quad t a \quad=m u \quad=\dot{i}$
$=$ CNJ.EXPLV 1SG= V.PTC:thought= say =DYN know =INTRZ =DYN
yaro [...]
=yaro
$=$ CNJ.EXPLV

```
'For I know how to speak, for I know how to think [...]'
(PDYP_MIC_A_14_02)

When the \(\mathrm{V}_{\text {matrix }}\) is intransitivized, the whole predicate not only loses the ability to host two person indexes but also acquires other morphological properties of intransitive predicates, such as the preference for the perfective morpheme \(=\) rayu instead of its transitive counterpart \(=r i\). In (54), we have an example of the of \(\mathrm{V}_{\text {matrix }}\) tait 'to know' in a perfective constrution in which the \(\mathrm{V}_{\text {comp }}\) is intransitive.
\[
\begin{align*}
& \text { napë pë urihipë hami ya huи }  \tag{54}\\
& \text { nарё pë= urihi =pë =hami ya=hu =í } \\
& \text { white person } 3 \mathrm{PL}=\text { forest }=\mathrm{VBLZ}=\mathrm{OBL} \quad 1 \mathrm{SG}=\mathrm{go} \quad=\mathrm{DYN}
\end{align*}
\]

\section*{tamorayoma}
\begin{tabular}{llll}
\(t a\) & \(=m u\) & \(=r a y u\) & \(=m a\) \\
know & \(=\) INTRZ & \(=\) PFV1 & \(=\) PST
\end{tabular}
'I learned how to go to the land of the white people.' (i.e. 'I have already been there') (PDYP_MIC_A_13_07)

As the examples in (53) and (54) show, the alignment of the common argument shared by the \(\mathrm{V}_{\text {matrix }}\) and \(\mathrm{V}_{\text {comp }}\) displays a nominative pattern. That is, in transitive clauses, the \(\mathrm{V}_{\text {matrix }}\) and \(\mathrm{V}_{\text {comp }}\) have in common the same agent argument (both syntactically and semantically), while in intransitive constructions, they share the same syntactic subject argument. From a semantic perspective, the subject of the complement predicate coincides with both the patient and the agent of the matrix predicate. In this sense, and since this construction also requires the intransitivizer \(=m u\), it resembles the reflexive derivation a lot, as described in §9.6.2. They are different constructions, nevertheless, as examples such as (55) suggest. In this very complex clause, we have three different types of multi-verbal constructions and three independent verbal derivations. The first derivation through the morpheme \(=p e ̈\) turned the noun xaraka 'arrow' into an attributive verb to convey possession (see §5.6.10 and §9.7). In the clause, this derived verb is the P2 of the verb niai 'to shoot' which is intransitivized with \(=m u\), for the possessor of the xaraka 'arrow' was promoted to the core argument of an attributive-possessive construction and coincides with the semantic agent argument of the predicate niai 'to shoot.' This second derivation is the reflexive one (see §9.6.2). The attributive verb tire 'to be high' is clearly a minor verb in a SVC as the dynamic vowel \(=i\) attached to it demonstrates (see §10.4.1). Finally, tатии is the intransitivized version of tai 'to know', which is the \(\mathrm{V}_{\text {matrix }}\) of a complement construction that has the reflexive verb xarakapë niamuи tirei'to shoot his own arrow high' as \(\mathrm{V}_{\text {comp }}\).

'The one who knows how to shoot his arrows high.' (wtx_krukunari)

Similarly to other multi-verbal constructions, it is the last verb of the clause, i.e the \(\mathrm{V}_{\text {matrix }}\) in this construction, that receives most of the clitics from Cluster C. The \(\mathrm{V}_{\text {comp }}\) only hosts the dynamic vowel \(=\boldsymbol{i}\), when it is a dynamic verb as in the examples above, or the stative vowel \(=o\), when the \(\mathrm{V}_{\text {comp }}\) is an irregular one, as in (56). Positional and attributive stems can only take part in this construction in their non-stative version, which requires the dynamic vowel \(=i\). Note from example (54) that even when the clause is marked for perfectiveness, the \(\mathrm{V}_{\text {comp }}\) still hosts the dynamic vowel. This aspectual independence of the \(\mathrm{V}_{\text {comp }}\) is a feature that sets complementation constructions apart from SVCs.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline huu tihiha & & ya & tuo & & tamoim & & \\
\hline huu \(=\) tihi & \(=h a\) & \(y a=\) & tu & & ta & \(=m u\) & \(=i m i\) \\
\hline tree \(=\) CLN:tree & \(=\) OBL & \(1 \mathrm{SG}=\) & climb & = STV & know & \(=\) INTRZ & \(=\) NEG \\
\hline
\end{tabular}

Below, I offer the general schema that illustrates the morphosyntactic structure of this complement construction when the \(\mathrm{V}_{\text {comp }}\) is intransitive.

\section*{Schema 10.6 - Morphosyntactic structure of the complement construction Type A3 with intransitive complement verbs}

ABS Cluster \(B=V_{\text {comp }} \quad \mathrm{V}_{\text {matrix }}=\) INTRZ \(=\) Cluster \(C\)
The schematic representation of this construction with a transitive \(\mathrm{V}_{\text {comp }}\) is like in Schema 10.7.

\section*{Schema 10.7 - Morphosyntactic structure of the complement construction Type A3 with transitive complement verbs}
\[
\text { ERG ABS Cluster } \mathrm{B}=\mathrm{V}_{\text {comp }} \quad \mathrm{V}_{\text {matrix }}=\text { Cluster } \mathrm{C}
\]

As a final note, attributive stems cannot be the \(\mathrm{V}_{\text {comp }}\) in this construction. It is the only type of verb stem that displays such a restriction.

\subsection*{10.5.3.Type 3 - Verbs taai 'to see,' himai 'accuse,' wasuи 'to forbid'}

This complementation construction differs from the others described in this chapter in always displaying a transitive argument structure. This structure is provided by the \(\mathrm{V}_{\text {matrix }}\), which follows \(\mathrm{V}_{\text {comp }}\). Differently from the construction described in \(\S 10.5 .2\), which also has a transitive verb as its \(\mathrm{V}_{\text {matrix }}\), in this complementation construction, the \(V_{\text {matrix }}\) never changes its valency, regardless of the valency of the \(V_{\text {comp. }}\) In (57a), I offer an example with an intransitive \(\mathrm{V}_{\text {comp }}\) and in (57b) an instance with transitive \(\mathrm{V}_{\text {comp }}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (57) a. oxe & thëpëni & & & Kunathoi a & hërët & \\
\hline oxe & \(=t h e ̈\) & \(=p \ddot{e}\) & \(=n \dot{t}\) & Kunathoi \(a=\) & hërë & \(=i\) \\
\hline youngster & \(=\) CLN.GNR & \(=\mathrm{PL}\) & \(=\) ERG & Kunathoi 3SG= & swim & \(=\mathrm{DYN}\) \\
\hline himamahe & . & & & & & \\
\hline hima =ma & he & & & & & \\
\hline point =PST = & 3 PL & & & & & \\
\hline
\end{tabular}
'The children accused Kunathoi of swimming (in the large river).'
```

 b. [nara aha] aroari kiki
 nara =a =ha aroari kiki=
 opossum =SG =OBL witchcraft CLN:collective=
 hokiai taaremahe
hoki =a =i taa =ri =ma =he
lift =DRV =DYN see =PFV1 =PST =3PL
'They saw [the opossum] casting (lit. lifting) sorcery curse .'(n007_nara)

```

Note that the core argument shared by \(\mathrm{V}_{\text {matrix }}\) and \(\mathrm{V}_{\text {comp }}\) is always the absolutive one. When the \(\mathrm{V}_{\text {comp }}\) is intransitive as in (57a), its subject (Kunathoi) is raised to the position of a patient of the matrix verb. On the other hand, the argument that is the patient of a transitive \(\mathrm{V}_{\text {comp }}\), such as aroari kiki 'sorcery' in (57b), is also the syntactic patient of the complementation construction while the semantic agent of \(\mathrm{V}_{\text {comp }}\) (nara \(a\) 'opossum') is categorized as a peripheral constituent of the clause, being marked with the oblique case marker \(=h a\). That is, the patient of the complement predicate is treated as the patient of the matrix verb. In (58a), I present an example of the transitive predicate as an independent clause and, in (58b), the same predicate embedded as the complement of another predicate which has wasu 'to forbid' as its head.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{b. kami yani} & \multicolumn{3}{|c|}{Ararima eha} & \multicolumn{4}{|c|}{xama ya a} \\
\hline & kami & \(=y a\) & & \(=n \dot{i}\) & Ararima & \(=e\) & \(=h a\) & xama & & \(a=\) \\
\hline & 1 & \(=1 \mathrm{SC}\) & & \(=E R G\) & Ararima & \(=\) DIF.PART & \(=\mathrm{OBL}\) & tapir & 1SG & \(3 \mathrm{SG}=\) \\
\hline \multicolumn{4}{|l|}{хёprai} & \multicolumn{2}{|r|}{wasuma} & . & & & & \\
\hline \(x \ddot{ }\) & & = pra & \(=i\) & \multicolumn{2}{|r|}{wasu =} & \(=m a\) & & & & \\
\hline beat; kill & kill = & = DRV & \(=\) D & YN for & rbid =PS & & & & & \\
\hline
\end{tabular}
'I forbade Ararima from killing the tapir.'

It is worth mentioning that the rearrangement of the argument structure of this embedded complement predicate follows the exact same pattern observed in causative derivations. As described in \(\S 9.5 .2\), the sole absolutive argument of an intransitive predicate also remains in the absolutive position in the causative version, i.e. it becomes the object of the transitive (causative) construction, as in (59a), which is exactly what happens with intransitive complement verbs. When the causative derivation occurs with a transitive predicate, as in (59b), the absolutive argument of the non-derived clause also remains in the same position in the causative construction,
while the ergative argument of the non-derived clause is moved to an oblique position in the causative construction.
(59) a. kami yani
kami =ya =ni Ararima ya \(a=\) heri =ma =ma
\(1=1 \mathrm{SG}=\mathrm{ERG}\) Ararima \(1 \mathrm{SG} 3 \mathrm{SG}=\) chant \(=\) CAUS \(=\mathrm{PST}\)
'I made Ararima sing.'
\begin{tabular}{llllllll} 
b. kami yaní & \multicolumn{3}{c}{ Ararima eha } & \multicolumn{3}{c}{ xama ya a } \\
kami \(=y a\) & \(=n \dot{t}\) & Ararima \(=e\) & \(=h a\) & xama & ya & \(a=\) \\
1 & \(=1 \mathrm{SG}\) & \(=\) ERG & Ararima & \(=\) DIF.PART & \(=\) OBL & tapir & 1 SG
\end{tabular}\(\quad 3 \mathrm{SG}=\) xëpramarema
\begin{tabular}{lllll}
\(x \ddot{e}\) & \(=p r a\) & \(=m a\) & \(=r i\) & \(=m a\) \\
beat; kill & \(=\mathrm{DRV}\) & \(=\mathrm{CAUS}\) & \(=\mathrm{PFV} 1\) & \(=\mathrm{PST}\)
\end{tabular}
'I made Ararima kill a tapir.'

Schema 10.8 represents the morphosyntactic structure of this construction. In lower characters, I make the indication of the semantic role that each argument of the clause, that is, 'ag-comp' and 'pat-comp' refer to the semantic agent and patient of the complement predicate and, correspondently, 'ag-matrix' to the semantic agent of the matrix predicate.

\section*{Schema 10.8 - Morphosyntactic structure of complement construction Type A}
\[
\mathrm{ERG}_{\text {ag-matrix }} \mathrm{OBL}_{\text {ag-comp }} A B S_{\text {pat-comp/matrix }} \text { Cluster } \mathrm{B}=\mathrm{V}_{\text {comp }} \quad \mathrm{V}_{\text {matrix }}=\text { Cluster } \mathrm{C}
\]

This construction allows not only transitive or intransitive dynamic verbs in the complement position but any verb stem type. In (60a), I present an example of a dynamic stem being the complement verb of the construction; in (60b), the complement verb is a positional stem; in (60c), it is an attributive stem, and, finally, the sentence in ( 60 d ) brings us an example of irregular verb in the complement position.

DYNAMIC

'After he saw us suffering here.' (PDYP_MIC_B_08_01)

POSITIONAL
 taarema
```

taa =ri =ma
see =PFV1 =PST

```
'Not far from there, one of the foreigners then saw his. hat laying on the ground.' (s_pear_marc)

\section*{ATTRIBUTIVE}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline c. kaxa & \(a\) & \(r i p i\) & taar & mahe & & \\
\hline kaxa & \(a=\) & ripi & taa & \(=r i\) & \(=m a\) & =he \\
\hline caterpillar & \(3 \mathrm{SG}=\) & cooked & see & \(=\mathrm{PFV} 1\) & = PST & \(=3 \mathrm{PL}\) \\
\hline
\end{tabular}

IRREGULAR
\begin{tabular}{|c|c|c|c|c|c|}
\hline d. huu tihiha & oxe & \(y a\) & thëpë & tuo & \\
\hline huи = tihi & =ha oxe & \(y a=\) & thë= & \(p \ddot{e}=t u\) & \(=0\) \\
\hline \[
\begin{array}{cc} 
& \text { tree }=\text { CLN:tree } \\
h a & \text { taarini }
\end{array}
\] & \(=\) OBL youngster [...] & \[
1 \mathrm{SG}=
\] & CLN.GNR= & \(3 \mathrm{PL}=\) climb & =sTV \\
\hline \(h a=\quad t a a=r i\) & \(=n \dot{i}\) & & & & \\
\hline REL.PST \(=\) see \(=\) PFV1 & \(=\) REL.PST & & & & \\
\hline
\end{tabular}
'When I saw the kids climbing the tree.'

Note in (60a) that each verb stem type takes a different morpheme (in bold) in the complement position. These morphemes are the same taken by these stem types in the imperfective-present contexts; that is, dynamic stems take the dynamic vowel \(=i\), positional stems host the positional vowel \(=a\), irregular verbs receives \(=o\) and attributive stems do not require any morpheme in this context. Note that this marking pattern is the same as found in present imperfective SVCs. However, while in SVCs the marking pattern varies according to the tense and aspectual markers of the clause, in complementation constructions the marking of the \(\mathrm{V}_{\text {comp }}\) does not change, regardless the tense-aspectual status of the \(\mathrm{V}_{\text {matrix }}\).

\subsection*{10.5.4.Type 4 - Predicative complementation}

This complementation construction is unique in the language for the positions of the \(\mathrm{V}_{\text {matrix }}\) and \(\mathrm{V}_{\text {comp }}\), which is the opposite of what is observed in other constructions. As we can see in the example in (61), the \(V_{\text {comp }}\) follows the \(V_{\text {matrix }}\) in this construction.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline thëki & \multicolumn{2}{|c|}{taатии} & \multicolumn{2}{|r|}{гиёо} & & wei \\
\hline thë= & \(k \dot{i}=t a a\) & \(=m u\) & \(=i\) & гиё & = 0 & = wei \\
\hline CLN.GNR= & \(\mathrm{PL}=\) see & \(=\) INTRZ & = DYN & unripe & =STV & = NMLZ \\
\hline
\end{tabular}

This construction also differs from the other ones as its \(\mathrm{V}_{\text {matrix }}\) is a verb intransitivized through the deriving morpheme \(=m u\). All perceptual verbs, such as taai, 'to see', hirrĩ 'to hear' or riã rixaí 'to smell', can be derived with the intransitivizer \(=m u\) to form a new verb that expresses a perceptual or sensory quality of a source entity. The derived form is the \(\mathrm{V}_{\text {matrix }}\) of this complementation construction, which prototypically has an attributive stem as its \(\mathrm{V}_{\text {comp }}\) to specify the sensory quality. In (62), I present another example of this construction. Note that entity that experiences the sensory quality provided by source entity is coded as an oblique argument (kami yaeha 'to me') while the source-entity itself ( \(\mathfrak{t h} \tilde{t}\) thãa 'those words') is the subject of both \(\mathrm{V}_{\text {matrix }}\). and \(\mathrm{V}_{\text {comp }}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(62)} & \multicolumn{2}{|l|}{kami yaeha} & \multicolumn{4}{|c|}{[ \(\mathfrak{t h}{ }^{\text {c }}\) ] thãa} \\
\hline & kami \(=y a\) & \(=e\) & \(=h a\) & ¢̇ht & thã= & \(\tilde{a}=\) \\
\hline & \(=1 \mathrm{SG}\) & \(=\) DIF.PART & \(=\mathrm{OBL}\) & ANA & CLN.GNR \(=\) & sound= \\
\hline \multicolumn{2}{|l|}{hǐrimии} & totihi & \multicolumn{2}{|l|}{mahioma} & & \\
\hline hĩrĩ & \(=m u\) & totihi & mahi & \(=0\) & \(=m a\) & \\
\hline \multirow[t]{2}{*}{hear} & \(=\) INTRZ \(=\) D & \multicolumn{2}{|l|}{= DYN be_good much} & = STV & \(=\mathrm{PST}\) & \\
\hline & '[Those] wor & s sounded v & y nice & to me.' & DYP_MIC & A_16_01) \\
\hline
\end{tabular}

Not only perceptual verbs can take part in this construction. Indeed, several positional or dynamic stems can be derived with the intransitivizer \(=m u\) and be the head of this construction. The resulting form specifies the perceptual domain in which the attributive predication (the \(\mathrm{V}_{\text {comp }}\) ) is valid. For instance, the derivation of the positional stem tëkëa 'to sit (on a bench)' results in the intransitive form tëkëmu, as in the example (63a), which selects an entity made or used for sitting on (such as a chair) as its subject and requires an attributive verb, such as totihi 'to be good', as its predicative complement. The scope of the "goodness" of the chair is determined by derived verb tëkëmu 'to sit,' that is, 'the chair "sits" good' or 'the chair is good to seat.' In (63b), I offer an example of this derivation with the dynamic verb hupai to 'touch,' which display similar semantic and morphosyntactic properties.
\begin{tabular}{lllllll} 
kihi tëkëotima & \multicolumn{2}{c}{ tihi } & \multicolumn{2}{c}{ tëkëmuи } & & totihi \\
kihi tëkë \(=o\) & -tima & tihi \(=\) & tëkë & \(=m u\) & \(=\) i & totihi \\
that sit & \(=\) STV & -NMLZ CLN:wood= \(=\) sit & \(=\) INTRZ & \(=\) DYN be_good
\end{tabular} 'That chair sits well.'
```

b. hei kamixa kiki	hиратии			si utiti	
hei kamixa kiki=	hupa	$=m u$	$=i$	$s i=$	utiti
this cloth CLN:fabric=	touch	$=$ INTRZ	$=\mathrm{DYN}$	V.PTC=	be_weak

The meaning 'to taste,' like in 'this banana tastes sweet', is obtained through the intransitivization of the dynamic verb wait 'to eat,' as in (64).

hei thëi	waтии				ãrîkĩ mahi
hei thë=	$i=$	wa	$=m u$	$=$	ãrîki mahi
this CLN.GNR=	DIM $=$		$=$ INTRZ		parch much

'This small piece [of food] tastes very roasted.' (wtx_iwa)

Note that in the previous examples the $\mathrm{V}_{\text {comp }}$ did not take any morpheme because the predicate has a present stative reading and in this context attributive stems are unmarked. Nevertheless, the dynamic version (inchoative) of the attributive stem can also be the head of the complement predicate and take any type of tense or aspectual morpheme of Cluster C. In the example in (65), the inchoative verb totihii 'to better' takes the perfective morpheme $=r a y u$ and the past marker $=m a$.

Even though the attributive stem seems to be the prototypical $\mathrm{V}_{\text {comp }}$ of this construction, other types of verb stem can also appear in this position. This is particularly frequent when the $\mathrm{V}_{\text {matrix }}$ is taamuи 'to seem,' which may select a dynamic or positional predicate as its complement. When it occurs, the $\mathrm{V}_{\text {matrix }}$ taamии 'to seem' is often preceded by the verbal particle nëhë=, as in (66a), but this is not obligatory, like the example (66b) shows. Note that in (66a), the $\mathrm{V}_{\text {comp }}$ is transitive and that the index for 3rd person in the predicate refers both to the subject of the $V_{\text {matrix }}$ and the patient of the $\mathrm{V}_{\text {comp. }}$. The alignment of the argument shared between $\mathrm{V}_{\text {matrix }}$ and $\mathrm{V}_{\text {comp }}$ displays an absolutive pattern.

```
(66) a. a naha taamuи
    a= naha= taa =mu =i
    3SG= V.PTC= see =INTRZ =DYN
thatarini
    [...]
tha =ta =ri =n\dot{t}
do;make =CEL =PFV1 =REL.PST
```

'Seeming to do like this quickly [...]' (s_chck_marc)

| b. pihi | taamu | kutarioma | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| pihi $=$ | taa $=m u$ | $=i$ | $k u$ | $=t a$ | $=$ rio | $=m a$ |
| V.PTC:thought $=$ | see | $=$ INTRZ | $=$ DYN say | $=$ CEL | $=$ PFV1 | $=$ PST |

 '[He] seemed to think [like that].' (s_chck_marc)
 This construction can be represented as in Schema 10.9.

Schema 10.9 - Morphosyntactic structure of the predicative complementation constructions

As a final note, this complement construction may resemble the adverbial modification construction, especially when the $\mathrm{V}_{\text {comp }}$ is an attributive stem and the predicate is in the present tense and imperfective aspect, as in the examples from (61) to (64). These constructions are apparently very similar to constructions that clearly involve adverbial modification, such as (26a), particularly with respect to the position of the adverbial word (which is also an attributive verb) and the lack of marking on it. There are two main differences about the use of the attributive stem in these two constructions. In predicative complementation, the attributive stem is participantoriented and is not a peripheral (and optional) constituent of the predicate. When used as an adverbial word, on the other hand, the attributive stem modifies the whole predicate and is an adjunct, i.e. its absence does not affect the grammaticality and the core meaning of the clause.

10.6. Summary of the differences between the multi-verbal constructions

Below, Table 10.4 and Table 10.5 summarize the main formal and semantic diagnostic features of multi-verbal constructions in YMA.
Table 10.4 - Differences between the multi-verbal constructions (I)

parameter	Secondary Predication		Adverbial modification	SVC
	Canonical	Non-canonical		
order of verbs	$\mathrm{V}_{2} \mathrm{~V}_{1}$	$\mathrm{V}_{2} \mathrm{~V}_{1}$	$\left[\mathrm{V}_{\text {adv }}\right] \mathrm{V}_{1}\left[\mathrm{~V}_{\text {adv }}\right]$	$\mathrm{V}_{1} \mathrm{~V}_{2} \ldots \mathrm{~V}$ n
extra morphemes required?	x	\checkmark	x	\times
participant vs. event oriented	participant	participant	event	event
meaning of V_{1} or $\mathrm{V}_{\text {matix }}$	literal	literal	literal	literal
meaning of V_{2} or $\mathrm{V}_{\text {comp }}$	literal	literal	literal	modified
verb stem type of V_{2} or $\mathrm{V}_{\text {comp }}$	attributive	dynamic	adverbial words	all types
verb stem type of V_{1} or $\mathrm{V}_{\text {matrix }}$	non-attributive (positional, dynamic, irregular)	dynamic	non-attributive (positional, dynamic, irregular)	all types

602 Yanomama clause structure
Table 10.5 - Differences between the multi-verbal constructions (II)

parameter	Complementation			
	Motion with purpose	Verbs 'know' and 'try.'	Verbs 'see,' 'accuse' and 'forbid.'	Predicative complement
order of verbs	$\mathrm{V}_{\text {comp }} \mathrm{V}_{\text {matrix }}$	$\mathrm{V}_{\text {comp }} \mathrm{V}_{\text {matrix }}$	$\mathrm{V}_{\text {comp }} \mathrm{V}_{\text {matrix }}$	$\mathrm{V}_{\text {matrix }} \mathrm{V}_{\text {comp }}$
extra morphemes required?	\checkmark	$\times \checkmark^{1}$	x	\mathbf{x}^{1}
participant vs. event oriented	participant	participant	participant	participant
meaning of V_{1} or $\mathrm{V}_{\text {matix }}$	literal	literal	literal	literal
meaning of V_{2} or $\mathrm{V}_{\text {comp }}$	literal	literal	literal	literal
verb stem type of V_{2} or $\mathrm{V}_{\text {comp }}$	non-attributive (positional, dynamic, irregular)	non-stative (dynamic and irregular)	all types	attributive
verb stem type of V_{1} or $\mathrm{V}_{\text {matrix }}$	motion verbs (dynamic)	'to know', 'to try' (dynamic)	'to see', 'to accuse', 'to forbid' (dynamic)	some non-attributive stems (positional, dynamic, irregular) derived with the intransitivizer $=m u$

10.7. Final remarks

In this chapter, we explored mono-clausal constructions with more than one verb. These grammatical domains of YMA lie on the boundaries of what this book intended to cover, the single clause. We saw that several constructions allow two or more verb stems to be integrated into a single clause in YMA. Eight types of such multi-verbal clauses were so far attested in the language. I tried to give a complete overview of them, according to my current knowledge of the language I demonstrated that these multi-verbal constructions do not only express different semantic functions but also display different morphosyntactic features. We also saw that in some tense-aspectual contexts some of them may not be formally distinguishable. We still need a prosodic characterization of these constructions, which I believe will provide further formal parameters to distinguish them. The interaction and combination of the different types of multi-verbal predicates, as in the example in (55), also remains to be investigated systematically.

We will move on to the description of the evidential categories, many of which are constructed with the help of a dummy verbal element inflected with tense, aspectual and spatial markers. In this sense, these are also multi-verbal constructions, as we will see in the next chapter.

11. Evidentiality: time, location, direction

11.1. Introduction

This chapter describes the morphological mechanisms found in YMA for the expression of evidentiality in independent clauses. The language has a quite complex evidentiality system, distinguishing at least five basic evidentiality categories. The speaker of YMA can choose between not making explicit the source of the information she is conveying by not marking the sentence with an evidential (1a), or indicating whether she has eye-witnessed (1b) or heard (1c) it happening, inferred it by objective pieces of evidence (1d), assumed it happened by common sense or logical reasoning (1f) or heard it reported by others (1e).
(1)

a. apiama $a \quad$ ithorayoma			
apiama $a=\quad$ itho $\quad=r a y u$	$=m a$		
airplane	$3 \mathrm{SG}=$ alight	$=\mathrm{PFV} 1$	$=\mathrm{PST}$

'The airplane landed.'
b. apiama a ithorayu kanì
apiama $a=$ itho =rayu ku =ni
airplane $3 \mathrm{SG}=$ alight $=\mathrm{PFV} 1 \mathrm{COP}=\mathrm{HOD}$
'The airplane landed today (I witnessed).'
c. apiama wãa ithorayu kanì
apiama wãa $=$ itho =rayu $k u \quad=n \dot{i}$
airplane sound $=$ alight $=$ PFV1 COP $=H O D$
‘The airplane landed today (I heard when it landed).'

d. apiama	a	ithorayono		kan \dot{t}	
apiama	$a=$	itho $=$ rayu	$=n o$	$k u$	$=n \dot{1}$
airplane	$3 \mathrm{SG}=$	alight $=\mathrm{PFV} 1$	$=\mathrm{INFR}$	COP	$=\mathrm{HOD}$

'The airplane landed today (I did not see it, but I inferred it from the new people that are around).'

'The airplane landed today (I've been told so).'
f. apiama pi a ithoa mariha
apiama $p i=a=$ itho $=a \quad m a \quad=r i \quad=h a$
airplane FOC.INT= 3SG= alight =PFV.VWL COP.ASS =PFV1 =HOD
'The airplane (must have) landed today (I am assuming it, for instance, because today is the day of the month when the plane usually comes ${ }^{1}$).'

The phenomenon is strongly intertwined with the expression of tense and of spatial categories, such as location and direction, and partially overlaps with the expression of modality and aspect as well. This applies in particular to two sets of morphologically complex words, called k-words and m-words here, which appear in most of the constructions with evidentiality specification. At the end of the examples (1 b -e), we can see the k-words $k a=n \dot{i}$ and $k u=r a t u=n \dot{i}$, and at the end of $(1 \mathrm{f})$, the m word $m a=r i=h a$.

The chapter begins with an overview of the literature on evidentiality and of the phenomenon in the languages of the world and in YMA (§11.2). Section §11.3 presents the evidentiality categories expressed in simple declarative clauses in YMA, starting with the description of the k-words in §11.3.1.1. These are responsible, when not combined with other evidentiality morphemes, for the expression of eye-witnessed events. I will also discuss the expression of tense and spatial categories with these words and their interaction with aspectual categories. In §11.3.1.2, I point to a probable source of grammaticalization of the k-words. In §11.3.1.3, I present a form similar to a k-word, which however begins with t-. The use of this word $t h a=r e$ is restricted to pre-hodiernal contexts marked with inferential $=n o$.

[^1]Subsection §11.3.2 shows how the inflection of the main verb with the enclitic $=n o$ allows the speaker of YMA reports on an event whose actual existence was only inferred by her, given some pieces of evidence she had access to.

Section §11.3.3 deals with the proclitic wãa=. It indicates first-hand information acquired by auditory means, i.e. the event was heard by the speaker. Section §11.3.4 discusses the proclitics $e=h \tilde{a}=$, which marks reported (and quotative) events. These two evidentiality categories (auditory source and reported) are similar, for both indicate that the event was heard by the speaker. They obviously differ, nevertheless, in that the auditory category refers to first-hand information while the reported category indicates second-hand information.

The last grammatical evidentiality category, assumed information, will be described in section $\S 11.3 .5$. This category indicates that the information the speaker conveys is an assumption or presupposition based on common sense or some previous knowledge. It differs from the inferential as to the nature of the evidence claimed in each situation. While the inferential implies objective (and consequently visual) evidence, assumed information can rely on less precise or even idiosyncratic evidence (like a hunch). The expression of this category makes use of the m-words, which will be contrasted with the k-words.

Section $\S 11.4$ argues that the system is made of heterogeneous morphemes, but it still builds a system in that the morphology is mutually exclusive. Section $\S 11.5$ discusses the status of evidentiality in terms of obligatoriness/systematicity and frequency.

It is worth underlining at this point that I will be mainly concerned with the evidentiality in the morphology, leaving the description of its expression through analytic constructions such as the English correlates "I saw him fishing" or "I heard that she has died" to a later study. One exception is made for a type of complex construction with adverbial modification by the stem mahari 'dreamlike', described in $\S 11.6$. This construction is used to indicate that the speaker dreamt the event she is now reporting. I included this mechanism here because, on the one hand, the Yanomami people attach great cultural importance to the information provided by dreams, which may be as reliable as witnessed information in some cases. On the
other hand, I consider it necessary to distinguish this construction with adverbial modification from those with morphological evidentiality marking, given the semantic resemblance of both constructions.

