Producing Collisions for Panama, Instantaneously

Joan Daemen and Gilles Van Assche
gro.noekeon@noekeon.org

STMicroelectronics, Zaventem, Belgium

Abstract

We present a practical attack on the Panama hash function that generates a collision in 2^{6} evaluations of the state updating function. Our attack improves that of Rijmen and coworkers that had a complexity 2^{82}, too high to produce a collision in practice. This improvement comes mainly from the use of techniques to transfer conditions on the state to message words instead of trying many message pairs and using the ones for which the conditions are satisfied. Our attack works for any arbitrary prefix message, followed by a pair of suffix messages with a given difference. We give an example of a collision and make the collisiongenerating program available. Our attack does not affect the Panama stream cipher, that is still unbroken to the best of our knowledge.

Keywords: symmetric cryptography, hash function, collision

1 Introduction

A cryptographic hash function maps a message of arbitrary length to a fixedsize output called a digest. One of the requirements for a cryptographic hash function is collision-resistance: it should be infeasible to to find two different messages that give the same digest.

Panama can be used both as a hash function and as a stream cipher. In the scope of this paper, we will consider only on the hash part. Our attack does not have impact on the security of the Panama stream cipher. Internally, Panama has a state and a buffer, which evolve using a state updating function. For every block of message, the state updating function transforms the state and the buffer. We describe Panama in Sec. 2.

In this article, we describe a method to produce collisions for the PANAMA hash function that refines the method of Rijmen and coworkers [2] and reduces the workload from 2^{82} to 2^{6} applications of the state updating function. We can therefore generate collisions quasi instantaneously. Furthermore, there are many degrees of freedom in the produced messages. The attack works for any initial value of the state. This means that one can find a collision with a pair of messages $\left(M_{1}\left|M, M_{1}\right| M^{*}\right)$ with an arbitrary prefix M_{1}. Here, the message parts M and M^{*} have a fixed difference $M^{\prime}=M+M^{*}$. Furthermore, the attacker
can append an arbitrary suffix M_{2} to both collision messages, independently of M_{1}, M and M^{*}. We discuss the structure of the attack in Sec. 3.

Like in [2], we use a differential trail (called differential path in [2]) that leads to a zero difference in state and buffer. A differential trail specifies both the message differences and the differences in the state and in the buffer. For a pair of messages to follow the right differences in the state, a subset of the state bits must satisfy specific conditions. In the attack in [2], part of these conditions were transferred to equations on message words while the remaining ones were satisfied by trying many different message pairs and picking out those for which these conditions happened to be satisfied. In our attack, we transfer all conditions to equations on message bits using some simple new techniques explained in Sec. 4. The transfer of equations has negligible workload.

Although very similar, our trail is different from that of [2]. We chose a trail such that the conditions on the state are more easily transferable to equations on the message bits. We describe it in Sec. 5 and all its conditions and their transfer in Sec. 6.

2 Description of Panama

The internal memory of Panama is composed of 273 32-bit words (hereby denoted words) and is organized in two parts: [1]

- the state, with 17 words denoted a_{0} through a_{16}, and
- the buffer, which is an array of 32×8 words, denoted $b_{i, j}$ with $0 \leq i \leq 31$ and $0 \leq j \leq 7$. (Note that b_{i} indicates a block of 8 words $b_{i, 0} \ldots b_{i, 7}$.)

The + sign applied on bits denotes the exclusive or (xor) operation and on words the bitwise xor. In subscripts of the state a, it denotes modulo- 17 addition.

The message to hash is padded and divided into blocks of 8 words (i.e., 256 bits) each. It is processed as follows. First, both the state and the buffer are initialized to 0 . Then, for each message block $p=\left(p_{0}, p_{1}, \ldots, p_{7}\right)$ (i.e., for each round), the following operations are applied:

- the state undergoes a non-linear transformation $\theta \circ \pi \circ \gamma$, with

$$
\begin{aligned}
\gamma & : a_{i} \leftarrow a_{i}+\left(a_{i+1}+\overline{0}\right) a_{i+2}+\overline{0} \\
\pi & : a_{i} \leftarrow a_{7 i \bmod 17} \ggg i(i+1) / 2 \\
\theta & : a_{i} \leftarrow a_{i}+a_{i+1}+a_{i+4}
\end{aligned}
$$

where the invisible multiplication indicates the bitwise and, $\overline{0}$ denotes the word with 32 bits 1 , and \ggg cyclic right shift of the bits within a word;

- the least significant bit of a_{0} is flipped: $a_{0} \leftarrow a_{0}+1$;
- the message block is xored into the state:

$$
a \leftarrow a+f_{\mathrm{i} \rightarrow \mathrm{~s}}(p) \Leftrightarrow a_{i+1} \leftarrow a_{i+1}+p_{i}, 0 \leq i \leq 7 ;
$$

- eight words of the buffer are xored into the state:

$$
a \leftarrow a+f_{\mathrm{b} \rightarrow \mathrm{~s}}\left(b_{16}\right) \Leftrightarrow a_{i+9} \leftarrow a_{i+9}+b_{16, i}, 0 \leq i \leq 7 ;
$$

- the buffer undergoes a linear feedback shift register (LFSR) step:

$$
\begin{aligned}
b_{i} & \leftarrow b_{i-1 \bmod 32} \quad(i \neq 25), \\
b_{25} & \leftarrow b_{24}+r\left(b_{31}\right),
\end{aligned}
$$

where the function r is defined as $Y=r(X) \Leftrightarrow Y_{j}=X_{j+2 \bmod 8}$;

- the message block is xored into the buffer: $b_{0, i} \leftarrow b_{0, i}+p_{i}, 0 \leq i \leq 7$.

After all the message blocks are processed, 33 extra rounds are performed, called blank rounds. These rounds use the state updating function, with the difference that a part of the state (instead of a message block) is input into the buffer: $b_{0, i} \leftarrow b_{0, i}+a_{i+1}, 0 \leq i \leq 7$.

Finally, the digest is extracted from the state after the blank rounds.

3 Structure of the attack

The first thing to note is that the presence of the blank rounds makes it hard to produce a collision in the digest if there is a difference in either the state or the buffer after all the message blocks are input. Due to the invertibility of the state updating function such a difference will not cancel out. Moreover, the lack of external input and the propagation properties of the state updating function give the attacker almost no control over the final difference. Therefore, our goal is to produce a collision in both the state and the buffer before the blank rounds.

We produce a collision by following a trail. Two instances of Panama process two different messages (p and $p+d p$), which have a given difference $(d p)$. The trail also specifies the differences in the state $(d a)$ and in the buffer $(d b)$ between the two instances of Panama, at each round. So, not only the two messages must have the given difference, they must also produce the right difference in the state and in the buffer.

