
62 COMMUNICATIONS OF THE ACM | JUNE 2016 | VOL. 59 | NO. 6

DOI:10.1145/2896587

Human-centered design can make
application programming interfaces
easier for developers to use.

BY BRAD A. MYERS AND JEFFREY STYLOS

A P P L I C AT I O N P RO G R A M M I N G I N T E R FAC E S (APIs),
including libraries, frameworks, toolkits, and
software development kits, are used by virtually all
code. If one includes both internal APIs (interfaces
internal to software projects) and public APIs
(such as the Java Platform SDK, the Windows .NET
Framework, jQuery for JavaScript, and Web services
like Google Maps), nearly every line of code most
programmers write will use API calls. APIs provide
a mechanism for code reuse so programmers can
build on top of what others (or they themselves)
have already done, rather than start from scratch
with every program. Moreover, using APIs is
often required because low-level access to system
resources (such as graphics, networking, and the
file system) is available only through protected APIs.
Organizations increasingly provide their internal data
on the Web through public APIs; for example, http://
www.programmableweb.com lists almost 15,000
APIs for Web services and https://www.digitalgov.
gov/2013/04/30/apis-in-government/ promotes use of
government data through Web APIs.

There is an expanding market of com-
panies, software, and services to help
organizations provide APIs. One such
company, Apigee Corporation (http://
apigee.com/), surveyed 200 marketing
and IT executives in U.S. companies
with annual revenue of more than $500
million in 2013, with 77% of respon-
dents rating APIs “important” to mak-
ing their systems and data available
to other companies, and only 1% of
respondents rating APIs as “not at all
important.”12 Apigee estimated the to-
tal market for API Web middleware was
$5.5 billion in 2014.

However, APIs are often difficult
to use, and programmers at all levels,
from novices to experts, repeatedly
spend significant time learning new
APIs. APIs are also often used incor-
rectly, resulting in bugs and some-
times significant security problems.7
APIs must provide the needed func-
tionality, but even when they do, the
design could make them unusable.
Because APIs serve as the interface be-
tween human developers and the body
of code that implements the function-
ality, principles and methods from hu-
man-computer interaction (HCI) can
be applied to improve usability. “Us-
ability,” as discussed here, includes a
variety of properties, not just learnabil-
ity for developers unfamiliar with an
API but also efficiency and correctness
when used by experts. This property
is sometimes called “DevX,” or devel-
oper experience, as an analogy with
“UX,” or user experience. But usability
also includes providing the appropri-
ate functionality and ways to access it.
Researchers have shown how various

Improving
API Usability

 key insights
 ˽ All modern software makes heavy use

of APIs, yet programmers can find APIs
difficult to use, resulting in errors and
inefficiencies.

 ˽ A variety of research findings, tools,
and methods are widely available for
improving API usability.

 ˽ Evaluating and designing APIs with
their users in mind can result in fewer
errors, along with greater efficiency,
effectiveness, and security.

contributed articles

http://dx.doi.org/10.1145/2896587
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2896587&domain=pdf&date_stamp=2016-05-23

JUNE 2016 | VOL. 59 | NO. 6 | COMMUNICATIONS OF THE ACM 63

I
M

A
G

E
 B

Y
 B

E
N

I
S

 A
R

A
P

O
V

I
C

/D
O

T
S

H
O

C
K

human-centered techniques, includ-
ing contextual inquiry field studies,
corpus studies, laboratory user studies,
and logs from field trials, can be used
to determine the actual requirements
for APIs so they provide the right func-
tionality.21 Other research focuses on
access to that functionality, showing,
for example, software patterns in APIs
that are problematic for users,6,10,25
guidelines that can be used to evaluate
API designs,4,8 with some assessed by

automated tools,18,20 and mitigations
to improve usability when other con-
siderations require trade-offs.15,23 As
an example, our own small lab study in
2008 found API users were between 2.4
and 11.2 times faster when a method
was on the expected class, rather than
on a different class.25 Note we are not
arguing usability should always over-
shadow other considerations when
designing an API; rather, API designers
should add usability as explicit design-

and-evaluation criteria so they do not
create an unusable API inadvertently,
and when they intentionally decrease
usability in favor of some other criteria,
at least to do it knowingly and provide
mitigations, including specific docu-
mentation and tool support.