In §11.7, I will discuss the construction with the proclitic nëhë= 'apparently,' which seems to semantically overlap some usages of the construction with the inferential $=n o$. I will claim, nevertheless, that this is not an evidentiality construction either since its scope of reference is not the source of information itself.

In Section §11.8, I will briefly discuss the presence of evidentiality categories in other syntactic contexts than the main declarative clause, indicating how evidentiality categories are still required in dependent clauses such as relative constructions. Finally, in $\S 11.9$, I will present some concluding remarks on this phenomenon in YMA.

11.2. Earlier literature

Every language provides its speakers with grammatical or lexical resources for expressing the source of the information they present while speaking. Many languages of the world, including the Indo-European languages, primarily rely on lexical means for that purpose. In English, for instance, the most frequent strategies (Chafe and Nichols, 1986: vii) are the use of adverbial words, such as 'allegedly' or 'apparently' (2a-b), constructions with modal verbs, such as 'must' (2c), and complementation clauses of sensorial verbs, such as 'see' or 'hear' (2d), appearance verbs, like 'seem' or 'sound' (2e), communication verbs, such as 'tell', 'report' or 'read' (2f-g), or verbs of cognitive activity, such as 'infer' or 'suppose' (2h). The examples in (2) illustrate these strategies in English.
(2) a. He allegedly killed her dog.
b. She apparently arrived.
c. It must be freezing outside (seeing through the window someone outside wearing a heavy coat, gloves...).
d. I heard them talking about you.
e. Anna seems hungry.
f. I've been told that Ararima left yesterday.
g. I read that today will rain.
h. I suppose he must have left by this time.

By contrast, many lesser known languages, "scattered all over the world" (Aikhenvald, 2004:17), have developed dedicated morphology (typically verbal) to express these meanings. In many of these languages, the system is very simple with only one marked evidentiality category. It often consists of a verbal morpheme or a particle that indicates that the information has previously been reported to the actual speaker by a third person (reported/'hearsay', and it conflates all the remaining possible sources of information under the same unmarked category. This type of system is very common among the Tibeto-Burman languages and widespread in South America, present in languages of different families, including Zaparoan, Makú, Arawak (both Southern and Northern), Tupi-Guarani and Pano (Aikhenvald, 2004: 32). Mueller (2013) points out that it is the most prevalent system in South America: in her sample of 63 languages, 23 (or 37\%) display such a two-way system, and only 14 South American languages do not encode evidentiality by morphological means.

Some languages have grammaticalized more forms to express distinct evidentiality meanings. All the Quechua languages, for instance, have markers for three evidential categories: direct evidence, inferred, and reported (Aikhenvald, 2004: 43). This same pattern is found in other South American languages such as Mosetén (isolate), Bora (Bora-Witoto family) and Koreguaje (West-Tukano) (Aikhenvald, 2004: 44). Other languages still display three-way systems with different arrangements, often substituting one of the previously mentioned categories by the non-visual sensory category. Languages with this type of system are found in Asia (Tibeto-Burman and Uralic languages) and are quite common in North America. In South America, these systems are found in some Panoan languages (Capanahua, for
instance) and in Tukanoan languages. Several Uto-Aztecan languages and other North American languages have systems with three categories in which there is a marker for reported events, another for quoted events (events that were reported by an identifiable and explicit author), and the other evidentiality categories are unmarked. In her 63 language sample, Mueller (2013) has found 11 languages with the above mentioned tripartite systems.

There are languages with yet more complex evidentiality systems (Aikhenvald 2004). Several East Tucanoan languages, for instance, distinguish four categories, i.e. visual (or direct), non-visual sensory, inferred and reported. Other South American languages, like Tsafiki (Barbacoan), Shipibo-Konibo (Panoan), Mamainde (Northern Nambiquara), display a slightly different four-ways system, in which assumed information is morphologically marked instead of the non-visual sensory category.

Languages with five or more categories are very rare, and only a handful of examples can be mentioned, like Kashaya (Pomoan) and Wintu (Wintuan), both spoken in California, and, in South America, Tariana (Arawak), Tuyuca and Desano (East Tucanoan), Hupda (Makú) and the Southern Nambiquaran languages. "Systems which contain five evidentiality choices may have two sensory evidentials, one inferred and one assumed evidential, and also one reported marker" (Aikhenvald 2004: 60).

In spite of the richness - and, most importantly, the obligatoriness - of these systems, first descriptions of many of these languages completely missed these categories. The analytic nature of the Indo-European expression of evidentiality, illustrated by the examples in (2), is probably one of the reasons for this. Moreover, morphological evidentiality systems do not seem to be very common in natural languages; they are particularly frequent in the Americas, however.

Boas (1911:43) was the first to draw the attention of the linguistics community to the existence of such grammatical categories in natural languages, noting that they are especially common in the languages of the US West Coast. The first comprehensive collection of studies on the subject, Chafe and Nichols (1986), underlined the productivity of these systems in several regions of North America, and presented the first in-depth description of the phenomenon in South America. Later
on Aikhenvald and Dixon (1988) identified the Northern Amazon region, and particularly in and near the Vaupes River basin, the hotspot of evidentiality systems, where languages have typically four or five morphologically marked evidentiality categories. The authors argue that, given the low frequency of these systems in the natural languages of the world, the most likely explanation for high productivity of these systems in the Vaupés region was diffusion by long-term contact.

The idea of the Vaupés River basin (or more broadly, the Northwestern part of Amazon) as a cultural and linguistic area has been proposed by different authors (Sorensen 1967, Aikhenvald and Dixon, 1998, 1999, Aikhenvald, 1996, 1999, 2002). Aikhenvald and Dixon (1998), in particular, claim that the 'strong evidentiality systems', as they call the complex systems found in the Vaupés region, should be considered a diagnostic areal feature, i.e. the presence of such a complex system in a language spoken in the neighborhood of Vaupés River basin should be taken as evidence of linguistic exchange.

As for the Yanomami languages, their evidentiality systems have been described, with different levels of comprehensiveness. According to Borgman (1990: 165-73) Sanima has at least three evidentiality categories: first-hand, inferential and 'verification' (a category which seems to conflate reportative and non-witnessed). Goodwin-Gomes (1990: 97) reports only two in Ninam: eye-witnessed and non-eyewitnessed, which are the same categories described by Lizot (1996:112-124) for a Yanomami variety of Venezuela. Another Yanomami variety (Xamatauteri) described by Ramirez (1994: 316) displays an evidentiality system of four members: witnessed, inferred, assumed and quotative (which seems to conflate the quotative and reportative). Yanomami languages are spoken in the Northwestern Amazon and some occidental varieties of the family, particularly the Yanomami (Xamatauteri) described by Ramirez, are indeed in the neighborhood of the Vaupés River basin. Dixon and Aikhenvald (1999:388), however, do not consider these western varieties to be under direct influence of the Vaupés linguistic complex. By contrast, Aikhenvald and Dixon (1998:247) suggest that the different complexity levels of the evidentiality systems described for the Yanomami languages is correlated to the distance of these languages from Vaupés River basin, since complex evidentiality systems are one of the features
that characterize the region. The closer the language to the area, the more complex the system is. This would explain for them why Xamatauteri, the closest Yanomami language to the Vaupés, displays such a complex four-member system, and Sanima, a language spoken more to the north, has only three. "[...T]he language furthest from the Vaupes (north-east of Xamatauteri and east of Sanima) is Yanam, which Gomez (1990: 97) says shows only two evidentials [...]." (Aikhenvald, 2004: 247).

As we will see in this chapter, this possible correlation proposed by Aikhenvald and Dixon between the complexity of the evidentiality systems of the Yanomami languages and closeness to the Vaupés does not stand up against the YMA data. YMA has a relatively rich evidentiality system with five categories, one more than the Vaupés neighbor Xamatauteri, according to Ramirez's description. Sanima is also geographically closer to that river. Only Ninam is indeed spoken further away from the Vaupés than YMA.

As an alternative explanation already hinted by Aikhenvald (2004: 18), I suggest that such differences are related to the fieldwork methodology and the different theoretical frameworks adopted in the descriptions. She noticed that "Migliazza (1972), in his cross-dialectal grammar of Yanomami,-analyzed within the framework of the transformational grammar of the time-missed evidentiality altogether" (ibid.). Moreover, I also acknowledge that the description of any language or language complex is a cumulative and, in some respects, communal enterprise. Previous pieces of work lay the basis for further advancements in the description of a language. And this is particularly the case for languages such as of the Yanomami family, which historically have had very low rates of native-speakers with good command of national languages ${ }^{2}$ (i.e. Portuguese and Spanish). We linguists describing such languages have to rely on the patience of the native speakers to teach us their language and on the precious notes and analyses left by previous researchers. The increasing complexity of the evidentiality systems of the Yanomami languages

[^2]as presently documented seems to correlate, not inversely to the distance from Vaupés, but positively to our growing knowledge of the Yanomami languages.

11.3. Evidentiality in simple declarative clauses

YMA can express at least five basic epistemic categories with dedicated morphology and a few others with derived or combined strategies. YMA allows the speaker to indicate whether the event was WITNESSED by her (3a), HEARD by her (3d), INFERRED from objective pieces of evidence (3b), ASSUMED/SUPPOSED through reasoning or based on well-known information (3c), or REPORTED to her by a third person (3e).

a. Kunathoi a	kopohuru			kani	
kunathoi $a=$	ko	$=p i$	= huru	ku	$=n i$
Kunathoi 3SG=	return_home	$=\mathrm{PFV} 3$	$=$ DIR.AND	COP	$=\mathrm{HOD}$

b. Kunathoi a	kopohuruno				kani	
kunathoi a=	ko	$=p i$	= huru	= n o	ku	$=n \dot{i}$
Kunathoi 3SG=	return_home	$=\mathrm{PFV} 3$	$=$ DIR.AND	$=$ INFR	COP	= HOD

'Kunathoi seems to have left (I did not witness him leaving, but I can see his hammock missing where he usually sleeps).'
$\begin{array}{lll}\text { c. } \text { Kunathoi pi } & a & k o ̃ a \\ \text { kunathoi pi= } & a= & k o ̃\end{array}=a$
Kunathoi FOC.INT= 3SG= return_home =PFV.VWL
mapohuruha

$m a$	$=p i$	$=h u r u$	$=h a$
COP.ASS	$=$ PFV3	$=$ =DIR.AND	$=$ HOD

'Kunathoi left (I assume it because he told me some time ago that he was going to leave today).'

d. Kunathoi wãa kopohuru		kaní			
kunathoi wãa wo	ko	$=p i$	$=h u r u$	$k u$	$=n \dot{i}$
Kunathoi sound= return_home	$=$ PFV3	$=$ DIR.AND COP	$=$ HOD		

'Kunathoi left (but I heard him saying goodbye to others).'

614 Yanomama clause structure

```
    e. Kunathoi ehã kopohuruno
        kunathoi e= hã= ko =pi =huru =no
        Kunathoi HSY= HSY= return_home =PFV3 =DIR.AND =INFR
kani
ku =ni
COP =HOD
    `Kunathoi left (I've been told so).'
```

In the next sections, I will describe each of these morphosyntactic mechanisms, beginning with the description of the k-words and the expression of eye-witnessed information.

11.3.1. Witnessed information

11.3.1.1.The \boldsymbol{k}-words

The k-words are a set of grammatical words in YMA that can express tense, relative location and direction, and few other verbal categories. These markers are not bound morphemes that attach to the verb, but morphologically complex and independent words. They consist of the copular element $k u$ 'to be', 'to exist' (a free word), and, at least, one clitic expressing tense: $=r e$ for pre-hodiernal or distant past events and $=n \dot{t}$ for present and hodiernal past contexts. In (4) I give two (made-up) examples of how these k-words as used.

(4) a. hiima a nomarayu kure

hiima $a=$ noma =rayu $\boldsymbol{k u}=\boldsymbol{r e}$
$\operatorname{dog} \quad 3 \mathrm{SG}=$ die $=$ PFV1 COP =PRE.HOD
'The dog died (yesterday or before).'

The use of k-words in the pair of examples above contrasts with the unmarked past morpheme $=m a$, as in (5), which does not make explicit whether the event took place recently or a long time ago. Not only that, the choice for a k-word in (4) indicates, in this case, that speaker has witnessed the event (e.g. she was present at the precise moment in which the dog passed away). The example (5) with =ma is neutral also in this respect.
(5) hiima a nomarayoma
hiima $a=$ noтa =rayu =ma
$\operatorname{dog} 3 \mathrm{SG}=$ die $=$ PFV1 $=$ PST
'The dog died.'

In non-perfective sentences, such as the ones in (6), the k-words can still host morphemes that express spatial categories, such as the relative location morphemes =raharu 'upriver' (6a), =rakuru 'downriver' (6b), and the directional morphemes $=i m a$ (6 d), with andative orientation (i.e. centrifugal), and =imatu ($6 \mathrm{e}-\mathrm{f}$), with venitive (i.e. centripetal) meaning. The last two morphemes can convey associated motion readings to non-motion verbs (6d-e) or just indicate the relative direction of motion verbs, as in (6f). For other morphological strategies to express associated motion and directionality in YMA, please check $\S 6.6$ in the chapter on verb morphology.
(6)

a. hiima a	nomai		kura	arure	
hiima $a=$	noma	$=i$	ku	=raharu	$=r e$
dog 3SG=	die	$=\mathrm{DYN}$	COP	=LOC:upriver	$=$ PRE. HOD

'The dog was dying up there (yesterday) (+witnessed).'

616 Yanomama clause structure

'The dog is/was dying and coming towards here (today) (+witnessed).'

Table 11.1 shows the most common k-words found in YMA. Some rare spatial markers with an obscure meaning were not listed. The spatial deictic markers are in bold, and their meaning is in the third column. Note that the last two pairs of words do not have any spatial specification and are used in complementary aspectual contexts, namely imperfective and perfective. The interface with the aspectual marking system will be discussed below.

Table 11.1 - The k-words

Pre-hodiernal past ($=r e$)	Present and hodiernal past ($=n i$)	Meaning
$k u=\boldsymbol{p e}=r e$	$k u=\boldsymbol{a}=n \dot{t}$	not marked for spatial categories (used only in imperfective contexts)
$k u=r e$	$k a=n \dot{t}$	not marked for spatial categories (used only in perfective contexts)
$k u=r \boldsymbol{a}=r e$	$k u=\boldsymbol{a}=n \dot{i}$	nearby
$k u=r a t u=r e$	$k u=r a t u=n \dot{i}$	a bit far away
$k u=$ raharu $=r e$	$k u=\boldsymbol{r a h a r u}=n \dot{t}$	upriver, on the other side of the river bank
$k u=r a k u r u=r e$	$k u=\boldsymbol{r a k u r u}=n \dot{1}$	downriver
$k u=\boldsymbol{p} \ddot{\boldsymbol{e}}=r e$	$k u=\boldsymbol{p} \boldsymbol{\ddot { e }}=n \dot{1}$	outside the house, near a pond, in an open field or forest clearing
$k u=p i \ddot{t} \mathbf{t u}=r e$	$k u=p i \ddot{t} \mathbf{t u}=n \dot{1}$	outside the house, near a pond, in an open field or forest clearing (+ a bit far away)
$k u=p i e ̈ h u r u=r e$	$k u=$ piëhuru $=n \dot{1}$	left in the house
$k u=$ pohoru $=r e$	$k u=$ pohoru $=n \dot{1}$	in a higher position (e.g. on the top of a mountain, or on the top of the river bank [speaking from the water])
$k u=$ potu $=r e$	$k u=\boldsymbol{p o t u}=n \dot{1}$	in a lower position (e.g. in a valley, or on the water [speaking from the river bank])
$k u=$ imatu $=r e$	$k u=\boldsymbol{i m a t u}=n \dot{t}$	andative (centrifugal)
$k u=\boldsymbol{i m a}=r e$	$k u=\boldsymbol{i m a}=n \dot{i}$	venitive (centripetal)

Syntactically, the k-words always appear at the end of the clause, after the verb stem ${ }^{3}$ and the clitics of the Sub-Cluster CB. However, the k-words 'kidnap' the remaining morphemes of the Sub-Cluster CC, such as the marker for 3rd person agent $=h e$ (in bold) in the examples in (7), which cann no longer be hosted by the main verb.

(7) a. napë pëni парё	$=p \ddot{ }$	$=n \dot{t}$		hiima hiima	$a=$	xëprari xë	$=p r a$	$=r i$
foreigner	$=3 \mathrm{PL}$	$=$ ERG	1POS	dog	$3 \mathrm{SG}=$	beat; kill	$=\mathrm{DRV}$	$=\mathrm{PFV} 1$
kurahe								
$k u=r a$	=h							
COP = LOC:nearby	$y=3$							

'The white people killed my dog (yesterday or before).'

```
    b. napë pëni ipa hiima a xëprari
        nарё \(=p \ddot{e}=n \dot{t}\) ipa hiima \(a=x \ddot{\quad} \quad=p r a \quad=r i\)
    foreigner \(=3 \mathrm{PL}=\) ERG \(1 \mathrm{POS} \operatorname{dog} 3 \mathrm{SG}=\) beat; kill \(=\mathrm{DRV}=\mathrm{PFV} 1\)
keheni
\(k u \quad=\boldsymbol{h e}=n \dot{i}\)
COP =3PL =HOD
```

'The white people killed my dog (today).'

Note that the hodiernal and pre-hodiernal past enclitics $=n i$ and $=r e$ occupy distinct slots in the clitic chain of CC and have their phonological material affected differently by those morphemes. We will see in §11.3.1.2 that this difference in the positions of these two morphemes is due to their different sources. While the morpheme for pre-hodiernal events $=r e$ came from the marker (with similar meaning) used in the relative clauses, the enclitic for present and hodiernal events $=n \dot{i}$, which does not have a correlate cognate form in relative constructions ${ }^{4}$, has its origins in the past marker $=n \dot{t}$, used in subordinate clauses. I will argue these two tense clitics, alongside with the locational and directional morphemes of the k-words, merge into

[^3]the Sub-Cluster CC. The Schema 11.1 below indicates the position of each type morpheme that is hosted by the k-words.

Schema 11.1 - Morphological structure of the \boldsymbol{k}-words ${ }^{5}$

$$
\mathbf{K}=\text { SPT }=\text { PRE } \cdot \mathrm{HOD}=\mathrm{CC}=\mathrm{HOD}
$$

In contrast, the past enclitic $=m a$, not marked for evidentiality, belongs to the Cluster CB and interacts phonologically with the perfective morphemes =rayu and $=r e$, which also belong to CB . Note in (8) that $=m a$ causes the perfective morphemes (in bold) to harmonize with it, lowering their final vowel. The presence of the copular element $k u$, which retains many of the features of a free word in the language, prevents the assimilation processes between the clitics of CB and CC to happen, as each of them are being hosted by different free words.
(8) a. hiima a nomarayoma
hiima $a=$ noma =rayu =ma
$\operatorname{dog} 3 \mathrm{SG}=$ die $=$ PFV1 $=$ PST
'The dog died.'
$\begin{array}{llll}\text { b. napë pëni } \\ \text { napë } & =p \ddot{e} \quad=n \dot{t} & \begin{array}{l}\text { ipa } \\ \text { ipa }\end{array} & \text { hiima } \\ \text { hiima }\end{array}$
foreigner $=3 \mathrm{PL} \quad=$ ERG 1 POS dog
a xëpraremahe
$a=x \ddot{e} \quad=p r a \quad=r i \quad=m a \quad=h e$
3SG= beat; kill =DRV =PFV1 =PST =3PL
'The white people killed my dog.'

The Schema 11.2 illustrates the syntactic position of the k-words in relation to the main verb and the clitics of the sub-clusters of $\mathrm{C}(\mathrm{CA}, \mathrm{CB}, \mathrm{CC})$.

[^4]
Schema 11.2 - Verb morphology and the \boldsymbol{k}-words

$$
\operatorname{main} \mathbf{V}=\mathrm{CA}=\mathrm{CB} \quad \mathbf{K}=\mathrm{CC}
$$

It is worth underlining that the k-words are not witnessed markers themselves. As we will see in the Sections $\S 11.3 .1 .3, \S 11.3 .3$ and $\S 11.3 .4$ below, these words may also appear in constructions marked for inferred, auditory and reported information. I will argue that the k-words can be used anytime when an evidentiality category is being marked in the sentence. In the cases where there is no actual morphological marker (for inferred, auditory or reported information), the sentence always gets an eye-witnessed reading. Interestingly, first-hand/eye-witnessed information is, therefore, the default category in YMA, i.e. the unmarked (or the less marked) category among the evidentiality categories.

In Chapter 6, we saw that the categories of tense, aspect, and spatial relations can be marked in YMA by a set of enclitics of the Sub-Cluster C. In the examples in (9) I present some of these enclitics (in bold) in use.

$$
\begin{align*}
\text { a. } \text { Ararima aní } & \quad \text { xama } a \tag{9}\\
\text { Ararima } & =a \\
\text { Ararima } & =\text { SG }
\end{aligned} \quad \begin{aligned}
& \text { xama } a= \\
& =\text { ERG } \text { tapir } 3 S G=
\end{align*}
$$ xëprareharayoma

| $x \ddot{e}$ | $=p r a$ | $=r i$ | $=$ harayu |
| :--- | :--- | :--- | :--- |$=m a$

'Ararima killed a tapir upriver.'

b. napë pënt			yano	
парё	$=p \ddot{ }$	$=n \dot{1}$	yano	$a=$
white person	$=3 \mathrm{PL}$	= ERG	house	$3 \mathrm{SG}=$
iriii				
$=\boldsymbol{k i r i}$		$=i$		
make =LOC:do	nriver	$=\mathrm{DYN}$		

'The white people are builduing a house downriver.'

An alternative means of expressing the tense and spatial deictic categories is by the utilization of a k-word (10).

'Ararima killed a tapir upriver.'

b. napë pëni			yano	a	thai		rëkë
napë	$=p \ddot{ }$		yano		tha		rëkë=
white person	$=3 \mathrm{PL}$	=ERG	house	$3 \mathrm{SG}=$	do; make		FOC=

kuraharuheni

ku	$=r a k i r i$	= he	$=n i$
COP	=LOC:downriver	$=3 \mathrm{PL}$	

'The white people are/were building a house downriver (+witnessed, +hodiernal).'

The examples in (10) show an essential feature of the k-words in their interaction with aspectual marking system. When the sentence is overtly marked for perfectivity, as in (10a), the deictic spatial marker has to remain attached to the main verb as an enclitic of the Sub-Cluster CB. In contrast, when there is not a perfective marker in the clause, the spatial marker, if any, must be hosted by the copular element $k u$, such as (10b). The hypothetical constructions in (11) sound ungrammatical to native speakers.

(11) a. * Ararima ani		xama	a	xëprare				$\ddot{\square}$
Ararima $=a$	$=n \dot{t}$	xama	$a=$	$x \ddot{ }$	$=p r a$	=		$\ddot{e}=$
Ararima $=$ SG	= ERG	tapir	$3 \mathrm{SG}=$	beat; kill	$=\mathrm{DRV}$			$\mathrm{OC}=$

kuraharuni

$k u$	$=$ raharu	$=n \dot{t}$
COP	$=$ LOC: upriver	$=H O D$

'Ararima killed a tapir upriver.'

	napë pëni			yano			
	парё	$=p \ddot{ }$		yano	$a=$		
	white person	$=3 \mathrm{PL}$	= ERG	house	e 3		
thakirii				rëkë	keh		
tha	$=k i r i$		$=i$	rëkë=	$k u$	$=h e$	$=n \dot{t}$
do; make	=DIR:down	iver	= DYN	FOC=	COP	$=3 \mathrm{PL}$	$=\mathrm{HOD}$

'The white people are building a house downriver.'
Table 11.2 contrasts the form of these enclitics when hosted by a main verb and by a k-word.

Table 11.2-Correspondence between the spatial deictic markers in evidential and non-evidential paradigms

Hosted by the main verb	Hosted by a k-word	Meaning
$=$ tayu	$=$ ratu	a bit far away
$=$ harayu	$=$ raharu	upriver, on the other side of the river bank.
$=$ kiri	$=$ rakuru/rakiri	downriver
$=$ ima	$=$ ima	venitive
$=$ huru	$=$ imatu	andative
$=$ imatayu		progressive

All k-words express tense, but not all of them convey spatial relations as well. There are two pairs of k-words that are not marked for spatial categories and can only be used in past situations. The first pair is exclusive to perfective contexts and is formed by the simple composition of the copular element $k u$ and a tense marker: prehodiernal $k u=r e(12 \mathrm{a})$ and hodiernal $k a=n \dot{t}(12 \mathrm{~b})$. The second pair is formed by the addition of the imperfective marker $=p e$ in between the copular element and the tense marker. These markers, pre-hodiernal $k u=p e=r e(12 \mathrm{c})$ and hodiernal $k u=p a=n \dot{t}$ (12d), are used only in imperfective contexts, i.e. they do not coexist with perfective morphemes.

a. Ararima a waroki		kure	
Ararima $a=$ waro	$=k i$	ku	$=r e$
Ararima 3SG= arrive	$=$ PFV2	COP	= PRE. HO
'Ararima arrived yesterd			
b. Ararima a waroki		kani	
Ararima $a=$ waro	$=k i$	$k u$	$=n i$
Ararima 3SG= arrive	$=\mathrm{PFV} 2$	COP	= HOD
'Ararima arrived today.'			

c. thuë	thëрё		herii		kup	
thuë	thë=	$p \ddot{e}=$	heri	$=\dot{i}$	$k u$	=pani
woman	CLN.GNR $=$	$3 \mathrm{PL}=$	chant	$=\mathrm{DYN}$	COP	=HOD

'The women were chanting today.'

d. thuë	thëpë		herii		kup	
thuë	thë=	$p \ddot{e}=$	heri	$=i$	$k u$	=pere
voman	CLN.GNR=	$3 \mathrm{PL}=$	chant	$=$ DYN	COP	=PRE.HOD

'The women were chanting yesterday.'

All the remaining k-words are incompatible with the perfective markers. These markers, in addition to the tense and evidentiality categories, also express one spatial category, which always has a deictic nature. i.e. it indicates the location in which the event is taking place in relation to the speaker. Moreover, these remaining markers
only oppose pre-hodiernal situations to non-pre-hodiernal ones, conflating the hodiernal past and present categories under the same marker $=n i$. It is quite understandable how this conflation was semantically possible, especially when a spatial category is marked. That is, if someone reports on a current and "witnessed" event that is taking place at some distance from the place where she is reporting it, as in example (13), it is possible that her statement is not simultaneous with the event anymore. The event may have carried on while the speaker is reporting about it, but not necessarily and, most importantly, the speaker can assure it as an eye-witness. We believe that it was from this logical impossibility of the speaker to report on a faraway event as an actual eye-witnessed event that the present and the recent past categories were fused.

(13) a. Kunathoi a	yurimuи		kurak	rini	
kunathoi $a=$	yurimu	$=i$	ku	$=r a k i r i$	$=n \dot{i}$
Kunathoi 3SG=	fish	$=$ DYN	COP	=LOC:downriver	$=$ REL.PST
'Kunathoi is fish	ing dow	iver.'			

'The women are/were weaving baskets at home (+witnessed, - prehodiernal).'

11.3.1.2.The probable source of the \boldsymbol{k}-words

With the only exception of the present/hodiernal past marker $=n \dot{\dot{t}}$, all remaining morphemes that appear in a word of the k-words have their origins in the relative construction with the existential $k u$ plus the markers for tense, relative location, and direction regularly used in relative constructions with other types of verbs. More precisely, all the spatial markers of the k-words $(=r a,=r a t u,=r a k u r u,=r a h a r u$,
$=p i \ddot{e} .$.) can also appear in the relative construction, with the same form. In (14) I present some examples of these markers being used in relative constructions. In (14a) we have a construction with positional $k u$ 'to exist, to be', as the head of a relative clause, while in (14b-c) we have relative clauses with dynamic verbs.

(14) a. kihi napë	a	$k a$
kihi napë	$a=$	$k a=$
that white person	$3 \mathrm{SG}=$	$\mathrm{FOC}=$

kurakururii , yanomama thãa
$k u \quad=r a k u r u \quad=r e \quad=i \quad$ yanomama thã $=\quad \tilde{a}=$
exist =LOC:downriver =PRE.HOD =REL yanomami CLN.GNR= sound=
pou
po $=\boldsymbol{i}$
hold =DYN
'That white person, who was downriver (+witnessed, +hodiernal), knows Yanomama language.'

'That white person, who was building the house downriver (+witnessed, + pre-hodiernal), knows Yanomama language.'
c. hutukana hamí kihi warõ a ka kiãraharii
hutukana =hami kihi warõ $a=k a=$ kiã =raharu $=i$
garden $=\mathrm{OBL}$ that man $3 \mathrm{SG}=\mathrm{FOC}=$ work $=$ LOC:upriver $=$ REL
ipa hepara a
ipa hepara $=a$
1 POS brother $=3$ SG
'That man, who is working over there in the garden (+witnessed, +hodiernal), is my brother.'

As the example (14b) shows, =re also marks pre-hodiernal past in relative constructions. On the other hand, as the examples (14a) and (14c) indicate, there is no explicit marker for present or hodiernal past relative clauses. In any event, as the hodiernal past marker $=h a$ is not obligatory, the absence of the pre-hodiernal marker may give either a present or a recent past reading. As I showed in §11.3.1.1, in the k words, the conflated present/hodiernal past category is expressed through the morpheme $=n \dot{i}$, and also contrast with the pre-hodiernal $=r e$.

It is worth mentioning that, in relative constructions, the tense markers $=h a$ and $=r e$ do not indicate a witnessed event themselves. This reading, in the examples in (14), is given by the combination of the focalizer $k a=$ and the bare relativizer $=i$. With the addition of the enclitic =ni before the relativizer, the construction will get a nonwitnessed reading. The example in (15) illustrates the non-witnessed marking in relative clauses.

(15) $\begin{array}{ll}\text { kih } \\ \\ k i h \\ & \text { th }\end{array}$	napë ani	yano a ka	
	napë $=a$	$=n \dot{i}$ yano $a=\boldsymbol{k a}$	
	freigner $=$ SG	$=$ ERG house 3 SG $=$ FO	
tharakurunii yanomama			
tha	= rakuru	$=n i$	$=i \quad$ yanomama
do; make	=DIR:downriver	=PRE.HOD.NON.WTNS	$=$ REL yanomami
thãa	pou		
thã=	$\tilde{a}=\quad$ po	$=i$	
CLN.GNR $=$	sound= hold	$=\mathrm{DYN}$	

'That white person, who was building the house downriver (-witnessed), knows Yanomama language.'