We shall now describe the general structure of the trail used in the scope of this article. We will first talk about the sequence of message differences, then about the differences in the state.

In the sequel, the round numbers are specified between brackets in superscript: . ${ }^{(i)}$. The convention is that $p^{(i)}$ is the message block processed during round i, and $a^{(i)}$ is the value of the state after round i.

3.1 Collision in the buffer

The buffer evolves independently from the state and is linear. As noticed in [2], the following message difference sequence gives a collision in the buffer for any x :

$$
\begin{equation*}
d p^{(1)}=x, d p^{(8)}=r(x), d p^{(33)}=x, \text { all other differences } 0 \tag{1}
\end{equation*}
$$

After 32 rounds, we have $d b_{24}=r(x)$ and $d b_{31}=x$. After the 33 rd round, we get:

$$
\begin{aligned}
d b_{25} & \leftarrow d b_{24}+r\left(d b_{31}\right)=r(x)+r(x)=0 \\
d b_{0} & \leftarrow d b_{31}+d p^{(33)}=x+x=0
\end{aligned}
$$

Thanks to the linearity of the buffer, any combination of shifted instances of the sequence (1) results in a collision in the buffer. In [2], two such sequences are used, one distant of two rounds from the other. In this paper, we instead use three such sequences at three consecutive rounds. More precisely, the message sequence is as follows (only non-zero differences are indicated):

$$
\begin{array}{ll}
\left(d p^{(1)}, d p^{(2)}, d p^{(3)}\right) & =\left(d^{(1)}, d^{(2)}, d^{(3)}\right) \\
\left(d p^{(8)}, d p^{(9)}, d p^{(10)}\right) & =\left(r\left(d^{(1)}\right), r\left(d^{(2)}\right), r\left(d^{(3)}\right)\right. \\
\left(d p^{(33)}, d p^{(34)}, d p^{(35)}\right) & =\left(d^{(1)}, d^{(2)}, d^{(3)}\right)
\end{array}
$$

3.2 Collision in the state

The state is influenced both by the message blocks and by the buffer words in b_{16}. Let us summarize the sequence of differences that are xored into the state, both from the message block and from b_{16} :

I Rounds $r=i+0$: State gets difference $d p^{(r)}=d^{(i)}$
II Rounds $r=i+7$: State gets difference $d p^{(r)}=r\left(d^{(i)}\right)$
III Rounds $r=i+17$: State gets difference $d b_{16}^{(r)}=d p^{(r-17)}=d^{(i)}$
IV Rounds $r=i+24$: State gets difference $d b_{16}^{(r)}=d p^{(r-17)}=r\left(d^{(i)}\right)$
\mathbf{V} Rounds $r=i+32$: State gets difference $d p^{(r)}=d^{(i)}$
with $1 \leq i \leq 3$.
After the three rounds in each of the five sequences described above, we will make sure that we have a collision in the state. These are called subcollisions. After the last subcollision, we have both a collision in the state and in the buffer, and we are thus guaranteed to obtain the same digest after the blank rounds.

Before we explain how to obtain a subcollision, we need to detail the properties of the difference propagation in γ, the only non-linear operation of the state updating function.

3.3 Difference propagation through γ

Since γ is composed only of bitwise operations, we will only talk about γ as if it operates on 17 bits in this current subsection. The actual γ on words can be seen as 32 such operations in parallel.

Assume that the input of one instance of γ is a, while the input of the other instance is $a+d a$. For a given input difference $d a$, not all output differences are possible. The output difference $d c=\left(d c_{0}, \ldots, d c_{16}\right)$ is determined by the following equation:

$$
d c_{i}=\gamma_{i}(d a)+d a_{i+1} a_{i+2}+d a_{i+2} a_{i+1}+1
$$

where $\gamma_{i}(a)=a_{i}+\left(a_{i+1}+1\right) a_{i+2}+1$ denotes a particular output bit of γ.
Hence, we can obtain an output difference $d c$ from a given input difference $d a$ only if a satisfies some conditions. These are as follows:

$$
\begin{align*}
& \text { If } d a_{i+1}=1 \text { and } d a_{i+2}=0, \text { then } a_{i+2}=d c_{i}+\gamma_{i}(d a)+1 \tag{2}\\
& \text { If } d a_{i+1}=0 \text { and } d a_{i+2}=1, \text { then } a_{i+1}=d c_{i}+\gamma_{i}(d a)+1 \tag{3}\\
& \text { If } d a_{i+1}=1 \text { and } d a_{i+2}=1, \text { then } a_{i+1}+a_{i+2}=d c_{i}+\gamma_{i}(d a)+1 \tag{4}
\end{align*}
$$

We call conditions of type (2) and (3) simple conditions and conditions of type (4) two-bit parity conditions. We call a differential ($d a, d c$) for which the set of conditions has a solution a possible differential.

Note that the input difference $d a$ fully determines the positions of the state bits a_{i} that are subject to conditions. Assume that we have n consecutive 1 s in the pattern $d a$, i.e., we have $d a_{i}=d a_{i+n+1}=0$ and in between $d a_{i+l}=1$ $(1 \leq l \leq n)$. Then there are simple conditions on a_{i} and on a_{i+n+1}, and $n-1$ two-bit parity conditions on $a_{i+l}+a_{i+l+1}(1 \leq l<n)$. This can be applied to all such patterns in $d a$.

From this follows that the number of conditions is equal to the Hamming weight of $d a$ plus the number of 001 patterns in $d a$. (For the particular case of $d a=11111111111111111$, there are 16 independent two-bit parity conditions.) We denote by $w(d a)$ the number of conditions due to $d a$.

3.4 Specifying the trail

For our attack to work, we wish to determine equations on the message bits that imply the five subcollisions. In the previous subsection we have shown that given a possible differential ($d a, d c$) over γ, we obtain conditions on input bits of γ.

