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Abstract. We present a practical attack on the Panama hash function
that generates a collision in 26 evaluations of the state updating function.
Our attack improves that of Rijmen and coworkers that had a complexity
282, too high to produce a collision in practice. This improvement comes
mainly from the use of techniques to transfer conditions on the state
to message words instead of trying many message pairs and using the
ones for which the conditions are satisfied. Our attack works for any
arbitrary prefix message, followed by a pair of suffix messages with a
given difference. We give an example of a collision and make the collision-
generating program available. Our attack does not affect the Panama
stream cipher, that is still unbroken to the best of our knowledge.
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1 Introduction

A cryptographic hash function maps a message of arbitrary length to a fixed-
size output called a digest. One of the requirements for a cryptographic hash
function is collision-resistance: it should be infeasible to to find two different
messages that give the same digest.

Panama can be used both as a hash function and as a stream cipher. In the
scope of this paper, we will consider only on the hash part. Our attack does not
have impact on the security of the Panama stream cipher. Internally, Panama
has a state and a buffer, which evolve using a state updating function. For every
block of message, the state updating function transforms the state and the buffer.
We describe Panama in Sec. 2.

In this article, we describe a method to produce collisions for the Panama
hash function that refines the method of Rijmen and coworkers [2] and reduces
the workload from 282 to 26 applications of the state updating function. We
can therefore generate collisions quasi instantaneously. Furthermore, there are
many degrees of freedom in the produced messages. The attack works for any
initial value of the state. This means that one can find a collision with a pair of
messages (M1|M,M1|M∗) with an arbitrary prefix M1. Here, the message parts
M and M∗ have a fixed difference M ′ = M + M∗. Furthermore, the attacker



can append an arbitrary suffix M2 to both collision messages, independently of
M1, M and M∗. We discuss the structure of the attack in Sec. 3.

Like in [2], we use a differential trail (called differential path in [2]) that
leads to a zero difference in state and buffer. A differential trail specifies both
the message differences and the differences in the state and in the buffer. For
a pair of messages to follow the right differences in the state, a subset of the
state bits must satisfy specific conditions. In the attack in [2], part of these
conditions were transferred to equations on message words while the remaining
ones were satisfied by trying many different message pairs and picking out those
for which these conditions happened to be satisfied. In our attack, we transfer
all conditions to equations on message bits using some simple new techniques
explained in Sec. 4. The transfer of equations has negligible workload.

Although very similar, our trail is different from that of [2]. We chose a trail
such that the conditions on the state are more easily transferable to equations
on the message bits. We describe it in Sec. 5 and all its conditions and their
transfer in Sec. 6.

2 Description of Panama

The internal memory of Panama is composed of 273 32-bit words (hereby de-
noted words) and is organized in two parts: [1]

– the state, with 17 words denoted a0 through a16, and
– the buffer, which is an array of 32 × 8 words, denoted bi,j with 0 ≤ i ≤ 31

and 0 ≤ j ≤ 7. (Note that bi indicates a block of 8 words bi,0 . . . bi,7.)

The + sign applied on bits denotes the exclusive or (xor) operation and on words
the bitwise xor. In subscripts of the state a, it denotes modulo-17 addition.

The message to hash is padded and divided into blocks of 8 words (i.e., 256
bits) each. It is processed as follows. First, both the state and the buffer are
initialized to 0. Then, for each message block p = (p0, p1, . . . , p7) (i.e., for each
round), the following operations are applied:

– the state undergoes a non-linear transformation θ ◦ π ◦ γ, with

γ : ai ← ai + (ai+1 + 0)ai+2 + 0,

π : ai ← a7i mod 17 ≫ i(i + 1)/2,

θ : ai ← ai + ai+1 + ai+4,

where the invisible multiplication indicates the bitwise and, 0 denotes the
word with 32 bits 1, and ≫ cyclic right shift of the bits within a word;

– the least significant bit of a0 is flipped: a0 ← a0 + 1;
– the message block is xored into the state:

a← a + fi→s(p) ⇔ ai+1 ← ai+1 + pi, 0 ≤ i ≤ 7;
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– eight words of the buffer are xored into the state:

a← a + fb→s(b16) ⇔ ai+9 ← ai+9 + b16,i, 0 ≤ i ≤ 7;

– the buffer undergoes a linear feedback shift register (LFSR) step:

bi ← bi−1 mod 32 (i 6= 25),
b25 ← b24 + r(b31),

where the function r is defined as Y = r(X)⇔ Yj = Xj+2 mod 8;
– the message block is xored into the buffer: b0,i ← b0,i + pi, 0 ≤ i ≤ 7.

After all the message blocks are processed, 33 extra rounds are performed, called
blank rounds. These rounds use the state updating function, with the difference
that a part of the state (instead of a message block) is input into the buffer:
b0,i ← b0,i + ai+1, 0 ≤ i ≤ 7.

Finally, the digest is extracted from the state after the blank rounds.

3 Structure of the attack

The first thing to note is that the presence of the blank rounds makes it hard
to produce a collision in the digest if there is a difference in either the state or
the buffer after all the message blocks are input. Due to the invertibility of the
state updating function such a difference will not cancel out. Moreover, the lack
of external input and the propagation properties of the state updating function
give the attacker almost no control over the final difference. Therefore, our goal
is to produce a collision in both the state and the buffer before the blank rounds.