In any event, our hypothesis is that the whole relative construction with the copula $k u$ 'to exist', except the proclitics of Cluster B (i.e. the focalizer and the argument markers), has been grammaticalized as grammatical words to be used in the main clause. As the examples above indicate, the relative clause goes before the main
clause (and the main verb, consequently). The k-words, nevertheless, has a final position in the clause. To explain this difference in positions, or better, this movement of the relative clause to the end of the construction, we rely on the typological profile of the language. YMA is an OV language which seems to confirm quite strictly the typological correlations described by Greenberg (1966) and others (e.g. Dryer, 1992). The language has postpositions (the oblique case marker $=h a /=h a m i$) instead of prepositions, subordinate clauses go before the main clause, conjunctions and connectives go after the verb and, most importantly for our argument, the language prefers suffixes to prefixes (or enclitics to proclitics). Developing our argument, once the construction is not considered by the speakers to be a relative clause but is reanalyzed as a tense and spatial marker, the speakers began to move it to the end of the construction. Nevertheless, we do not have any synchronic piece of evidence that unequivocally shows this movement taking place.

11.3.1.3.The t-word tha $=r e$

There is only one word that does not begin in k - and that can occupy the same syntactic position of the k-words in declarative clauses. This word, tha $=r e$, is made up of the copular element tha, possibly from the dynamic verb thai 'to do' or the positional verb thaa 'to (be) put', the pre-hodiernal marker $=r e$. It has a similar meaning to the k word $k u=r e$ and $k u=p e=r e$ refers to pre-hodiernal events without specifying any spatial information. Regarding their syntactic usage, nevertheless, the two types of words are in complementary distribution.

In perfective contexts, the t-word tha $=r e$ can only be used in combination with the inferential $=n o$, as in (16a). In this context, the use of k-word $k u=r e$ is ungrammatical, (16c). We will see in §11.3.1.3 that the k-word $k u=r e$ is not compatible with the inferential $=n o$, as in (16b).
(16) a. apiama a
kerayono
thare
apiama $a=k e=r a y u=n o \quad$ tha $=r e$
airplane $3 \mathrm{SG}=$ fall =PFV1 =INFR COP =PRE.HOD
'The airplane fell (+inferred) (+pre-hodiernal).'

> b. * apiama a kerayono kure
> apiama $a=k e=r a y u=n o \boldsymbol{k} \boldsymbol{u}=\boldsymbol{r e}$
> airplane $3 \mathrm{SG}=$ fall $=$ PFV1 $=$ INFR COP =PRE.HOD
'The airplane fell (+inferred) (+pre-hodiernal).'

The t-word tha $=r e$ cannot be used in perfective sentences with eye-witnessed readings (17b). Only $k u=r e$ is acceptable in this situation.

```
* apiama a kerayu thare
    apiama a= ke =rayu tha =re
    airplane 3SG= fall =PFV1 COP =PRE.HOD
    'The airplane fell (+witnessed) (+pre-hodiernal).'
```

The t-word tha $=r e$ can be used in imperfective contexts in a very restrict context. Its used when the speaker wants to signals an event as a general rule or indefinite (like in "anacondas kill/defeat caimans") but with a less emphatic modality (more like "anacondas may kill/defeat caimans" [at least I have witnessed it]). The example in (18a) illustrates this usage. In this case, it contrasts with the k-word $k u$ $=p e=r e$, which would be preferable in a more defined context (18b). Although the example in (18c) refers to a definite entity, the clause has a potential modality, i.e. it refers less to a specific event than to its potentiality to happen again.
(18) a. apiama pë kei thare
$\begin{array}{ll}\text { apiama } p \ddot{e}=k e \quad=\dot{\boldsymbol{t}} \quad \text { tha } & =\boldsymbol{e} \boldsymbol{e} \\ \text { airplane } 3 \mathrm{PL}=\text { fall }=\text { DYN COP } & =\text { PRE.HOD }\end{array}$
'Airplanes fall (+witnessed) (+pre-hodiernal) (I have seen airplanes falling, i.e. they may fall).'

b. apiama	pë	$k e i$	kupere	
apiama	p $\ddot{e}=k e \quad=i \quad k u \quad=$ pere			
airplane $3 \mathrm{PL}=$ fall $=$ DYN COP $=$ PRE. HOD				

'The airplanes fell (+witnessed) (+pre-hodiernal) (Those airplanes that we know about).'

```
    c. hei apiama a kei thare
    hei apiama a= ke =i tha =re
    this airplane 3SG= fall =DYN COP =PRE.HOD
    `This airplane has fallen (+witnessed) (+pre-hodiernal) (I have seen this
airplane falling before, i.e. it may fall again).'
```

The t-word $t h a=r e$ is obligatory in negation constructions in which the speaker chooses the allomorph mii 'not to be' to negate the clause. In the cases in which the speaker wishes to negate the sentence with the form $m a$ 'not to be' only the k-word $k u=p e=r e$ is the only one accepted.

a. napë pëni			oru pë toaí	mii	
napë	$=p \ddot{e}$	$=n \dot{t}$	oru pë $=$ toa	$=\dot{\boldsymbol{i}}$	mii
white person	$=3 \mathrm{PL}$	$=$ ERG gold 3PL= take	$=$ DYN not_be		

```
tha =ra =he
COP =PRE.HOD = 3PL
```

'The white people were not collecting gold (yesterday or before) (I have not seen them doing that).'

b. napë pëni			oru	a	toait		maa	
парё	$=p \ddot{e}$	$=n \dot{t}$	oru	$a=$	toa	$=i$	$\boldsymbol{m a}$	$=0$
foreigner	$=3 \mathrm{PL}$	=ERG	gold	$3 \mathrm{SG}=$	take	$=$ DYN	not_exist	=ST

$k u$	$=p e$	$=h e$	$=n \dot{i}$
exist	$=$ IMPFV	$=3 \mathrm{PL}$	$=\mathrm{HOD}$

'The white people were not collecting gold (yesterday or before) (+witnessed) (I have not seen them doing that).'

We will see below that the copular element tha is still required in YMA to express evidentiality in domains of the grammar other than in declarative clauses. In any event, this copula always conveys a pre-hodiernal meaning to the construction in which it appears.

11.3.2. Inferred (=no/=no $+\boldsymbol{k}$-word/t-word)

Inferentiality is an evidentiality category expressed by morphological means in YMA, with the morpheme $=n o$. It is used to flag that the event was not eye-witnessed by the speaker, but that she had access to objective evidence that led her to think that it indeed took place. The sentences in (20) illustrate this usage.
(20) a. Ararima ani xama a xëprareno

Ararima $=a$ xi xama $a=$ xë $=p r a \quad=r i \quad=n \boldsymbol{n}$
Ararima $=\mathrm{SG} \quad=$ ERG tapir $3 \mathrm{SG}=$ beat; kill $=\mathrm{DRV}=$ PFV1 $=\mathbf{I N F R}$
'Ararima killed the tapir (I did not see it happening, but I infer it, for instance, from the arrow point that I found in the tapir's body, which I know as made by/belongs to Ararima).'

b. watori ani		yano	a	këpr			
watori $=a$	$=n \dot{t}$	yano	$a=$	kë	$=p r a$	=rio	=no
wind $=$ SG	$=$ CAUS	house	$3 \mathrm{SG}=$	break	= DRV	=PFV1	$=$ INFR

'The house went down because of the wind (I did not see it happening, but I can deduce it because I know, for instance, that there was a huge windstorm recently).'

Note that in (20), even though it is implicit that both events occurred in the past, the clauses were not marked for tense. We will see below that the enclitic $=n o$ is not a tense marker; it is neutral in this respect and incompatible with the unmarked past morpheme $=m a$. The sentences in (21) are not grammatical.

| (21) a. * Ararima anít | | xama a |
| ---: | :--- | ---: | :--- |
| Ararima | $=a$ | $=n \dot{t} \quad$ xama $a=$ |
| Ararima | $=\mathrm{SG}$ | $=$ ERG tapir $3 \mathrm{SG}=$ |

xёprarenoma

$x \ddot{e}$	$=p r a$	$=r i$	$=n o$	$=m \boldsymbol{a}$
beat; kill	$=$ DRV	$=$ PFV1	$=$ INFR	$=$ PST

'Ararima killed the tapir (-witnessed +inferred).'

```
b. * watori ani yano a
    watori =a =ni yano a=
    wind =SG =ERG house 3SG=
```

këprarionoma

```
kë =pra =rio =no =ma
break =DRV =PFV1 =INFR =PST
```

'The house went down because of the wind (-witnessed +inferred).'

In order to explicitely specify whether it is a hodiernal or pre-hodiernal situation, the speaker must use the k-word $k a=n \dot{t}(22 \mathrm{a})$, for hodiernal events, or the t-word $t h a$ $=r e(22 \mathrm{~b})$ for pre-hodiernal ones. The use of the pre-hodiernal $k u=r e(22 \mathrm{c})$ with the inferential =no was considered ungrammatical by most speakers from Papiu.

b. watori ani		yano	a	këpr			
watori $=a$	$=n \dot{i}$	yano	$a=$	kë	= pra	$=$ rio	=no
wind $=$ SG	=ERG	house	$3 \mathrm{SG}=$	break	$=\mathrm{DRV}$	= PFV1	$=$ INFR

thare

```
tha =re
COP =PRE.HOD
```

'The house went down because of the wind (-witnessed +inferred + prehodiernal).'

```
    c.* watori ani yano a këprariono
    watori =a =ni yano a= k\ddot{e}=pra =rio =no
    wind =SG =ERG house 3SG= break =DRV =PFV1 =INFR
kure
ku =re
COP =PRE.HOD
'The house went down because of the wind (-witnessed + inferred + prehodiernal).'
```

The marking of the inferential evidentiality category is not restricted to past events. The morpheme $=n o$, with inferential meaning, can still combine with the future/potential marker $=p \ddot{e}$, as in the examples in (23). Note that, when in contact with $=n o,=p \ddot{e}$ undergoes a dissimilation process and has its vowel fronted to an e.
(23) a. henimotima
henimo -tima thë= pë= ohi =pë =no
hunt_ritually -NMLZ CLN.GNR= 3PL= be_hungry =FUT =INFR
'The hunters will get hungry (+inferred) (I will not see them getting hungry, but I know it will happen because the people that were supposed to bring them their food are still here and they going to leave soon).'

| b. [huuu] Ararima ani | | Kunathoi a |
| ---: | :--- | :--- | :--- |
| huuu \quad Ararima $=a$ | $=n \dot{t}$ | Kunathoi $a=$ |
| IDEO \quad Ararima | $=$ SG | $=$ ERG Kunathoi $3 \mathrm{SG}=$ |

xëprapeno

$x \ddot{e}$	$=p r a$	$=\boldsymbol{p e}$	$=\boldsymbol{n o}$
beat; kill	$=$ DRV	$=$ FUT	$=$ INFR

'Gosh! Ararima is going to kill Kunathoi (+inferred) (I did not see Ararima leaving to do it, but I heard him saying that he was going to do so, and now I am not seeing him arround neither his weapons, so I inferred that he left to kill Kunathoi).'

Table 11.3 indicate the tense contexts in which the k - or t-word is used in clauses marked with inferential $=n o$. Note that in non-past contexts those words are not acceptable.

Table 11.3 - Inferential $=$ no and the expression of tense

Non-past and unmarked tense	Hodiernal past	Pre-hodiernal past
$=n o$	$=n o(r e ̈) /(r e ̈ k e) k a=n \dot{t}$	$=n o$ tha $=r e$

Inferential =no can appear in main clauses in combination with the compound attributive stem $n \dot{i}=m i i$ 'almost', the enclitic $=n o$ inflecting the main verb, while the phrasal verb $n \dot{i}=m i i$ functions as the secondary predication of the clause. For more on secondary predication, see Chapter 10 (§10.2). This construction, exemplified by (24), alters the mood of the sentence, similarly to what the future subjunctive mood does in Romance languages.

(24)	kaho wani		$y a$	ka	nakari	kunaha	
	kaho	$=w a$	$=n i \quad y a=$	$k a=$	naka	$=r i$	= kunaha
wani	2	$\begin{array}{r} =2 \mathrm{SG} \\ \quad \boldsymbol{m i i} \end{array}$	$=E R G 1 \mathrm{SG}=$ pairiprar	$\begin{aligned} & \text { FOC= }= \\ & \text { reno } \end{aligned}$	call; ask	= PFV1	$=$ CNT.FACT
wa $=$	$\boldsymbol{n i}=$	mii	pairi	pra	$=r i$	= n o	
$2 \mathrm{SG}=$	V.PT	C= not	be help =	- DRV	$=\mathrm{PFV} 1$	$=$ INFR	

'If you had called me, I would have helped you.'

In the examples in (20), (22) and (24) above, the constructions were overtly marked for perfectivity with the morphemes =rayo or $=r e$, according to the clause's transitivity. Indeed, in most cases in which the inferential marker is present, a perfective marker also appears. This is not a requirement, however, as in (23) above and (25) below, or even constructions in which there are typical imperfective markers, as in the serial verbs construction in (25c).
(25) a. Hero u
ôkiono
thare
Herou $u=$ ôki $=\boldsymbol{o}=$ no tha $=r e$
Herou CLN:liquid= overflow =STV =INFR COP =PRE.HOD
'The river Herou overflew (-witnessed +inferred +hodiernal) (I inferred it for the missing brigde, which was probably washed away by the high waters, for instance).'

b. kihi napë pëni			oru	a	toano		$r e ̈$
kihi napë	$=p \ddot{e}$				toa	$=n o$	$r e ̈$
that white person	$=3 \mathrm{PL}$	=ERG		$3 \mathrm{SG}=$	take	$=$ INFR	FOC=

```
ku =he =ni
COP =3PL =HOD
```

'Those white people were extracting gold (-witnessed + inferred + hodiernal) (I inferred it by the mud in the water, for instance).'

c. kihi napë pëni					orи a		toai	
	kihi napë	$=p \ddot{ }$	=	$=n \dot{i}$	oru		toa	= i
	that white person	$=3 \mathrm{PL}$			G gold	3SC	take	$=\mathbf{D Y N}$
xoano	rёкё	keheni						
xoa	$=n o \quad$ rëkë=	ku	$=h e$		$=n \dot{t}$			
continue	= INFR FOC=	COP		L =	$=\mathrm{HOD}$			

'Those white people were still extracting gold (-witnessed +inferred +hodiernal) (I inferred it by the mud in the water, for instance).'

I will argue, nevertheless, that the marker $=n o$, per se, causes the predicate to behave as if it was being overtly marked for perfectivity. The first piece of evidence in support of this analysis comes precisely from the incompatibility observed between the marker $=n o$ and the k-words that express spatial relations. I showed in §11.3.1.1 that these k-words are used exclusively in imperfective contexts and do not coexist with the perfective morphology. In other words, the same restrictions that apply to overtly marked perfective predicates, also apply to clauses marked with the inferential
$=n o$, no matter if there is another (or an actual) perfective marker in the clause. The use of these spatially marked k-words with inferential $=n o$ always results in ungrammatical sentences, as in (26).

(26) a. * kihi napë pëni					oru	a	toan		$r e ̈$
	kihi n		$=p \ddot{e}$		oru	$a=$	toa		$r e \ddot{=}$
	that w	rson	$=3 \mathrm{PL}$			$3 \mathrm{SG}=$	take	$=$ INFR	FOC $=$
kur	aruheni								
ku	= raharu	$=h e$	$=n \dot{1}$						
COP	= LOC:up	$=3 \mathrm{PL}$	$=\mathrm{HOD}$						

'Those white people were extracting/extracted gold upthere (-witnessed +inferred +hodiernal) (I inferred it by the mud in the water, for instance).'

b. * Hero u	ôkiono		
Herou $u=$	$\tilde{o} k i$	$=o$	$=n o$
Herou CLN:liquid= $=$	overflow	$=$ STV	$=$ INFR

kurakurure

$\begin{array}{lll}k u & =r a k u r u & =r e \\ \text { COP } & =\text { LOC:downriver } & =\text { PRE. } \mathrm{HOD}\end{array}$
'The river Herou overflew down there (-witnessed +inferred +hodiernal) (I inferred it for the missing brigde, which was probably washed away by the high waters, for instance).'

If the speaker wants to give any spatial information about the event through morphology, she has to make use of the enclitics from the Sub-Cluster CB (=tayu, $=h a r a y u,=k i r i \ldots$...), not a k-word with a spatial marker. This is precisely what is expected for a perfective predicate, as we saw in §11.3.1.1, particularly in the examples (10). In (27) I present the grammatical alternatives for the sentences in (26).

'Those white people were extracting/extracted gold upthere (-witnessed +inferred +hodiernal) (I inferred it by the mud in the water, for instance).'
b. Hero u

Herou $u=$ õki $=o \quad=k i r i \quad=n o$
Herou CLN:liquid= overflow =STV =LOC:downriver =INFR
thare
tha $=r e$
COP =PRE.HOD
'The river Herou overflew down there (-witnessed +inferred +hodiernal) (I inferred it for the missing brigde, which was probably washed away by the high waters, for instance).'

Another piece of evidence for the perfective status of $=$ no comes from other use of this morpheme in the grammar. This morpheme derives, for instance, dynamic causative and anticausative verbs in attributive verbs, with resultative meaning. Resultative states are intrinsically perfective states since it is implicit that the described state is the outcome of a process that has been completed. Note that in this derivation, the enclitic $=n o$ attaches to the dynamic stem (transitive or intransitive) without a perfective marker in between. Indeed, a perfective marker in this position would give the derivation an undesired meaning.
(28) a. ixii 'to burn' (intrans) $>$ ixino 'burned'

b. iximai	'to burn' (trans)	$>$ iximano	'burned'
c. k rëaí	'to break' (trans)	$>$ krëano	'broken'

d. aramai 'to put sth above sth else' (trans) > aramano 'to be placed'

This may explain why $=n o$ is not compatible with the k-words that have a spatial specification, which is exclusively used in imperfective clauses.

11.3.3. Auditory information (wãa=/ $\tilde{a}=$)

Auditory evidentiality indicates that the speaker did not witness the event "with her eyes", but heard it happening as a first-hand hearer. This type of evidentiality is expressed in YMA by the noun of Type 2 wãa $=$ or $\tilde{a}=$ 'sound' incorporated into the main predicate in its regular position, i.e. the Cluster B. The sentences in (29) are marked for this category.

(29) a. hama thëpëã					
hama thë $=$	$p \ddot{\boldsymbol{e}}=$	$\tilde{\boldsymbol{a}}=$	$k o$	$=p i$	$=m a$
guest CLN.GNR $=$	$3 \mathrm{PL}=$	sound $=$	arrive	$=\operatorname{PFV} 3$	$=$ PST

'The guests arrived (I heard a motor boat arriving) (-eye-witnessed, +auditory).'

'The kids were playing in the water (I did not see them, but I could hear their voices) (-eye-witnessed, +auditory).'
c. thuë thëрё $\tilde{\boldsymbol{a}}$

thuë \quad thë $=$$\quad$ pë $=\quad \tilde{\boldsymbol{a}}=\quad$| herii |
| :--- |
| heri $=\dot{\boldsymbol{e}}$ |\quad.

'The women are singing (I can hear they singing) (-eye-witnessed, +auditory).'

This formal characteristic makes it look like other meronymic constructions, as in (30), body-part terms are, by default, semantically linked to the entity occupying the absolutive position of the clause. This means that, when the clause is transitive, the meronym will always refer to the syntactic patient of the clause as its whole entity, and never the ergative agent.
(30) a. Ararima ani xama pariki niaprarema

Ararima $=a \quad=n \dot{i} \quad$ xama pariki $=n i a \quad=p r a \quad=r i \quad=m a$
Ararima $=$ SG $=$ ERG tapir chest $=$ shoot $=$ DRV $=$ PFV1 $=$ PST
'Ararima shot the tapir in the chest.'

b. Kunathoi ani		huu tihi	poko
kunathoi $=a$	$=n \dot{t}$	huu tihi $=$	poko $=$
Kunathoi $=$ SG	=ERG	tree CLN:tree $=$	branch=

këprarema

$k \ddot{e}$	$=p r a$	$=r i$	$=m a$
break	$=$ DRV	$=$ PFV1	$=$ PST

'Kunathoi broke a branch of the tree.'

I will argue that that is not always the case for noun $w \tilde{a} a=/ \tilde{a}=$, especially when this word is functioning as a marker for the auditory source of information. On one hand, we find cases in which this noun explicitly refers to a "part" of the absolutive argument, as in the examples in (31). Note that in these constructions $w \tilde{a} a=/ \tilde{a}=$ does not have an auditory evidentiality meaning.
(31) a. kiha kami yaní Ararima yã̃
kiha kami =ya $=n \dot{i}$ Ararima ya $\tilde{\boldsymbol{a}}=$
there $1=1 \mathrm{SG}=\mathrm{ERG}$ Ararima 1 SG sound=

hirirema

hiri $=r i$	$=m a$	
hear	$=$ PFV1	$=$ PST

'I heard the voice of Ararima over there.'

b. Kunathoi an $\dot{\boldsymbol{i}}$		TV	si $\tilde{\boldsymbol{a}}$	
kunathoi $=a$	$=n \dot{i}$	TV	si=	$\tilde{\boldsymbol{a}}=$
Kunathoi $=$ SG	$=$ ERG	television V.PTC $=$	sound=	

wai	$=p r a$	$=m a$	$=r i$	$=m a$
be_quiet	$=$ DRV	$=$ CAUS	$=$ PFV1	$=$ PST

'Kunathoi lowered the volume of the TV.'

On the other hand, in constructions in which $w \tilde{a} a=/ \tilde{a}=$ indicates that the event was heard, this semantic dependency on the absolutive argument is not strict, as it may clearly refer to a sound that was not produced at all by any entity occupying that position. In several cases, more evidently in transitive sentences, this "body-part" term seems to have the event itself as the whole "entity" and not only the entity in the absolutive position. The sentences in (32) exemplify the wider scope of reference of this morpheme when used as an auditory marker. These examples allow us to consider $w \tilde{a} a=/ \tilde{a}=$ as a real evidentiality marker and not a simple meronym incorporated into the verb, whose usage is distinct, if not syntactically, at least semantically.

a. Ararima ani		yaro	$w a \tilde{a}$	xëprarema			
Ararima $=a$	$=n \dot{i}$	yaro	wãa=	$x \ddot{ }$	= pra	$=r i$	$=m a$
Ararima $=$ SG	$=$ ERG	animal	sound=	beat; kill	$=\mathrm{DRV}$	= PFV1	$=$ PST

'Ararima shot an animal (I heard a gunshot or him shouting in the forest $\left.{ }^{6}\right)(-$ eye-witnessed, +auditory).'

[^5]```
 b. Kunathoi anì huи tihiã tiyë̈ rë
 kunathoi =a =n\dot{\boldsymbol{t}}\mathrm{ huи tihi= }\tilde{\boldsymbol{a}}=\mathrm{ tiyë =i rë=}
 Kunathoi =SG =ERG tree CLN:tree= sound weave =DYN FOC=
kuratuni
ku =ratu =ni
COP =LOC:a bit far away =HOD
'Kunathoi is cutting down the tree over there (I hear the sound of ax hitting the wood) (-eye-witnessed, +auditory).'
```

As we can see in the examples in (29) and (32), the auditory morpheme can be used in present (29c) (32b), or past situations (29a-b) (32a), and in perfective (29a) (32a), and imperfective (29b-c) (32b) contexts. More precisely, it coexists with verbs inflected with the dynamic $=\dot{i}(29 \mathrm{c})$ and unmarked past morpheme $=m a(29 \mathrm{a})(32 \mathrm{a})$, and appear in clauses together with the $k$-words, when the speaker wants to mark the event for hodiernality, (29b), or a spatial deictic category (32a). Differently from what happens with the inferential marker $=n o$, there is no restriction on the use of a $k$-word with the auditory evidentiality marker $w a \tilde{a} a=/ \tilde{a}=$. The two marking systems seem to operate independently. When questioned about the difference between the use of a $k$ word and a neutral marker, such as the past $=m a$ or dynamic morpheme $=i$, native speakers say that, when there is a $k$-word, the person is surer that what she heard actually corresponds to the event she is reporting, as in (33b). With the neutral markers, she is less emphatic about that, (33a).
(33) а. парёрёni
napë $\quad=p \ddot{e}=n \dot{t}$ Kunathoi $a=k a ̃ y o=\tilde{\boldsymbol{a}}=$
white person $=\mathrm{PL}$ =ERG Kunathoi $3 \mathrm{SG}=\mathrm{APPL}=$ sound= warokemahe
waro $=k i=m a=h e$
arrive $=$ PFV2 $=$ PST $=3$ PL
'The white people arrived with Kunathoi (I can't see them but I can hear them talking, for instance).'

'Ararima killed an animal (I heard the shot or the animal agonizing).'

The auditory source marker can still appear combined with the inferential $=n o$ and a $k$-word, (33c), in which cases it is implicit that the speaker is not sure about the relationship between the auditory information and the actual event reported by her.

| c. Ararima aní |  | yaro | $\boldsymbol{w} \tilde{a} \boldsymbol{a}$ |
| :--- | :--- | :--- | :--- |
| Ararima $=a$ | $=n \dot{\tilde{i}}$ | yaro | $\boldsymbol{w} \tilde{a} \boldsymbol{a}=$ |
| Ararima $=$ SG | $=$ ERG | animal | sound $=$ |


| xëpraretayono |  |  |  | kani |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x \ddot{ }$ | pra | $=r i$ | = tayu | =no | $k u$ | $=n i$ |
| beat; kill | lie | = PFV1 | =LOC:not_far | $=$ INFR | COP | = HOD |

'Ararima killed an animal (I heard the shot or the animal agonizing).'
This construction with $w \tilde{a} a$ is similar to the construction with reportative hearsay $e=\ldots h \tilde{a}=\ldots=n o$ (see $\S 11.3 .4$ below) in the sense that the source of information is allegedly sensorial in both cases. They differ, nevertheless, for the reportative information is always second-hand in nature while the auditory source provides firsthand information.

### 11.3.4. Reported hearsay/quoted information ( $\tilde{e}=h \tilde{a}=$ )

This evidentiality category appears in contexts in which the speaker wants to underline that the event was not eye-witnessed by the speaker, but told to her by a third person. It is, therefore, second-hand information category. The category is
expressed by the combination of the different participant proclitic $e=$ and the morpheme (a)h $\tilde{a}=$, which is a variant of the noun of Type 2 wăha=/ah $\tilde{a}=$ 'name'.

| (34) | Ararima anì |  | yano | ehan |  | thait |  | rëkë |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ararima $=a$ | $=n \dot{t}$ | yano | $\boldsymbol{e}=$ | $\boldsymbol{h} \tilde{a}=$ | tha |  | rëkë= |
|  | Ararima $=$ SG | $=$ ERG | house | HSY= | HSY $=$ | do; make |  | FOC= | kuratuni

```
ku =ratu =n\dot{t}
COP =LOC:a bit faraway =HOD
```

'Ararima is building a house over there (-witnessed+reported).'

As we can see by the example (35a), and much like other morphemes of the Cluster B, this combination of morphemes does not coexist with the singular marker $a=$, which would be expected in regular ${ }^{7}$ clauses with a noun of Type 1 (yano 'house) in the absolutive position, as in example (35b).

|  | Ararima |  | yano | $\boldsymbol{e h} \tilde{\boldsymbol{a}}$ |  | thai |  | rëkë |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ararima | $=n \dot{i}$ | yano | $\boldsymbol{e}=$ | $\boldsymbol{h} \tilde{\boldsymbol{a}}=$ | tha | $=i$ | rëkë= |
|  | Ararima | = ERG | house | HSY= | HSY= | do; make | = DYN | FOC= |
|  |  |  |  |  |  |  |  |  |
| ku | =ratu |  | $=n \dot{t}$ |  |  |  |  |  |
| COP | = LOC: a b | vay | = HOD |  |  |  |  |  |

'Ararima is building a house over there (-witnessed+reported).'

$$
\begin{array}{rlllll}
\text { b. Ararima ani } & \text { yano } & \boldsymbol{a} & \text { thai } & & r \ddot{e} \\
\text { Ararima }=a & =n \dot{i} & \text { yano } & \boldsymbol{a}= & \text { tha } & =\dot{i}
\end{array} \begin{aligned}
& \text { rë= }
\end{aligned}
$$

$$
\text { Ararima }=a \quad=n t \text { yano } a=\text { tha } \quad=t \quad r e=
$$

$$
\text { Ararima }=S G \quad=\text { ERG house } \mathbf{3 S G}=\text { do; make }=\text { DYN FOC }=
$$

$$
\begin{array}{lll}
\text { kuratuni } \\
k u & =\text { ratu } & =n \dot{t} \\
\text { COP }=\text { LOC:a bit far away } & =\text { HOD }
\end{array}
$$

[^6]'Ararima is building a house over there (+witnessed).'

Nevertheless, the combination of morphemes $e=h \tilde{a}=$ does appear together with other markers of the Cluster B, such as the dual kip $\ddot{e}=(36 \mathrm{a}-\mathrm{b})$, and the plural pë= (36c), and with noun classifiers, such as $h e=$ 'round objects' (36d). The examples in (36) also show that $e=$ and $h \tilde{a}=$, do not occupy contiguous positions in Cluster B.
(36) a. Kunathoi ani porokapi wana ekipëahañ

b. Kunathoi ani porokapi wana ekipëahã
kunathoi $=a \quad=n \dot{i}$ porokapi wana $\boldsymbol{e}=$ kipë $=$ ahã $=$
Kunathoi $=$ SG $=$ ERG two case HSY= DU $=$ HSY $=$
pou kurare
po $=i \quad k u \quad=r a \quad=r e$
hold =DYN exist =LOC:nearby =PRE.HOD
'Kunathoi had two arrow-point cases (-witnessed+reported+imperfective).'

'The white people reportedly extracted gold.'

|  | d. Pokarari anit |  | xote | ehea |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pokarari $=a$ | $=n \dot{1}$ | xote | $\boldsymbol{e}=$ | $h e=$ |  | $\boldsymbol{a h} \tilde{a}^{=}$ |
|  | Pokarari $=$ SG | $=$ ERG | G basket | HSY= |  | N:round= | HSY= |
| tiyët | $r e ̈$ | kupiëh | runi |  |  |  |  |
| tiyë | $=\dot{i} \quad r e \ddot{=}$ | ku | $=$ piëhuru |  |  | $=n \dot{1}$ |  |
| weave | e =DYN FOC= | COP | = LOC: lef | t_at_h |  | $=$ REL.PST |  |

'They say that Pokarari was weaving a basket (alone at home).'

Ramirez (1994: 170) describes the morpheme hõra $={ }^{8}$ as a quotative (or citatif, in French) marker in Xamatauteri ${ }^{9}$, used with the exact same function of $e=h \tilde{a}=$ in YMA. Aikhenvald (2004:177) points out that term "quotative" was probably misused by Ramirez, as he did not present an example where the exact authorship of the information is explicit. To Aikhenvald the Xamatauteri horã= does not seem to be compatible with quotative situations. I will argue that both the reportative hearsay stricto sensu and the quotative are conflated under the category named reportative here, since we do find, at least in YMA, examples of $e=h \tilde{a}=$ being used in sentences in which the speaker makes clear who was the original source of information. The sentences in (37) illustrate this usage of $e=h \tilde{a}=$ with quotative meaning.

'For what Ararima said, Kunothoi has left (+reportative/quotational).'

[^7]

As we can see by the examples above, the reportative $e=h \tilde{a}=$ can be used in both perfective and imperfective contexts, and in present or past situations. Moreover, this complex morpheme cooccurs with the $k$-words and the focalizer $r e \ddot{(k e ̈)}=$, and, in perfective contexts, the inferential $=n o$ is frequently required in the construction.

The origin of the reportative marker is the different participant marker $e=$ and the meronym (noun of Type 2) wãha=/ãha= 'name', which itself is probably related to another meronym, wãa=/ $\tilde{a}=$ 'sound,' 'voice.' As I showed in §11.3.3, wãa=/ã= 'sound,' 'voice' is the source of the first-hand auditory information marker. Ramirez (1994: 170) does not identify an evidentiality category of auditory source of information in Xamatauteri (Yanomami) and, according to the author, the marker for reported information in the language, has its origins on the incorporated noun hõra= 'sound', 'noise', not on 'name', as YMA. As Aikhenvald points out (2002: p.284) evidentials rarely come from nouns crosslinguistically. However, when it happens, auditory and reported information markers are the most frequent evidential markers grammaticalized from nouns, and nouns related to 'voice,' 'sound,' 'noise' or 'rumor' are the most common source of this process. YMA seems to follow this general tendency.

### 11.3.5. Assumed or supposed information: the $\boldsymbol{m}$-words

This evidentiality category can be expressed in situations in which the speaker wants to flag the information is an assumption or supposition, in general, based on common sense (38a), previous knowledge (38b), or even imprecise evidence (38c). This category is expressed in main clauses through the combination of the interrogative focalizer $p i=$, from Cluster B, and a series of complex words, similar to the $k$-words in many respects, which I will call the $m$-words. In (38), I present some clauses that are marked for assumptive evidentiality. The morphemes responsible for this meaning are in bold.

'The people from Papiu must be organizing a funeral festival upriver (I am saying that because I know, for instance, that there has been many deaths recently in the region, so funeral festivals are expected to come anytime soon).'