Consider now subcollision I. Before the first round, there is no difference in the state, hence $d a^{(0)}=0$. At the input of the second round, the message difference appears in the state: $d a^{(1)}=f_{\mathrm{i} \rightarrow \mathrm{s}}\left(d^{(1)}\right)$. This determines the input difference of γ in round 2 . We now need to specify the output of γ in the second round, but we can equivalently specify $d a^{(2)}$, as the other operations are linear. After the third round, the fact that we have a collision in the state imposes that $d a^{(3)}=0$, yielding at the output of the third round a difference equal to $f_{\mathrm{i} \rightarrow \mathrm{s}}\left(d^{(3)}\right)$. Hence a value for $d a^{(2)}$ must be chosen such that differentials $\left(f_{\mathrm{i} \rightarrow \mathrm{s}}\left(d^{(1)}\right), \pi^{-1} \circ \theta^{-1}\left(d a^{(2)}+f_{\mathrm{i} \rightarrow \mathrm{s}}\left(d^{(2)}\right)\right)\right)$ and $\left(d a^{(2)}, \pi^{-1} \circ \theta^{-1}\left(f_{\mathrm{i} \rightarrow \mathrm{s}}\left(d^{(3)}\right)\right)\right)$ over γ are possible. For a given message difference sequence $d^{(1)}, d^{(2)}, d^{(3)}$ there may be several, one or none such values of $d a^{(2)}$. Note that the first differential imposes conditions on $a^{(1)}$ and the second one on $a^{(2)}$.

As θ and π are linear, it follows that a possible differential over the stateupdating function imposes conditions on bits of the state $a^{(i)}$. Doing this for differentials over more rounds is more difficult and we avoid it in out attack. Therefore, for each round in which there is non-zero input difference in the state, we need to know the output difference.

For subcollisions II to V, applying the same reasoning leads to following round differentials, which we write as differentials over $\theta \circ \pi \circ \gamma$ for compactness:

$$
\begin{array}{clll}
\text { I }\left(f_{\mathrm{i} \rightarrow \mathrm{~s}}\left(d^{(1)}\right),\right. & \left.d a^{(2)}+f_{\mathrm{i} \rightarrow \mathrm{~s}}\left(d^{(2)}\right)\right) & \left(d a^{(2)},\right. & \left.f_{\mathrm{i} \rightarrow \mathrm{~s}}\left(d^{(3)}\right)\right) \\
\text { II }\left(f_{\mathrm{i} \rightarrow \mathrm{~s}}\left(r\left(d^{(1)}\right)\right),\right. & \left.d a^{(9)}+f_{\mathrm{i} \rightarrow \mathrm{~s}}\left(r\left(d^{(2)}\right)\right)\right) & \left(d a^{(9)},\right. & \left.f_{\mathrm{i} \rightarrow \mathrm{~s}}\left(r\left(d^{(3)}\right)\right)\right) \\
\text { III }\left(f_{\mathrm{b} \rightarrow \mathrm{~s}}\left(d^{(1)}\right),\right. & \left.d a^{(19)}+f_{\mathrm{b} \rightarrow \mathrm{~s}}\left(d^{(2)}\right)\right) & \left(d a^{(19)},\right. & \left.f_{\mathrm{b} \rightarrow \mathrm{~s}}\left(d^{(3)}\right)\right) \\
\text { IV }\left(f_{\mathrm{b} \rightarrow \mathrm{~s}}\left(r\left(d^{(1)}\right)\right),\right. & d a^{(26)}+f_{\mathrm{b} \rightarrow \mathrm{~s}}\left(r\left(d^{(2)}\right)\right) & \left(d a^{(26)},\right. & \left.f_{\mathrm{b} \rightarrow \mathrm{~s}}\left(r\left(d^{(3)}\right)\right)\right) \\
\mathbf{V}\left(f_{\mathrm{i} \rightarrow \mathrm{~s}}\left(d^{(1)}\right),\right. & \left.d a^{(34)}+f_{\mathrm{i} \rightarrow \mathrm{~s}}\left(d^{(2)}\right)\right) & \left(d a^{(34)},\right. & \left.f_{\mathrm{i} \rightarrow \mathrm{~s}}\left(d^{(3)}\right)\right)
\end{array}
$$

Hence, the trail is fully determined by the sequence $\left(d^{(1)}, d^{(2)}, d^{(2)}\right)$, and the 5 state differences $d a^{(2)}, d a^{(9)}, d a^{(19)}, d a^{(26)}$ and $d a^{(34)}$. Because the structure of the subcollisions I and V are equal, we can fix $d a^{(34)}=d a^{(2)}$.

3.5 Symmetric patterns

Like in [2], we use differences with words that are either 0 or $\overline{0}$. This causes the intra-word rotations in π to have no influence on the difference pattern, as all other operations in the state updating function work in a bitwise fashion.

Let us translate this in the case of the word-oriented γ. We can view Equations (2)-(4) as 32 parallel conditions on the bits of the state words. Thanks to the fact that all the difference words $d a_{i}$ are either 0 or $\overline{0}$, the words a_{j} on which these conditions apply are the same for the 32 bits; either all or none of the 32 bits of a word a_{j} are affected by a condition. Hence, the equations can be written word-wise. Note however that this does not restrict the value of the state or of the message words to be either 0 or $\overline{0}$, only the differences.

4 Techniques for equation transfer

For a given trail, we have seen in Sec. 3.3 how to express conditions on the state a to get the right output differences. In this section, we explain how to transfer these equations to the message words that the attacker can choose.

We will see that the equations are never transferred to more than two rounds before the start of the subcollision, so there is no overlap between the equations derived from different subcollisions and hence we can satisfy them sequentially.

As the discussion below is generic for all five subcollisions, let us use a common convention. For $j \in\{1,8,18,25,33\}$, we denote the various stages of the state transformation with the following symbols:

$$
\begin{aligned}
& \xrightarrow{+p^{(j-2)}} \mathrm{N} \xrightarrow{\gamma} \mathrm{O} \xrightarrow{\theta \circ \pi} \mathrm{P} \xrightarrow{+p^{(j-1)}} \mathrm{Q} \\
& \mathrm{Q} \xrightarrow{\gamma} \mathrm{R} \xrightarrow{\theta \circ \pi} \mathrm{~S} \xrightarrow{+p^{(j)}} \mathrm{T} \\
& \mathrm{~T} \xrightarrow{\gamma} \mathrm{U} \xrightarrow{\theta \circ \pi} \mathrm{~V} \xrightarrow[p^{(j+1)}]{+\mathrm{W}} \\
& \mathrm{~W} \xrightarrow{\gamma} \mathrm{X} \xrightarrow{\theta \circ \pi} \mathrm{Y} \xrightarrow{+p^{(j+2)}} \mathrm{Z} .
\end{aligned}
$$

At a given time, the corresponding italic letter denotes the state value.
Although we will follow a reasoning going backwards from Z down to T, Q or N , the attack works in practice in the forward direction. As the conditions are being satisfied, the state is updated with the known values.

