Accepted Articles
Communication
Open Access

Rh(III)‐catalyzed C‐H Activation of Aryl‐Hydroxamates for the Synthesis of Isoindolinones

Herbert Waldmann

Corresponding Author

E-mail address: herbert.waldmann@mpi-dortmund.mpg.de

E-mail address: brigitte.rose@mpi-dortmund.mpg.de

Max-Planck-Institut für Molekulare Physiologie, Chemische Biologie, Otto-Hahn-Str. 11, 44227 Dortmund, GERMANY

Search for more papers by this author
Saad Shaaban

Max Planck Institut fur Molekulare Physiologie Abteilung Chemische Biologie, Chemische Biologie, GERMANY

Search for more papers by this author
Caitlin Davies

Max Planck Institut fur Molekulare Physiologie Abteilung Chemische Biologie, Chemische Biologie, GERMANY

Search for more papers by this author
Christian Merten

Ruhr-Universitat Bochum, Organische Chemie II, Bochum, GERMANY

Search for more papers by this author
Jana Flegel

Max Planck Institut fur Molekulare Physiologie Abteilung Chemische Biologie, Chemische Biologie, GERMANY

Search for more papers by this author
Felix Otte

Technische Universitat Dortmund, Inorganische Chemie, GERMANY

Search for more papers by this author
Carsten Strohmann

Technische Universitat Dortmund, Inorganische Chemie, GERMANY

Search for more papers by this author
First published: 19 May 2020

Abstract

We report a Rh(III)‐catalyzed C‐H functionalization reaction yielding isoindolinones from aryl‐hydroxamates and ortho‐substituted styrenes. The reaction proceeds smoothly under mild conditions at room temperature, and tolerates a range of functional groups. Experimental and computational investigations support that the high regioselectivity observed for these substrates results from the presence of an ortho‐substituent embedded in the styrene. The resulting isoindolinones are valuable building blocks for the synthesis of bioactive compounds. They provide  easy access to the natural product‐like compounds, isoindolobenzazepines, in a one‐pot‐two‐step reaction. Selected isoindolinones inhibited Hedgehog (Hh)‐dependent differentiation of multipotent murine mesenchymal progenitor stem cells into osteoblasts.