```
 b. Ararima anì ai thuë pi a toai
 Ararima =a =n\dot{t}}\mathrm{ ai thuë pi= a= toa =i
 Ararima =SG =ERG other woman FOC.INT= 3SG= take =DYN
marã
```

```
ma =ra
```

ma =ra
COP.ASS =LOC:nearby

```
COP.ASS =LOC:nearby
```

'Ararima wants to marry another woman (I am saying that because I know, for instance, he is unhappy with the current marriage and he keeps visiting neighboring village every day, apparently without a reason).'

'Those white people deceived us (I am not sure why I am saying that, it is just a hunch).'

This category resembles the inferential category in the sense that they do not only indicate non-witnessed information but also that the information is the result of reasoning or deduction by the speaker. The two categories seem to differ, nevertheless, in the type of evidence used in this deductive process and, consequently, in the degree of certainty about the event's actual realization. In assumptive situations, the speaker may base her reasoning on pieces of evidence which are not material or visual, while in inferential contexts she is often relying on more objective and tangible evidence. The pair of examples in (39) try to capture this subtle difference between these two categories.

INFERENTIAL


## ASSUMED INFORMATION

| b. Ararima $a \quad p i$ | rama $a a$ |  |  |
| :--- | :--- | :--- | :--- |
| Ararima $a=\quad p i=$ | rama $a \quad=a$ |  |  |
| Ararima $3 \mathrm{SG}=$ | FOC. $\mathrm{INT}=$ | hunt go | $=$ PFV.VWL |

## mariha

| $m a$ | $=r i$ | $=h a$ |
| :--- | :--- | :--- |
| COP.ASS | $=$ PFV1 | $=$ HOD |

'Ararima went out to hunt (+assumed) (I heard her wife complaining yesteday with Ararima that she was naiki i.e. 'hungry of meat'. Today it is not raining so, being a good day to hunt, I am assuming he did went out to hunt).'

The morphemes involved in this construction are the interrogative focalizer enclitic $p i=$ and one word of the $m$-words. The focalizer $p i=$ is the morpheme regularly found in interrogative clauses (40). For more on this interrogative focalizer, please refer to $\S 12.3$ in the chapter on non-declarative acts of speech.

| (40) a. uti $\quad \boldsymbol{p i}$ | $a$ | waroki | $k u h a l$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |$?$

'Who has arrived?'

| b. hei uti rakama pi | e | thuku | tha? |
| :--- | :--- | :--- | :--- | :--- |
| hei uti rakama =pi | $=e$ | $=$ thuku | $=t h a$ |
| this INT.PRO hammock =FOC.INT | $=$ DIF.PART | $=$ CLN:hammock | $=$ PTC.INT |
| 'Whose hammock is this?' |  |  |  |

The other set of morphemes that appear in this construction is the $m$-words. This set is similar to the $k$-words in several respects. The paradigms of both series are, for instance, morphologically independent words in the language and made up of one copular element and a set of grammatical morphemes. Interestingly, while the $k$-words have $k u$ 'to exist' as their copular element, the $m$-words have $m a$ 'not to exist' as theirs. This root appears in verb stems as in (41), always with a non-existential meaning.
(41) a. ipa são pë maprarioma
ipa são $p \ddot{e}=\boldsymbol{m a}=p r a=$ rio $=m a$
1POS salt 3PL= not_exist =DRV =PFV1 =PST
'I ran out of salt.'

| b. urihi | hami aho hiima marayoma |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| urihi $=$ | $=$ hami aho hiima ma | $=$ rayu | $=m a$ |  |
| CLN:forest= $=$ | $=$ OBL | 2POS dog not_exist | $=$ PFV1 | $=$ PST |

'Your dog disappeared in the forest.'

The $m$ - and $k$-words are also alike for both types of words always appear at the end of the clause and can host tense and spatial markers. Nevertheless, some of the marked categories are not the same and the syntactic restrictions applied to each type of word are different as well. The first fundamental difference concerns the distinction between present and hodiernal past tenses, which in the $k$-words were conflated under the same category and marked with $=n \dot{\text {, }}$, both in imperfective and perfective sentences. In the $m$-words, nevertheless, these two tense categories are not alike. Present events are never marked while hodiernal past events are marked, in imperfective contexts, with the discontinuous morpheme $=a \ldots=h a$ and, in perfective contexts, with $=h a$. The examples in (42) illustrate these morphemes in use.
(42) a. Ararima pi a wakëтатии

Ararima $p i=\quad a=$ wakë $=m a \quad=m u \quad=i$
Ararima FOC.INT= 3SG= red =CAUS =INTRZ =DYN
mara

```
ma =ra
COP.ASS =LOC:nearby
```

'Ararima must be painting himself.' (present, unmarked)

```
 b. Ararima pi a wakëmamии
 Ararima pi= a= wakë =ma =mu =i
 Ararima FOC.INT= 3SG= red =CAUS =INTRZ =DYN
maaha
\begin{tabular}{lll}
\(m a\) & \(=\boldsymbol{a}\) & \(=\boldsymbol{h a}\) \\
COP.ASS & \(=\) IMPFV.HOD & \(=\) IMPFV.HOD
\end{tabular}
'Ararima must have been painting himself (+assumed, +imperfective, +hodiernal).'
```

| c. Ararima pi | $a$ | wakëa |
| :--- | :--- | :--- |
| Ararima pi= | $a=$ | wakë $=a$ |

Ararima FOC.INT $=3 \mathrm{SG}=$ red $\quad=\mathrm{PFV} . \mathrm{VWL}$
mamamoriha

| $m a$ | $=m a$ | $=m u$ | $=r i$ | $=\boldsymbol{h a}$ |
| :--- | :--- | :--- | :--- | :--- |
| COP.ASS | $=$ CAUS | $=$ INTRZ | $=$ PFV1 | $=$ HOD |

'Ararima must have painted himself (+assumed, +perfective, +hodiernal).'

Note that the hodiernal past morphemes of the $m$-words, $=a_{\ldots}=h a$ and $=h a$, are not cognate with the hodiernal past/present marker $=n \dot{i}$ used in the $k$-words. In §11.3.1.2, I argued that several of the morphemes that appear in the $k$-words have their origins in markers of the relative construction, with the exception precisely of the hodiernal past/present marker $=n \dot{i}$, which probably came from the connective/conjunction $=n \dot{i}$, used in subordinate clauses of time. The different origin of this morpheme has morphosyntactic consequences, such as the position of the morpheme $=n \dot{i}$ in relation to other morphemes that appear together with it. We saw, for instance, that in the $k$-words the marker for third person plural agent $=h e$ goes before the marker $=n \dot{i}$ but after the hodiernal past marker $=r e$ (please check examples in (7)). On the other hand, the hodiernal past marker of the $m$-words $=h a$ or $=a_{\ldots}=h a$ has its origins also in the marker found in the relative clauses $=h a$ (see $\S 11.8$ for details). This may explain why the marker for third person agent does not go before the hodiernal marker in the $m$-words but remains in it typical final position. In (43), I
present an example of the interaction between the agent marker $=h e$ and the past marker $=h a$.

| (43) | Papiu thëri pëni |  |  | naxi | $p i$ | kohiu |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Papiu thëri | $=p \ddot{ }$ | $=n \dot{t}$ | naxi | $p i=$ | kohiu= |
|  | Papiu inhabitant | $=\mathrm{PL}$ | $=E R G$ | cassava | FOC.INT= | CLN:beer= |
| koa | maprarihahe |  |  |  |  |  |
| ko | $=a \quad m a$ |  | $=p r a$ | $=r i$ | $=h a$ | $=h e$ |
| drink | =PFV.VWL COP. |  | $=\mathrm{DRV}$ | $=\mathrm{PFV} 1$ | = HOD | $=3 \mathrm{PL}$ |

'The people from Papiu must have drunk cassava beer today (+assumed) (I am saying that because nobody from Papiu appeared here today; I assumed that everybody stayed at home because of the cassava beer).'

The marker for pre-hodiernal past of the $m$-words also varies according to the aspect of the clause. In perfective sentences, the marker used is $=r e$, just like the marker for the $k$-words, but in imperfective contexts it changes to the discontinuous $=a_{\ldots}=$ pere or $=a_{\ldots}=r e$. The examples in (44) illustrate what I proposed above. In (44a), we have an imperfective predicate and in (44b) a perfective one.
(44) a. Ararima pi a wakëтатии

Ararima $p i=\quad a=$ wakë $=m a \quad=m u \quad=i$
Ararima FOC.INT $=3 \mathrm{SG}=\mathrm{red}=$ CAUS $=\mathrm{INTRZ}=\mathrm{DYN}$
maatupe

| $m a$ | $=\boldsymbol{a}$ | $=t u$ | $=p e$ |
| :--- | :--- | :--- | :--- |
| COP.ASS | $=$ IMPFV | $=$ LOC: a bit far away | =PRE.HOD | =PRE.HOD

'Ararima must have been painting himself over there (+assumed, +imperfective, + pre-hodiernal).'

'The people from Papiu must have drunk cassava beer (+assumed)
(+perfective) (+pre-hodiernal).'

In Table 11.4 below I present the tense markers used with the $m$-words in imperfective and perfective contexts, and compare them to those used with the $k$ words.

Table 11.4 - Tense categories markers in the $\boldsymbol{m}$ - and $\boldsymbol{k}$-words

|  | $m$-words <br> (perfective) | $m$-words <br> (imperfective) | $k$-words (all <br> aspects) |
| :--- | :--- | :--- | :--- |
| Pre-hodiernal past | $=r e$ | $=a_{\ldots} \ldots$ pere $/$ <br> $=a \ldots=p e$ | $=r e$ |
| Hodiernal past / present | $=h a$ | $=a \ldots=h a$ | $=n \dot{t}$ |
| Present | $=\varnothing$ | $=\varnothing$ |  |

Similarly to the $k$-words, the $m$-words can also be marked for spatial relations. The two types of words differ, nevertheless, for the $m$-words are able to host spatial deictic morphemes even in perfective clauses, what the $k$-words cannot do, as we saw in 11.3.1.1. The examples in (45a) show a $m$-word with the morpheme that indicates that event in an imperfective clause and, in (45b), the same category being marked in a perfective sentence.
(45) a. kihami tihi
pi a huи maratu
kihami tihi $p i=\quad a=h u=\dot{i} \quad m a \quad=r a t u$
there jaguar FOC.INT= 3SG= go =DYN COP.ASS =LOC: a bit faraway
'There is maybe a jaguar running over there (+assumed) (I am saying that because I heard the vocalization of the red-eyed vireo (Vireo olivaceus), which is considered to be the sonorous sign of a jaguar's presence nearby) ${ }^{10}$.,

'Kunathoi must have put another footbridge over the river (+assumed) (I have not seen the new footbridge, but I know that the old one, which was the only access to Kunathoi's community, had been washed away by the high waters some days ago. Kunathoi must have built another one to avoid the isolation of the community).'

Note that two spatial markers used in (45a) and (45b) are not exactly the same, even though they seem to be cognate. In the imperfective contexts, $m$-words take the same set of spatial markers as found in the $k$-words. However, four of these markers behave differently when combined with the past markers (either hodiernal or prehodiernal) in imperfective contexts. These markers are $=r a$ 'nearby event', $=r a t u$ ' $a$ bit far away event', =rakirit/=rakuru 'downriver event' and =raharu 'upriver event'. All of these markers lose the initial $=r a$ in imperfective past contexts. The nearby category is not marked in past circumstances, therefore. Not only that, the category seems not to be active in the past, i.e., unmarked clauses in the past do not refer necessarily to nearby events. The example (46a) refers to an event that is assumedly

[^8]happening down the river, and in (46b), to an event that was happening at the same relative location.
(46) a. Kunathoi a pi ohi marãkiri

Kunathoi $a=p i=$ ohi $m a=r a ̃ k i r i$
Kunathoi 3 SG $=$ FOC.INT= be_hungry COP.ASS =DIR:downriver
'Kunathoi must be hungry down there (+assumed) (I am saying that because he left early in the morning to hunt and it is afternoon now and he is not back yet).'

| b. Kunathoi $a$ | pi | ohi |
| ---: | :--- | :--- |
| Kunathoi $a=$ | $p i=$ | ohi |

Kunathoi 3 SG= FOC.INT= be_hungry

## maakiriha

| $m a$ | $=a$ | $=\boldsymbol{k} \boldsymbol{i r i}$ |
| :--- | :--- | :--- |
| COP.ASS | $=$ IMPFV | $=$ =IIR:downriver |
| $=$ HOD |  |  |

'Kunathoi must have been hungry down there (+assumed) (+hodiernal) (I am saying that because he left early in the morning to hunt and arrived only late in the afternoon).'

As the Table 11.5 shows, the remaining spatial markers of the $m$-paradigm coincide with the markers of the $k$-paradigm and do not behave differently in present and past contexts. As a final note on the imperfective paradigm, it is worth mentioning that the forms beginning with pie are surprisingly not compatible with the hodiernal past marker $=h a$.

Table 11.5 - Spatial categories markers in the $\boldsymbol{m}$ - and $\boldsymbol{k}$-words - Imperfective paradigm)

|  | $m$-words <br> (past) | $m$-words <br> (present) | $k$-words |
| :---: | :---: | :---: | :---: |
| nearby | $=\varnothing$ | $=r a$ |  |
| a bit far away | $=t u$ | = ratu |  |
| upriver, on the other side of the river bank | = haru | = raharu |  |
| downriver | $=k i r i$ | = rakiri/=rakuru |  |
| outside the house, near a pond, in an open field or forest clearing | $=p i \ddot{ }$ |  |  |
| outside the house, near a pond, in an open field or forest clearing ( +a bit far away) | = piëtu |  |  |
| left in the house | = piëhuru |  |  |
| on a higher position (e.g. on the top of a mountain, or on the top of the river bank [speaking from the water]) | =pohoru |  |  |
| on a lower position (e.g. in a valley, or on the water [speaking from the river bank]) | = potu |  |  |
| andative (centrifugal) | = imatu |  |  |
| venitive (centripetal) | $=i m a$ |  |  |

We saw in §11.3.1.1 that the $k$-words cannot be marked with a spatial deictic if the clause is also being marked for perfectivity. In those cases, the space morpheme must be hosted by the main verb instead. This is a fundamental difference between the $k$ - and the $m$-words, since the latter does host spatially related morphemes no matter the general aspect of the clause. Nevertheless, the perfective paradigm of spatial morphemes of the $m$-words is not the one used in imperfective contexts (Table
11.5 ) but the shorter version of the CB enclitics, the same version used with main verbs in clauses with a $k$-word. In (47) I present examples of clauses being marked for assumed information with spatially marked $m$-words. Note that the perfective forms in the examples below are not the extended version = rayo or $=r e$, but also the shorter version $=r i$, which does not vary according to the transitivity of the verb, like the long version. Moreover, the number of spatial categories are fewer in the perfective paradigm, since the directional markers =ima 'venitive' and =huru 'andative' are not compatible with perfective clauses. In order to mark direction in this type of predicate, the speaker must use different perfective markers, as explained in Section §6.2.3 in the chapter on verb morphology, just like a regular perfective clause in the language.

| (47) a. Ararima $p i$ | $a \quad$ wakëa |  |
| :---: | :---: | :---: |
| Ararima pi= | $a=$ wakë | $=a$ |
| Ararima FOC.INT= | $3 \mathrm{SG}=\mathrm{red}$ | $=$ PFV.VWL |

## mamamorituha

$\left.\begin{array}{lllll}m a & =m a & =m u & =r i & =t u \\ \text { COP.ASS } & =\text { CAUS } & =\text { INTRZ } & =\text { PFV1 } & =\text { LOC:a_bit_faraway }\end{array}\right)=$ HOD

Ararima must have painted himself over there (I did not see him painting himself, but I assuming it because he was expected to appear soon for the meeting and he usually appears painted).

mariharure

| $m a$ | $=r i$ | $=h a r u$ | $=r e$ |
| :--- | :--- | :--- | :--- |
| COP.ASS | $=$ PFV1 | $=$ LOC:upstream | $=$ PRE.HOD |

'The jaguar may have eaten my dog (I am saying that because I saw a jaguar in the forest, coming from the direction where my dog had got lost).'

Another significant difference between the $k$ - and $m$-paradigms concerns their precise position in the clause in perfective predicates. Although both sets of words appear at the end of the clause, they host different parts of the clitic Cluster C. As I
showed in §11.3.1, the $k$-words only host morphemes from Sub-Cluster CC. On the other hand, in perfective contexts, the $m$-word can take the morphemes of CA and CB as well, such as the derivational morphemes, $=m a$ and $=p r a$, and perfective markers. This may be the reason that explains why the $m$-words have chosen the spatial morphemes of Cluster $C$ to express these categories in perfective contexts. The two pairs of examples in (48) and (49) make these differences evident in the morphological properties of the $k$ - and $m$-words in perfective predicates. In (48a) and (49a) a $k$-word marks the clauses as eye-witnessed events, while in (48b) and (49b) an $m$-word marks an event assumed to have happened.

| a. kihi napë pëni |  |  | yamaki |
| :---: | :---: | :---: | :---: |
| kihi napë | $=p \ddot{ }$ |  | yamaki= |
| that white person | $=3 \mathrm{PL}$ | $=$ ERG | $1 \mathrm{PL}=$ |
| amareharu |  |  | kehen |


| mëra | $=m a$ | $=r i$ | $=h a r u$ | $k u$ | $=h e$ | $=n \dot{t}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| blunder | $=$ CAUS | $=$ PFV1 | $=$ LOC:upstream COP | $=3 \mathrm{PL}$ | $=$ HOD |  |

'Those white persons deceive us down there (+witnessed).'

| b. $\tilde{t} h \tilde{t}$ | napë рёni |  |  | $p i$ | yamaki |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ¢̇ht | napë | $=p \ddot{ }$ |  | $p i=$ | yamaki= |
| ANA | white person | $=3 \mathrm{PL}$ | = ER | FOC | $1 \mathrm{PL}=$ |

mëraa
тёra $=a$
blunder =PFV.VWL
mamarikirihahe

| $m a$ | $=m a$ | $=r i$ | $=k i r i$ | $=h a$ |
| :--- | :--- | :--- | :--- | :--- |
| $=h e$ |  |  |  |  |
| COP.ASS | $=$ CAUS | $=$ PFV1 | $=$ DIR:downriver | $=\mathrm{HOD}$ |

'Those white people deceived us down there (+assumed) (I am not sure why I am saying that, it is just a hunch).'

| (49) a. Papiu thëripëni |  |  | reahu | $a$ | thaprari |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Papiu thëri | $=p \ddot{e}$ | $=n \dot{t}$ | reahu |  | tha | $=p r a$ | $=r i$ |
| Papiu inhabitant | $=\mathrm{PL}$ | = ERG | festival | 3 SG | do; make | $=\mathrm{DRV}$ | $=$ PFV1 |
| kurehe |  |  |  |  |  |  |  |


| $k u$ | $=r e$ | $=h e$ |
| :--- | :--- | :--- |
| COP | $=$ PRE. HOD | $=3$ PL |

'The people from Papiu organized a festival (+witnessed).'

'The people from Papiu must have? organized a festival (+assumed).'
Note that in the examples (48b) and (49b), the main verb takes the perfective vowel $=a$. As we will see in Chapter 10 (§10.4), this is precisely the pattern found in the constructions with serial verbs in perfective situations, i.e. the last verb of the series takes the whole C cluster while the first verbs of the constructions (in the cases above there is only one other verb) take the perfective vowel $=a$. The two constructions are morphologically different, nevertheless, for the $m$-words take only the reduced form of the morphemes of C (such as $=h a r u,=t u,=r i$ ) while in a real serial verbs construction the last verb takes the long form of these morphemes (=harayu, =tayu, =rayo). Schema 11.3 below illustrates the syntactic position of the $m$-words in imperfective predicates in relation to the main verb and the clitic Cluster C.

Schema 11.3 - Verb morphology and the $\boldsymbol{m}$-words - Perfective predicates

$$
\operatorname{main} \mathbf{V}=\text { PERF.VW } \mathbf{M}=\mathrm{CA}=\mathrm{CB}=\mathrm{CC}
$$

The sentence in (50) exemplifies this schema.

```
(50) yãrí anì karaka pi pë nomaa
 yãri \(=a \quad=n \dot{i}\) karaka \(p i=\quad p \ddot{e}=\) noma \(=a\)
 storm \(=\) SG \(=\) ERG chicken FOC.INT= 3PL= die =PFV.VWL
```

mariharure

| $m a$ | $=r i$ | $=h a r u$ | $=r e$ |
| :--- | :--- | :--- | :--- |
| COP.ASS | $=$ PFV1 | $=$ LOC:upstream | $=$ PRE. HOD |

'The chickens must have died up there because of the storm (+assumed) (+pre-hodiernal) (I am saying that because yesterday there was a huge storm in the region and I know that the chickens that were being raised in the house upriver did not have proper shelter from such a storm).'

We saw above that, in imperfective contexts, the $m$-words behave similarly to the $k$-words. Their morphosyntactic position in the clause are also alike, as the $m$ words take only the Sub-Cluster CC in imperfective contexts while the remaining clitics of $\mathrm{C}(\mathrm{CA}$ and CB$)$ keep being hosted by the main verb. The Schema 11.4 illustrates the position of the $m$-words in this aspectual context.

## Schema 11.4 - Verb morphology and the $\boldsymbol{m}$-words - Imperfective predicates

$$
\operatorname{main} \mathbf{V}=\mathrm{CA}=\mathrm{CB} \quad \mathbf{M}=\mathrm{CC}
$$

Morphologically, in imperfective predicates, the two types of words differ in one detail, nevertheless. While the present/hodiernal past marker $=n \dot{t}$ of the $k$-words goes after the enclitics of CC , the corresponding hodiernal past marker $=h a$ of the $m$-words remains before them. The Schema 11.5 presents the morphological structure of the $m$ words.

## Schema 11.5 - Morphological structure of the $\boldsymbol{m}$-words - Imperfective predicates

$$
\mathbf{M}=\mathrm{SPT}=\mathrm{TENSE}=\mathrm{CC}
$$

The sentence in (51) exemplifies this schema.

| (51) | napë | рёni |  | yano | $p i$ | $a$ | thai |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | napë | $=p \ddot{ }$ | $=n \dot{t}$ | yano | $p i=$ | $a=$ | tha | = $i$ |
|  | white | $=\mathrm{PL}$ | = ERG | house | FOC. | $3 \mathrm{SG}=$ | do; |  | maaruhahe


| $m a$ | $=a$ | $=r u$ | $=h a$ | $=h e$ |
| :--- | :--- | :--- | :--- | :--- |
| COP.ASS | $=$ IMPFV | $=$ PFV1 | $=H O D$ | $=3 \mathrm{PL}$ |

'The white people must be builduing a house upriver (+assumed, +hodiernal).'

### 11.4. Is there a single evidentiality system in YMA or is it multiplex?

It is not entirely clear to me whether YMA has one single complex evidentiality system or rather multiple coexisting systems. The pieces of evidence available seem to be contradictory.

On the one hand, the different distribution of each set of morphemes in the clause suggests that there are multiple systems. The morpheme $=n o$, which indicates inferred information, for instance, is an enclitic of Cluster C (Sub-Cluster CB), while the markers for reported ( $e=h \tilde{a}=$ ) and auditory ( $w \tilde{a} a=$ ) information, appear as proclitics of Cluster B. The latter forms differ in their level of morphological complexity, as $e=(a) h \tilde{a}=$ is discontinuous combination of proclitics and $w \tilde{a} a=$ is a single morpheme. On the other hand, even though the $k$ - and $m$-word appear at the end of the clause, the precise place in which each of them is adjoined is different as they can take different morphemes from Cluster C. While the $k$-words can host morphemes only from SubCluster CC (they cannot take the perfective morphemes, for instance), the $m$-words can take not only the perfective morphemes but can host enclitics even from SubCluster CA, such as derivative $=p r a$ or causative $=m a$.

The different positions of these morphemes (or a combination of morphemes) in the clause are partially explained by the various sources and different degrees of grammaticalization of these forms. As we saw above, the morphemes that indicate reported information $e=(a) h \tilde{a}=$ have their probable origins in the combination of the different participant marker $e=$ and the meronym (noun of Type 2) ahã= 'name.' The exact process through which these forms acquired their reportative meaning is not at
all clear but was certainly very different from the process that led to the enclitic $=n o$ to acquire its inferential meaning. The marker for the auditory source of information has its origins in the meronym wãa $=$ 'sound', 'voice'.

In other words, from the perspective of their morpho-syntactic distribution in the clause, there is no evidence supporting the analysis that the YMA evidentiality markers are members of the same paradigmatic system.

On the other hand, other features of the YMA evidentiality suggest that there may be only one system. The primary source of evidence favoring this interpretation concerns the impossibility of combining the different evidentiality categories in order to express, through morphological means, more complex arrangements of source of information. The combination of the reportative marker $e=\tilde{a} h a=$ with the inferential marker $=n o$ does not give a cumulative reportative-inferential meaning to the clause, such as the meaning that the ungrammatical example in (52) tries to produce.

| * Ararima |  |  | xama | a eãha |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ararima | $=a$ |  | xama |  | ãha= |
| Ararima | $=S G$ | = ERG | G tapir | HSY= | HSY= |
| reno |  |  |  | kani |  |
| = $p r a$ | $=r i$ |  | =no | ku | $=n \dot{t}$ |
| $=\mathrm{DRV}$ | $=\mathrm{PFV}$ |  | = INFR | COP | $=\mathrm{HOD}$ |

'Ararima reportedly killed a tapir (+inferred) (i.e. I have been told that Ararima killed a tapir, and the people/person who told me did not eye-witnessed the event, but infered it from objective pieces of evidence).'

The combination of these markers seems to be blocked, as far as I know. With or without the inferential marker, the reportative meaning always prevails. The two sentences in (53) appear to have the same meaning.

662 Yanomama clause structure

'Ararima reportedly killed a tapir.'

| b. Ararima ani |  | xama |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Ararima $=a$ | $=n i$ | xama | $e=$ | anha= |
| Ararima $=$ SG | $=$ ERG | tapir |  | HS | xёprarema


| $x e ̈$ | $=p r a$ | $=r i$ | $=m a$ |
| :--- | :--- | :--- | :--- |
| beat; kill | $=\mathrm{DRV}$ | $=\mathrm{PFV} 1$ | $=\mathrm{PST}$ |

'Ararima reportedly killed a tapir.'

Taking into account that the possibility of combination of the markers is an important parameter to decide about the independence of different evidentiality systems in a language (Aikhenvald 2002:103), we should then consider that YMA has a single very complex system, composed of five members. As we mentioned before, two categories express the direct knowledge of the event by the speaker, one visual (eye-witnessed) and another auditory. On the other hand, three categories imply indirect knowledge, one visual (or based on visual evidence), one auditory (the reportative hearsay), and the last one based exclusively on an inmaterial source of information, that is, assumption. The Table 11.6 below summarizes the evidentiality marking system in YMA.

Table 11.6 - Summary of the five categories evidentiality system of YMA

| Speaker experience with <br> the event | Mean of experience | Mechanism of <br> expression |
| :--- | :--- | :--- |
| first-hand | visual | $k$-words |
|  | auditory | $w a \tilde{a} a=$ |
|  | visual (inference) | $=n o$ |
|  | auditory (report) | $e=\tilde{a} h a=$ |
|  | thought (assumption) | $m$-words |
|  |  |  |

### 11.5. On the obligatoriness of the evidentiality markers

As I pointed out in the examples in (1), YMA allows the speaker to choose between morphologically marking the clause for one of the five evidentiality categories, or leaving the clause without such type of marker. For every clause overtly marked for evidentiality, there is an alternative unmarked construction, which is neutral regarding the indication of how that information was acquired by the speaker. In other words, in principle, clauses unmarked for evidentiality are perfectly grammatical. Most importantly, these neutral clauses are very frequent in the language, probably the most common ones. In a sample of 2100 clauses extracted from 38 natural texts produced during story-retelling experiments with different speakers, only 46 clauses displayed any evidential marker. The very low frequency (about $2.2 \%$ of the clauses, and only 1.2 evidential marker per text) of the evidential markers in this sample indicates that YMA clearly has a non-obligatory evidentiality system.

On the other hand, these figures should not give the false impression that evidentiality marking mechanisms are marginal and non-productive in YMA. First, the methodology used during the experiment biased the results in some way. We can have a measure of this bias by the limited variety in evidentiality markers found in the sample. Only two types appeared: the markers for eye-witnessed and reported events. This is what we expected given the methodology we used in the experiments, according to which first a speaker watched a video then retold the story to another
speaker who then retold the reported story to a third speaker again. There were two types of speakers in this experiment, therefore, one that had a first-hand visual experience and another one that only had second-hand auditory experience of the same story. The markers for precisely these two categories were the only ones registered in the sample.

Moreover, and most importantly, all participants of this experiment had a clear and shared notion of the source of the conveyed information. Indeed, this was clearly stated when the researcher presented the experiment to the speakers: first, one watches the video alone, retell the story to another one, who in turn tell the story again to someone else. Each one in the experiment knew beforehand that the person to whom she was telling the story was aware of the source of that information (i.e. whether the video itself or the person who watched the video). That is, how the speaker acquired the information she is reporting on never was relevant (i.e. new) information during the experiment.

We have not proceeded yet to an extensive count of the evidential markers in other types of texts. Nevertheless, in a much smaller sample of 502 clauses extracted from a single interview with a woman on her personal history (PDYP_MIC_A_03_18), the frequency of these markers was significantly higher (46 tokens or $9.2 \%$ of the clauses), even though these markers are far from being pervasive or even prevalent throughout the text. The diversity of markers was much higher in this text as well, since all of the five evidentiality mechanisms were found in PDYP_MIC_A_03_18 and each of them more than once. Thus, overall, evidentiality marking in YMA is probably far from marginal.

In any event, evidentiality flagging does not seem to be a grammatical requirement in YMA. Moreover, not marking a clause for evidentiality does not mean a lack of linguistic or communicative competence by the speaker, and neither does it result in artificial or 'awkward' clauses, as seems to be the case for Kamaiurá and Shipibo-Konibo (apud Aikhenvald, 2002:78). As an alternative explanation, we prefer to consider them to have a pragmatic or discursive status in the language, in the sense that the speaker seems to base her choice of making use of these mechanisms exclusively on the knowledge she attributes to her interlocutor about the source of the
information she is conveying. That is, when the speaker considers this source sufficiently clear, she does not flag the clause with an evidentiality marker; when this source changes or is seen as not clear enough, then a marker is likely to be used. This probably explains why evidential markers may be found in the first five clauses in several texts, and not in the remaining part of the discourse. The example in (54), extracted from story retelling experiment illustrates this situation. The speaker here heard the story from another participant and is now telling it again. In these first six clauses of the text, the speaker uses two evidentiality markers (in bold), one in the first sentence to indicate that he eye-witnessed Himotona telling the story and another one in the third clause to indicate that this part of the text (and onwards) was reported to him. Even though the following events were also reported to him by Himotona, they were not marked with the reportative $\tilde{e}=a h \tilde{a}=$, since the source of information remained the same, and was clearly stated by the speaker. The reportative $\tilde{e}=a h \tilde{a}=$ appears again in this text only ten clauses later.

'Himotona told the following story (+witnessed). First, where the tools were leaning, he reportedly chose the axe, and having chosen the axe, then he went out afterwards [...]'

Finally, another aspect that should always be observed when analyzing the obligatoriness of any evidentiality system is that every language allows their speakers to lie about and to manipulate the information they are conveying in the discourse, and ultimately, to manipulate other speakers. Evidentiality marking is not obligatory in YMA, but even if it were, it would certainly not imply that the speaker would have to state every time the actual source of information. Aikhenvald (2002: 98) describes how someone can tell a lie in languages like Tariana with such obligatory evidentiality system. It does not really differ much from what languages with non-obligatory systems, like YMA, do, which is just the conscious misuse of one evidentiality marker when a different marker was clearly the one that would truthfully correspond to the actual source of that piece of information. The example (55) below illustrates this type of "morphological lie." This sentence belongs to a traditional narrative in which a young woman kills the son of her sister while taking care of him. When her sister arrives, she alleges that she does not know why the child has gotten ill, and she marks the event with an inferential, with the clear intention of covering up her deed.

$$
\begin{array}{lllll}
\text { ei asima ai } & \text { haari mahiprariono } &  \tag{55}\\
\text { ei asima } a=\quad i=\quad \text { haari mahi }=\text { pra =rio }=\text { = } \\
\text { ei } \\
\text { this son } \quad \mathrm{SG}= & \mathrm{DIM}=\text { ill, sick much }=\mathrm{DRV}=\mathrm{PFV} 1 \quad=\mathrm{INFR} \\
\text { 'The child has gotten badly ill (+inferred) } & (\text { trad_nar_Terema).' }
\end{array}
$$

### 11.6. Dreamed information mahari/utupë

For the Yanomami people, dreams are a highly relevant source of information. What someone had dreamed about during the night is an important parameter to decide about her daily activities. If you dream of a snake or being bitten by a snake in one night, for instance, is better to stay at home during the following morning to avoid an actual snake bite. This may be the reason why information acquired by dreams is
frequently cast as first-hand visual information in YMA, i.e. expressed by the use of a $k$-word without any additional evidentiality marker, like in (56).

| (56) $y a$ | maharimuи |  |  | tëhë | xama | waa |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y a=$ | mahari | $=m u$ | $=\dot{i}$ | =tëhë | xama | $w a=$ | $=a$ |
| $1 \mathrm{SG}=$ | dreamlike | $=$ INTRZ | $=\mathrm{DYN}$ | =REL.PRS | tapir | $2 \mathrm{SG}=$ | $=3 \mathrm{SG}$ |
| xëprari |  | kani |  |  |  |  |  |
| $x \ddot{ }$ | $=p r a \quad=r i$ | $k u$ | $=n i$ |  |  |  |  |
| beat; kill | $=\mathrm{DRV}=\mathrm{PFV}$ | 1 COP | = HOD |  |  |  |  |

'When I was dreaming, you killed a tapir (+witnessed).'

This is not a strict rule, nevertheless, since it is indeed possible to find other types of evidentiality markers in reports on dreams. The example in (57) is marked with the reportative $e=\tilde{a} h a=$ and is perfectly grammatical.

| (57) |  | maharimuu |  |  | tëhë | waẽãh |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $y a=$ | mahari | $=m u$ | $=i$ | = tëhë | $w a=$ | $\boldsymbol{e}=$ | anha= |
|  | $1 \mathrm{SG}=$ | dreamlike | $=$ INTRZ | Z $=$ DYN | =REL.PRS | $2 \mathrm{SG}=$ | HSY= | HSY= |
| nomar | rayon |  | kani |  |  |  |  |  |
| noma |  | ayu $=$ no | $k u=$ | $=n \dot{i}$ |  |  |  |  |
| die |  | V1 =INFR | COP $=$ | = HOD |  |  |  |  |

I will argue that the speakers of YMA grant to the information obtained in dreams the same treatment to that acquired in the "objective world" regarding the indication of its precise source. That is if the event was actually 'eye-witnessed' by the speaker in her dreams, and if she wants to flag it, she will do it as if it was regular eye-witnessed (non-dreamed) event (i.e. with $k$-words). If the event was heard or reported to her in her dreams, she might signal it in the clause with the correspondent evidentiality marker.

As I indicated, there is no dedicated morphology available to the speaker of YMA to express that the information she is conveying was dreamed by her. In the two examples above, the source of information was indicated by a subordinate clause of
time ('when I was dreaming'). However, there is another mean for doing that, which may be (mistakenly) analyzed as morphological evidentiality. Formally, this mechanism is a complex construction with the adverbial stem mahari 'dreamlike' added to the main verb.