For each subcollision, we wish to have a collision in the state at time Z, hence to have $d Z=0$. This determines $d Y=f_{\mathrm{i} \rightarrow \mathrm{s}}\left(d p^{(j+2)}\right)$ or $d Y=f_{\mathrm{b} \rightarrow \mathrm{s}}\left(d b_{16}^{(j+1)}\right)$, together with the difference pattern $d X$ via $\pi^{-1} \circ \theta^{-1}$. The trail also specifies the patterns $d W$ and $d T$ (and indirectly $d U$). The differential $(d T, d U)$ over γ implies conditions on T and $(d W, d X)$ on W. The attacker must satisfy them by choosing appropriate values for $p^{(j-2)}, p^{(j-1)}, p^{(j)}$ and $p^{(j+1)}$.

The conditions are either simple, i.e., of type $W_{i}=$ target or two-bit parity conditions $W_{i}+W_{i+1}=$ target where "target" is a known value.

In the sequel, we often speak about the left and right hand sides of an equation. As a convention, the left hand side contains one isolated variable to be solved, while the right hand side contains other variables that are determined from other equations or set to arbitrary values.

4.1 Immediate satisfaction in W

Simple conditions on words W_{1} through W_{8} can be satisfied by setting the value of $p^{(j+1)}$ accordingly. We call this immediate satisfaction:

$$
\begin{equation*}
W_{i}=\operatorname{target} \rightarrow p_{i-1}^{(j+1)}=V_{i}+\operatorname{target}(\text { if } 1 \leq i \leq 8) \tag{5}
\end{equation*}
$$

The value of V_{i} is determined by the value of T.
A two-bit parity condition $W_{i}+W_{i+1}=$ target can be satisfied whenever (at least) one of the two words can be modified through p, that is, when $0 \leq i \leq 8$. For $i=0$ or $i=8$, we have:

$$
\begin{aligned}
& W_{0}+W_{1}=\text { target } \rightarrow p_{0}^{(j+1)}=V_{0}+V_{1}+\text { target }, \text { and } \\
& W_{8}+W_{9}=\text { target } \rightarrow p_{7}^{(j+1)}=V_{8}+V_{9}+\text { target } .
\end{aligned}
$$

If $1 \leq i \leq 7$, however, the value of another message word must be taken into account. This other message word must be treated as known and its value may either be fixed by other conditions or set to an arbitrary value. We have either

$$
\begin{aligned}
& W_{i}+W_{i+1}=\text { target } \rightarrow p_{i-1}^{(j+1)}=V_{i}+V_{i+1}+p_{i}^{(j+1)}+\text { target }, \text { or } \\
& W_{i}+W_{i+1}=\text { target } \rightarrow p_{i}^{(j+1)}=V_{i}+V_{i+1}+p_{i-1}^{(j+1)}+\text { target } .
\end{aligned}
$$

4.2 Bridge from W to T

The conditions on W that cannot be satisfied immediately can be transferred to equations at time U via $\pi^{-1} \circ \theta^{-1}$.

A condition on some W_{i} can be converted into an equation in three words of U. For instance, assume we have to satisfy $W_{10}=0$. We know that

$$
W_{10}=\left(U_{2} \lll 3\right)+\left(U_{9} \lll 45\right)+\left(U_{13} \lll 91\right)
$$

In this case, U_{2} will be influenced directly by the message words $p^{(j)}$, and this makes it an ideal candidate for immediate satisfaction in T. So, let us isolate this variable and write:

$$
U_{2}=\left(\left(U_{9} \lll 45\right)+\left(U_{13} \lll 91\right)\right) \ggg 3 .
$$

Remember that the terms U_{9} and U_{13} at the right hand side are treated as known values.

In more general terms, a simple condition on W_{i} is converted into an equation on $U_{7 i}^{\pi}+U_{7(i+1)}^{\pi}+U_{7(i+4)}^{\pi}$, with $U_{i}^{\pi}=U_{i} \lll i(i+1) / 2$. One can choose to isolate one of the three variables $U_{7 i}, U_{7(i+1)}$ or $U_{7(i+4)}$. Then, the cyclic rotation on the left hand side can be replaced by its inverse on the right hand side. For instance, the isolation of $U_{7 i}$ gives the following:

$$
\begin{equation*}
W_{i}=\text { target } \rightarrow U_{7 i}=\left(U_{7(i+1)}^{\pi}+U_{7(i+4)}^{\pi}+\text { target }\right) \ggg 7 i(7 i+1) / 2, i \neq 0 \tag{6}
\end{equation*}
$$

while the constant 1 must be taken care of in the case of the word $i=0$, for instance we can isolate U_{0} as $U_{0}=U_{7}^{\pi}+U_{11}^{\pi}+$ target +1 .

Similarly, a two-bit parity condition on $W_{i}+W_{i+1}$ is converted into an equation on $U_{7 i}^{\pi}+U_{7(i+2)}^{\pi}+U_{7(i+4)}^{\pi}+U_{7(i+5)}^{\pi}$. Again, one can choose to isolate either of the four variables.

An equation of the type $U_{i}=$ target can be written as $T_{i}+\left(\overline{0}+T_{i+1}\right) T_{i+2}=$ target $+\overline{0}$. One can transfer the equation on T_{i} by treating T_{i+1} and T_{i+2} as known values:

$$
\begin{equation*}
U_{i}=\text { target } \rightarrow T_{i}=\left(\overline{0}+T_{i+1}\right) T_{i+2}+\text { target }+\overline{0} . \tag{7}
\end{equation*}
$$

Combining the substitutions (6) and (7) is called a bridge. Together with the immediate satisfaction, this is the technique we used most often in our collisiongenerating algorithm.

Of course, all the conditions on T_{1} through T_{8} are immediately satisfiable by setting the appropriate value in $p^{(j)}$ as in Equation (5) with W and V replaced by T and S, respectively.

4.3 Side bridge

An interesting special case is an equation on $U_{0}=$ target. Since an equation on T_{0} cannot be immediately satisfied via p_{j}, we can instead create two equations on T_{1} and T_{2}. We can choose from three ways of creating two equations:

$$
\begin{array}{ll}
U_{0}=\text { target } \rightarrow T_{1}=T_{0}+\text { target } & \text { and } T_{2}=\overline{0} \\
U_{0}=\text { target } \rightarrow T_{1}=0 & \text { and } T_{2}=T_{0}+\text { target }+\overline{0} \\
U_{0}=\text { target } \rightarrow T_{1}=T_{0}+\text { target } & \text { and } T_{2}=T_{0}+\text { target }+\overline{0}
\end{array}
$$

In the sequel, this technique is called a side bridge. Note that this technique can also be used on other word positions.