We produce a collision by following a trail. Two instances of Panama process
two different messages (p and p + dp), which have a given difference (dp). The
trail also specifies the differences in the state (da) and in the buffer (db) between
the two instances of Panama, at each round. So, not only the two messages
must have the given difference, they must also produce the right difference in
the state and in the buffer.

We shall now describe the general structure of the trail used in the scope of
this article. We will first talk about the sequence of message differences, then
about the differences in the state.

In the sequel, the round numbers are specified between brackets in super-
script: ·(i). The convention is that p(i) is the message block processed during
round i, and a(i) is the value of the state after round i.

3.1 Collision in the buffer

The buffer evolves independently from the state and is linear. As noticed in [2],
the following message difference sequence gives a collision in the buffer for any
x:

dp(1) = x, dp(8) = r(x), dp(33) = x, all other differences 0. (1)
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After 32 rounds, we have db24 = r(x) and db31 = x. After the 33rd round, we
get:

db25 ← db24 + r(db31) = r(x) + r(x) = 0,

db0 ← db31 + dp(33) = x + x = 0.

Thanks to the linearity of the buffer, any combination of shifted instances of
the sequence (1) results in a collision in the buffer. In [2], two such sequences
are used, one distant of two rounds from the other. In this paper, we instead use
three such sequences at three consecutive rounds. More precisely, the message
sequence is as follows (only non-zero differences are indicated):

(dp(1), dp(2), dp(3)) = (d(1), d(2), d(3)),
(dp(8), dp(9), dp(10)) = (r(d(1)), r(d(2)), r(d(3)),
(dp(33), dp(34), dp(35)) = (d(1), d(2), d(3)).

3.2 Collision in the state

The state is influenced both by the message blocks and by the buffer words in
b16. Let us summarize the sequence of differences that are xored into the state,
both from the message block and from b16:

I Rounds r = i + 0: State gets difference dp(r) = d(i)

II Rounds r = i + 7: State gets difference dp(r) = r(d(i))
III Rounds r = i + 17: State gets difference db

(r)
16 = dp(r−17) = d(i)

IV Rounds r = i + 24: State gets difference db
(r)
16 = dp(r−17) = r(d(i))

V Rounds r = i + 32: State gets difference dp(r) = d(i)

with 1 ≤ i ≤ 3.
After the three rounds in each of the five sequences described above, we will

make sure that we have a collision in the state. These are called subcollisions.
After the last subcollision, we have both a collision in the state and in the buffer,
and we are thus guaranteed to obtain the same digest after the blank rounds.

Before we explain how to obtain a subcollision, we need to detail the proper-
ties of the difference propagation in γ, the only non-linear operation of the state
updating function.

3.3 Difference propagation through γ

Since γ is composed only of bitwise operations, we will only talk about γ as if
it operates on 17 bits in this current subsection. The actual γ on words can be
seen as 32 such operations in parallel.

Assume that the input of one instance of γ is a, while the input of the other
instance is a + da. For a given input difference da, not all output differences
are possible. The output difference dc = (dc0, . . . , dc16) is determined by the
following equation:

dci = γi(da) + dai+1ai+2 + dai+2ai+1 + 1,
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where γi(a) = ai + (ai+1 + 1)ai+2 + 1 denotes a particular output bit of γ.
Hence, we can obtain an output difference dc from a given input difference

da only if a satisfies some conditions. These are as follows:

If dai+1 = 1 and dai+2 = 0, then ai+2 = dci + γi(da) + 1; (2)
If dai+1 = 0 and dai+2 = 1, then ai+1 = dci + γi(da) + 1; (3)
If dai+1 = 1 and dai+2 = 1, then ai+1 + ai+2 = dci + γi(da) + 1. (4)

We call conditions of type (2) and (3) simple conditions and conditions of type
(4) two-bit parity conditions. We call a differential (da, dc) for which the set of
conditions has a solution a possible differential.

Note that the input difference da fully determines the positions of the state
bits ai that are subject to conditions. Assume that we have n consecutive 1s
in the pattern da, i.e., we have dai = dai+n+1 = 0 and in between dai+l = 1
(1 ≤ l ≤ n). Then there are simple conditions on ai and on ai+n+1, and n − 1
two-bit parity conditions on ai+l + ai+l+1 (1 ≤ l < n). This can be applied to
all such patterns in da.

From this follows that the number of conditions is equal to the Hamming
weight of da plus the number of 001 patterns in da. (For the particular case of
da = 11111111111111111, there are 16 independent two-bit parity conditions.)
We denote by w(da) the number of conditions due to da.

3.4 Specifying the trail

For our attack to work, we wish to determine equations on the message bits that
imply the five subcollisions. In the previous subsection we have shown that given
a possible differential (da, dc) over γ, we obtain conditions on input bits of γ.

Consider now subcollision I. Before the first round, there is no difference
in the state, hence da(0) = 0. At the input of the second round, the message
difference appears in the state: da(1) = fi→s(d(1)). This determines the input
difference of γ in round 2. We now need to specify the output of γ in the second
round, but we can equivalently specify da(2), as the other operations are linear.
After the third round, the fact that we have a collision in the state imposes
that da(3) = 0, yielding at the output of the third round a difference equal
to fi→s(d(3)). Hence a value for da(2) must be chosen such that differentials
(fi→s(d(1)), π−1◦θ−1(da(2)+fi→s(d(2)))) and (da(2), π−1◦θ−1(fi→s(d(3)))) over γ
are possible. For a given message difference sequence d(1), d(2), d(3) there may be
several, one or none such values of da(2). Note that the first differential imposes
conditions on a(1) and the second one on a(2).