```
(58) hei tëhë oru kikini̇ ya mahari
hei =tëhë oru =kiki =ni ya= mahari
this =REL.PRS snake =CLN:serpentiform =ERG 1SG= dreamlike
```

warema

```
wa =ri =ma
eat =PFV1 =PST
```

'Today a snake bit me in my dreams.'

Alternatively, the speakers can still use the word utupë 'image' to give a slightly different meaning to the clause. Even though in this case the word utupë is not directly related to dream (like mahari 'dreamlike'), it is clear that speaker refers to either a dream or a hallucination.

| (59) hei tëhë | oru kikini |  | $y a \quad$ utupë |  |
| :--- | :--- | :--- | :--- | :--- |
| hei $=t e ̈ h e ̈ ~$ | oru $=k i k \dot{i}$ | $=n \dot{t}$ | $y a=$ | utupë |
| this =REL.PRS snake $=$ CLN:Serpentiform | $=$ ERG | $1 \mathrm{SG}=$ | image |  |

warema

```
wa =ri =ma
eat =PFV1 =PST
```

'Today a snake bit my image (i.e. bit me in my dreams).'

I do not consider mahari or utupë to be evidential markers for two reasons. First, both forms are lexical words, and they do not seem to have undergone any grammaticalization process to get in this syntactic position with this particular meaning. In other words, this appears to be a normal lexico-syntactic mechanism, not a morphological one. Indeed, as I pointed out above, this is an adverbial modification construction, as described in detail in Chapter 10 (§10.3).

The second reason is a consequence of the first one. If the construction is a regular lexico-syntactic phenomenon, other similar forms/words are expected to be able to occupy the same syntactic position with similar semantics implication. This post can be filled by typical adverbial-like words such as rope 'quickly', opisãi 'slowly' (60a) and by others with more unlikely or culture-specific adverbial meanings, such as mahari 'dreamlike' itself and suaha 'as marital payment' (60b). In order to understand the context of use of this last 'adverbial' stem suaha 'as marital payment,' one must know that when a man takes a women as his spouse, he must work for and ideally live with her family for some months or even years. During this period when the husband is paying for the marriage and living with his wife's relatives, every action he performs may be characterized as 'as marital payment' (60c).
(60) a. Ararima a rope iarayoma

Ararima $a=$ rope $i a=r a y u=m a$
Ararima $3 \mathrm{SG}=$ quick eat $=\mathrm{PFV} 1=\mathrm{PST}$
'Ararima ate quickly.'

| b. Kunathoi a | suaha | kiãi |  |
| :---: | :---: | :---: | :---: |
| kunathoi $a=$ | suaha | kiã | $=i$ |
| Kunathoi 3SG= | marital payment | work | $=\mathrm{DYN}$ |


| c. Papiu hami | Kunathoi $a$ | suaha | piria |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- |
| Papiu $=$ hamí | kunathoi | $a=$ | suaha | piri | $=a$ |
| Papiu | $=O B L$ | Kunathoi | $3 \mathrm{SG}=$ | marital payment lie | $=$ POST |

'Kunathois lives in Papiu [as marital payment].'

The adverbial modification with utupë or mahari is of course not obligatory in each clause of the reported dream. Usually, the adverbial stem modifies the first two or three clauses of the report and do not appear in the remaining clauses anymore. The example in (61) illustrates it. Note that two clauses are being marked as an eye-
witnessed events with a $k$-word. In the example below the word mahari 'dreamlike' and the $k$-words are in bold.

'Today I died in my dreams, the following happened in my dreams, when the miners were mining gold, the federal policemen and I, we tried to catch them, but they killed us with rifles.'

### 11.7. Apparently - Low level of certainty (nëhë=)

If the speaker of YMA wants to indicate that she is not confident about the information she is conveying, she can flag it with the proclitic nëhë= from Cluster B, (62b). In some respects, the semantics of this construction resembles the one with the inferential $=n o$. Sometimes the two constructions seem even to be commutable without a relevant change in the meaning, (62b).
(62) a. Kunathoi a nëhë kopohuruma
kunathoi $a=$ nëhë $=$ ko =pi =huru =ma
Kunathoi 3SG= V.PTC= return_home =PFV3 =DIR.AND =PST
'It seems that Kunathoi went back home (I am not seeing him arround, for instance).'

| b. Kunathoi a | kopohuruno |  |  |  | kani |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| kunathoi a= | ko | $=p i$ | = huru | =no | ku | $=n \dot{t}$ |
| Kunathoi 3SG= | return_home | $=\mathrm{PFV} 3$ | $=$ DIR.AND | $=$ INFR | COP | $=\mathrm{HOD}$ |

'Kunathoi went back home (-witnessed, +inferred) (I did not see him leaving, but I am not seeing him arround, for instance, so I inferred he left).'

Nevertheless, the semantic equivalence between the two constructions is only partial and their inter-commutability is incidental. The construction with nëhë= does not indicate any evidentiality category stricto senso (Aikhenvald 2004:7-8). Its scope of reference is not the source of information itself but the indetermination of the positive or negative status of the clause, i.e., the veracity the information. The fact that this morpheme can coexist with the evidentiality markers, without adding any evidentiality meaning, confirms this analysis. As we can see by the examples in (63), this morpheme can appear in clauses marked as eye-witnessed (63a), auditory source (63b), or inferred (63c).

| (63) | Kunathoi e | nëhë | äha kopohuru |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Kunathoi $e=$ | nëhë= | $\tilde{\boldsymbol{a}} \boldsymbol{h a} \boldsymbol{a}=k o$ | $=p i$ | = huru |
|  | Kunathoi HSY= | V.PTC= | HSY $=$ return_home | = PFV 3 | $=$ DIR.AND |
| kani |  |  |  |  |  |
| $k u \quad=n i$ |  |  |  |  |  |
| COP | = HOD |  |  |  |  |
|  | 'People are sayin | g that K | unathoi seems to hav | left.' |  |

```
 b. Kunathoi wãa nëh\ddot{̈ kopohuru}
 kunathoi wãa= nëhë= ko =pi =huru
 Kunathoi sound= V.PTC= return_home =PFV3 =DIR.AND
kani
ku =ni
COP =HOD
```

'It sounds like Kunathoi have left (+heard) (I did not see him leaving, but I heard what seemed to be a motorboat).'
c. Kunathoi a nëhë kopohuruno
kunathoi $a=$ nëhë $=$ ko =pi =huru =no
Kunathoi $3 \mathrm{SG}=\mathbf{V} . \mathbf{P T C}=$ return_home $=$ PFV3 =DIR.AND =INFR
kani
$k u \quad=n i$
COP =HOD
'It seems that Kunathoi went back home (-witnessed, +inferred) (I did not see him leaving, but I am not seeing him arround, for instance, so I inferred he left).'

The construction with nëhë= can be used in both past (64a) and non-past contexts (64b), and is not restricted to any particular aspect of the clause, appearing in both perfective (64b), and imperfective contexts (64a).

'It seems that the people from Papiu organized a festival.'

$$
\begin{aligned}
& \text { b. Papiu thëri pëni reahu a nëhë thai } \\
& \text { Papiu thëri }=p \ddot{e}=n \dot{i} \text { reahu } a=\text { nëhë }=\text { tha }=i \\
& \text { Papiu inhabitant =PL =ERG festival 3SG= V.PTC= do; make =DYN } \\
& \text { rëkë kuraní } \\
& \text { rëkë }=k u \quad=r a \quad=n i \\
& \text { FOC }=\text { exist =LOC:nearby }=H O D \\
& \text { 'It seems that the people from Papiu are organizing a festival.' }
\end{aligned}
$$

The verbal particle nëhë= appears in several phrasal verbs in the language, such as $n e ̈ h \ddot{e}=$ warĩ 'to mistreat' or nëhë= ruaí 'to hinder' or 'to disturb.' This usage is described in Chapter 5 on verb stems (see §5.5.2).

### 11.8. Evidentiality in subordinate clauses

In the previous sections, I described the morphosyntactic mechanisms found in YMA to express evidentiality categories in simple independent clauses. In dependent clauses, such as subordinate clauses, the mechanisms for marking the evidentiality categories are different and, moreover, the evidentiality categories themselves are not the same. In this section, I will briefly describe the system found in dependent clauses and discuss its particularities. Since the scope of this study is the simple clause, I will not describe the various types of the dependent clauses in detail, and neither discuss their semantic and syntactic properties. I will be exclusively concerned with the morphosyntactic mechanisms that mark evidentiality categories. The system is basically the same in all types of dependent clauses. For this reason, and given the relative morphological simplicity of the relative clauses (in comparison to other types of subordinate clauses), I choose examples of this type of subordinate clause to illustrate evidentiality marking in complex constructions, in particular, the marking of eye-witnessed and non eye-witnessed information.

I will begin pointing out that the evidentiality system of dependent clauses can specify eye-witnessed, reported and (first-hand) auditory information but lacks the inferential and assumed information categories, which are merged into a single

## 674 Yanomama clause structure

category - non eye-witnessed information. In Table 11.7 presents the evidentiality categories found in dependent and independent clauses.

Table 11.7 - Evidentiality categories in independent and dependent clauses

| Independent clauses | Dependent clauses |
| :--- | :--- |
| eye-witnessed | eye-witnessed |
| inferential | non eye-witnessed |
| assumed information |  |
| reportative | auditory information |
| auditory information |  |

The morphemes used to mark reportative and auditory information are the same of those of independent clauses, i.e. $e=\tilde{a} h a=$ and $w \tilde{a} a=$, respectively. In dependent clauses, no particularity can be mentioned regarding the expression of these categories. In (65) I present examples of these markers as used in complex sentences.

```
(65) a. Ararima anì xama wãa
 Ararima =a =n\dot{t}}\mathrm{ xama wãa=
 Ararima =SG =ERG tapir sound=
xëprarepëha , komi yamaki
xë =pra =ri =p\ddot{ =ha komi yamaki=}
beat; kill =DRV =PFV1 =NMLZ =OBL all 1PL=
rërërayoma
```

```
rëё =rayu =ma
```

rëё =rayu =ma
run =PFV1 =PST
run =PFV1 =PST
'We all ran to the place where Ararima killed (+auditory information) a tapir.'

```

'Even though Ararima had reportedly shot the tapir, it reportedly ran away.'

For eye-witnessed and non-eye-witnessed information, the construction with the focalizer \(k a=\) and the relativizer \(=i\) is required. Eye-witnessed information is the default reading for constructions with these morphemes. When the event was not witnessed, on the other hand, an additional morpheme is required, which is the same \(=n o\) used in independent clauses for inferred information. In dependent clauses, however, we prefer to consider this morpheme as a marker for non-eye-witnessed information, since its scope of use is broader in this context, including not only information that was acquired by inference given objective evidence, but to all situations to which the speaker did not have direct access, including assumed and even reported events. The example in (66) illustrates this usage. Note that the morpheme's vowel harmonizes with the relativizer \(=i\).
\[
\begin{aligned}
& \text { (66) a. napë ani hei yuri pë ka } \\
& \text { nарё } \quad=a \quad=n \dot{t} \text { hei yuri pë= } \boldsymbol{k} \boldsymbol{a}= \\
& \text { foreigner }=\mathrm{SG}=\text { ERG this fish } 3 \mathrm{PL}=\mathrm{FOC}= \\
& \text { rëkërarenii ipa hepara a } \\
& \text { rëkë }=r a \quad=r i \quad=n o \quad=i \quad \text { ipa hepara }=a \\
& \text { pull =DISTR =PFV1 =INFR =REL 1pOS brother }=3 \mathrm{SG} \\
& \text { 'The white person who caught this fishes (-witnessed) is my brother.' }
\end{aligned}
\]

Yanomama clause structure
 'The house that existed here a long time ago (-witnessed) was reportedly very large.'

It is important to mention that in the examples in (66) the subordinate clauses (both relative clauses) are not morphologically marked for tense. It is only from the context and the semantics of the entire sentence (but with the explicit help of the perfective marker \(=r e\) in (66a) and the lexical item yutuha 'a long time ago' in (66b)) that is clear that both clauses refer to events in the past. Without the need of adding any other grammatical morpheme, those clauses could refer to events in the present, as in (67).

'The white person who is catching fishes (-witnessed) is my brother.'
\(\begin{array}{rlll}\text { b. kihamí yano } & a & k a \quad \text { kuonii }\end{array} \quad \begin{array}{ll} & \\ \text { kihamí yano } & a= \\ k a= & k u \quad=o \quad=i \\ e=\quad \tilde{a} h a=\end{array}\)
there house \(3 \mathrm{SG}=\mathrm{FOC}=\) exist \(=\) STV =INFR =REL HSY= HSY= prauku mahi .
prauku mahi
wide much
'The house that exists over there (-witnessed) is reportedly very large.'

In order to make morphologically explicit that the event in the subordinate clause took place in the past, the copular element tha is required. If the clause refers to an event that took place in a hodiernal frame of reference, there is no additional morpheme in the clause other than tha (68a). Pre-hodiernal events are indicated with the tense marker \(=r e\) attached to the copular element (68b). As we can see in both examples, the relativizer \(=i\) always appears in the last morphological position in the clause.
```

napë ani yuri pë ka rëkëano
napë $=a \quad=n \dot{i}$ yuri pë= $k a=$ rëkë $=a \quad=n o$
foreigner $=\mathrm{SG}=$ ERG fish $3 \mathrm{PL}=\mathrm{FOC}=$ pull $=\mathrm{DISTR}=\mathrm{INFR}$
thai ipa hepara a
tha $=\boldsymbol{i} \quad$ ipa hepara $=a$
COP =REL 1POS brother $=3 \mathrm{SG}$

```
'The white person who was catching fishes (-witnessed, +hodiernal) is my brother.'
b. kihami yano a ka kuono
kihami yano \(a=k a=k u \quad=o \quad=n o\)
there house \(3 \mathrm{SG}=\mathrm{FOC}=\) exist \(=\) STV \(=\mathrm{INFR}\)
tharii eãha prauku mahioma
\(\begin{array}{lllllll}\text { tha }=\boldsymbol{r e} & =\boldsymbol{i} \quad e= & a \\ \text { ana } & =\text { prauku mahi }=o & =m a \\ \text { COP =PRE.HOD } & =\text { REL HSY }= & \text { HSY= wide much } & =\text { STV } & =\text { PST }\end{array}\)
'The house that existed over there (-witnessed, -hodiernal) was reportedly very large.'

As I mentioned above, the remaining evidentiality category - eye-witnessed information - is the default reading for subordinate clauses with the focalizer \(k a=\) and the relativizer \(=i\). In this case, at least another morpheme in the construction, either a spatial deictic morpheme (the same that appear in the \(k\)-words) or a tense morpheme, such as \(=p i\) for non-specified past, \(=r e(\) or \(=p i=r e>=p i=r i)\) for prehodiernal past, or \(=h a\) for hodiernal past. There is no marker for present tense. Below,
the relative clauses of the examples in (69) refer to events about which the speaker had direct (visual) knowledge.
(69) a. kihi napë ani
kihi nарё \(=a \quad=n \dot{i}\) xama \(a=k a=\)
that foreigner \(=\mathrm{SG} \quad=\mathrm{ERG}\) tapir \(3 \mathrm{SG}=\mathrm{FOC}=\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline xëprarehe \(i\) & & & & & ipa & hepara \\
\hline \(x \ddot{ }\) & \(=p r a\) & =ri & \(=h a\) & \(=i\) & ipa & hepara \\
\hline beat; kill & \(=\mathrm{DRV}\) & = PFV1 & = HOD & & 1 PO & brother \\
\hline
\end{tabular}
'That white person that killed the tapir (+witnessed) is my brother.'
b. kihami yano a ka kuraharui a prauku
kihami yano \(a=k a=k u \quad=r a h a r u=i \quad a=\) prauku
there house \(3 \mathrm{SG}=\mathrm{FOC}=\) exist \(=\) DIR:upriver \(=\) REL \(3 \mathrm{SG}=\) wide
mahi
mahi
much
'The house that exists upriver (+witnessed) is very large.'

This mechanism of expression of evidentiality in dependent clauses (in particular eye-witnessed and non eye-witnessed information) is not exclusive to relative clauses. Other types of subordinate clauses also make use of the construction with the focalizer \(k a=\) plus the relativizer \(=i\) to indicate that the event was visually experienced by her, and also require the addition of \(=n o\) to indicate second-hand information. Indeed, several other types of subordinate clause seem to be a variation on (or derivation of) the relative construction, by the addition of one or more morphemes that specify their syntactic and semantic function. In (70) I present examples of these other (derived) types of subordinate clauses. In a (70a) we have an adverbial subordinate clause of time, (70b) an adverbial subordinate clause of manner, and in (70c) a comparison construction (that also makes use of adverbial clause of manner).
```

(70) a. Papiu hami proro pë ka kiãpirii

|  | Papiu | $=$ hami | proro pë= | $k a=$ | kiã | $=p i$ | $=r i$ | $=i$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Papiu | $=\mathrm{OBL}$ | miner $3 \mathrm{PL}=$ | FOC= | work | =PRE. HOD | $=$ PRE. HOD | $=$ REL |
| tëhë | $y a$ | oxe | mahiom |  |  | . |  |  |
| =tëhë | $y a=$ |  | mahi | $=0$ | $=m a$ |  |  |  |
| =REL. | PRS 1SG= | young | gster much | =STV | $=$ PST |  |  |  |

```
'I was very young when the miners were working (+witnessed) here in Papiu.'

'I have heard (i.e. I know) the stories of how our ancestors lived (witnessed).'

'My wives/women are weaving baskets in the same manner that your wives were weaving [baskets] yesterday (i.e. using the same technique or weaving pattern).'

There is one particular use of the relative clause specified for evidentiality that should be mentioned for its productivity. This construction makes use of a copular element, \(k u\) 'to exist' or tha 'to do to make', plus the regular morphemes used in relative constructions to indicate eye-witnessed events, i.e. the focalizer \(k a=\) and the relativizer \(=i\).
\begin{tabular}{lllllll}
a. kihi napë & \(a\) & \(k a\) & \(\boldsymbol{k i i}\) & & ipa hepara \(a\) \\
kihi napë & \(a=\) & \(k a=\) & \(\boldsymbol{k} \boldsymbol{u}\) & \(=i\) & ipa & hepara \(=a\)
\end{tabular}. 'That white person is my brother.'
\begin{tabular}{lllll}
b. kihi napë & \(a\) & \(k a \quad\) thai & ipa hepara \(a\) \\
kihi napë & \(a=\quad k a=\) tha \(=i \quad\) ipa hepara \(=a\)
\end{tabular}.
\begin{tabular}{lllllll}
c. kihi napë & \(a\) & \(k a\) & tharii & & ipa & hepara \\
kihi napë & \(a=\) & \(k a=\) & tha & \(=r i\) & \(=i\) & ipa
\end{tabular} hepara \(a\)
\(=a\)
\(=3 \mathrm{SG}\)
'That white person (that was here yesterday or before) is my brother.'

This construction seems to have a focalizer function in the discourse (allowing the speaker to specify a type of nominal tense) and, probably as a consequence of its productivity, seems to be undergoing a process of grammaticalization and becoming part of nominal morphology. The fact that the phonological material of the copular element \(k u\) has already eroded, and its vowel has harmonized with the relativizer \(=i\) (which does not occur in actually regular relative clauses, even with the copula \(k u\) 'to exist', like in the examples (66b) and (67b) above, but is similar to what had occurred with the \(k\)-words) is evidence that the grammaticalization process may have already started. On the other hand, the process does not seem to have reached its end (i.e. the
form is not fully grammaticalized yet), since other verbs may still replace the copular elements in that position, as in (72).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline (72) & hei & парё & \(a\) & \(k a\) & roi & & ipa & hepara & & \\
\hline & hei & парё & \(a=\) & \(\boldsymbol{k a}=\) & ro & = \(i\) & ipa & hepara & & \\
\hline & this & white & & FOC & sq & & 1 P & brother & & 3 SG \\
\hline
\end{tabular}
'This white person squatting here is my brother.'

Much more could be sad, not only about the subordinate clauses themselves but also about the expression of evidentiality in this context. However, as mentioned before, since the scope of this thesis is the simple clause, we prefer to leave the full description of these aspects of the YMA grammar for later studies.

\subsection*{11.9. Final discussion}

We have seen in this chapter that YMA has a very rich evidentiality system consisting of five marked categories, two first-hand information categories - eye-witnessed and auditory source - and three second-hand information categories - reported, inferred and assumed information. This corresponds exactly to the type D1 presented by Aikhenvald (2004:65) for languages with a five choices evidentiality system found in languages of Vaupes River basin and a few other scattered languages. However, YMA still allows the speaker formulate the clause in a neutral way regarding how she acquired that information. Very few languages have been described with such a complex system (Aikhenvald 2004: 61). Mueller (2013: 215-216) did not find any language of this type in her South American sample of 63 languages, and no Yanomami language has been described with such a complex system. The variety of Yanomami (Xamatateuri) described by Ramirez (1996) with a five-option system is the most similar to YMA while other languages have significantly poorer systems. We believe that this is due to the increasing and accumulated knowledge of the Yanomami languages. More (and deeper) descriptive work on other varieties of the family (including those with a grammatical description) will probably show that YMA is not "particularly complex" within the family in this respect.

\section*{12. Non-declarative speech acts}

\subsection*{12.1. Introduction}

In the previous chapters, we have been discussing the morphosyntactic features that characterize the declarative clauses. Although several of these features also apply to dependent clauses, we have been mainly concerned with independent clauses, while dependent ones will be the subject of future work. This chapter describes the formal properties of non-declarative independent clauses, that is, constructions whose dominant function is not referential (i.e. to report on an event) but conative (i.e. to provoke a response from the hearer).

I will begin in \(\S 12.2\) with the truly manipulative speech acts, which are the imperative (§12.2.1) and the prohibitive (§12.2.2). I will also touch upon on the cessative construction, which is particular type of imperative, phrased as a complementation construction. We will see that YMA does not have dedicated morphology for the expression of these categories and borrows morphemes from other grammatical domains to do that.

I will then turn to the grammatical devices that indicate that a clause should be read as a question. We will see that the language has three strategies for that purpose; some make use of morphosyntactic elements in combination with prosodic ones, while other ones only rely on prosody. Yes/no questions will be discussed in §12.3.1, and constituent questions in \(\S 12.3 .3\). Permission questions, which are a kind of polarity inquiry where the speaker requests authorization to bring about an action, will be dealt with in §12.3.2. Section 12.3.3 gives an overview of adverbial questions, even though a full description of these constructions will be left to a later study, in which I will deal with complex constructions, including adverbial subordination.

Before we start, it is worth mentioning that we have already seen in Chapter 4 (§4.2.9) that kinship terms acquire a different form when used as a vocative. I will not make any further reference to the vocative in this chapter.

\subsection*{12.2. Manipulative speech acts}

In this section, I will describe how the imperative (§12.2.1) and prohibitive (§12.2.1) functions are expressed in YMA. Interestingly, we will see that, while there is no specialized morphology for the imperative, the expression of the prohibitive is made through a combination of morphemes only found in this context. The expression of cessative imperative, which will be discussed in \(\S 12.2 .3\), is not made through morphology but with a complementation construction.