Developers have been designing
APIs for decades, but without empiri-
cal research on API usability, many of
them have been difficult to use, and
some well-intentioned design recom-

64 COMMUNICATIONS OF THE ACM | JUNE 2016 | VOL. 59 | NO. 6

contributed articles

well it prevents errors, how simple it is
to use, how consistent it is, and how
well it matches its users’ mental mod-
els. Power includes an API’s expres-
siveness, or the kinds of abstractions
it provides; its extensibility (how us-
ers can extend it to create convenient
user-specific components); its “evolv-
ability” for the designers who will
update it and create new versions; its
performance in terms of speed, mem-
ory, and other resource consumption;
and the robustness and security of its
implementation and resulting appli-
cation. Usability mostly affects API
users, though error prevention also
affects consumers of the resulting
products. Power affects mostly API us-
ers and product consumers, though
evolvability also affects API designers
and, indirectly, API users to the extent
changes in the API require editing
the code of applications that use it.
Modern APIs for Web services seem
to involve such “breaking changes”
more than desktop APIs, as when, say,
migrating from v2 to v3 of the Google
Maps API required a complete rewrite
of the API users’ code. We have heard
anecdotal evidence that usability can
also affect API adoption; if an API
takes too long for a programmer to
learn, some organizations choose to
use a different API or write simpler
functionality from scratch.

Another reason for difficulty is the
design of an API requires making hun-
dreds of design decisions at many dif-
ferent levels, all of which can affect
usability.24 Decisions range from the
global (such as the overall architecture
of the API, what design patterns will be
used, and how functionality will be pre-
sented and organized) down to the low
level (such as specific name of each ex-
ported class, function, method, excep-
tion, and parameter). The enormous
size of public APIs contributes to these
difficulties; for example, the Java Plat-
form, Standard Edition API Specifica-
tion includes more than 4,000 classes
with more than 35,000 different meth-
ods, and Microsoft’s .NET Framework
includes more than 140,000 classes,
methods, properties, and fields.

Examples of Problems
All programmers are likely able to iden-
tify APIs they personally had difficulty
learning and using correctly due to us-

mendations have turned out to be
wrong. There was scattered interest in
API usability in the late 1990s, with the
first significant research in the area ap-
pearing in the first decade of the 2000s,
especially from the Microsoft Visual
Studio usability group.4 This resulted
in a gathering of like-minded research-
ers who in 2009 created the API Usabil-
ity website (http://www.apiusability.
org) that continues to be a repository
for API-usability information.

We want to make clear the vari-
ous stakeholders affected by APIs.
The first is API designers, including
all the people involved in creating
the API, like API implementers and
API documentation writers. Some of
their goals are to maximize adoption
of an API, minimize support costs,
minimize development costs, and
release the API in a timely fashion.
Next is the API users, or the program-
mers who use APIs to help them write
their code. Their goals include being
able to quickly write error-free pro-
grams (without having to limit their
scope or features), use APIs many
other programmers use (so others
can test them, answer questions, and
post sample code using the APIs), not
needing to update their code due to
changes in APIs, and having their re-
sulting applications run quickly and
efficiently. For public APIs, there may
be thousands of times as many API
users as there are API developers. Fi-
nally, there are the consumers of the
resulting products who may be indi-
rectly affected by the quality of the
resulting code but who also might be
directly affected, as in, say, the case
of user-interface widgets, where API
choices affect the look and feel of the
resulting user interface. Consumers’
goals include having products with
the desired features, robustness, and
ease of use.

Motivating the Problem
One reason API design is such a chal-
lenge is there are many quality attri-
butes on which APIs might be evaluat-
ed for the stakeholders (see Figure 1),
as well as trade-offs among them. At
the highest level, the two basic quali-
ties of an API are usability and power.
Usability includes such attributes as
how easy an API is to learn, how pro-
ductive programmers are using it, how

APIs are also often
used incorrectly,
resulting in bugs
and sometimes
significant security
problems.

JUNE 2016 | VOL. 59 | NO. 6 | COMMUNICATIONS OF THE ACM 65

contributed articles

ability limitations.a We list several ex-
amples here to give an idea of the range
of problems. Other publications have
also surveyed the area.10,24

Studies of novice programmers
have identified selecting the right facil-
ities to use, then understanding how to
coordinate multiple elements of APIs
as key barriers to learning.13 For exam-
ple, in Visual Basic, learners wanted to
“pull” data from a dialogue box into a
window after “OK” was hit, but because
controls are inaccessible if their dia-
logue box is not visible in Visual Basic,
data must instead be “pushed” from
the dialogue to the window.