As θ and π are linear, it follows that a possible differential over the state-
updating function imposes conditions on bits of the state a(i). Doing this for
differentials over more rounds is more difficult and we avoid it in out attack.
Therefore, for each round in which there is non-zero input difference in the
state, we need to know the output difference.

For subcollisions II to V, applying the same reasoning leads to following
round differentials, which we write as differentials over θ ◦π ◦γ for compactness:
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I
(
fi→s(d(1)), da(2) + fi→s(d(2))

) (
da(2), fi→s(d(3))

)
II

(
fi→s(r(d(1))), da(9) + fi→s(r(d(2)))

) (
da(9), fi→s(r(d(3)))

)
III

(
fb→s(d(1)), da(19) + fb→s(d(2))

) (
da(19), fb→s(d(3))

)
IV

(
fb→s(r(d(1))), da(26) + fb→s(r(d(2)))

) (
da(26), fb→s(r(d(3)))

)
V

(
fi→s(d(1)), da(34) + fi→s(d(2))

) (
da(34), fi→s(d(3))

)
Hence, the trail is fully determined by the sequence (d(1), d(2), d(2)), and the

5 state differences da(2), da(9), da(19), da(26) and da(34). Because the structure of
the subcollisions I and V are equal, we can fix da(34) = da(2).

3.5 Symmetric patterns

Like in [2], we use differences with words that are either 0 or 0. This causes the
intra-word rotations in π to have no influence on the difference pattern, as all
other operations in the state updating function work in a bitwise fashion.

Let us translate this in the case of the word-oriented γ. We can view Equa-
tions (2)–(4) as 32 parallel conditions on the bits of the state words. Thanks
to the fact that all the difference words dai are either 0 or 0, the words aj on
which these conditions apply are the same for the 32 bits; either all or none of
the 32 bits of a word aj are affected by a condition. Hence, the equations can
be written word-wise. Note however that this does not restrict the value of the
state or of the message words to be either 0 or 0, only the differences.

4 Techniques for equation transfer

For a given trail, we have seen in Sec. 3.3 how to express conditions on the state
a to get the right output differences. In this section, we explain how to transfer
these equations to the message words that the attacker can choose.

We will see that the equations are never transferred to more than two rounds
before the start of the subcollision, so there is no overlap between the equations
derived from different subcollisions and hence we can satisfy them sequentially.

As the discussion below is generic for all five subcollisions, let us use a com-
mon convention. For j ∈ {1, 8, 18, 25, 33}, we denote the various stages of the
state transformation with the following symbols:

+p(j−2)

−−−−−→ N
γ−→ O θ◦π−−→ P

+p(j−1)

−−−−−→ Q

Q
γ−→ R θ◦π−−→ S

+p(j)

−−−→ T

T
γ−→ U θ◦π−−→ V

+p(j+1)

−−−−−→W

W
γ−→ X θ◦π−−→ Y

+p(j+2)

−−−−−→ Z.

At a given time, the corresponding italic letter denotes the state value.
Although we will follow a reasoning going backwards from Z down to T, Q

or N, the attack works in practice in the forward direction. As the conditions
are being satisfied, the state is updated with the known values.
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For each subcollision, we wish to have a collision in the state at time Z, hence
to have dZ = 0. This determines dY = fi→s(dp(j+2)) or dY = fb→s(db

(j+1)
16 ),

together with the difference pattern dX via π−1 ◦ θ−1. The trail also specifies
the patterns dW and dT (and indirectly dU). The differential (dT, dU) over γ
implies conditions on T and (dW, dX) on W . The attacker must satisfy them by
choosing appropriate values for p(j−2), p(j−1), p(j) and p(j+1).

The conditions are either simple, i.e., of type Wi = target or two-bit parity
conditions Wi + Wi+1 = target where “target” is a known value.

In the sequel, we often speak about the left and right hand sides of an equa-
tion. As a convention, the left hand side contains one isolated variable to be
solved, while the right hand side contains other variables that are determined
from other equations or set to arbitrary values.

4.1 Immediate satisfaction in W

Simple conditions on words W1 through W8 can be satisfied by setting the value
of p(j+1) accordingly. We call this immediate satisfaction:

Wi = target → p
(j+1)
i−1 = Vi + target (if 1 ≤ i ≤ 8). (5)

The value of Vi is determined by the value of T .
A two-bit parity condition Wi +Wi+1 = target can be satisfied whenever (at

least) one of the two words can be modified through p, that is, when 0 ≤ i ≤ 8.
For i = 0 or i = 8, we have:

W0 + W1 = target → p
(j+1)
0 = V0 + V1 + target , and

W8 + W9 = target → p
(j+1)
7 = V8 + V9 + target .

If 1 ≤ i ≤ 7, however, the value of another message word must be taken into
account. This other message word must be treated as known and its value may
either be fixed by other conditions or set to an arbitrary value. We have either

Wi + Wi+1 = target → p
(j+1)
i−1 = Vi + Vi+1 + p

(j+1)
i + target , or

Wi + Wi+1 = target → p
(j+1)
i = Vi + Vi+1 + p

(j+1)
i−1 + target .

4.2 Bridge from W to T

The conditions on W that cannot be satisfied immediately can be transferred to
equations at time U via π−1 ◦ θ−1.