\subsection*{12.2.1.Imperative}

There are several strategies to convey the imperative function in YMA but none makes use of dedicated morphology. Only dynamic and irregular stems can take part in imperative constructions. Positional and attributive stems can only appear in this context in their dynamic versions (change of posture and inchoative, respectively). The first strategy to express the imperative relies on the use of the perfective morphemes without a tense marker (the past marker). The relevant perfective marker is determined by the verb stem type of the primary predicate. In (1a), we have an example with perfective \(=r i\) used with a dynamic stem, in (1b), an instance with a positional stem in its change of posture version, and in (1c) an imperative sentence with a originally attributive stem in its inchoative reading. In these constructions, prosodic stress always falls on the last syllable of the clause, which is precisely the perfective morpheme. Note that literate speakers often double the vowel of the last syllable when writing an imperative sentence, as in (1b) and (1c). According to my analysis, however, the second \(i\) is not a morpheme but just the written representation of the length of the vowel, which is increased as a consequence of the change in prosodic stress.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & a. naa & arri & & amatha & & \\
\hline & naa & \(=a\) & \(=r \tilde{\imath}\) & amatha & \(w a=\) & \(u k u=\) \\
\hline & my_mother & & \(=\mathrm{HON}\) & sp . of fruit & \(2 \mathrm{SG}=\) & CLN:porridge= \\
\hline koari & \(i\) & & & & & \\
\hline koa & \(=r i\) & & & & & \\
\hline drink & \(\mathrm{k}=\) PFV1 & & & & & \\
\hline
\end{tabular}
'Mom, drink juice of the amatha fruit (Duguetia stelechantha)!'.
(PDYP_MIC_A_05_81)

'Cross [the footbridge], cross!' (PDYP_MIC_A_18_02)
c. wa moyãmikii !
\(w a=\) moyãmi \(=\boldsymbol{k i}\)
\(2 \mathrm{SG}=\) be_smart =PFV2
‘Get smart!’ (i.e. ‘Keep your eyes open!’, ‘Keep on your toes!', ‘Watch out!’)
(PDYP_MIC_B_01_17)

Note that the second imperative sentence of example (1b) is an SVC and that the verbs behave accordingly, i.e., the no-final verb takes the perfective vowel \(=a\) while the last verb receives the regular perfective morphemes of series I, II or III. Example (2) is another instance of an SVC with imperative reading. The perfective morphemes are in bold.
\begin{tabular}{lll}
\(w a \quad\) thë & haia & yapa \(a\) \\
\(w a=\) thë \(=\) & hai \(=\boldsymbol{a}\) & yapa \(=\boldsymbol{a}\)
\end{tabular}
2SG= CLN.GNR= pass =PFV.VWL be_back =PFV.VWL
kõprari
\(\begin{array}{lll}k \tilde{0} & =p r a & =r \boldsymbol{i} \\ \text { again } & =\text { DRV } & =\text { PFV1 }\end{array}\)
'You pass it [the thread of cotton] back again!' (PDYP_MIC_A_04_12)

The second construction type that can be used as an order or request has the same morphosyntactic structure as a simple declarative clause in the imperfective aspect and present tense. Only native dynamic (3a) and irregular (3b) stems can be head of this construction. Since it is an imperative construction, the nominative argument i.e. the subject (3b) of the intransitive or the agent (3a) of the transitive predicate - is always the 2 nd person. There is no alteration in the placement of prosodic stress in this construction, but there is probably a change in the pitch contour in comparison with an actual declarative clause. The stressed vowel seems to have an even greater length and a higher pitch than in a simple declarative clause. These impressions remain to be confirmed by spectrographic analyses.
\begin{tabular}{rllll}
(3) a. \(a i \quad w a \quad\) thë & utiti taiai \\
\(a i\) & \(w a=\) & thë \(=\quad\) utiti taa & \(=\boldsymbol{i}\)
\end{tabular}
'Check whether the other one is weak/loose!' (PDYP_MIC_A_03_16)

Some constructions marked with the irrealis future maker =pë can also be read as a command. We saw in Chapter 6 (see §6.3.1.) that this marker is used to express a variety of grammatical functions, among which are the hortative and the cohortative, which includes the 1st and 3rd persons as the co-targets of the command. From these contexts, the imperative meaning has developed. Indeed, some authors such as Palmer (2001: 179-180), consider the imperative a type of hortative in which the request is directed at the 2 nd person alone. Example (4) is an example of this construction with an imperative reading. For examples with hortative and cohortative meaning, see Chapter 6.
\begin{tabular}{lllll}
inaha & wamaki & pihi & kupë \\
inaha & wamak \(\overline{\boldsymbol{i}}=\) & pihi \(=\) & \(k u \quad=\boldsymbol{p} \ddot{\boldsymbol{e}}\) \\
thereby & \(2 \mathrm{PL}=\) & V.PTC:thought= \(=\) & say & \(=\) FUT
\end{tabular}
'That you all think [like that]!'

There is still a fourth way of expressing an imperative sentence in YMA. This strategy consists in using the subordinate clause of time that expresses relative past without its main clause. When used as a true subordinate clause, this construction indicates that the subordinate predicate [inside the brackets in the example below] happened before the temporal frame of reference provided by the main clause. Roughly speaking, this subordination construction can be translated as "doing X first, she did Y " or "after doing X , she did Y ", as in the example in (5).

'After cleaning them [the fruits], [he] then put them [the fruits] in the basket as well.' (s_pear_cesa)

The imperative dispenses with an apparent main clause and can be literally translated as "Doing/do it first [before anything else]!", as in (6).
(6) a. wa thë ha wani !
\(w a=t h \ddot{e}=\quad \boldsymbol{h a}=\quad w a=\boldsymbol{n i}\)
2SG= CLN.GNR= REL.PST= eat =REL.PST
'You first eat it!' (i.e. 'Eat it!') (wtx_iwa)

'You first think las follows!' (PDYP_MIC_A_16_01)

We still have to investigate whether there is any pragmatic context in which one of the imperative strategies is preferred over the other ones by the speakers or whether there is any politeness or incisiveness gradation behind their choice between these different constructions. We will now move on to prohibitive sentences.

\subsection*{12.2.2.Prohibitive (=no mai)}

The negative imperative (prohibitive) is expressed through morphological material and therefore differs greatly from the positive imperative just mentioned. Prohibitive sentences combine the resultative enclitic \(=n o\), which attaches to the verb, with the negative word mai, which is a free morpheme and a variant of maa. The verbs that take part in this construction display the same aspectual morphology found in imperfective past sentences, according to their class. That is, dynamic stems do not take any extra morpheme, as in (7a), while irregular and positional verbs require the stative vowel \(=0\), in bold in the examples (7b) and (7c). Attributive stems do not appear in this construction in their attributive readings.

\section*{DYNAMIC}

IRREGULAR
\begin{tabular}{rllr}
b. \(w a \quad\) hixiono & & mai \\
\(w a=\) hixi & \(=o\) & \(=n o\) & mai \\
\(2 \mathrm{SG}=\) angry & \(=\) STV & \(=\) RESULT NEG
\end{tabular}
'Don't be angry!' (n002_titikiki)

POSITIONAL
```

c. $w a$ piriono mai !
wa $=$ piri $=o \quad=\boldsymbol{n o}$ mai
$2 \mathrm{SG}=$ lie $=$ STV =RESULT NEG

```
'Don't lie down!'

If the prohibitive predicate is an SVC, the non-final verbs take the morphology expected in SVCs in the imperfective past (see §10.4): non-final dynamic stems take \(=i\) as in (8a), and all other types take \(=o\) as in (8b). Interestingly, this construction is incompatible with the perfective morphology, even though these morphemes are precisely one of the strategies used in the language to express the affirmative imperative.
(8) a. rata wa he hĩsîkz̃puи
\begin{tabular}{lllll}
rata & \(w a=h e=\) & \(h \tilde{s} \tilde{t} \hat{k} \dot{t}\) & \(=p u\) & \(=\boldsymbol{i}\) \\
flashlight & \(2 \mathrm{SG}=\) & CLN:round \(=\) shoot_light & \(=\mathrm{CSVT}\) & \(=\mathbf{D Y N}\)
\end{tabular}
\begin{tabular}{lllc}
tokoono & & mai ! \\
toko & \(=o \quad\) no \(\quad\) mai \\
unfortunately & \(=\) STV & \(=\) RESULT NEG
\end{tabular}
'Don't flash the flashlight [at me]!' (s_chck_mark)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline b. \(w a\) & kõo & & pihio & & & mai \\
\hline \(w a=\) & kõ & \(=0\) & pihi & \(=0\) & \(=n\) & mai \\
\hline \(2 \mathrm{SG}=\) & again & =STV & want & \(=\mathrm{STV}\) & & NEG \\
\hline
\end{tabular}
'You may want to go back home!'

We saw in \(\S 6.3 .1\) and \(\S 12.2 .1\) that the future irrealis morpheme \(=p e ̈\) can be used in both hortative and imperative sentences. Interestingly, the combination of \(=n o\) and mai can also be used in de-hortative predicates, i.e. when the speaker express her desire that the event, which is not under the control of the 2 nd person, does not happen. In (9), we have an example of this construction with de-hortative meaning.

As a final note, the speakers of YMA in Papiu use yet another prohibitive construction with the morphemes =pë xiha instead of =no mai. This construction is not attested in my recordings of other varieties of the Yanomam branch, to which YMA belongs. It seems to have been borrowed from Ninam, spoken by the communities in Alto-Mucajaí and Uxiu, with whom the people from Papiu have developed close relations. The enclitic \(=p \ddot{e}\) used in this alternative construction is the same irrealis future marker found in YMA. I am provisorily glossing xiha as a negative element, but I do not know its precise meaning in the language or whether it is segmentable or not. In (10), I present two examples of this borrowed construction used by YMA speakers. According to the description provided by Gomes-Goodwin (1990: 107), in the Ninam spoken in Erico, the prohibitive is expressed by the combination of the \(-n\) morpheme (which seems to be cognate of the YMA \(=n o\) 'RESULT' and the free word maharai, which the author glosses as imperfective negative. This latter contruction is not used in Papiu, though.
(10) a. wa thomimopë xiha !
\[
\begin{array}{ll}
w a=\text { thomimu } & =\boldsymbol{p} \ddot{\boldsymbol{e}}=\boldsymbol{x i h a} \\
2 \mathrm{SG}=\text { steal } & =\mathbf{F U T}=\mathbf{N E G}
\end{array}
\]
‘Don’t steal!' (n055_kahianoamai2)

'Do not write these words in your book!' (n055_kahianoamai2)

In the next section, I will present the construction that conveys the cessative imperative.

\subsection*{12.2.3.Cessative imperative}

The cessative is a semantic subtype of the prohibitive in which the speaker asks or orders the hearer to stop doing something. In YMA, this construction is formally an imperative sentence with verbal complementation, where \(m a\) 'not to exist', 'to be absent' is the matrix verb and takes the perfective marker =rio, often in combination with the celerative morpheme \(=t a\). The verb that expresses the predicate which the speaker wants to be stoped is the complement verb of this construction and receives the morphology that it regularly displays in imperfective present sentences, according to its stem type. Dynamic stems take the dynamic vowel \(=i\), as in (11a), and positional stems \(=a\), as in (11b). Only attributive stems cannot participate in this construction.

```

    b. wamaki piría matario , wamaki rama
    wamaki=piri \(=a \quad \boldsymbol{m a} \quad=\boldsymbol{a} \boldsymbol{a}=\) rio \(\quad\) wamaki \(=\) rama
    2PL= lie =POST not_exist =CEL =PFV1 2PL= hunt
    hирё !
$h u \quad=p \ddot{ }$
go $=P L$
'You all, enough with lying down and go hunting!'

```

One should note that, at least from a morphosyntactic perspective, this is a complementation and not a serial verb construction in YMA, as defined in Chapter 10 (\(\S 10.5\)). If it was a SVC, the non-final verbs thai 'to do' and piria 'to lie' in (11) should have been marked with the perfective vowel \(=a\), and not with the dynamic \(=\dot{i}\) and the positional \(=a\), respectively.

\subsection*{12.3. Questions}

Three parallel strategies can formulate "yes or no" questions in YMA, such as 'Has Ararima arrived yet?’, or 'Did you take my arrows with you?’ (§12.3.1.) A fourth type is used only to request someone else's consent to carry out an action (§12.3.2). We will see in \(\S 12.3 .2\), that the same strategies are used in questions about a constituent of the clause, even though in those question types an interrogative pronoun is required as well.

\subsection*{12.3.1.Polarity questions}

The simplest way of forming a polarity question consists in just altering the pitch contour of a regular declarative clause, without rearranging the words in the clause or adding new morphological material. In these type of questions, the pitch of the ultimate stressed syllable seems to be raised, while the one of the post-tonic syllables (regularly only one) is lowered, creating an even greater contrast between them. I believe that the duration of syllables and the pitch contour of pre-tonic syllables are also playing some role in indicating that the clause should be read as a question. These
observations remain to be confirmed by objective measurements. In (12), I present two examples of this construction.
(12) a. Titikiki nì kipë patëtëkema ?

Titikiki \(=n \dot{i} \quad\) kipë \(=\) patëtë \(\quad=k i \quad=m a\)
Titikiki \(=\) ERG 3DU \(=\) be_smashed =PFV2 =PST
'Did Titikiki smash them [two]?' (n032_omamayesie)

'Did they call them [the taioba roots (Xanthosoma sagittifolium)]?'
(n041_wahakiki) (note: According to the myth, the taioba roots entered a Yanomami house "walking by themselves" after a hungry old lady had called them)

This question type can be used either for confirming past events, as in (12), or present ones, as in (13).
```

(13) wa kõo ?
wa=ko\tilde{ }=o
2SG= go_back_home =STV
`Are you going back home?'

```

The second strategy to formulate 'yes or no' questions requires the interrogative enclitic \(=t h a\), but no reordering of the words either. In this type of question the prosodic stress is shifted to the final syllable, which often is the interrogative morpheme \(=\) tha itself, as illustrated in (14). The optional presence of the interrogative focalizer \(p i=^{l}\) in (14a) occurs immediately before the proclitics from Cluster B in polarity questions.

\footnotetext{
\({ }^{1}\) The probable origin of this form is the indefinite pronoun pei (see §4.3.5).
}
(14) a. \(p\)
\[
\begin{aligned}
& p i=\quad k i p \ddot{=}=n a=\quad k i=h i p \dot{t} \quad=a \quad=y u \quad=m a=t h a \\
& \text { FOC.INT= 3DU= tooth }=\text { PL= give =DISTR =RECP =PST =PTC.INT }
\end{aligned}
\]
'Did they give each other their teeth?' (n026_opotihi)
\begin{tabular}{llllll}
b. thëpë & taamuи & totihi & mahi tha? \\
thë \(=\quad\) pë \(=\) taa \(=m u \quad=u \quad\) totihi & mahi \(=\) tha
\end{tabular}

The only morpheme that goes after the interrogative particle \(=\) th \(a\) in the clause is the index for 3rd person agent. When it occurs, the interrogative particle appears as the allomorph \(=s e(\) or \(=s i)\), as in the examples in (15).
 a. porisia pënì kaho wamaki
 porisia =pë =ni kaho wamaki=
 policeman =PL =ERG 2 2PL=
pairiprarema sehe?
pairi
 'Did the policemen help you?' (PDYP_MIC_B_08_01)
 b.ihi pëni
 ANA =PL =ERG glass bead CLN:collective= also take =PFV1 =PST
sihe
 ?
=si =he
=PTC.INT =3PL
```

'Did those ones take glass beads as well?' (PDYP_MIC_07_06)

I argue that $=s e($ or $=s i)$ is the result of a series of phonological processes that took place in an older stage of language but which are not active synchronically. First the vowel of the interrogative particle was harmonized with the index vowel of the

3rd person, resulting in the form $*=$ the. According to Migliazza's hypothesis (1972: 39 , see also $\S 2.3 .2$ ) and as the data presented in Chapter 2 on the distribution of these two sounds in YMA suggest (see §2.3.2), the sounds [ $t^{\mathrm{th}}$ ] ad [s] were allomorphs in proto-Yanomami. My interpretation is that they were probably in complementary distribution $-[s]$ being used with front vowels and [th] in the remaining vocalic contexts. If this interpretation proves to be right, it would explain why $*=$ the turned to $=s e$. The variant $=s i$, preferred in many dialects, would be a result of the vocalic dissimilation of $=s e$ with respect to $=h e$. The evolution of these forms could be represented as in (16).
vowel harmonization fricativization vowel dissimilation

$$
=\text { tha }=h e \quad \gg=t h e=h e \quad \gg=s e=h e \quad \gg=s i=h e
$$

Finally, polarity questions can also be formed with the help of an interrogative $k$-word. As we saw in Chapter 11 ( $(11.3 .1 .1$ ), the $k$-words are relative clauses with the copular element $k u$ 'to exist' that have been grammaticalized as evidentiality markers. This set of words also has an interrogative version, which is significantly different from the declarative one. The first difference regards stress, which is moved to the last syllable in all interrogative $k$-words, including those that have the same segmental form (in the declarative version, the stress always falls on the penultimate syllable). For instance, the $k$-word kure, which expresses pre-hodiernal past, has stress on the first syllable $k u$ in declarative sentences, as in (17a), and on the last syllable re in interrogative clauses, as in (17b). The stress is represented by an acute accent over the vowel. The $k$-word logically doen not display its evidentiality meaning in a question but one should note that its use implies that the speaker knows at least whether the event took place today or earlier. If this is also unknown, the speaker will inevitably have to use one of the other strategies (either with =tha or just changing the prosodic stress).
(17) a. Merika thëri thë waroki kúre
merika thëri thë= waro $=k i \quad \boldsymbol{k} \boldsymbol{u}=\boldsymbol{e} \boldsymbol{e}$
America inhabitant CLN.GNR= arrive =PFV2 COP =PRE.HOD
'An American person arrived.' (+pre hodiernal) (+witnessed)
(PDYP_MIC_A_03_18)

| b. xama waa |  | niapra |  |  | kuré |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| xama wa= | $a=$ | nia | $=p r a$ | $=r i$ | $k u$ | $=r e$ |
| tapir $2 \mathrm{SG}=$ | $3 \mathrm{SG}=$ | shoot | $=\mathrm{DRV}$ | $=\mathrm{PFV} 1$ | COP | $=$ PRE. HOD |

However, most of the interrogative and declarative $k$-words do not resemble each other at the segmental level, the pair kúre and kuré being one of the few exceptions. One of the reasons of this disparity relates to the different tense morphemes found in these two types of words. As we saw in Chapter 11, the hodiernal past and the present are morphologically neutralized in declarative $k$-words and expressed by the morpheme $=n \dot{i}$. This morpheme does not appear in interrogative $k$-words, neither in the present or proximal past. In the interrogative set, the present is indicated by $=r a$, as in (18a), while the hodiernal past is expressed by $=h a$, as in (18b). The tense markers are in bold.

```
(18) a. wa thë yarepuи kura ?
 \(w a=\) thë \(=\quad\) уагери \(=i \quad k u \quad=r a\)
 \(2 \mathrm{SG}=\) CLN.GNR \(=\) wear \(=\) DYN COP =PRS
 'Are you wearing it now?' (PDYP_MIC_B_09_02)
 b. ihi wama thëрё wai maa
 ihi wama \(=\) thë \(=\quad p \ddot{e}=\) wa \(=\dot{i}\) ma \(=a\)
 ANA 2PL \(=\) CLN.GNR \(=3 \mathrm{PL}=\) eat \(=\) DYN not_exist \(=\) POST
kuha
 ?
\(k u \quad=h a\)
COP =HOD
```

    'Did you not eat them? (+HOD)' (n028_naikiki)
    Another significant difference regards the expression of relative location and direction, which is much more limited in the interrogative set. While in imperfective declarative clauses these categories can be marked in the k-words in all tenses (see $\S 11.3 .1 .1$ ), in interrogative contexts they can only be expressed by $k$-words in the present tense, as in the example in (19a). To convey relative location (or direction) in questions about past events, the speaker has to rely on the locative and directional markers from Cluster C (see Chapter 6, $\S 6.5$ and $\S 6.6$ ), as in (19b). The locational markers are in bold in both examples.

$$
\begin{aligned}
& \text { (19) a. Ararima } a \quad \text { kiai } \quad \text { kuratu } \\
& \text { Ararima } a=\text { kia }=\dot{i} \quad k u \quad=\text { ratu } \\
& \text { Ararima } 3 \mathrm{SG}=\text { work =DYN COP }=\text { LOC: } \mathbf{a} \text { bit faraway } \\
& \text { 'Is Ararima working over there?' }
\end{aligned}
$$

| b. Kunathoi $a \quad$ waroketayu | $k u h a l l$ |
| :--- | :--- | :--- | :--- | :--- | ?

In questions in the present tense, the speaker can actually choose between a $k$ word marked for a spatial category or use the spatial marker of Cluster C and dispense with a $k$-word. The pair of examples in (20) illustrate these possibilities. Speakers do not report any difference between the two constructions.
(20) a. Okori a huimai $\quad$ tha ?

Okori $a=h u \quad=i m a \quad=i \quad=t h a$
Okori 3SG= go =DIR.VEN =DYN =PTC.INT
'Is Okori coming?'

| b. Okori $a \quad$ huu | kuima |  |  |  |
| ---: | :--- | :--- | :--- | :--- |
| Okori $a=$ | $h u$ | $=i \quad k u \quad=$ ima |  |  |
| Okori | $3 \mathrm{SG}=$ | go | $=$ DYN COP | $=$ DIR.VEN |

'Is Okori coming?'

In any event, because spatial markers do not appear in non-past interrogative $k$ words, this set is smaller than the declarative version. For instance, there are only two markers for questions about pre-hodiernal events - kure employed in perfective contexts, as we saw in the example in (17b), and kupere, its imperfective counterpart as in (21a) below. The $k$-word kuha, the only interrogative hodiernal word, is used in questions with either perfective (19b), and imperfective (21b) aspect.


| b. $w a \quad$ yurimuu |  | $\boldsymbol{k} \boldsymbol{u} \boldsymbol{h a}$ |  |
| ---: | :--- | :--- | :--- |
| wa $=$ yurimu | $=\dot{\boldsymbol{i}}$ | $\boldsymbol{k} \boldsymbol{u} \quad=\boldsymbol{h a}$ |  |
| $2 \mathrm{SG}=$ fish | $=$ DYN $\mathbf{C O P}$ | $=$ HOD |  |

'Have you been fishing?’ (+hodiernal)

In Table 1 I present the set of $k$-words used in interrogative sentences. Once more, it should be noted that all these forms are oxytone.

Table 1 - Interrogative k-words

| Form | Tense |
| :--- | :--- |
| $k u=r a$ | Gloss |
| $k u=r a=t u$ | nearby |
| $k u=r a=h a r u$ | not far |
| $k u=r a=k u r u$ | far, upriver |
| $k u=p i e$ | far, downriver |
| $k u=p i e ̈=t u$ | in a known/fixed place nearby (used to refer to |
| $k u=p i e ̈=h a r u$ | the surroundings of the house) |
| $k u=p i e ̈=h u r u$ | in a known/fixed place not far away |
| $k u=p o t u$ | in a known/fixed place upriver |
| $k u=p o h o r u$ | in a known/fixed place downriver |
| $k u=i m a t u$ | down (speaking from the top of the tree, the |
| $k u=i m a$ | roof...) |
| $k u=h a$ | up (in the tree, on the roof) |
| $k u=p e(r) e$ | andative |
| $k u=(r) e$ | venitive |

We will now turn to the discussion of a particular type of polarity question which is marked morphologically in the language.

### 12.3.2. Permission questions $=x a$

A permission question is a type of polarity question, where the speaker asks the hearer's consent to carry out an action. The morpheme $=x a$ (in bold in the example
below), which is a final-position enclitic, has specialized in the language as the interrogative element for this type of inquiry, as illustrated in (22). The prosodic stress of the clause always falls on this morpheme and its pitch contour is also raised.

| (22) | hapa | mori yaa |  | wãrii |  | $\boldsymbol{x a}$ | ? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | hapa | mõri ya= | $a=$ | wãri | $=i$ |  |  |
|  | before | one $1 \mathrm{SG}=$ | $3 \mathrm{SG}=$ | ask |  | = |  |
|  | 'Can I | first ask a qu | tion? | (PD |  |  |  |

For semantic reasons, this question type requires a non-stative verb (that is, a dynamic or irregular verb) and a first person subject. Positional stems can only appear in this construction in their dynamic version (change of position), as in (23a). Both intransitive (23a) and transitive (23a) verbs can be the head of this question clause.

| (23) a. $y a$ | piriki |  | $x a$ |
| :---: | :---: | :---: | :---: |
| $y a=$ | piri | $=k i$ | $=x a$ |
| $1 \mathrm{SG}=$ |  | $=\mathrm{PF}$ | =PERM |

'Can I lie down?'


This construction allows the aspect of the predicate to be either perfective, as in (23a) and (24a-b), or imperfective, as in (23b) and (24c). There seems to be no semantic or pragmatic difference between a permission question with imperfective and perfective aspect. Speakers say that the sentences (24b) and (24c) are equivalent.

| (24) a. yã $\mathrm{i} k a n o$ |  | $y a$ | thëki | thaa |  | xaarik |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| yãtka | = $n$ o | $y a=$ | thë= | $k \dot{i}=t h a$ | $=a$ | xaari | $=k i$ |
| draw | =RESULT | $1 \mathrm{SG}=$ | CLN.GNR $=$ | $\mathrm{PL}=$ put | $=$ PFV.VWL | right | =PFV2 |
| $x a \quad$ ? |  |  |  |  |  |  |  |
| $=x a$ |  |  |  |  |  |  |  |
| $=$ PERM |  |  |  |  |  |  |  |

'Can I really weave a pattern?'(lit: ‘Can I really put a drawing?')
(PDYP_MIC_A_04_16)
b. kami ya pree arayu $\quad$ xa ?
kami ya= pree $a \quad=$ rayu $=x a$
$1 \quad 1 \mathrm{SG}=$ also go =PFV1 $=$ PERM
'Can I go too?'

$$
\begin{aligned}
& \text { c. } \text { kami ya pree huи } \quad \text { xa } \\
& \text { kami ya= pree hu =i }=x a \\
& 1 \quad 1 \mathrm{SG}=\text { also go }=\mathbf{D Y N}=\text { PERM } \\
& \text { 'Can I go too?' }
\end{aligned}
$$

As a final comment, one should note that the interrogative particle $=x a$ is homophonous with the conditional $x a=$ (see $\S 6.3 .3$ ), even though they attach to the verb in different positions and belong to different clitic clusters. Given that the two forms appear in functional contexts that have semantic features in common, they may also have a common origin. That is, when someone asks for permission to bring about an event, it implies that the 2 nd person's consent is the necessary condition for the event to happen. I still cannot argue for a plausible grammaticalization path, and am not even sure which one would be the source or the target form. I tend to think, however, that originally the form was used as a conditional morpheme and that the sense of 'ask for permission' was acquired in constructions involving the 2 nd person as the controller of the predicate that indicates the condition, as in the example in (25).
'If you say "yes" I will go then.' (i.e. 'I go if you agree')

I cannot explain how the primitive proclitic got encliticized since there is no syntactic rearrangement in question clauses, as we saw in §12.3.1. A study of other languages of the Yanomami family may confirm the shared origin of the forms and give clue about their possible development.

### 12.3.3. Constituent questions

The same three strategies found in simple polarity questions are used to enquire about the identity of a referent in the nominal argument of the predicate, such as "Who has arrived?" or "With what did you make this". Constituent questions differ in requiring the interrogative pronoun uti, which replaces the unknown argument. Sentences in (26) exemplify the three strategies available to formulate constituent questions. The interrogative focalizer $p i=$ in (26a) is optional, just like in polarity questions. This morpheme helps in signaling that the sentence should be read as a question and appears prototypically at the beginning of Cluster B.

## FIRST STRATEGY


‘Who arrived?’ (PDYP_MIC_A_03_18)

## SECOND STRATEGY

| b. $\boldsymbol{u t i}$ | wama | thë | thai |  | tha |
| :---: | :---: | :---: | :---: | :---: | :---: |
| uti | wama= | thë= | tha | $=i$ | =tha |
| INT.PRO | $2 \mathrm{PL}=$ | CLN.G | do; make | $=$ DYN | =PTC.INT |

$$
\begin{align*}
& \text { " awei" wa kuи tëhë ya xa huи }  \tag{25}\\
& \text { awei } w a=k u=i \quad=t e ̈ h e ̈ \quad y a=x a=h u=i \\
& \text { yes } 2 \mathrm{SG}=\text { say }=\text { DYN }=\text { REL.PRS } 1 \mathrm{SG}=\text { COND }=\text { go }=\mathrm{DYN}
\end{align*}
$$

| c. uti ha |  | wa | upraa |  | kua |  | kura |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| uti | $=\boldsymbol{h a}$ | $w a=$ | upra | $a$ | ku | $=a$ | ku | $=r a$ |
| INT.PRO | $=$ OBL | $2 \mathrm{SG}=$ | stand_up | $=$ POST | exist | $=$ POST | COP | =PRS |

'Where are you standing?' (i.e. 'Where are you?') (n035_amathayoma)

This type of question can refer to any argument of the clause, either core or oblique. In (26) we saw a question about the subject of an intransitive predicate (26a), about the identity of the patient argument of a transitive clause (26b), and about the location of the predicate (26c). In (27a), I present an example of a question about the agent of the transitive predicate, and in (27b), about the instrument.

'With what did you flatten the airstrip, mom?' (PDYP_MIC_A_03_18)

Note that the interrogative pronoun hosts the case markers and the others morphemes from Cluster A when it refers to overtly marked arguments, such as the ergative (27a), instrumental (27c) or oblique (26c). In (28), I present other examples of questions whose scope is a marked argument. In (28a), we have an instance of an inquiry about the identity of the additive noun phrase, and in (28b) a question about the causee of a causative derivation, which syntactically is an oblique argument. On the other hand, when it refers to absolutive arguments (subject and patient), which are
not coded for case in the language, the morphemes from Cluster A are incorporated into the predicate, becoming clitics from Cluster B, as we saw in Chapter 7 (§7.5.2). In these latter cases, the interrogative pronoun appears without any bound morpheme, as was illustrated in (26a-b).

| (28) a. $u t i$ | axo |  | thëpë | huu | $k u r a l l$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ?

'With whom are they going?'

'Whom did you make do it?' (PDYP_MIC_B_09_02)

Moreover, there is no reordering of the elements of the clause in this type of question either, since the interrogative pronoun occupies the same position of the constituent of which the identity is questioned. For instance, in the sentence in (27a) the agent, whose identity is being inquired about, precedes the patient argument, which in turn comes before the predicate. That is, the order APV is conserved in question clauses. If the agent argument of (26a), which is not questioned, appeared in clause, it will also be prototypically placed before the patient argument, as in (29).

|  | AGENT |  |  | PATIENT |  | VERB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (29) | kaho | wamakini |  | $u t i$ | wama | thë | thai |  |
|  | kaho | = wamaki | $=n \dot{1}$ | uti | wama $=$ | thë= | tha | $=i$ |
|  | $2=$ | $=2 \mathrm{PL}$ | =ERG | INT.PRO | $2 \mathrm{PL}=$ | CLN.GNR= | do; make | $=\mathrm{DYN}$ |
| tha ? |  |  |  |  |  |  |  |  |
| = tha |  |  |  |  |  |  |  |  |

'What are you doing?'

The interrogative pronoun can refer about the identity of a specific member of a general class. In these cases, the term that relates to the general category, in bold in (30), functions as an adnominal modifier of the interrogative pronoun.


The interrogative pronoun can still refer to the possessor (31a) or the possessed entity (31b) in complex arguments that refer to possessive or kinship relations. Once more, the position in which the pronoun appears is crucial to determine its scope of reference. Note in (31b) that you 'brother' modifies the interrogative pronoun uti.

| (31) a. hei uti xaraka pi | $e$ | tha |  |
| ---: | :--- | :--- | :--- |
| hei uti xaraka pi= | $e=$ | $=$ tha |  |
| this INT.PRO arrow | FOC.INT $=$ | DIF.PART $=$ | $=$ PTC.INT |

'Whose arrow is this?'

|  | b. hãa | arri |  | , Amathayoma | pei | you | $u t i$ | $p i$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | hãa | $=a$ | $=r i \sim$ | Amathayoma | pei | you | uti | $p i=$ |
|  | my_father |  | = HON | Amathayoma | INDEF | brother | INT.PRO | FOC.INT= |
| $e$ | kuoma |  |  | ? |  |  |  |  |
| $e$ | ku | $=0$ | $=m a$ |  |  |  |  |  |
|  | PART $=$ exist | =STV | $=$ PST |  |  |  |  |  |

'Estimated Dad, who was the brother of the Amathayoma?'
(n035_amathayoma)
In Table 12.2, I offer a summary of the morphological make up of the interrogative pronoun according to the argument it stands for.

Table 12.2 - Interrogative pronouns

| Form | Scope of reference | Gloss |
| :--- | :--- | :--- |
| $u t i$ | subject | Who/what (S)? |
| $u t i=a=n \dot{t}$ | patient | Whom/what? |
| $u t i=a=x o$ | agent | Who (A)? |
| $u t i=t h e ̈=n \dot{i}$ | additive | With who/whom/what? |
| $u t i \mathrm{X}_{\text {possessed }}=e$ | instrumental | With what? |
|  | possessor | Whose? |
| $u t i[=e]=h a[m \dot{i}]$ | oblique | To whom? |
|  |  | Where? |

The question about the number or quantity of participants is an exception to the pattern described above for constituent questions. I consider quantity questions as a type of constituent question because the typical answer to them is a numeral or a quantifier, which are adnominal or pronominal in the language and can be the head of a nominal argument of the clause, as we saw in §4.3.3. Questions about this category do not make use of the interrogative pronoun $u t i$ and a case marker, but combine the interrogative pronoun uti, the adverbial marker of manner =naha and what seems to be the $k$-word $k$ ure, as illustrated in (32). Note that the pre-hodiernal marker $=r e$ of this interrogative expression (in bold below) conflicts with the actual tense of the whole clause which is hodiernal past. This suggests a high level of idiomaticity of this interrogative expression, the elements of which have lost their individual meaning. See also (35) for another example of this mismatch. In any event, because of the type of interrogative expression employed, questions about quantity resemble adverbial questions, as we will see in $\S 12.3 .4$, and similarly to what was said about the latter ones, a full account of the question about quantity can only be provided in a future study of YMA complex constructions.

| (32) $\boldsymbol{u t i}$ | naha | kure | nарё | pi | $p \ddot{ }$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\boldsymbol{u t i}$ | $=\boldsymbol{n a h a}$ | $\boldsymbol{k u}$ | $=\boldsymbol{r e}$ | nарё | $p i=$ |
|  | pë $=$ |  |  |  |  |  |

INT.PRO =thereby COP =PRE.HOD white person FOC.INT= 3PL= ithorayoma kuha ?