Fig. 1. Schematic illustration of some of the equation transfer techniques. (a) A condition in one of the words $a_{1 \ldots 8}^{(j+1)}$ can be immediately satisfied via $p^{(j+1)}$. (b) Otherwise, this condition has to be bridged to the previous round. Preferably, it is bridged to one of the words $a_{1 \ldots 8}^{(j)}$ so that it can be satisfied via $p^{(j)}$. (c)-(d) Sometimes, a bridge (c) must be accompanied by an additional equation (d) to remove circular dependencies. (e) Of course, this additional equation must be also be bridged or satisfied somewhere (not shown explicitly). (f) Conditions can also appear in round j; here is an example of such a condition that can be immediately satisfied via $p^{(j)}$. (g)-(h)-(i) Bridging a condition to the word $0(\mathrm{~g})$ does not allow immediate satisfaction. Instead, it is possible to side-bridge it to two equations, one on word 1 (h) and one on word 2 (i).

4.4 Dependency removal

As said in the beginning of Sec. 4, when solving an equation, all terms on the right hand side must be known. This imposes constraints on the order in which the equations are solved. In some cases, it may be necessary to remove circular dependencies on the way from U to T . For instance, assume that we have three equations on U :

$$
\begin{align*}
& U_{4}=\text { target } \tag{8}\\
& U_{6}=\text { target } \tag{9}\\
& U_{8}=U_{4}+\text { target (up to rotation). } \tag{10}
\end{align*}
$$

When transferring from U to T , (8) requires T_{5} and T_{6} to be known, hence that (9) is already solved for T_{6}. In turn, (9) requires T_{7} and T_{8} to be known, hence
that (10) is solved for T_{8}. But (10) requires that T_{4} is known so that (8) must be solved. To remove this circular set of dependencies, we can force $T_{7}=\overline{0}$ so that $U_{6}=T_{6}+\left(T_{7}+\overline{0}\right) T_{8}+\overline{0}=T_{6}+\overline{0}$ does not depend on T_{8} any more. The dependency of (9) on (10) is removed, and we can solve (9), then (8), then (10).

In more general terms, we can set $T_{i+1}=\overline{0}$ (resp. $T_{i+2}=0$) for the equation on $U_{i}=$ target, so that the converted equation on T_{i} has no dependency on T_{i+2} (resp. T_{i+1}). In the sequel, this technique is called dependency removal. To sum up, one can apply either:

$$
\begin{aligned}
& U_{i}=\text { target } \rightarrow T_{i}=\text { target }+\overline{0} \text { and } T_{i+1}=\overline{0}, \text { or } \\
& U_{i}=\text { target } \rightarrow T_{i}=\text { target }+\overline{0} \text { and } T_{i+2}=0 .
\end{aligned}
$$

The dependency removal and the other techniques are illustrated in Fig. 1.

4.5 The conditions due to differential ($d T, d U$)

The differential $(d T, d U)$ fixes some words of T. These words are therefore not available for bridges coming from W. Fortunately, there are some degrees of freedom on the way from W to T to avoid conflicts. For instance, one should choose adequately the component of U that will be isolated on the left hand side. For the attack to work, there must be a way to satisfy and bridge the equations in a non-conflicting way.

The equations on T in turn can be bridged to equations on Q. The conditions on Q_{1} through Q_{8} can then be satisfied via $p^{(j-1)}$.

However, one must pay careful attention to equation dependencies. When for example choosing $p^{(j)}$ to satisfy a condition in W, it has an impact on the state at time T and subsequent rounds. Indeed, changing the value of T_{i} influences the values of U_{i-2}, U_{i-1} and U_{i}. Hence care must be taken, when solving equations that are the result of bridges, that equations solved earlier are not affected. In general, dependency problems become more difficult to manage as the number of bridges grows.

4.6 Solving the equations by correction

When all bridges are determined along with their dependencies, solving the equations is fairly simple and does not involve much more than an evaluation of the state updating function. This is thanks to the fact that the equations are made linear once the right hand side is determined. Let us illustrate this with an example.

Assume that we need to satisfy $W_{9}=0$. Since immediate satisfaction is not possible, we decide to bridge this condition to $T_{6}=$ target (via an equation on U_{6}). At this stage, we do not calculate the actual value of target, but we influence T_{6} through $p_{5}^{(j)}$. So, we evaluate the state updating function for round j with $p_{5}^{(j)}=0$ and then the state updating function for round $j+1$. After this, we obtain W_{9}^{*}, which may not be zero as we wished. However the linearity
of the equations implies that we can reuse the value W_{9}^{*} (up to a rotation) to determine $p_{5}^{(j)}$. Since U_{6} is rotated by $6(6+1) / 2=21$ positions, we can simply set $p_{5}^{(j)}=W_{9}^{*} \ggg 21$ and we automatically get $W_{9}=0$.

In short, the linearity allows us to satisfy a condition by correcting the corresponding message word. The right value of the message word is determined (up to a rotation) by the correction to bring to the state word under condition.

The reasoning for satisfying and bridging equations is done backwards in time. In contrast, solving them by correction works forwards in time, and the rounds are evaluated sequentially. The state updating function may be evaluated several times, an extra evaluation being needed for each correction.

The dependencies between equations play an important role in the order in which the corrections are applied. In the same way the right hand side of an equation must be known when solving it, a correction shall not affect equations that have been satisfied earlier.

5 The chosen trail

To choose a suitable trail, an important parameter to consider is the number of conditions on T and on W in the five subcollisions. Actually, this number should be split in the number of conditions that can be immediately satisfied and those that need to be bridged.

To make a trail easy to exploit using the techniques described in Sec. 4, the application of immediate satisfaction and the bridges coming from the later rounds should as much as possible fit within the 8 message words each round. One can chain bridges over several rounds, but as more rounds are bridged dependencies become increasingly difficult to manage. Generally speaking, the higher the number of conditions to bridge, the more difficult it will be to fit them all on a small number of rounds.

The number of conditions in the first subcollision is $w\left(d a^{(1)}\right)$ in T and $w\left(d a^{(2)}\right)$ in W. The number of conditions for the other four subcollisions are $\left(w\left(d a^{(i)}\right), w\left(d a^{(i+1)}\right)\right)$ with $i=8,18,25$ and 33 . Note that the fifth subcollision is identical to the first one. We split each of these numbers $w(d a)$ as $w(d a)=w_{\text {is }}(d a)+w_{\mathrm{b}}(d a)$, where $w_{\mathrm{is}}(d a)$ is the number of conditions that can be immediately satisfied and $w_{\mathrm{b}}(d a)$ that must be bridged.