There are many examples of API
quirks affecting expert professional
programmers as well. For example, one
study11 detailed a number of function-
ality and usability problems with the
.NET socket Select() function in C#,
using it to motivate greater focus on the
usability of APIs in general. In another
study,21 API users reported difficulty
with SAP’s BRFplus API (a business-
rules engine), and a redesign of the API
dramatically improved users’ success
and time to completion. A study of the
early version of SAP’s APIs for enterprise
Service-Oriented Architecture, or eSOA,1
identified problems with documenta-
tion, as well as additional weaknesses
with the API itself, including names that
were too long (see Figure 2), unclear
dependencies, difficulty coordinating
multiple objects, and poor error mes-
sages when API users made mistakes.
Severe problems with documentation

a We are collecting a list of usability concerns
and problems with APIs; please send yours to
author Brad A. Myers; for a more complete list
of articles and resources on API usability, see
http://www.apiusability.org

were also highlighted by a field study19
of 440 professional developers learn-
ing to use Microsoft’s APIs.

Many sources of API recommen-
dations are available in print and on-
line. Two of the most comprehensive
are books by Joshua Bloch (then at
Sun Micro systems)3 and by Krzysztof
Cwalina and Brad Abrams (then at Mi-
crosoft). Each offers guidelines devel-

oped over several years during creation
of such widespread APIs as the Java
Development Kit and the .NET base
libraries, respectively. However, we
have found some of these guidelines
to be contradicted by empirical evi-
dence. For example, Bloch discussed
the many architectural advantages of
the factory pattern,9 where objects in
a class-instance object system cannot

Figure 1. API quality attributes and the stakeholders most affected by each quality.

Key: Stakeholders

API Designers API Users Product Consumers

Usability

Power

Expressiveness Extensibility Evolvability Performance,
Robustness

Simplicity Consistency
Matching

Mental Models

Learnability Productivity Error-Prevention

Figure 2. Method names are so long users cannot tell which of the six methods to select in autocomplete;1 note the autocomplete menu
does not support horizontal scrolling nor does the yellow hover text for the selected item.

66 COMMUNICATIONS OF THE ACM | JUNE 2016 | VOL. 59 | NO. 6

contributed articles

it helps explain the results by revealing
participants’ mental models.

Only a few empirical studies have
covered API design patterns but con-
sistently show simplifying the API and
avoiding patterns like the factory pat-
tern will improve usability.6 Other rec-
ommendations on designs are based
on the opinions of experienced de-
signers,3,5,11,17 though there are many
recommendations, and they are some-
times contradictory.

As described here, there is a wide
variety of evaluation methods for de-
signs, but many of them can also be
used during the design phase as guide-
lines the API designer should keep in
mind. For example, one guideline that
appears in “cognitive dimensions”4
and in Nielsen’s “heuristic evalua-
tion”16 is consistency, which applies
to many aspects of an API design.
One example of its application is that
the order of parameters should be
the same in every method. However,
javax.xml.stream.XMLStreamWriter
for Java 8 has different overloadings
for the writeStartElement method,
taking the String parameters local-
Name and namespaceURI in the oppo-
site order from each other,18 and, since
both are strings, the compiler is not able
to detect user errors (see code section 1).

Another Nielsen guideline is to re-
duce error proneness.16 It can apply
to avoiding long sequences of param-
eters of the same type the API user is
likely to get wrong and the compiler
will also not be able to check. For exam-
ple, the class TPASupplierOrderXDE
in Petstore (J2EE demonstration soft-
ware from Oracle) takes a sequence of
nine Strings (see code section 2).18

Likewise, in Microsoft’s .Net,
System.Net.Cookie has four con-
structors that take zero, two, three,
or four strings as input. Another ap-
plication of this principle is to make
the default or example parameters
do the right thing. Fahl et al.7 report-
ed that, by default, SSL certificate
validation is turned off when using
some iOS frameworks and libraries,
resulting in API users making the
error of leaving them unchecked in
deployed applications.

Evaluating the API Design
Following its design, a new API
should be evaluated to measure and

be created by calling new but must
instead be created using a separate
“factory” method or entirely different
factory class. Use of other patterns
(such as the singleton or flyweight
patterns)9 could also require factory
methods. However, empirical re-
search has shown significant usability
penalties when using the factory pat-
tern in APIs.6

There is also plenty of evidence
that less usable API designs affect
security. Increasing API usability of-
ten increases security. For example,
a study by Fahl et al.7 of 13,500 pop-
ular free Android apps found 8.0%
had misused the APIs for the Secure
Sockets Layer (SSL) or its successor,
the Transport Layer Security (TLS),
and were thus vulnerable to man-
in-the-middle and other attacks; a
follow-on study of Apple iOS apps
found 9.7% to be vulnerable. Causes
include significant difficulties using
security APIs correctly, and Fahl et
al.7 recommended numerous chang-
es that would increase the usability
and security of the APIs.