A condition on some Wi can be converted into an equation in three words of
U . For instance, assume we have to satisfy W10 = 0. We know that

W10 = (U2 ≪ 3) + (U9 ≪ 45) + (U13 ≪ 91).
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In this case, U2 will be influenced directly by the message words p(j), and this
makes it an ideal candidate for immediate satisfaction in T. So, let us isolate
this variable and write:

U2 = ((U9 ≪ 45) + (U13 ≪ 91)) ≫ 3.

Remember that the terms U9 and U13 at the right hand side are treated as known
values.

In more general terms, a simple condition on Wi is converted into an equation
on Uπ

7i +Uπ
7(i+1) +Uπ

7(i+4), with Uπ
i = Ui ≪ i(i+1)/2. One can choose to isolate

one of the three variables U7i, U7(i+1) or U7(i+4). Then, the cyclic rotation on the
left hand side can be replaced by its inverse on the right hand side. For instance,
the isolation of U7i gives the following:

Wi = target → U7i = (Uπ
7(i+1) + Uπ

7(i+4) + target) ≫ 7i(7i + 1)/2, i 6= 0, (6)

while the constant 1 must be taken care of in the case of the word i = 0, for
instance we can isolate U0 as U0 = Uπ

7 + Uπ
11 + target + 1.

Similarly, a two-bit parity condition on Wi +Wi+1 is converted into an equa-
tion on Uπ

7i + Uπ
7(i+2) + Uπ

7(i+4) + Uπ
7(i+5). Again, one can choose to isolate either

of the four variables.
An equation of the type Ui = target can be written as Ti + (0 + Ti+1)Ti+2 =

target + 0. One can transfer the equation on Ti by treating Ti+1 and Ti+2 as
known values:

Ui = target → Ti = (0 + Ti+1)Ti+2 + target + 0. (7)

Combining the substitutions (6) and (7) is called a bridge. Together with the
immediate satisfaction, this is the technique we used most often in our collision-
generating algorithm.

Of course, all the conditions on T1 through T8 are immediately satisfiable by
setting the appropriate value in p(j) as in Equation (5) with W and V replaced
by T and S, respectively.

4.3 Side bridge

An interesting special case is an equation on U0 = target . Since an equation on
T0 cannot be immediately satisfied via pj , we can instead create two equations
on T1 and T2. We can choose from three ways of creating two equations:

U0 = target → T1 = T0 + target and T2 = 0
U0 = target → T1 = 0 and T2 = T0 + target + 0
U0 = target → T1 = T0 + target and T2 = T0 + target + 0

In the sequel, this technique is called a side bridge. Note that this technique can
also be used on other word positions.
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a(j+1)

p(j+1)

(a)

a(j)

p(j)

(b)

(f)

a(j{1)

p(j{1)

(c) (d)

(g)
(h)

(i)

(e)

Fig. 1. Schematic illustration of some of the equation transfer techniques. (a) A condi-

tion in one of the words a
(j+1)
1...8 can be immediately satisfied via p(j+1). (b) Otherwise,

this condition has to be bridged to the previous round. Preferably, it is bridged to one
of the words a

(j)
1...8 so that it can be satisfied via p(j). (c)-(d) Sometimes, a bridge (c)

must be accompanied by an additional equation (d) to remove circular dependencies.
(e) Of course, this additional equation must be also be bridged or satisfied somewhere
(not shown explicitly). (f) Conditions can also appear in round j; here is an example
of such a condition that can be immediately satisfied via p(j). (g)-(h)-(i) Bridging a
condition to the word 0 (g) does not allow immediate satisfaction. Instead, it is possible
to side-bridge it to two equations, one on word 1 (h) and one on word 2 (i).

4.4 Dependency removal

As said in the beginning of Sec. 4, when solving an equation, all terms on the
right hand side must be known. This imposes constraints on the order in which
the equations are solved. In some cases, it may be necessary to remove circular
dependencies on the way from U to T. For instance, assume that we have three
equations on U :

U4 = target , (8)
U6 = target , (9)
U8 = U4 + target (up to rotation). (10)

When transferring from U to T, (8) requires T5 and T6 to be known, hence that
(9) is already solved for T6. In turn, (9) requires T7 and T8 to be known, hence
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that (10) is solved for T8. But (10) requires that T4 is known so that (8) must
be solved. To remove this circular set of dependencies, we can force T7 = 0 so
that U6 = T6 + (T7 + 0)T8 + 0 = T6 + 0 does not depend on T8 any more. The
dependency of (9) on (10) is removed, and we can solve (9), then (8), then (10).

In more general terms, we can set Ti+1 = 0 (resp. Ti+2 = 0) for the equation
on Ui = target , so that the converted equation on Ti has no dependency on Ti+2

(resp. Ti+1). In the sequel, this technique is called dependency removal. To sum
up, one can apply either:

Ui = target → Ti = target + 0 and Ti+1 = 0, or

Ui = target → Ti = target + 0 and Ti+2 = 0.

The dependency removal and the other techniques are illustrated in Fig. 1.

4.5 The conditions due to differential (dT, dU)

The differential (dT, dU) fixes some words of T . These words are therefore not
available for bridges coming from W. Fortunately, there are some degrees of
freedom on the way from W to T to avoid conflicts. For instance, one should
choose adequately the component of U that will be isolated on the left hand side.
For the attack to work, there must be a way to satisfy and bridge the equations
in a non-conflicting way.

The equations on T in turn can be bridged to equations on Q. The conditions
on Q1 through Q8 can then be satisfied via p(j−1).