As a heuristic criterion, we minimize the maximum number of conditions to bridge:

$$
W_{\mathrm{b}}=\max _{i}\left\{w_{\mathrm{b}}\left(d a^{(i)}\right)\right\} .
$$

We have searched exhaustively through all $255^{2} 256$ patterns $\left(d^{(1)}, d^{(2)}, d^{(3)}\right)$ and selected the one that has a collision trail with a minimal W_{b}. This resulted in the trail determined by following values:
$-d^{(1)}=00000101, d^{(2)}=11010000, d^{(3)}=01111011$,
$-d a^{(2)}=10111110000000101$,
$-d a^{(9)}=00100011101011000$,

$$
-d a^{(19)}=00010111001100000 \text { and }
$$

$$
-d a^{(26)}=11111100111010010
$$

where each digit represents a word either all-zero (0) or all-one (1); the word positions increase from left to right. The number of conditions that can be immediately satisfied or bridged is given in Table 1 below. As a comparison, the trail used in [2] has $W_{b}=7$, while our trail has $W_{b}=5$.

	I		II		III		IV	
	$d a^{(1)}$	$d a^{(2)}$	$d a^{(8)}$	$d a^{(9)}$	$d a^{(18)}$	$d a^{(19)}$	$d a^{(25)}$	$d a^{(26)}$
w_{is}	2	6	3	5	0	5	0	8
w_{b}	1	3	0	4	3	3	3	5

Table 1. Number of conditions in the trail used in our attack.

6 Equation transfer in the chosen trail

In this section, we describe in detail how the equations are transferred to the message words using the techniques in Sec. 4 for the trail specified in Sec. 5.

6.1 Subcollisions I and V

For round 1 , we have the following differences:

$d b_{16}^{(0)}=00000000$	$d a^{(0)}=00000000000000000=d Q$
$d p^{(1)}=00000101$	Round 1
$d a^{(1)}=00000010100000000=d T$	$d U=00001001100000000$

From the pattern in $d T$, we can see that we have three conditions on T_{5}, T_{7} and T_{9}, namely

$$
\begin{align*}
& T_{5}=d U_{4}+\gamma_{4}(d T)+\overline{0}=0 \tag{11}\\
& T_{7}=d U_{6}+\gamma_{6}(d T)+\overline{0}=d U_{5}+\gamma_{5}(d T)+\overline{0}=0 \tag{12}\\
& T_{9}=d U_{8}+\gamma_{8}(d T)+\overline{0}=\overline{0} \tag{13}
\end{align*}
$$

The equations (11) and (12) can be immediately satisfied in round 1 via $p_{4}^{(1)}$ and $p_{6}^{(1)}$, whereas (13) must be bridged to Q :

$$
\begin{equation*}
T_{9}=\overline{0} \rightarrow Q_{2}=\left(\left(\overline{0}+Q_{3}\right) Q_{4}+\overline{0}\right)+\left(R_{6}^{\pi}+R_{12}^{\pi}+\overline{0}\right) \ggg 3, \tag{14}
\end{equation*}
$$

which can be immediately satisfied in round 0 via $p_{1}^{(0)}$. Note that this implies that $Q_{3}, Q_{4}, \ldots, Q_{8}, Q_{12}, Q_{13}$ and Q_{14} are known when solving for Q_{2}.

Then for round 2, we have the following differences:

$d b_{16}^{(1)}=00000000$	
$d p^{(2)}=11010000$	Round 2
$d a^{(2)}=10111110000000101=d W$	$d X=01110010000001111$

From the pattern in $d W$, this imposes nine conditions on $W_{0}+W_{16}, W_{1}$, $W_{2}+W_{3}, W_{3}+W_{4}, W_{4}+W_{5}, W_{5}+W_{6}, W_{7}, W_{13}$ and W_{15}. We will not detail the right hand sides of the corresponding equations, as they can easily be found as explained in Sec. 3.3. The equations on the words W_{1} through W_{7} can be immediately satisfied via $p^{(2)}$. The other equations are solved as follows:

- The condition on $W_{0}+W_{16}$ can be transferred to an equation on $U_{4}^{\pi}+U_{7}^{\pi}+$ $U_{10}^{\pi}+U_{11}^{\pi}$. We isolate U_{4} on the left hand side and transfer it to an equation on T_{4}, which can be immediately satisfied via $p_{3}^{(1)}$. (Here, $T_{5}, T_{6}, \ldots, T_{13}$ must be known.)
- The condition on W_{15} is transferred to an equation on $U_{3}^{\pi}+U_{10}^{\pi}+U_{14}^{\pi}$, from which we isolate U_{3}, transfer it T_{3} and satisfy it via $p_{2}^{(1)}$. Notice that when isolating T_{3}, this means putting T_{4} and T_{5} on the right hand side. The value of T_{4} must thus be determined before that of T_{3}, hence the condition on W_{15} may only be solved after the one on $W_{0}+W_{16}$. (Here, $T_{4}, T_{5}, T_{10}, T_{11}, T_{12}$, T_{14}, T_{15} and T_{16} must be known.)
- Similarly, the condition on W_{14} becomes an equation on $U_{0}^{\pi}+U_{6}^{\pi}+U_{13}^{\pi}$, then on U_{6}, then on T_{6}, then on $p_{5}^{(1)}$. (Here, $T_{0}, T_{1}, T_{2}, T_{7}, T_{8}, T_{13}, T_{14}$ and T_{15} must be known.)

Finally in round 3 , the differences in the state cancel. We process subcollision V in the same way, using the message blocks 32 rounds later.

6.2 Subcollision II

For round 8 , we have the following differences:

$d b_{16}^{(7)}=00000000$	$d a^{(7)}=00000000000000000=d Q$
$d p^{(8)}=00010100$	Round 8
$d a^{(8)}=00001010000000000=d T$	$d U=00100010000000000$

Hence, we have three conditions on T_{3}, T_{5} and T_{7}, which can be immediately satisfied via $p_{2}^{(8)}, p_{4}^{(8)}$ and $p_{6}^{(8)}$. This is summarized in the table below.

Condition on	via	then on
T_{3}, T_{5}, T_{7}	satisfied via	

Then for round 9, we have the following differences:

$d b_{16}^{(8)}=00000000$	
$d p^{(9)}=01000011$	Round 9
$d a^{(9)}=00100011101011000=d W$	$d X=10101001000011000$

Here we have nine conditions on $W_{1}, W_{3}, W_{5}, W_{6}+W_{7}, W_{7}+W_{8}, W_{9}$, $W_{11}, W_{12}+W_{13}$ and W_{14}. As usual, the conditions on W_{1} through W_{8} can be immediately satisfied via $p^{(9)}$.