```
itho =rayu =ma ku =ha
alight =PFV1 =PST COP =HOD
```

'How many white people have landed?' (+HOD)

As a final comment, there is a variant of the interrogative pronoun in which $u t i$ appears combined with the free word naxima, which apparently does not add any lexical or grammatical meaning to the construction. This complex interrogative pronoun uti naxima, of which we have two examples in (33), does not seem to be very frequent in other Yanomam speaking regions. I do not have a report of this word being used outside question clauses.

| (33) a. uti uti | naxima <br> naxima | thëрёni <br> =thë |  |  | pi $p i=$ | $\begin{aligned} & p \ddot{e} \\ & p \ddot{e}= \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INT.PRO | ? | $=$ CLN.GNR | $=\mathrm{PL}$ | = ERG | FOC.INT= | $3 \mathrm{PL}=$ |
| yaxuakemahe |  |  | ? |  |  |  |
| yaxu =a | $=k i$ | $=m a$ | =he |  |  |  |
| repel = DISTR | =PFV2 | $=\mathrm{PST}$ | $=3 \mathrm{PL}$ |  |  |  |

'Who expelled them [the miners]?’(PDYP_MIC_A_03_19)

'With what did the ancestors cut down [the trees that existed in] airstrip?' (PDYP_MIC_A_03_18)

In this section, we saw how speakers of YMA formulate questions that refer to a nominal argument of the clause, either core or oblique. Location is one of the semantic roles that oblique arguments can play, as we saw in Chapter 7 (§7.4.5) and example (26c) above as well. However, other adverbial meanings, such as time, manner and reason, are not expressed in the language through constituents affected or marked by the case system and, in this sense, are not nominal constituents. Questions on these elements will require morphological endings typical of subordinate clauses, as we will see in the next section.

### 12.3.4. Adverbial questions

In this section, I will give a rough overview of the questions about the adverbial categories of a predicate, such as time, manner and reason. A more detailed description of these constructions will be provided in a future study on subordination and other complex structures, which are closely related to adverbial questions in the language.

Adverbial questions can be formulated using the same three strategies found in constituent questions, but they differ from the latter ones in two fundamental aspects. First, adverbial questions do not have a nominal argument of the clause as their prototypical answer, but adverbs or, most commonly, whole clauses. Below, I provide an example of a question about the time at which an event took or will take place (34a), about the participant's purpose to carry out the action (34b), and on the "manner" of a predicate (34c).

| (34) a. $u$ |  | tëhë | apiama pi |  | ithou |  | pihio |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $u t i$ |  | apiama pi= | $a=$ | itho | $=i$ | pihi | $=0$ |
| kura |  | $=\text { REL. }$ | airplane FOC |  | alight | $=$ DY |  | = STV |
| $k u=$ | $=r a$ |  |  |  |  |  |  |  |
| $\mathrm{COP}=$ | $=$ PRS |  |  |  |  |  |  |  |

'When will the airplane land?'

| b. uti pi |  | thëha |  | thuwë | thëpë |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| uti | $=p i$ | =thë | $=h a$ | thuwë | thë= | $p \ddot{e}=$ |
| INT.PRO | $=$ FOC. INT | $=$ CLN.GNR | $=$ PURP | woman | CLN.GNR= | $3 \mathrm{PL}=$ |
| иtuрё toaihe |  | ? |  |  |  |  |
| utupë $=$ toa | $=h e$ |  |  |  |  |  |
| image $=$ take | $\mathrm{YN}=3 \mathrm{PL}$ |  |  |  |  |  |

'Why do they take pictures of the women?' (PDYP_MIC_A_13_13)

'When a lot of miners had spread out, how should I think?'
(m003_manu_gari)

The strategies used in other types of questions to indicate that the clause must be interpreted as interrogative are also found in adverbial questions: this indication can be done by simply changing the prosodic stress to the last syllable of the clause (34b), with the interrogative particle $=$ tha $(34 c)$, or a $k$-word (34a). The clauses in (34a) and (34c) have their stress shifted to the final syllable as well. Adverbial questions also make use of the interrogative pronoun uti.

The second main difference is the following: the interrogative pronoun does not combine with the case marker enclitics of Cluster A but with the conjunctions and other morphemes of Cluster C, such as =tëhë 'when', =ha 'purpose' and =naha 'manner', in bold in (34), or even with one of these morphemes and a relative clause with the copular element $k u$ 'to exist', as in (35). The construction in (35) is an alternative to (34a) for inquiring about the time of an event that will take place in the future. For asking about the time of a past event, only the constructions with the interrogative expression of (34a) (uti tëhë 'when') are grammatical.

'When are you are going to organize another funeral festival?'

This feature is certainly related to the first difference described above, that is, that the answer to these questions is prototypically a clause which can frequently be realized as a subordinate or coordinate clause, taking the same conjunctions (or other morphemes) that appear in combination with the interrogative pronoun uti in (33). Possible (full) answers to the questions in (33) are presented in (36). The conjunctions are in bold. It should be noted that the second clause in (36c), which is the information actually focused on in the question, is not a subordinate clause, and that the adverbial morpheme =naha occurs in the first clause, which is the mere repetition of predicate already expressed in the question (34c). This is due to the fact that the compound verb pihi kuu 'to think' (like in "I think that he is angry at me.") is an intransitive verb in YMA and often appears in predicates either with the anaphoric adverb inaha 'thereby', 'like that', as in (4), or the cataphoric counterpart hapai naha 'like the following', (36c). The English complement clause 'that he is angry at me' is realized in YMA as a syntactically independent clause, which precedes or succeeds the predicate with the verb 'to think', depending on the directionality of the adverb employed in it (whether cataphoric or anaphoric).

| (36) a. maa a | kei |  | maprario |  |  | tëhë | $a$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| maa $a=$ | ke | $=i$ | ma | = $p r a$ | = rio | =tëhë | $a=$ |
| rain $3 \mathrm{SG}=$ |  | $=$ DY | not_exist | $=\mathrm{DRV}$ | $=\mathrm{PFV}$ | =REL. P | 3 SG |

ithorayu
itho =rayu
alight $=$ PFV1
'When it stops raining, it will land.'

| b. $a i$ | парё | pëha |  | thëpë |  | итирё |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a i$ | nарё | $=p \ddot{ }$ | $=h a$ | thë= |  | итирё $=$ |
| other | white pe | $\mathrm{n}=\mathrm{PL}$ | $=$ OBL | CLN.GNR= |  | image= |
| taamaiheha |  |  |  | thëpë |  | итирё |
| $t a a=m a$ | $=i$ | $=h e$ | $=\boldsymbol{h a}$ | thë= | $p \ddot{e}=$ | итирё= |
| see =CAUS | $=\mathrm{DYN}$ | $=3 \mathrm{PL}$ | $=\mathbf{P U R P}$ | CLN.GNR $=$ | $3 \mathrm{PL}=$ | image= |
| toathe |  |  |  |  |  |  |
| toa $=\boldsymbol{i}$ | $=h e$ |  |  |  |  |  |
| take $=$ DYN | $=3 \mathrm{PL}$ |  |  |  |  |  |

'They take pictures of them to show the pictures to other white people.'

| c. hapai n | ha |  | pihi | kurayu |  | yamaki |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hapai | = naha | $y a=$ | pihi $=$ | $k u$ | = rayu | yamaki= |
| CAT <br> arayopë | $=$ thereby | $1 \mathrm{SG}=$ | V.PTCL:thought= | to say | = PFV1 | $1 \mathrm{PL}=$ |
| $a \quad=r a y o$ | $=p \ddot{ }$ |  |  |  |  |  |
| e =PFV1 | =FUT |  |  |  |  |  |

'I will think the following: "we are going to die!""

Table 3 offers some of the interrogative expressions found in adverbial questions in YMA.

Table 3 - Adverbial interrogative expressions

| Form | Gloss |
| :--- | :--- |
| $u t i=n a h a$ | How? (manner) |
| $u t i=t e ̈ h \ddot{e}$ | When? (past and future) |
| $u t i=n a h a ~ t h e ̈=n \dot{t}=$ [tete] kuta $=r \dot{t}=n \dot{t}$ | When? (future) |
| $u t i=n a h a ~ t h \ddot{e}=n \dot{i}=$ kure=ha | When? (future) |
| $u t i=t h e ̈=h a$ | Why? |

One should note that the interrogative expression of reason/purpose ('why') may be regarded as a partial exception to the characterization exposed above since it is the combination of the interrogative pronoun uti, the general classifier $=t h e ̈$ and what seems to be the oblique case marker $=h a$. Indeed, the purpose conjunction $=h a$ apparently has its origins in the oblique case marker $=h a$. Moreover, I analyze the requirement of the classifier $=t h e ̈$ when the conjunction $=h a$ appears in combination with the interrogative pronoun $u t i$ as a fossilized feature related to its nominal origin. Nevertheless, note that the general classifier $=$ thë is not required when the conjunction $=h a$ is being used outside the question context, as in (36c). See also the formulaic questions with this conjunction in (38). There are still other morphemes and combinations of morphemes that can mark a clause as a subordinate clause of reason/purpose, such as the expression $=k u t a y o=n i$ or the conjunction $=y a r o$ of the example in (37). However, neither =yaro nor =kutayoni can combine with the interrogative pronoun uti. I do not have an explanation for this restriction.

'They take pictures of them to show the pictures to other white people.'

In any event, there are alternative constructions for questioning about the reason or purpose of an event. One them is through a formulaic construction with the verb thai 'to do' marked with the purpose conjunction $=h a$, as in the examples in (38). This formula can be translated as ' X did Y , with the purpose of doing what?'.


'The miners [come to] see me in order to do what?' (i.e. 'Why do they come here?') (m005_wawa_gari)

Another way of formulating a purpose question is with the subordinate clause of time uti naha $X$ pihi ha kuni... which can be translated as 'what X was thinking before...'. Here the main clause is the event for which the speaker is questioning the purpose or reason (i.e. 'what X was thinking before doing Y)'. Example (39) illustrates this formulaic question.


This section is a brief introduction to adverbial questions. There are still open issues about other categories, such as an attribute of an entity, and other formulaic questions that were left out of this description. Furthermore, several features of these constructions were not mentioned here because they fall out of the scope of this study, which is the YMA main clause structure.

### 12.4. Final remarks

This chapter investigated the grammatical features of non-declarative clauses in YMA. Prosody seems to play a major role in structuring these constructions, even though the language also provides morphosyntactic mechanisms that interact with prosodic ones. A more in-depth and detailed description of these suprasegmental features still needs to be conducted to confirm my observations. More investigation is also needed on the morphosyntactic structure of questions, especially on adverbial questions, which were discussed very briefly and superficially here. I expect to fill these gaps in a future study of complex constructions in YMA.

## 13. What's next: further research on YMA

This study has provided a comprehensive morphosyntactic description of the independent clause in YMA. However, many features like case marking or valency and voicing marking morphology have not been illustrated with independent but with dependent clauses, since the patterns were the same. The pair of examples in (1) ilustrates some of these similarities. Note that the person indexes, the case markers, causative morpheme ( $=m a$ ) and the perfective one (=ri) are the same in both sentences.

| (1) a. kami |  |  | ipa | uhuru eh |  |  |  | himini | $y a$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| kami | $=y a$ | $=n \boldsymbol{i}$ | ipa | uhuru = |  |  | $=h a$ | himini | $y a=$ |
| 1 | $=1 \mathrm{SG}$ | = ERG | 1 POS | child = | $=$ DIF.P | PART | $=\mathrm{OBL}$ | medicine | 1SG= |
| kiki |  | amarem |  |  |  |  |  |  |  |
| kiki= | ko |  | $=\boldsymbol{m a}$ | $=r i$ |  | $=m a$ |  |  |  |
| CLN:collect | $\mathbf{e}=$ to | drink | $=\mathrm{CAUS}$ | = PFV | 1 | $=$ PST |  |  |  |



Of course, other grammatical domains behave differently and there are in fact many mismatches between these two types of clauses. I would like to give a foretaste of these differences in this last chapter.

## 716 Yanomama clause structure

The morphology for marking tense in relative clauses, for instance, is very different from that of the main clause, as was mentioned in Chapter 11 (see §11.3.1.1). The examples in (2) illustrate how the tense markers in independent and dependent clauses differ.

'The woman that took the basket in the other day died.' (+PRE.HOD)

'The woman that took the basket today has just died.' (+HOD)

Subordinate clauses of time may specify yet other categories that are not found in independent clauses, such as the relative present and the relative past. These two categories are part of an endophoric tense system which places the event expressed by the subordinate clause in the time frame provided by the subsequent clause. The subordinate event may be previous (relative past) or simultaneous (relative present) to the event conveyed by the following predicate, as in (3). Note that the relative present is marked through the enclitic =tëhë in (3b), while the relative past is indicated through the combination of the proclitic $h a=$ and the enclitic $=n \dot{t}$ in (3a).

```
(3) a. [nарё a ha huërini] a
 nарё a= ha= hu\ddot{e}=ri =n\boldsymbol{i}}\quad\boldsymbol{a}
 white person 3SG= REL.PST= grab =PFV1 =REL.PST 3SG=
```

karukupoma

| karuku | $=p o$ | $=m a$ |
| :--- | :--- | :--- |
| restrain | $=$ CSVT | $=$ PST |

'[He] kept the white person on the floor after grabbing him.' (s_ball_cesa)
(lit.: 'Having [he] grabbed the white person before, he kept him restrained on the ground')

| b. [ napë | $a$ | katëtëpии |  | tëhë | ] pora $a$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| napë | $a=$ | katëtëp | $=u$ | $=$ tëhë | pora $a=$ |
| white person | $3 \mathrm{SG}=$ | restrain | $=$ DYN | $=$ REL.PRS | ball $3 \mathrm{SG}=$ | mairema

```
mai =ri =ma
hit =PFV1 =PST
```

'He threw the ball while the white person was being restrained on the floor [by the other].' (s_ball_niki1) ${ }^{1}$

This study did not touch upon the wide variety of meanings and discourse functions that subordinate clauses can convey in YMA, which include reason/purpose, concession, location, verbal complementation, comparison, and several types of counter-factual functions. Among the latter type of subordinate clauses, the hypothetical counter-factual conjunction =kunaha seems to be very rare from a typological perspective (Haiman ande Kuteva, 2002:112). This morpheme is used exclusively to mark subordinate clauses that portrait events which are considered unlikely hypotheses, because they contradict either what actually happened in the past

[^9]or is going on in the present, as in (4a), or is really not likely to occur in the future, at least in the speaker's opinion, as in (4b).

| (4) a. [ maa kei |  | maa |  | kunaha | ] $y a$ | $x a$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| maa ke | $=i$ | $m a$ | $=0$ | =kunaha | $y a=$ | $x a=$ |
| rain fall | $=\mathrm{DYN}$ | not_exist | =STV | $=$ CNT.FACT | $1 \mathrm{SG}=$ | COND $=$ |

```
a =rayu =no
SG =PFV1 =RESULT
```

'If it was not raining [but it is], I would have gone.'

'If you come here, you will understand then.' (m001_joan_tihi) (It implies that [the speaker thinks that] the people will never go to her place).

If the speaker had perceived the hypothetical event in (4b) as a real possibility in the future, she would have used the relative present marker =tëhë instead, as in (5).

| (5) | [ kami <br> kami | yaha $=y a$ |  | wamaki <br> wamaki= | ka $k a=$ | huu <br> hu |  | tëhë <br> =tëhë | ] wamaki wamaki= |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | $=1 \mathrm{SG}$ | $=\mathrm{OBL}$ | $2 \mathrm{PL}=$ | FOC= | go | $=$ DYN | $=$ REL.PRS | $2 \mathrm{PL}=$ |
| pihi |  | kura |  |  |  |  |  |  |  |
| pihi $=$ |  | ku | = rayu |  |  |  |  |  |  |
| V.PTC | :thought= | = say | $=$ PFV1 |  |  |  |  |  |  |

'If/when you come here, you will then understand.' (It implies that [the speaker thinks that] the people may go to her place).

There is also much more to be said about the different strategies of relativization in the language. The constructions in (2) illustrate one of the three strategies (and
possibly the less productive one) available in YMA. Indeed, the most common way of relativizing a clause in the language is through clause nominalization with the morpheme $=w e i$, like in the examples in (6). The pair of examples in (6) is of typological interest for the following reason. In YMA, relative clauses are headinternal (Comrie, 1989: 145), i.e., their head noun appears inside the relative clause itself. As a consequence of this, the relative clause in (6a) is exactly the same of that in (6b). It is an index marker on the main clause verb that specifies which noun of the clause is the actual antecedent of the relative clause: in (6a) the index $a=$ (in bold) refers to the woman (thuë $\boldsymbol{a}$ ) while in (6b) the noun classifier $h e=$ (also in bold) indicates that the head of the relative clause is the basket (xote he).

| (6) a. [ | thuë ani |  |  | xote | he |  | tiyët |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | thuë | $=a$ | $=n \dot{t}$ | xote | $h e=$ | $k a=$ | tiyë | $=i$ |
|  | woman | $=3 \mathrm{SG}$ | $=$ ERG | basket | CLN:round= | FOC= | weave | $=\mathrm{DYN}$ |
| wei | ] a | nomara | yoma |  |  |  |  |  |
| =wei | $a=$ | noma | = rayu | $=m a$ |  |  |  |  |
| $=$ NMLZ | 3SG= | die | = PFV1 | $=$ PST |  |  |  |  |

'The woman who wove the basket died.'

| b. [ thuë ani |  |  | xote | he | ka | tiyët |  | wei |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| thuë | $=a$ | $=n \dot{t}$ | xote | $h e=$ | $k a=$ | tiyë | $=i$ | $=w e i$ |
| woman | $=3 \mathrm{SG}$ | $=$ ERG | basket | CLN:round= | FOC= | weave | $=\mathrm{DYN}$ | $=$ NMLZ |
| ] he | hoximi |  |  |  |  |  |  |  |
| $h e=$ | hoximi |  |  |  |  |  |  |  |
| CLN:round | $=\mathrm{bad}$ |  |  |  |  |  |  |  |

'The basket that the woman wove is awful.'

One should note that when both nouns of a transitive relative clause take the same morphology, there is a potential ambiguity in the construction. For instance, if the noun of (6b) were wiit a 'carrying basket' instead, the whole structure would turn ambiguous, as in (7).
[ thuë $\boldsymbol{a}$ ni $\quad$ wït $\quad$ a $k a$ tiyët
thuë $=\boldsymbol{a}=n \dot{t}$ wï̀ $\boldsymbol{a}=k a=$ tiyë $=i$
woman $=\mathbf{3 S G}=$ ERG carrying basket $\mathbf{3 S G}=$ FOC= weave $=$ DYN
wei l a hoximi.
$=$ wei $\quad \boldsymbol{a}=$ hoximi
$=$ NMLZ $\mathbf{3 S G}=$ bad
'The carrying basket that the woman wove is awful.' or 'The woman who wove the carrying basket is awful.'

```

Clause nominalization with =wei, which can have yet other syntactic functions, such as verb complementation and noun modification, is the second most productive type of dependent clause. In our sample of 2100 clauses, I found 408 instances of this type. The most common type of dependent clause is the adverbial subordinate clause of relative past \((h a=\ldots=n i)\) with 453 tokens and the third one the subordinate clause of relative present (=tëhë) with 168 examples. These three main types of the dependent clauses correspond by themselves to 1029 or \(49 \%\) of the total of clauses of the sample, including the independent ones. Indeed, in this sample, there are many more dependent than independent clauses. The proportion is about 17 dependent clauses for every 10 independent ones (1324/776).

These numbers are explained by a feature that arises only at the text level: which is the possibility of chaining several subordinate clauses, one after the other, dispensing with the need of a formal independent clause intervening between them, resulting in sometimes extremely long strings of (inter)dependent clauses. The first 22 clauses of the recording <s_tree_mrio \(>^{2}\) of our corpus form a clause-chain of this type. The whole narrative is presented in 25 clauses, only 3 of which are independent clauses. Further interesting grammatical features of YMA are related to clausechaining, such as the switch-reference and coreferentiality devices, which help to structure the information within texts. Although they fall outside the scope of the present study, they certainly call for further detailed analysis.

\footnotetext{
\({ }^{2}\) In this recording, a speaker is telling the story of the video-stimulus he had just seen.
}

I am still working on these topics, and I expect to bring them to light in a separate study shortly. Hopefully that will be seen as the second volume of a more comprehensive description of the YMA clause structure, the first volume of which is the present study.

\section*{References}

Aikhenvald, Alexandra Y. 2004. Evidentiality. Oxford: Oxford University Press.

Aikhenvald, Alexandra Y. 2006. "Serial Verb Constructions in Typological Perspective". In Aikhenvald, Alexandra Y. and Dixon, R. M. W. (eds.), Serial Verb Constructions - A Cross-Linguistic Typology. Oxford: Oxford University Press.

Aikhenvald, Alexandra Y. and Dixon, Robert. 1998. Evidentials and areal typology: a case study from Amazonia. Language Sciences. Vol. 20, No. 3: 241-257.

Aissen, Judith and Zavala, Roberto. 2010. "La predicación secundaria en Mesoamérica: una introducción". In Aissen, Judith and Zavala, Roberto (eds.), La predicación secundaria en lenguas de Mesoamérica. México: Centro de Investigaciones y Estudios Superiores en Antropología Social.

Albert, Bruce and Le Tourneau, François-Michel. 2005. Homoxi : ruée vers l'or chez les Indiens Yanomami du haut rio Mucajaí (Brésil). Presses de Sciences Po (P.F.N.S.P.), 2005/2 n \({ }^{\circ} 34\).

Arellanes Arellanes, Francisco, Sue Belinda Meneses Eternod and Lucille Herrasti. 2003. "Las líquidas en el habla de niños de la ciudad de México". In Rebeca Barriga Villanueva (ed.), El habla infantil en cuatro dimensiones. El Colegio de México, México. pp. 15-47.

Autuori, Joana Dworeka. 2015. Aspectos da fonologia Sanumá (Yanomami). Universidade Federal de Roraima (UFRR). MA dissertation.

Barker, James P. 1956. Dictionary and Grammar, Yanomamo Notes. New Tribes Missíon (mimeo).

Barker, James P. 1971. Yanomamo Lexicon Yanomamo Lexicon. Puerto Ayacucho, New Tribes Mission (manuscript) (not published).

Barker, James P. 1979. Una Gramática Técnica de la Lengua Shamatari. Boletín Indigenista Venezolano XVIII,15.

Beck, David. 1999. The typology of parts-of-speech systems: The markedness of adjectives. University of Toronto. Ph.D. dissertation.

Berno, José M. 1969. Diccionario Yanomamu-Castellano/Castellano-Yanomamu. PuertoAyacucho, Misión Salesiana Mavaca (mimen) (not published)

Borgman, Donald M. 1969-1970. Sanuma Phonemics and Myths (manuscript) (not published).

Borgman, Donald M. 1974. Deep and Surface Case in Sanuma. Linguistics 12. 5-18.
Borgman, Donald M. 1990. Sanuma. In Derbyshire, Desmond C. and Pullum, Geoffrey K. (eds.), Handbook of Amazonian Languages 2. Berlin: Mouton de Gruyter. 15-248.

Borgman, Donald M. and Sandra L. Cue. 1963. "Sentence and Clause Types in Central Waíca (Shiriana)". International Journal of American Linguistics 29, 3.

Borgman, Donald M., Cue, Sandra L., Albright, Sue, Seeley, Merril and Joseph E.Grimes. 1965. "The Waican Languages". Anthropological Linguistics 7, 7.

Chafe, Wallace and Nichols, Joahanna, eds. 1986. Evidentiality: The Linguistic Coding of Epistemology. Advances in Discourse Processes. Vol. XX. Ablex Publishing Corporation.

Comrie, Bernard. 1976. " The Syntax of Causative Constructions: Cross-Language Similarities and Divergences". In Shibatani, Masayoshi (ed.), The Grammar of Causative Constructions. New Yor, San Francisco, London: Academic Press. 261-312.

Comrie, Bernard. 1985. "Causative Verb Formation and Other Verb-deriving Morphology". In:Shopen, Timothy (ed.), Language Typology and Syntactic Description, Vol. III. Cambridge: Cambridge University Press. 309-348

Comrie, Bernard. 1989. Language universals and linguistic typology: Syntax and morphology. 2nd ed. Oxford: Blackwell.

Diessel, Holger. 1999. Demonstratives: form, function and grammaticalization. Amsterdam, Philadelphia: John Benjamins.

Dixon, R.M.W. and Aikhenvald, Alexandra Y. 2000. "Introduction". In Dixon , R.M.W. and Aikhenvald, Alexandra Y. (eds.), Changing valence - Case studies in transitivity. Cambridge University Press.

Dixon, Robert M. W. 1982. 'Where Have All the Adjectives Gone?' and other Essays in Semantics and Syntax. Berlin: Mouton de Gruyter.

Dixon, Robert. 2003. Demonstratives: a cross-linguistic typology. Studies in Language 27 (1): 61-112.

Ferguson, R. Brian. 1995. Yanomami Warfare: A Political History. School for Advanced Research Press.

Fleischman, Suzanne. 1982. The Future in Thought and Language, Cambridge University Press.

François-Michel Le Tourneau. 2010. Les Yanomami du Brésil : géographie d'un territoire Amérindien. Paris: Belin, coll. "Mappemonde". (ver no texto da tesis ano informado)

Girard, Victor. 1971. Proto-Takanan Phonology. Linguistics, 70. Berkeley and Los Angeles: University of California Press.

Goodwin-Gomez, Gale. 1990. The Shiriana Dialect of Yanam (Northern Brazil). Columbia University. Columbia University. Ph.D. Dissertation.

Greenberg, Joseph H. 1987. Language in the Americas. Stanford: Stanford University Press.

Guillaume, Antoine. 2011. Reconstructing the category of "associated motion" in Tacanan languages (Amazonian Bolivia and Peru). In: Kikusawa, Ritsuko and Lawrence A. Reid (eds.), Historical Linguistics: Selected papers from the 20th International Conference on Historical Linguistics, Osaka, 25-30 July 2011. 2013. ix, 337. 129-151.

Guillaume, Antoine. 2016. Associated motion in South America: Typological and areal perspectives. Linguistic Typology 20(1): 81-177.

Haiman, John and Kuteva, Tania. 2002. "The symmetry of counterfactuals". In: In: Bybee, Joan and Noonan, Michael (eds.), Complex sentences in grammar and discourse : essays in honor of Sandra A. Thompson. Amsterdam; Philadelphia, PA: John Benjamins.