However, one must pay careful attention to equation dependencies. When for
example choosing p(j) to satisfy a condition in W , it has an impact on the state
at time T and subsequent rounds. Indeed, changing the value of Ti influences the
values of Ui−2, Ui−1 and Ui. Hence care must be taken, when solving equations
that are the result of bridges, that equations solved earlier are not affected. In
general, dependency problems become more difficult to manage as the number
of bridges grows.

4.6 Solving the equations by correction

When all bridges are determined along with their dependencies, solving the
equations is fairly simple and does not involve much more than an evaluation
of the state updating function. This is thanks to the fact that the equations are
made linear once the right hand side is determined. Let us illustrate this with
an example.

Assume that we need to satisfy W9 = 0. Since immediate satisfaction is not
possible, we decide to bridge this condition to T6 = target (via an equation
on U6). At this stage, we do not calculate the actual value of target , but we
influence T6 through p

(j)
5 . So, we evaluate the state updating function for round

j with p
(j)
5 = 0 and then the state updating function for round j + 1. After

this, we obtain W ∗
9 , which may not be zero as we wished. However the linearity
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of the equations implies that we can reuse the value W ∗
9 (up to a rotation) to

determine p
(j)
5 . Since U6 is rotated by 6(6 + 1)/2 = 21 positions, we can simply

set p
(j)
5 = W ∗

9 ≫ 21 and we automatically get W9 = 0.
In short, the linearity allows us to satisfy a condition by correcting the corre-

sponding message word. The right value of the message word is determined (up
to a rotation) by the correction to bring to the state word under condition.

The reasoning for satisfying and bridging equations is done backwards in
time. In contrast, solving them by correction works forwards in time, and the
rounds are evaluated sequentially. The state updating function may be evaluated
several times, an extra evaluation being needed for each correction.

The dependencies between equations play an important role in the order in
which the corrections are applied. In the same way the right hand side of an
equation must be known when solving it, a correction shall not affect equations
that have been satisfied earlier.

5 The chosen trail

To choose a suitable trail, an important parameter to consider is the number of
conditions on T and on W in the five subcollisions. Actually, this number should
be split in the number of conditions that can be immediately satisfied and those
that need to be bridged.

To make a trail easy to exploit using the techniques described in Sec. 4,
the application of immediate satisfaction and the bridges coming from the later
rounds should as much as possible fit within the 8 message words each round.
One can chain bridges over several rounds, but as more rounds are bridged
dependencies become increasingly difficult to manage. Generally speaking, the
higher the number of conditions to bridge, the more difficult it will be to fit them
all on a small number of rounds.

The number of conditions in the first subcollision is w(da(1)) in T and
w(da(2)) in W. The number of conditions for the other four subcollisions are
(w(da(i)), w(da(i+1))) with i = 8, 18, 25 and 33. Note that the fifth subcolli-
sion is identical to the first one. We split each of these numbers w(da) as
w(da) = wis(da) + wb(da), where wis(da) is the number of conditions that can
be immediately satisfied and wb(da) that must be bridged.

As a heuristic criterion, we minimize the maximum number of conditions to
bridge:

Wb = max
i
{wb(da(i))}.

We have searched exhaustively through all 2552256 patterns (d(1), d(2), d(3)) and
selected the one that has a collision trail with a minimal Wb. This resulted in
the trail determined by following values:

– d(1) = 00000101, d(2) = 11010000, d(3) = 01111011,
– da(2) = 10111110000000101,
– da(9) = 00100011101011000,
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– da(19) = 00010111001100000 and
– da(26) = 11111100111010010,

where each digit represents a word either all-zero (0) or all-one (1); the word
positions increase from left to right. The number of conditions that can be im-
mediately satisfied or bridged is given in Table 1 below. As a comparison, the
trail used in [2] has Wb = 7, while our trail has Wb = 5.

I II III IV

da(1) da(2) da(8) da(9) da(18) da(19) da(25) da(26)

wis 2 6 3 5 0 5 0 8
wb 1 3 0 4 3 3 3 5

Table 1. Number of conditions in the trail used in our attack.

6 Equation transfer in the chosen trail

In this section, we describe in detail how the equations are transferred to the
message words using the techniques in Sec. 4 for the trail specified in Sec. 5.

6.1 Subcollisions I and V

For round 1, we have the following differences:

db
(0)
16 = 00000000 da(0) = 00000000000000000 = dQ

dp(1) = 00000101 Round 1

da(1) = 00000010100000000 = dT dU = 00001001100000000

From the pattern in dT , we can see that we have three conditions on T5, T7

and T9, namely

T5 = dU4 + γ4(dT ) + 0 = 0, (11)

T7 = dU6 + γ6(dT ) + 0 = dU5 + γ5(dT ) + 0 = 0, (12)

T9 = dU8 + γ8(dT ) + 0 = 0. (13)

The equations (11) and (12) can be immediately satisfied in round 1 via p
(1)
4

and p
(1)
6 , whereas (13) must be bridged to Q:

T9 = 0→ Q2 = ((0 + Q3)Q4 + 0) + (Rπ
6 + Rπ

12 + 0) ≫ 3, (14)

which can be immediately satisfied in round 0 via p
(0)
1 . Note that this implies

that Q3, Q4, . . . , Q8, Q12, Q13 and Q14 are known when solving for Q2.
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Then for round 2, we have the following differences:

db
(1)
16 = 00000000

dp(2) = 11010000 Round 2

da(2) = 10111110000000101 = dW dX = 01110010000001111

From the pattern in dW , this imposes nine conditions on W0 + W16, W1,
W2 + W3, W3 + W4, W4 + W5, W5 + W6, W7, W13 and W15. We will not detail
the right hand sides of the corresponding equations, as they can easily be found
as explained in Sec. 3.3. The equations on the words W1 through W7 can be
immediately satisfied via p(2). The other equations are solved as follows:

– The condition on W0 +W16 can be transferred to an equation on Uπ
4 +Uπ

7 +
Uπ

10 +Uπ
11. We isolate U4 on the left hand side and transfer it to an equation

on T4, which can be immediately satisfied via p
(1)
3 . (Here, T5, T6, . . . , T13

must be known.)
– The condition on W15 is transferred to an equation on Uπ

3 +Uπ
10 +Uπ

14, from
which we isolate U3, transfer it T3 and satisfy it via p

(1)
2 . Notice that when

isolating T3, this means putting T4 and T5 on the right hand side. The value
of T4 must thus be determined before that of T3, hence the condition on W15

may only be solved after the one on W0 + W16. (Here, T4, T5, T10, T11, T12,
T14, T15 and T16 must be known.)

– Similarly, the condition on W14 becomes an equation on Uπ
0 +Uπ

6 +Uπ
13, then

on U6, then on T6, then on p
(1)
5 . (Here, T0, T1, T2, T7, T8, T13, T14 and T15

must be known.)

Finally in round 3, the differences in the state cancel. We process subcolli-
sion V in the same way, using the message blocks 32 rounds later.

6.2 Subcollision II

For round 8, we have the following differences:

db
(7)
16 = 00000000 da(7) = 00000000000000000 = dQ

dp(8) = 00010100 Round 8

da(8) = 00001010000000000 = dT dU = 00100010000000000

Hence, we have three conditions on T3, T5 and T7, which can be immediately
satisfied via p

(8)
2 , p

(8)
4 and p

(8)
6 . This is summarized in the table below.

Condition on via then on satisfied via

T3, T5, T7 p
(8)
2 , p

(8)
4 , p

(8)
6

Then for round 9, we have the following differences:
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db
(8)
16 = 00000000

dp(9) = 01000011 Round 9

da(9) = 00100011101011000 = dW dX = 10101001000011000

Here we have nine conditions on W1, W3, W5, W6 + W7, W7 + W8, W9,
W11, W12 + W13 and W14. As usual, the conditions on W1 through W8 can be
immediately satisfied via p(9).

Condition on via then on satisfied via

W1, W3, W5, W6 + W7, W7 + W8 p
(9)
0 , p

(9)
2 , p

(9)
4...6

W12 + W13 Uπ
0 + Uπ

10 + Uπ
13 + Uπ

16 T1 and T2, using side bridge p
(8)
0 and p

(8)
1

W9 Uπ
2 + Uπ

6 + Uπ
12 T6 p

(8)
5

W14 Uπ
3 + Uπ

7 + Uπ
13 T13, with T8 = 0 p

(8)
7

T13 Rπ
0 + Rπ

6 + Rπ
14 Q6 p

(7)
5

W11 Uπ
3 + Uπ

9 + Uπ
16 T9, with T11 = 0

T9 Rπ
2 + Rπ

6 + Rπ
12 Q2, with Q1 = 0 p

(7)
0 and p

(7)
1

T11 Rπ
3 + Rπ

9 + Rπ
16 Q3 p

(7)
2

For the condition on W14, we transfer it to an equation on Uπ
3 + Uπ

7 + Uπ
13.

We cannot isolate U3 or U7 and transfer it to T3 or T7 since we already have
an equation on both. Instead, we isolate U13 and transfer the condition to T13.
We also remove the dependency of U7 on T9 by setting T8 = 0, since T9 will be
needed below.

The condition on W11 can be transferred to an equation on Uπ
3 + Uπ

9 + Uπ
16.

Since T3 is already busy, we instead isolate U9 and transfer the condition to T9.
However, U9 also depends on T10, which is influenced by Q2; but Q2 is needed to
satisfy the condition on T9. To remove this circular dependency, we force T11 = 0
so that U9 = T9 + 0 does not depend on T10 any more.

The condition on T9 is bridged to a condition on Q2. However, Q2 influences
R0, whose value is needed to solve for Q6; but Q6 influences R6, whose value is
needed to solve for Q2. We force Q1 = 0 so that R0 = Q0 + 0 no longer depends
on Q2.

Finally in round 10, the differences in the state cancel.

6.3 Subcollision III

For round 18, we have the following differences:

db
(17)
16 = 00000101 da(17) = 00000000000000000 = dQ

dp(18) = 00000000 Round 18

da(18) = 00000000000000101 = dT dU = 00000000000010011

We have three conditions on T0, T13 and T16, which cannot be immediately
satisfied in round 18.
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Condition on via then on satisfied via

T0 Rπ
0 + Rπ

7 + Rπ
11 Q7 p

(17)
6

T13 Rπ
0 + Rπ

6 + Rπ
13 Q6 p

(17)
5

T14 Rπ
3 + Rπ

10 + Rπ
14 Q3 p

(17)
2

Then for round 19, we have the following differences:

db
(18)
16 = 11010000

dp(19) = 00000000 Round 19

da(19) = 00010111001100000 = dW dX = 01111011100100000

This implies conditions on W2, W4, W5 +W6, W6 +W7, W8, W9, W10 +W11,
W12.