Condition on	via	then on	satisfied via
$W_{1}, W_{3}, W_{5}, W_{6}+W_{7}, W_{7}+W_{8}$	$p_{0}^{(9)}, p_{2}^{(9)}, p_{4}^{(9)} .6$		
$W_{12}+W_{13}$	$U_{0}^{\pi}+U_{10}^{\pi}+U_{13}^{\pi}+U_{16}^{\pi}$	T_{1} and T_{2}, using side bridge	$p_{0}^{(8)}$ and $p_{1}^{(8)}$
W_{9}	$U_{2}^{\pi}+U_{6}^{\pi}+U_{12}^{\pi}$	T_{6}	$p_{5}^{(8)}$
W_{14}	$U_{3}^{\pi}+U_{7}^{\pi}+U_{13}^{\pi}$	T_{13}, with $T_{8}=\overline{0}$	$p_{7}^{(8)}$
T_{13}	$R_{0}^{\pi}+R_{6}^{\pi}+R_{14}^{\pi}$	Q_{6}	$p_{5}^{(7)}$
W_{11}	$U_{3}^{\pi}+U_{9}^{\pi}+U_{16}^{\pi}$	T_{9}, with $T_{11}=0$	
T_{9}	$R_{2}^{\pi}+R_{6}^{\pi}+R_{12}^{\pi}$	Q_{2}, with $Q_{1}=\overline{0}$	$p_{0}^{(7)}$ and $p_{1}^{(7)}$
T_{11}	$R_{3}^{\pi}+R_{9}^{\pi}+R_{16}^{\pi}$	Q_{3}	$p_{2}^{(7)}$

For the condition on W_{14}, we transfer it to an equation on $U_{3}^{\pi}+U_{7}^{\pi}+U_{13}^{\pi}$. We cannot isolate U_{3} or U_{7} and transfer it to T_{3} or T_{7} since we already have an equation on both. Instead, we isolate U_{13} and transfer the condition to T_{13}. We also remove the dependency of U_{7} on T_{9} by setting $T_{8}=\overline{0}$, since T_{9} will be needed below.

The condition on W_{11} can be transferred to an equation on $U_{3}^{\pi}+U_{9}^{\pi}+U_{16}^{\pi}$. Since T_{3} is already busy, we instead isolate U_{9} and transfer the condition to T_{9}. However, U_{9} also depends on T_{10}, which is influenced by Q_{2}; but Q_{2} is needed to satisfy the condition on T_{9}. To remove this circular dependency, we force $T_{11}=0$ so that $U_{9}=T_{9}+\overline{0}$ does not depend on T_{10} any more.

The condition on T_{9} is bridged to a condition on Q_{2}. However, Q_{2} influences R_{0}, whose value is needed to solve for Q_{6}; but Q_{6} influences R_{6}, whose value is needed to solve for Q_{2}. We force $Q_{1}=\overline{0}$ so that $R_{0}=Q_{0}+\overline{0}$ no longer depends on Q_{2}.

Finally in round 10 , the differences in the state cancel.

6.3 Subcollision III

For round 18, we have the following differences:

$d b_{16}^{(17)}=00000101$	$d a^{(17)}=00000000000000000=d Q$
$d p^{(18)}=00000000$	Round 18
$d a^{(18)}=00000000000000101=d T$	$d U=00000000000010011$

We have three conditions on T_{0}, T_{13} and T_{16}, which cannot be immediately satisfied in round 18.

Condition on	via	then on	satisfied via
T_{0}	$R_{0}^{\pi}+R_{7}^{\pi}+R_{11}^{\pi}$	Q_{7}	$p_{6}^{(17)}$
T_{13}	$R_{0}^{\pi}+R_{6}^{\pi}+R_{13}^{\pi}$	Q_{6}	$p_{5}^{(17)}$
T_{14}	$R_{3}^{\pi}+R_{10}^{\pi}+R_{14}^{\pi}$	Q_{3}	$p_{2}^{(17)}$

Then for round 19, we have the following differences:

$d b_{16}^{(18)}=11010000$	
$d p^{(19)}=00000000$	Round 19
$d a^{(19)}=00010111001100000=d W$	$d X=01111011100100000$

This implies conditions on $W_{2}, W_{4}, W_{5}+W_{6}, W_{6}+W_{7}, W_{8}, W_{9}, W_{10}+W_{11}$, W_{12}.

Condition on	via	then on	satisfied via
$W_{2}, W_{4}, W_{5}+W_{6}, W_{6}+W_{7}, W_{8}$	$p_{1}^{(19)}, p_{3 \ldots, 5}^{(19)}, p_{7}^{(19)}$		
W_{12}	$U_{6}^{\pi}+U_{10}^{\pi}+U_{16}^{\pi}$	T_{6}	$p_{5}^{(18)}$
W_{9}	$U_{2}^{\pi}+U_{6}^{\pi}+U_{12}^{\pi}$	T_{2}, with $T_{4}=0$	$p_{1}^{(18)}$ and $p_{3}^{(18)}$
$W_{10}+W_{11}$	$U_{2}^{\pi}+U_{3}^{\pi}+U_{13}^{\pi}+U_{16}^{\pi}$	T_{3}	$p_{2}^{(18)}$

To solve the conditions on W_{9} and W_{10}, we need to remove some dependencies. On the one hand, the condition on W_{9} is transferred to an equation on $U_{2}^{\pi}+U_{6}^{\pi}+U_{12}^{\pi}$, of which we want to isolate U_{2} and transfer to T_{2}; this requires to know T_{3} and T_{4}. On the other hand, the condition on $W_{10}+W_{11}$ becomes an equation on $U_{2}^{\pi}+U_{3}^{\pi}+U_{13}^{\pi}+U_{16}^{\pi}$; to isolate U_{3} and transfer the equation to T_{3}, we need to know U_{2}. This dependency can be removed by forcing $T_{4}=0$ so that U_{2} does not depend on T_{3}.

Finally in round 20 , the differences in the state cancel.

6.4 Subcollision IV

For round 25 , we have the following differences:

$d b_{16}^{(24)}=00010100$	$d a^{(24)}=00000000000000000=d Q$
$d p^{(25)}=00000000$	Round 25
$d a^{(25)}=00000000000010100=d T$	$d U=00000000001110100$

We have three conditions on T_{11}, T_{13} and T_{15}, which cannot be immediately satisfied in round 25.