Haspelmath, Martin and Müller-Bardey, Thomas. 2010. "Valency change". In: Booij, Geert \& Lehmann, Christian \& Mugdan, Joachim (eds.), Morphology: A Handbook on Inflection and Word Formation. (Handbücher zur Sprach- und Kommunikationswissenschaft). Vol. 2. Berlin: de Gruyter. 1130-1145.

Haspelmath, Martin. 2001. "Word classes/parts of speech". In: Baltes, Paul B. \& Smelser, Neil J. (eds.), International Encyclopedia of the Social and Behavioral Sciences. Amsterdam: Pergamon, 16538-16545.

Haspelmath, Martin. 2011. "On S, A, P, T, and R as comparative concepts for alignment typology". Lingustic Typology 15(3). 535-567.

Haspelmath, Martin. 2016. The Serial Verb Construction: Comparative Concept and Cross-linguistic Generalizations. Language and Linguistics 17 (3): pp 291319.

Hengeveld, Kees, Jan Rijkhoff and Anna Siewierska. 2004. Parts-of-speech systems and word order. Journal of Linguistics 40. 527-570.

Himmelmann, Nikolaus P. and Schultze-Berndt, Eva. 2006. "Issues in the syntax and semantics of participant-oriented adjuncts: an introduction". In Himmelmann, Nikolaus P. and Schultze-Berndt, Eva (eds.), Secondary Predication and Adverbial Modification - The Typology of Depictives. Oxford: Oxford University Press.

Jeong, Youngmi. 2006. The Landscape of Applicatives. University of Maryland. PhD dissertation.

Kaufman, Terrence. 1990. "Language history in South America: What we know and how to know more". In Payne, Doris L. (ed.), Amazonian linguistics: Studies in lowland South American languages. Austin: University of Texas Press. 13-67

Kita, Sotaro. 1995. Recommendations for data collection for gesture studies. In Wilkins, D. (ed.), Extensions of space and beyond: Manual for field elicitation for the 1995 field season, 35-42. Nijmegen: Max Planck Institute for Psycholinguistics.

Klavans, Judith L. 1995. On Clitics and Cliticization: The Interaction of Morphology, Phonology, and Syntax. New York: Garland Pub.

Koch, Harold. 1984. "The Category of 'Associated Motion' in Kaytej". Language in Central Australia 1: 23-34.

Koch-Grunberg, Theodor. 1913. Abschluß meiner Reise durch Nordbrasilien zum Orinoco, mit besonderer Berücksichtigung der von mir besuchten Indianerstämme. Zeitschrift für Ethnologie 45 (3), 448-474.

Koch-Grunberg, Theodor. 1923. Vom Roraima zum Orinoco. Berlin: Dietrich Reimer (Ernest Vohsen). 5 volumes.

Kulikov, Leoid. 2010. "Voice Typology". In Song, Jae Jung (ed.), The Oxford Handbook of Liguistic Typology. Oxford: Oxford University Press. 368-398.

Lizot, Jacques. 1970. Dictionnaire Yanómami-Français. Paris: Laboratoire d'Anthropologie Sociale du Collége de France.

Lizot, Jacques. 1973. Onomastique Yanómami. L'Homme XIII,3.

Lizot, Jacques. 1975. Diccionario Yanomami-Español. Caracas: Universidad Central de Venezuela.

Lizot, Jacques. 1996. Introducción a la lengua yanomami: Morfología. Caracas: Vicariato Apostólico de Puerto Ayacucho/UNICEF.

Lizot, Jacques. 2004. Diccionario enciclopédico de la lengua yãnomãmí. Vicariato Apostólico de Puerto Ayacucho.

Levinson, S. C., and Wilkins, D. P. 2006. "The background to the study of the language of space". Levinson, S. C., and Wilkins, D. P. (eds.), Grammars of space: Explorations in cognitive diversity. Cambridge: Cambridge University Press.

Loukotka, Čestmír. 1968. Classification of the South American Indian Languages. Los Angeles: UCLA Latin American Center.

Machado, Ana Maria Antunes. 2015. Lutamu. Universidade Federal de Santa Catarina (UFSC). MA dissertation.

Maddieson, Ian. 1984. Patterns of sounds. Cambridge: Cambridge University Press.

Mattei Muller, Marie Claude. 2007. Lengua y cultura yanomami: diccionario ilustrado yanomami-español, español-yanomami. Caracas: CONAC.

Migliazza, Ernest. 1972. Yanomama Grammar and Intelligibility. Indiana University. PhD Dissertation.

Migliazza, Ernesto C. 1978. The integration of the indigenous peoples of the Territory of Roraima, Brazil. IWGIA Document 32.

Migliazza, Ernesto C. 1978b. Maku, Sape and Uruak Languages: Current Status and Basic Lexicon. Anthropological Linguistics 20/3. 133-140.

Migliazza, Ernesto C. 1985. Languages of the Orinoco-Amazon Region: Current Status. In Harriet E. Manelis Klein and Louisa Stark (eds.), South American Indian Languages: Retrospect and Prospect, Austin: Texas University Press. 17-139.

Moran, S., McCloy, D.R., \& Wright, R.A. (eds.) (2014). PHOIBLE Online. Leipzig: Max Planck Institute for Evolutionary Anthropology. (Available online at phoible.org)

Naess, Ashild. 2007. Prototypical Transitivity. Amsterdam: John Benjamins.

Palmer, Frank R. 1994. Grammatical Roles and Relations. Cambridge: Cambridge University Press.

Palmer, Frank R. 2001. Mood and Modalitty. New York: Cambridge University Press.

Payne, Doris. 1985. Aspects of the Grammar of Yagua: a Typological Perspective. University of California: Los Angeles. Ph.D. dissertation.

Payne, Thomas E. 1997. Describing Morphosyntax - A guide for field linguists. Cambridge University Press.

Payne, Thomas Edward. 2006. Exploring language structure: a student's guide. Cambridge, UK: Cambridge University Press.

Perri Ferreira, Helder, Alfredo Himotona, Genivaldo Krepuna, and Marconi Kariuna. 2011. Dicionário de verbos português-yanomama. Boa Vista, Brasil: Instituto Socioambiental.

Perri Ferreira, Helder. 2009. Los clasificadores nominales del Yanomama de Papiu. Centro de Investigaciones y Estudios Superiores en Antropología Social (CIESAS). MA dissertation.

Perri Ferreira, Helder. 2011. Esboço gramatical do Yaroamë: Lingua Yanomami falada do Serra do Pacu/RR. Rio de Janeiro: Museu do Índio/Prodoclin.

Peterson, David A. 2007. Applicative constructions. Oxford: Oxford University Pess.

Ramirez, Henri. 1994a. Le Parler Yanomami des Xamatauteri. Aix-en-Provence: Université de Provence. Ph.D. Dissertation.

Ramirez, Henri. 1994b. Iniciação à língua Yanomama: Dialetos do Médio Rio Catrimani e de Xitei: Curso de língua Yanomama. Boa Vista: Boa Vista, Brasil: CCPY, Diocese do Roraima.

Ramirez, Henri. 1999. A prática Yanomami. Boa Vista: Boa Vista, Brasil: CCPY, Diocese do Roraima. 120pp.

Rice, A. H. 1978. Exploração da Guiana Brasileira. Edusp: São Paulo.

Salathe, George. 1932. Les indiens Karime. Revista del Instituto de la Universidad Nacional de Tucuman 2: 297-316.

Schultze-Berndt, Eva and Himmelmann, Nikolaus P. 2004. Depictive Secondary Predicates in Crosslinguistic Perspective. Linguistic Typology, 8: 59-130.

Shibatani, Masayoshi and Pardeshi, Prashant. 2002. "The causative continuum". In Shibatani, Masayoshi (ed.), The Grammar of Causation and Interpersonal Manipulation. Philadelphia: John Benjamins. 85-126.

Shibatani, Masayoshi. 2009. "Case and Voice Case in Derived Constructions". In Malchukov, Andrej and Spencer, Andrew (eds.), The Oxford Handbook of Case. Oxford: Oxford University Press. 323-338.

Talmy, Leonard. 2000. Toward a cognitive semantics. Volume 2: Typology and process in concept structuring. Cambridge, MA: MIT Press.

Taylor, John R. 1995. Linguistic categorization. Prototypes in linguistic theory. Oxford: Oxford University Press.

Tesnière, Lucien. 1959. Éleménts de syntaxe structurale. Paris: Klincksieck.

Tillett, Aimé; Senra, Estêvão Benfica; Becerra Ruiz, José; Martins, Moreno Saraiva; Alves, Renata. 2014. Território e comunidades yanomami Brasil Venezuela. São Paulo: Instituto Socioambiental.

Vallejos Yopán, Rosa. 2010. A grammar of Kokama-Kokamilla. University of Oregon. Ph.D. Dissertation.

Vuillermet, Marine, 2012. "Une typologie en cheminement : Contribution de l'ese ejja à l'étude du mouvement associé". In Revue de linguistique et didactique des langues, C. Imbert \& N. Vallée (eds), Numéro thématique 'Typologie', pp.79-100.

Vuillermet, Marine, 2013. "Dónde, cuándo, y con quién ocurren acciones: El movimiento asociado en ese ejja". In A. M. Ospina (Ed.) Expresión de nociones espaciales en lenguas amazónicas, Universidad Nacional de Colombia e Instituto Caro y Cuervo, Bogotá, Colombia, pp. 39-59.

Wilkins, David P. 1991. The semantics, pragmatics and diachronic development of "associated motion" in Mparntwe Arrernte. Buffalo Papers in Linguistics 1. 207-257

\section*{Summary}

The primary purpose of this work is to fill a significant gap in the description of the Yanomami languages by offering an in-depth description of the morphology and the syntactic structure of a variety of the Yanomam language, the language of the Yanomami family with the highest number of speakers in Brazil (\(\sim 12.000\)). Differently from other Yanomami languages, such as Ninam, Sanima and Yanomami, the varieties of the Yanomam group have not been the subject of such a scrutiny yet. This work intends to be the first of two volumes of a comprehensive grammatical description of the Yanomam variety spoken in the Papiu region by about 400 people and regionally know as Yanomama (YMA). Most of the corpus used in this work was gathered in the context of the Project for the Documentation of the Yanomama of Papiu, which has produced an extensive archive of almost 60 hours of audio and video recordings, 39 hours of which are at least transcribed and 25 are also translated. In this book, I will only deal with grammatical aspects of the YMA's simple sentences, while in a planned second volume I will be focused on aspects of multi-clausal constructions in YMA, such as coordination, subordination, clause-chaining and other discursive resources of the language. This first volume is organized as follows.

Chapter 1 introduces the reader to the Yanomami people and their territory and discusses some aspects of the Yanomami linguistic family, such as its internal diversity, possible genetic relations, demography and early literature. The chapter also presents the corpus used in this thesis and outlines its general structure.

Chapter 2 gives an overview of the YMA segmental and suprasegmental phonology, by offering the phoneme inventory of the language and the basic phonological features of the YMA words and sentences. In that chapter, some phonological processes will also be discussed and the orthography adopted in this work will be presented.

Chapter 3 lays the basis for the formal definition of nouns and verbs in YMA. Nouns and verbs are not only different by their semantic properties, but they display
a different syntactic distribution and morphological possibilities. One important parameter to identify nouns and verbs in the language regards their position in relation to the three main clitic clusters of the language and their ability to host these different clusters. While nouns can host very few clitic types and only on their right, verbs have both sides opened to receive bound morphemes, which also are much more diverse than nominal morphology.

Chapter 4 investigates the different types of noun in the language. We will see that YMA has three main types, which have different morphological structures and syntactic properties. I will also deal with other constituents of a typical nominal phrase in YMA, such as personal and possessive pronouns, demonstratives and quantifiers.

Chapter 5 examines the different types of verbs in YMA. We will see that there four basic types of verb stems - attributive, positional, dynamic and irregular which are different from each other by their morphosyntactic properties and, at a certain degree, semantic features. Moreover, we will see that those stems may be morphologically simple words - made of only one lexical element (the verb root) or complex words - decomposable in one root and one or more deriving morphemes. The notion of flexible roots - i.e. roots that can appear as different types of verb stem, dispensing with the need of any derivation - will also be discussed in that chapter.

Chapter 6 deals with the YMA's extremely rich and polysynthetic verbal morphology. The language has dedicated morphology to express several tense, aspectual, locational, directional and polarity categories. Derivational morphology is also quite rich in YMA, allowing the speakers to create new verbs from almost any noun (and also from other verbs). The morphological mechanisms that derive verbs in nouns will also be discussed there.

Chapter 7 is concerned with the argument marking strategies found in YMA. Besides the word order, which is quite rigid regarding the placement of the
absolutive argument before the verb, we will see that YMA has a case system and set of verbal indexes to express the syntactic configuration of the clause.

Chapter 8 discusses non-verbal predication, i.e. clauses that lack a verb or make use of copular elements only. We will see that verb-less predicates are relatively rare in the language. Many of the constructions that in other languages tend to be expressed by verb-less clauses, such as attributive, equative, locational and possessive predicates, require a copular element or are expressed by lexically rich verbal stems.

Chapter 9 deals with the voice and valence change mechanisms of the language. We will see that YMA displays several morphological possibilities in this subject, allowing the speakers to increase the valence of the verb through causative and applicative derivations (two types of applicatives) and to reduce it through reflexive and reciprocal derivations. The language also has two mechanisms that only change the diathesis (voice) of the clause without changing its valence.

Chapter 10 discusses multi-verbal predicates which occur in clauses that display more than one verb stem. Multi-verbal predicates in YMA include secondary predication, adverbial modification, serial verbs constructions and several types of highly integrated complementation constructions. In this chapter, I intend to characterize these constructions comparatively, point out the main semantic and formal differences and similarities between them.

Chapter 11 describes the expression of the five evidentiality categories found in the YMA's texts. We will see that language developed two series of words (the \(k\) and the \(m\) - words) that take part in most of the constructions marked for an evidentiality category. These words, apart from their evidentiality meaning, are also an alternative way of expressing several verbal categories (such as tense and space) for which the language has a separate and dedicated morphology, as explained in Chapter 6.

Chapter 12 deals with non-declarative clauses. I will describe how polarity questions and questions about the arguments of the clause are structured in the

736 Yanomama clause structure
language. Manipulative speech acts, such as imperative, prohibitive and permissive, will also be discussed here.

Finally, the concluding Chapter 13 presents a discussion of the work that still needs to be done on the description and analysis of YMA.

\section*{Resumo}

O objetivo principal deste trabalho é preencher uma lacuna significativa na descrição das línguas Yanomami, oferecendo uma descrição em profundidade da morfologia e da estrutura sintática de uma variedade da língua Yanomam, a língua da família Yanomami com a maior número de falantes no Brasil (~12.000). Diferentemente de outras línguas Yanomami, como Ninam, Sanima e Yanomamí, as variedades do grupo Yanomam ainda não foram objeto de tal escrutínio. Este trabalho pretende ser o primeiro de dois volumes de uma abrangente descrição gramatical da variedade Yanomam falada na região do Papiu e conhecida regionalmente como Yanomama (YMA). A maior parte do corpus usado neste trabalho foi recolhido no contexto do Projeto de Documentação do Yanomama de Papiu, que produziu um amplo arquivo de 60 horas de gravações de áudio e vídeo, 39 horas das quais estão transcritas e 25 também traduzidas. Este livro trata apenas das orações simples do YMA, enquanto que o planejado segundo volume estará focado em fenômenos do período composto, como coordenação, subordinação, encadeamento de orações e outros recursos discursivos. Este primeiro volume é organizado como a seguir.

O Capitulo 1 apresenta o povo Yanomami e seu território e discute alguns aspectos da família linguística Yanomami, tais como sua diversidade interna, possíveis relações genéticas, demografia e literatura anterior. O capítulo apresenta também o corpus utilizado nesta tese e sua estrutura geral.

O Capítulo 2 dá uma visão geral da fonologia segmental e suprassegmental do YMA, oferecendo o inventário fonêmico da língua e as características fonológicas básicas das palavras e frases do YMA. Neste capítulo, serão discutidos alguns processos fonológicos e será apresentada a ortografia adotada neste trabalho.

O Capítulo 3 estabelece a base para a definição formal de substantivos e verbos no YMA. Substantivos e verbos não são apenas diferentes por suas propriedades semânticas, mas exibem diferentes possibilidades morfológicas e distribuição sintática. Um parâmetro importante para identificar substantivos e verbos na língua refere-se à sua posição em relação aos três principais grupos de clíticos da língua e à
sua capacidade de hospedar esses diferentes grupos. Enquanto os substantivos podem hospedar muito poucos tipos de clíticos e somente pelo lado direito, os verbos têm ambos os lados abertos para receber morfemas ligados, que também são muito mais diversos do que a morfologia dos substantivos.

O Capítulo 4 investiga os diferentes tipos de substantivos da língua. Veremos que o YMA tem três tipos principais de nomes, que possuem diferentes estruturas morfológicas e propriedades sintáticas. Também tratarei nesse capítulo de outros constituintes de uma frase nominal típica em YMA, como pronomes pessoais e possessivos, demonstrativos e quantificadores. A morfologia nominal, que é muito menos complicada e mais isolante do que a verbal, também será discutida ali.

O Capítulo 5 examina os diferentes tipos de verbos em YMA. Veremos que existem quatro tipos básicos de radicais verbais na língua - atributivos, posicionais, dinâmicos e irregulares - que são diferentes entre si por suas propriedades morfossintáticas e, em certo grau, pelas características semânticas. Além disso, veremos que esses radicais podem ser palavras morfologicamente simples - feitas de apenas um elemento lexical (a raiz do verbo) - ou palavras complexas - decomponíveis em uma raiz e um ou mais morfemas derivados. A noção de raízes flexíveis - isto é, raízes que podem aparecer em diferentes tipos de radicais verbais, dispensando a necessidade de qualquer derivação - também será discutida nesse capítulo.

O Capítulo 6 trata da morfologia verbal extremamente rica e polissintética do YMA. A língua apresenta morfologia própria para expressar várias categorias de tempo, aspecto, modo, locação, direção e polaridade. A morfologia derivativa também é bastante rica em YMA, permitindo criar novos verbos a partir de qualquer substantivo (e de outros verbos também). Os mecanismos morfológicos que derivam verbos em substantivos também serão discutidos ali.

O Capítulo 7 diz respeito às estratégias de marcação argumental encontradas no YMA. Além da ordem das palavras, que é bastante rígida em relação à colocação do argumento absolutivo antes do verbo, veremos que oYMA tem um sistema de casos e um conjunto de índices verbais para expressar a configuração sintática da cláusula.

O Capítulo 8 discute a predicação não-verbal, isto é, as cláusulas que carecem de um verbo ou fazem uso apenas de elementos copulares. Veremos que os predicados sem verbo são relativamente raros na língua e que construções como predicados atributivos, equativos, locacionais e possessivos, requerem um elemento copular ou são expressas por radicais verbais lexicalmente ricos.

O Capítulo 9 trata dos mecanismos de mudança de voz e de valência da língua. Veremos que o YMA apresenta várias possibilidades morfológicas neste assunto, permitindo que os falantes aumentem a valência do verbo através de derivações causais e aplicativas (dois tipos de aplicativos) e que a reduzam através de derivações reflexivas e recíprocas. A língua também tem dois mecanismos que só alteram a diátese (voz) da cláusula sem alterar sua valência.

O Capítulo 10 discute predicados multi-verbais que ocorrem em cláusulas que exibem mais de um verbo. Os predicados multi-verbais no YMA incluem predicação secundária, modificação adverbial, construções de verbos em série e vários tipos de construções de complementação altamente integradas. Neste capítulo, pretendo caracterizar estas construções comparativamente, apontar as principais diferenças e semelhanças semânticas e formais entre elas.

O Capítulo 11 descreve a expressão das cinco categorias de evidência encontradas nos textos do YMA. Veremos que a língua desenvolveu duas séries de palavras (as palavras \(k\) - e \(m\)-) que participam na maioria das construções marcadas para uma categoria de evidencialidade. Estas palavras, além do seu significado de evidencialidade, são também uma maneira alternativa de expressar algumas categorias verbais de tempo e espaço para as quais a língua tem uma outra morfologia, separada e exclusiva, como explicado no Capitulo 6.

O Capítulo 12 trata de cláusulas não declarativas. Ali serão descritas as questões polares (perguntas de sim/não) e as questões sobre um argumento da oração, assim como os atos manipulativos de fala, como imperativo, proibitivo e permissivo.

Finalmente, o Capítulo 13 apresenta uma discussão sobre o trabalho que ainda resta a ser feito sobre a descrição e análise gramatical do YMA.

\section*{Samenvatting}

Het primaire doel van dit werk is een significant hiaat in de beschrijving van de Yanomami talen te vullen met een diepgaande beschrijving van de morfologie en de syntactische structuur van de Yanomam taal, de taal van de Yanomami familie met het grootste aantal sprekers in Brazilië (\(\sim 12.000\)). Anders dan andere Yanomami talen, zoals Ninam, Sanima en Yanomami, zijn de variëteiten van de Yanomam groep nog niet het onderwerp geweest van een nauwkeurig onderzoek. Dit werk wil het eerste zijn van twee delen van een uitvoerige grammaticale beschrijving van de Yanomam variëteit die in het Papiu gebied door ongeveer 400 mensen wordt gesproken en in de regio als Yanomama (YMA) bekend staat. Het grootste deel van het corpus dat in dit werk wordt gebruikt werd verzameld in de context van het Project voor de Documentatie van Papiu Yanomama, dat een uitgebreid archief van bijna 60 uur audio- en video-opnamen omvat, waarvan ten minste 39 uur zijn getranscribeerd en 25 ook vertaald. In dit boek kan ik slechts grammaticale aspecten van de eenvoudige zin van het YMA behandelen, terwijl in een gepland tweede deel ik op aspecten inga van multi-clausale constructies in het YMA, zoals coördinatie, ondergeschiktheid, zinsketens en andere discursieve middelen van de taal. Dit eerste deel is als volgt georganiseerd.

Hoofdstuk 1 introduceert de lezer bij het Yanomami volk en hun grondgebied en bespreekt sommige aspecten van de Yanomami taalfamilie, zoals de interne diversiteit, mogelijke genetische relaties, demografie en eerdere literatuur. Het hoofdstuk presenteert ook het corpus dat in dit boek wordt gebruikt en schetst de globale structuur van het YMA.

Hoofdstuk 2 geeft een overzicht van de segmentale en suprasegmentale fonologie van het YMA, door de foneeminventaris van de taal en de fundamentele fonologische eigenschappen van de YMA woorden en zinnen te beschrijven. In dat hoofdstuk worden ook een aantal fonologische processen besproken en de spelling die in dit werk wordt gebruikt.

Hoofdstuk 3 legt de basis voor de formele definitie van zelfstandige naamwoorden en werkwoorden in het YMA. De zelfstandige naamwoorden en de werkwoorden verschillen niet alleen door hun semantische eigenschappen, maar zij vertonen ook een verschillende syntactische distributie en morfologische mogelijkheden. Eén belangrijke parameter om zelfstandige naamwoorden en werkwoorden in de taal te onderscheiden betreft hun positie met betrekking tot de drie belangrijke clitic clusters van de taal en hun mogelijkheden om deze verschillende clusters te herbergen. Terwijl zelfstandige naamwoorden zeer weinig clitic types kunnen herbergen en alleen aan hun rechterkant, hebben de werkwoorden beide kanten geopend om verbindende morfemen te ontvangen, die ook diverser zijn dan in de nominale morfologie.

Hoofdstuk 4 onderzoekt de verschillende soorten zelfstandig naamwoorden in de taal. Wij zullen zien dat YMA drie hoofdtypes heeft, met verschillende morfologische structuren en syntactische eigenschappen. Ik behandel ook andere typisch nominale constituenten in het YMA, zoals persoonlijke en possessieve voornaamwoorden, demonstratieven en quantificerende elementen.

Hoofdstuk 5 richt zich op de verschillende soorten werkwoorden in het YMA. Wij zullen zien dat er vier basistypes van attributieve, positionele, dynamische en onregelmatige werkwoordstammen zijn, die allemaal door hun morfo-syntactische en semantische eigenschappen verschillen. Voorts zullen wij zien dat die stammen morfologisch eenvoudige woorden kunnen zijn - die van slechts één lexicaal element (de werkwoordwortel) worden gemaakt - of complexe woorden - ontbindbaar in een wortel en éen of meer dervationale morfemen. Het begrip flexibele wortels - d.w.z. wortels die als verschillende types verschijnen kunnen die van werkwoordstam, zonder derivatie - wordt ook besproken in dit hoofdstuk.

Hoofdstuk 6 behandelt de buitengewoon rijke en polysynthetische verbale morfologie van het YMA. De taal heeft de specifieke morfologie gewijd om verschillende categorieën voor tijd, aspect, plaats, richting en polariteit uit te drukken. De derivationele morfologie is ook vrij rijk in het YMA, waardoor de sprekers nieuwe
werkwoorden uit bijna om het even welk zelfstandig naamwoord (en ook van andere werkwoorden) te creëren. De morfologische mechanismen die werkwoorden in zelfstandige naamwoorden afleiden worden ook besproken.

Hoofdstuk 7 gaat over de argumentmarkerende strategieën die in het YMA worden gevonden. Naast woordvolgorde, die betreffende de plaatsing van het absolutieve argument vóór het werkwoord vrij rigide is, zullen wij zien dat YMA een naamvalssysteem en een reeks verbale indexen heeft om de syntactische configuratie van de zin uit te drukken.

Hoofdstuk 8 bespreekt niet-verbale predicatie, d.w.z. zinnen die geen werkwoord hebben of met een koppelwerkwoord. Wij zullen zien dat werkwoordsloze predikaten in de taal vrij zeldzaam zijn. Veel van de constructies die in andere talen vaak met werkwoordsloze zinnen gevormd worden, zoals attributieve, gelijkstellende, locatieve en possessieve predikaten, vereisen in het YMA een koppelwerkwoord of een lexicale verbale stam.

Hoofdstuk 9 behandelt mechanismen van de taal om verbale wijze en valentie te martkeren. Wij zullen zien dat het YMA verscheidene morfologische mogelijkheden heeft, dat de sprekers toestaat om de valentie van het werkwoord te verhogen door causatieve en applicatieve derivaties (twee soorten applicatieven) en te reduceren door wederkerende en wederkerige derivaties. De taal heeft ook twee mechanismen die alleen de diathese (wijs) van de zin aanpassen zonder de valentie te veranderen.

Hoofdstuk 10 bespreekt multi-verbale predikaten, die in zinnen voorkomen die meer dan één werkwoordstam bevatten. De multi-verbale predikaten in het YMA omvatten secundaire predicatie, bijwoordelijke modificatie, seriële werkwoordsconstructies en verschillende types van sterk geïntegreerdee onderschikking. In dit hoofdstuk vergelijk ik deze constructies onderling, in termen van de belangrijkste semantische en formele verschillen en parallellen.

Hoofdstuk 11 beschrijft de uitdrukking van de vijf categorieën voor evidentialiteit die in YMA teksten worden gevonden. Wij zullen zien dat de taal twee reeksen woorden ontwikkelde (\(k\) en \(m\) woorden) die in de meeste constructies voor

\section*{744 Yanomama clause structure}
evidentialiteit voorkomen. Deze woorden zijn, naast hun rol als evidentialiteitsmarkeerders, ook een alternatieve manier om verschillende werkwoordscategorieën (zoals tijd en ruimte) uit te drukken, waarvoor de taal een afzonderlijke en specifieke morfologie heeft, zoals uitgelegd in Hoofdstuk 6.

Hoofdstuk 12 behandelt niet-declatieve zinnen. Ik zal beschrijven hoe ja-nee vragen en de vragen over de argumenten van de zin in de taal gestructureerd zijn. Taalhandelingen zoals imperatief, prohibitief en permissief komen hier ook aan de orde.

Tot slot bespreekt Hoofdstuk 13 de dingen die voor de beschrijving en de analyse van het YMA nog moeten worden gedaan.

\section*{Curriculum vitae}

Helder Perri Ferreira was born on July 1st, 1976 in São Paulo, Brazil. He earned a Bachelor's degree in Portuguese Language and Literature from the University of São Paulo (USP/FFLCH) in 2001. In 2002, he moved to Roraima where he got involved in intercultural educational projects among the Yanomami people and eventually learned one of their languages. In 2009, he completed a Master's degree (cum laude) in Indoamerican Linguistics at the Centro de Investigaciones y Estudios Superiores en Antropología Social (CIESAS/MLI) in Mexico with a dissertation on the nominal classifiers of Yanomama. Helder has also been working in several documentation projects on different Yanomami languages, being the first to describe and document the Ỹaroamë variety of Serra do Pacu in 2011, a previously unknown Yanomami language. In 2010, he was awarded an ELDP small grant to document the Yanomama language of Papiu. This project received further support from Museu do Índio (Funai), the Instituto Socioambiental (ISA), Hutukara Associação Yanomami (HAY) and the Federal University of Minas Gerais (UFMG/FAE). Most of the examples used in this thesis were extracted from the archive that this documentation project has produced.```

[^0]: ${ }^{1}$ The strategies found in dependent clauses and multiclausal constructions are quite the same, except for the switch reference marking mechanisms present in the latter.

[^1]: ${ }^{1}$ In Papiu, there are two days in the month (every 3rd an 18th) when an airplane regularly comes from Boa Vista with supplies for the health care workers in the region.

[^2]: ${ }^{2}$ This has been changing recently, as some members of the Yanomami linguistic community have been developed their skills in those national languages quite reasonably. The number of fully bilingual speakers is still very low, however.

[^3]: ${ }^{3}$ Or after the last verb in a multi-verbal clause (cf. Chapter 10).
 ${ }^{4}$ The marker for hodiernal past in relatives is $=h a$ (see $\S 11.8$ for more details on relatives). This marker $=h a$ still appears with the m-words with the hodiernal meaning (see §11.3.5).

[^4]: ${ }^{5}$ SPT means "spatial morpheme."

[^5]: ${ }^{6}$ When a Yanomami hunter kills an animal, he may ask for the help of others by shouting or whistling in a conventional manner.

[^6]: ${ }^{7}$ i.e. not marked for reportative.

[^7]: ${ }^{8}$ Ramirez does not call this marker "clitic", but "incorpore"" and uses a plus sign + to indicate it. The members of the incorporé paradigm are basically the same of the sub-clusters A and B of the YMA and their formal properties are identical as well.
 ${ }^{9}$ Or Yanomami from Marauiá.

[^8]: ${ }^{10}$ This clause could be marked with the inferential $=n o$ instead.

[^9]: ${ }^{1}$ karukupuu and katëtëpuu are partial synonyms. Both verbs mean 'to restrain someone on the ground', but they differ in the posture adopted by the restrainer. While katëtëpuu implies that (s)he is using only the knees and the hands to keep the other still, karukupuu implies that the restrainer is hugging the other person with his/her whole body.