Condition on via then on satisfied via

W2, W4, W5 + W6, W6 + W7, W8 p
(19)
1 , p

(19)
3...5, p

(19)
7

W12 Uπ
6 + Uπ

10 + Uπ
16 T6 p

(18)
5

W9 Uπ
2 + Uπ

6 + Uπ
12 T2, with T4 = 0 p

(18)
1 and p

(18)
3

W10 + W11 Uπ
2 + Uπ

3 + Uπ
13 + Uπ

16 T3 p
(18)
2

To solve the conditions on W9 and W10, we need to remove some dependen-
cies. On the one hand, the condition on W9 is transferred to an equation on
Uπ

2 + Uπ
6 + Uπ

12, of which we want to isolate U2 and transfer to T2; this requires
to know T3 and T4. On the other hand, the condition on W10 + W11 becomes
an equation on Uπ

2 + Uπ
3 + Uπ

13 + Uπ
16; to isolate U3 and transfer the equation to

T3, we need to know U2. This dependency can be removed by forcing T4 = 0 so
that U2 does not depend on T3.

Finally in round 20, the differences in the state cancel.

6.4 Subcollision IV

For round 25, we have the following differences:

db
(24)
16 = 00010100 da(24) = 00000000000000000 = dQ

dp(25) = 00000000 Round 25

da(25) = 00000000000010100 = dT dU = 00000000001110100

We have three conditions on T11, T13 and T15, which cannot be immediately
satisfied in round 25.

Condition on via then on satisfied via

T13 Rπ
0 + Rπ

6 + Rπ
13 Q6, with Q2 = 0 p

(24)
5 and p

(24)
1

T15 Rπ
3 + Rπ

10 + Rπ
14 Q3 p

(24)
2

T11 Rπ
3 + Rπ

9 + Rπ
16 side bridge to Q0 = 0 and to Q1 p

(24)
0 for Q1

Q0 Oπ
0 + Oπ

7 + Oπ
11 N7 p

(23)
6
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The condition on T11 cannot be satisfied neither in round 25 nor in round 24.
As we transfer it to an equation on Rπ

3 + Rπ
9 + Rπ

16, we cannot isolate R3 as it
would conflict with the condition on R15. We instead isolate R16 and side-bridge
it to Q0 = 0 and to an equation on Q1. The equation on Q1 can be satisfied in
round 24 via p

(24)
0 . Consequently, Q0 = 0 must be bridged to round 23.

To be able to solve for T13, we must prevent Q1 from influencing R0. Hence,
we force Q2 = 0.

Then for round 26, we have the following differences:

db
(25)
16 = 01000011

dp(26) = 00000000 Round 26

da(26) = 11111100111010010 = dW dX = 11000101010010000

This implies conditions on W0 +W1, W1 +W2, W2 +W3, W3 +W4, W4 +W5,
W6, W7, W8 + W9, W9 + W10, W11, W13, W14 and W16. Among them, the
conditions on W1 through W8 can be immediately satisfied via p(26).

Condition on via then on satisfied via

W0 +W1, W1 +W2, W2 +W3, W3 +W4, W4 +W5, W6, W7, W8 +W9 p(26)

W9 + W10 Uπ
6 + Uπ

9 + Uπ
12 + Uπ

13 T6, with T8 = 0 p
(25)
5 and p

(25)
7

W13 Uπ
0 + Uπ

6 + Uπ
13 side bridge to T1 and T2 p

(25)
0 and p

(25)
1

W16 Uπ
0 + Uπ

4 + Uπ
10 T4 p

(25)
3

W11 Uπ
3 + Uπ

9 + Uπ
16 T3 p

(25)
2

W14 Uπ
3 + Uπ

7 + Uπ
13 T7 p

(25)
6

In the condition on W9 + W10, we set T8 = 0 to remove the dependency of
U6 on T7. This way, the value of T7 can be determined after that of T6.

Note that the condition on W13 becomes an equation on Uπ
0 + Uπ

6 + Uπ
13.

Since U6 is already taken, we isolate U0 and side-bridge it to T1 and T2.
Finally in round 27, the differences in the state cancel.

7 Example of collision and workload

We wrote a program that produces collisions based on the trail described in
Sec. 5 and using the equation transfer described in sec. 6. The workload of
the collision-generating function is about 65 applications of the state-updating
function: 35 for the 35 message inputs and 30 additional ones for the bridges
and some XORs.

An example of pair of collision messages is given in Table 2, which was
obtained using our program. Each line represents a message block; for each block,
the words in hexadecimal must be read from left to right. The first message is
given by the hexadecimal digits in Table 2, while the second message is obtained
by xoring with 0 = ffffffff all the underlined words.
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p(0) 002911b8 f4046c0d 18be4673 67847de2 4ae13b51 3d6c1b7e 2cd6267d 72ae641d