Condition on	via	then on	satisfied via
T_{13}	$R_{0}^{\pi}+R_{6}^{\pi}+R_{13}^{\pi}$	Q_{6}, with $Q_{2}=0$	$p_{5}^{(24)}$ and $p_{1}^{(24)}$
T_{15}	$R_{3}^{\pi}+R_{10}^{\pi}+R_{14}^{\pi}$	Q_{3}	$p_{2}^{(24)}$
T_{11}	$R_{3}^{\pi}+R_{9}^{\pi}+R_{16}^{\pi}$	side bridge to $Q_{0}=0$ and to Q_{1}	$p_{0}^{(24)}$ for Q_{1}
Q_{0}	$O_{0}^{\pi}+O_{7}^{\pi}+O_{11}^{\pi}$	N_{7}	$p_{6}^{(23)}$

The condition on T_{11} cannot be satisfied neither in round 25 nor in round 24 . As we transfer it to an equation on $R_{3}^{\pi}+R_{9}^{\pi}+R_{16}^{\pi}$, we cannot isolate R_{3} as it would conflict with the condition on R_{15}. We instead isolate R_{16} and side-bridge it to $Q_{0}=0$ and to an equation on Q_{1}. The equation on Q_{1} can be satisfied in round 24 via $p_{0}^{(24)}$. Consequently, $Q_{0}=0$ must be bridged to round 23 .

To be able to solve for T_{13}, we must prevent Q_{1} from influencing R_{0}. Hence, we force $Q_{2}=0$.

Then for round 26 , we have the following differences:

$d b_{16}^{(25)}=01000011$	
$d p^{(26)}=00000000$	Round 26
$d a^{(26)}=11111100111010010=d W$	$d X=11000101010010000$

This implies conditions on $W_{0}+W_{1}, W_{1}+W_{2}, W_{2}+W_{3}, W_{3}+W_{4}, W_{4}+W_{5}$, $W_{6}, W_{7}, W_{8}+W_{9}, W_{9}+W_{10}, W_{11}, W_{13}, W_{14}$ and W_{16}. Among them, the conditions on W_{1} through W_{8} can be immediately satisfied via $p^{(26)}$.

Condition on	via	then on	satisfied via
$W_{0}+W_{1}, W_{1}+W_{2}, W_{2}+W_{3}, W_{3}+W_{4}, W_{4}+W_{5}, W_{6}, W_{7}, W_{8}+W_{9}$	$p^{(26)}$		
$W_{9}+W_{10}$	$U_{6}^{\pi}+U_{9}^{\pi}+U_{12}^{\pi}+U_{13}^{\pi}$	T_{6}, with $T_{8}=0$	$p_{5}^{(25)}$ and $p_{7}^{(25)}$
W_{13}	$U_{0}^{\pi}+U_{6}^{\pi}+U_{13}^{\pi}$	side bridge to T_{1} and T_{2}	$p_{0}^{(25)}$ and $p_{1}^{(25)}$
W_{16}	$U_{0}^{\pi}+U_{4}^{\pi}+U_{10}^{\pi}$	T_{4}	$p_{3}^{(25)}$
W_{11}	$U_{3}^{\pi}+U_{9}^{\pi}+U_{16}^{\pi}$	T_{3}	$p_{2}^{(25)}$
W_{14}	$U_{3}^{\pi}+U_{7}^{\pi}+U_{13}^{\pi}$	T_{7}	$p_{6}^{(25)}$

In the condition on $W_{9}+W_{10}$, we set $T_{8}=0$ to remove the dependency of U_{6} on T_{7}. This way, the value of T_{7} can be determined after that of T_{6}.

Note that the condition on W_{13} becomes an equation on $U_{0}^{\pi}+U_{6}^{\pi}+U_{13}^{\pi}$. Since U_{6} is already taken, we isolate U_{0} and side-bridge it to T_{1} and T_{2}.

Finally in round 27 , the differences in the state cancel.

7 Example of collision and workload

We wrote a program that produces collisions based on the trail described in Sec. 5 and using the equation transfer described in sec. 6. The workload of the collision-generating function is about 65 applications of the state-updating function: 35 for the 35 message inputs and 30 additional ones for the bridges and some XORs.

An example of pair of collision messages is given in Table 2, which was obtained using our program. Each line represents a message block; for each block, the words in hexadecimal must be read from left to right. The first message is given by the hexadecimal digits in Table 2, while the second message is obtained by xoring with $\overline{0}=f f f f f f f f$ all the underlined words.

hash result:
$h(p) \mid 45 d 93522$ 0168bdcd e830f65a 6e46f3e9 1bb0bbd6 3d37a576 718f4032 0c65079f
Table 2. Example of pair of messages that produce a collision.

8 Conclusions

In this paper, we have explained how to refine the attack [2] in order to produce collisions in Panama using only about 2^{6} evaluations of the state updating function. As noted in [2], Panama gives too many degrees of freedom per round to the attacker.

One could consider to fix Panama to be resistant against this type of attack. We have actually done this in [3] and the result is RadioGatún. Its design was based on the insight obtained from the attack in [2] and the possibility of the attack in this paper. This lead us to reduce the number of message words injected each round from 8 to 3 , giving an attacker much less freedom per round and requiring more bridges with accompanying dependency problems for a trail with similar complexity. More importantly, we have added feedback from the state to the buffer, making the buffer evolution during hashing become nonlinear. This makes the split in nicely separated subcollisions no longer possible. For more explanations on the evolution from Panama to RadioGatún we refer to Appendix A of [3].

Interestingly, our attack on PANAMA can be seen as an application of trail backtracking [3]. In this context, we have defined a metric of a trail called its backtracking depth. As we explain in [3], the backtracking depth gives a good idea of the number of rounds that must be bridged at the worst point in the trail. The backtracking depth of the trail we used in this paper turns out to be only 2. This suggests that the conditions can be satisfied at any round in the trail by the message words injected immediately before it and those before the previous round and hence that the number of bridges is rather limited. In the design of RadioGatún one of the main criteria is exactly the non-existence of collision trails with low backtracking depth.

References

1. J. Daemen and C.S.K. Clapp, "Fast hashing and stream encryption with Panama," Fast Software Encryption 1998, LNCS 1372, S. Vaudenay, Ed., Springer-Verlag, 1998, pp. 60-74.
2. V. Rijmen, B. Van Rompay, B. Preneel, J. Vandewalle; "Producing Collisions for Panama," Fast Software Encryption 2001, LNCS 2355, M. Matsui, Ed., SpringerVerlag, 2002, pp. 37-51.
3. G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, "RadioGatún, a Belt-andMill Hash Function", presented at the NIST Second cryptographic hash workshop, August 2006, available from http://radiogatun.noekeon.org/
4. Program to generate collisions for PanAmA, available from http://radiogatun.noekeon.org/panama