p(1) 69522bd8 5f903d84 25558553 c194e805 1f7427d8 37edf3e4 bc922535 01eb3a6b

p(2) 0e8257d3 2ea67fd6 0682df75 c21387fe caa1b829 ccc994ba 9d03bd1c 00992518

p(3) 01244898 305e252b 440d462c 491c5b2e 4d061f8b 4db745f9 15473f0e 54de79dc

p(4) 39b355bc 2d1261f0 074d4fca 4dc8390e 6443663d 66bb5f6d 428b7e94 26a61a31

p(5) 701f5092 5d037474 7a5a4baf 767d758d 450940b5 12383ea4 3b253990 1e1f71d5

p(6) 6e5d785e 1ad4176a 63cb2040 6bfc19fc 7f965d80 7ff57876 4e455002 323b054b

p(7) 24168c78 d6646fb1 9a2ac8f2 030a45b1 301c3921 e58d996a 56ae7f7d 0732105a

p(8) 69bd59fc 6e3b4bdf 1adc0aac 22ee5482 4062e4cf 85f91c0a 45b21fe0 f25f2094

p(9) d7992b2c 1a491c5e 8dc2afaf 3bf6154e a8ab7031 797d40fa 475d1ef4 e842e121

p(10) 4cad0094 314f2b74 5e14301d 4df21075 494469e5 2e405ddc 13667210 1cd05258

p(11) 366b5346 66c441da 42305df2 7eb75e5b 60327a81 2c3b3ba0 15a12e7f 54220e5c

p(12) 3ef673cb 0822691d 59913a36 409d0de9 12e16f49 798b6174 121f0502 73da3555

p(13) 58b077d2 26ca08ac 3699151a 09021b0b 7bb90ef7 57724ba9 139d0f26 70494f23

p(14) 692c4a40 4a80585b 187e5da3 16c57533 689955b9 3cd52635 13e96788 40803068

p(15) 5db27fad 33ea62e1 23c91a2a 48cc15d5 575331b2 60bf1732 5c674a5d 3cd6190a

p(16) 0fbf7ae5 2f14185a 6ad630dc 047e26e9 422d0f77 54dc195d 368e05eb 0d6662b5

p(17) 79836169 75ef70c5 2cae43f4 2c49396c 3c613693 e13226d5 5bc5e69d 288f3f57

p(18) 3a615feb 58d1d14c 00795183 c49baa76 5e9d7604 79f7f59b 19166db2 617207a2

p(19) 6b723ed5 f5fe7f4e 401d5fa4 9acbcbfe 038420bc e3aac878 202e7da1 5b28d301

p(20) 440246c3 18d7068f 6be842d6 5039652a 542c5a21 19530314 6bcb5da9 0fc946d4

p(21) 0e127504 5f1e7011 28336601 78742718 249e328d 2b0c3dae 11f406bb 5dd55373

p(22) 6ad4001c 5a9f6260 4cd460ca 5fa41c20 205913cf 127e075d 003555d6 07cf042f

p(23) 67322c45 6d225953 1af46629 0ecc37d7 46cf7da8 01d35159 b428c608 3a2d3d0d

p(24) 4fe67839 304d058a 9ffce0a5 09751255 37e6124e 24851e01 591d2784 252a2fd9

p(25) 23c3189f 3362c465 d6437d3f d4bccbbe 507872ed f78a65dd aaa618d1 556224c8

p(26) 581ecd2f 305c16ce 83fde1d9 6b9f1da2 7a1f06d4 efbfe9b6 5fdcde8c 018136fc

p(27) 0c7b1785 50052d8e 0c153981 380717b0 773b727d 06334fbf 728245ee 251f74b1

p(28) 1d1842e4 62705d85 34927fe9 19da7c12 50646f07 4d546b8b 39ce12c6 3bb12fec

p(29) 4c852466 513e15e2 6d697ca3 6a155ef3 4ff85bb9 5c4603f4 486a5290 30046806

p(30) 17965e32 5e7368b9 470e0ff4 73d95c04 1f163002 182f532d 4d67752c 596871e0

p(31) 4ad4041e 2cf76301 3f4a3974 0a4a00f8 5ed01d43 4e573590 4f68140b 587675a2

p(32) 66fa4037 aa864c4d 49bb6092 6f117408 74ad1b53 4eae041c 5d2462b5 05881d37

p(33) 5579473e 7cfe6737 ebed6b2a 912f3f6a dd8bfb4b 329eae68 96076905 6f3c52cc

p(34) 06e8849c 5f456809 102bfd9d 527ab906 a1d33100 72aa5ea1 8ab21c2b 68f50f55

p(35) 45c52997 39607312 345919ca 263d7857 3b971002 40276cb6 138a726c 29593908

hash result:
h(p) 45d93522 0168bdcd e830f65a 6e46f3e9 1bb0bbd6 3d37a576 718f4032 0c65079f

Table 2. Example of pair of messages that produce a collision.
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8 Conclusions

In this paper, we have explained how to refine the attack [2] in order to produce
collisions in Panama using only about 26 evaluations of the state updating
function. As noted in [2], Panama gives too many degrees of freedom per round
to the attacker.

One could consider to fix Panama to be resistant against this type of attack.
We have actually done this in [3] and the result is RadioGatún. Its design was
based on the insight obtained from the attack in [2] and the possibility of the
attack in this paper. This lead us to reduce the number of message words injected
each round from 8 to 3, giving an attacker much less freedom per round and
requiring more bridges with accompanying dependency problems for a trail with
similar complexity. More importantly, we have added feedback from the state
to the buffer, making the buffer evolution during hashing become nonlinear.
This makes the split in nicely separated subcollisions no longer possible. For
more explanations on the evolution from Panama to RadioGatún we refer to
Appendix A of [3].

Interestingly, our attack on Panama can be seen as an application of trail
backtracking [3]. In this context, we have defined a metric of a trail called its
backtracking depth. As we explain in [3], the backtracking depth gives a good
idea of the number of rounds that must be bridged at the worst point in the
trail. The backtracking depth of the trail we used in this paper turns out to be
only 2. This suggests that the conditions can be satisfied at any round in the
trail by the message words injected immediately before it and those before the
previous round and hence that the number of bridges is rather limited. In the
design of RadioGatún one of the main criteria is exactly the non-existence of
collision trails with low backtracking depth.
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