On the other hand, increased se-
curity in some cases seems to lower
usability of the API. For example,
Java security guidelines strongly en-
courage classes that are immutable,
meaning objects cannot be changed
after they are constructed.17 Howev-
er, empirical research shows profes-
sionals trying to learn APIs prefer to
be able to create empty objects and
set their fields later, thus requiring
mutable classes.22 This programmer
preference illustrates that API design

involves trade-offs and how useful it
is to know what factors can influence
usability and security.

Human-Centered Methods
If you are convinced API usability
should be improved, you might wonder
how it can be done. Fortunately, a vari-
ety of human-centered methods are
available to help answer the questions
an API designer might have.

Design phase. At the beginning of
the process, as an API is being planned,
many methods can help the API de-
signer. The Natural Programming
Project at Carnegie Mellon University
has pioneered what we call the “natu-
ral programming” elicitation method,
where we try to understand how API us-
ers are thinking about functionality25
to determine what would be the most
natural way to provide it. The essence
of this approach is to describe the re-
quired functionality to the API users,
then ask them to write onto blank pa-
per (or a blank screen) the design for
the API. The key goals are to under-
stand the names API users assign to
the various entities and how users or-
ganize the functionality into different
classes, where necessary. Multiple re-
searchers have reported trying to guess
the names of classes and methods is
the key way users search and browse
for the needed functionality,14 and we
have found surprising consistency in
how they name and organize the func-
tionality among the classes.25 This elic-
itation technique also turns out to be
useful as part of a usability evaluation
of an existing API (described later), as

Code section 1. Two overloadings of the writeStartElement method in Java where
localName and namespaceURI are in the opposite order.

void writeStartElement(String namespaceURI,
 String localName)
void writeStartElement(String prefix,
 String localName,
 String namespaceURI)

Code section 2. String parameters many API users are likely to get wrong.

void setShippingAddress (
 String firstName, String lastName, String street,
 String city, String state, String country,
 String zipCode, String email, String phone)

JUNE 2016 | VOL. 59 | NO. 6 | COMMUNICATIONS OF THE ACM 67

contributed articles

improve its usability, with a wide va-
riety of user-centered methods avail-
able for the evaluation.

The easiest is to evaluate the design
based on a set of guidelines. Nielsen’s
“heuristic evaluation” guidelines16
describe 10 properties an expert can
use to check any design (http://www.
nngroup.com/articles/ten-usability-
heuristics/) that apply equally well to
APIs as to regular user interfaces. Here
are our mappings of the guidelines to
API designs with a general example of
how each can be applied.

Visibility of system status. It should
be easy for the API user to check the
state (such as whether a file is open
or not), and mismatches between the
state and operations should provide
appropriate feedback (such as writing
to a closed file should result in a help-
ful error message);

Match between system and real world.
Names given to methods and the or-
ganization of methods into classes
should match the API users’ expecta-
tions. For example, the most generic
and well-known name should be used
for the class programmers are sup-
posed to actually use, but this is vio-
lated by Java in many places. There is
a class in Java called File, but it is a
high-level abstract class to represent
file system paths, and API users must
use a completely different class (such
as FileOutputStream) for reading
and writing;

User control and freedom. API users
should be able to abort or reset opera-
tions and easily get the API back to a
normal state;

Consistency and standards. All parts
of the design should be consistent
throughout the API, as discussed earlier;

Error prevention. The API should
guide the user into using the API cor-
rectly, including having defaults that
do the right thing;

Recognition rather than recall.
As discussed in the following para-
graphs, a favorite tool of API users to
explore an API is the autocomplete
popup from the integrated devel-
opment environment (IDE), so one
requirement is to make the names
clear and understandable, enabling
users to recognize which element
they want. One noteworthy violation
of this principle was an API where six
names all looked identical in auto-

complete because the names were so
long the differences were off screen,1
as in Figure 2. We also found these
names were indistinguishable when
users were trying to read and under-
stand existing code, leading to much
confusion and errors;1

Flexibility and efficiency of use. Us-
ers should be able to accomplish their
tasks with the API efficiently;

Aesthetic and minimalist design. It
might seem obvious that a smaller
and less-complex API is likely to be
more usable. One empirical study20
found that for classes, the number
of other classes in the same package/
namespace had an influence on the
success of finding the desired one.
However, we found no correlation
between the number of elements in
an API and its usability, as long as
they had appropriate names and were
well organized.25 For example, adding
more different kinds of objects that
can be drawn does not necessarily
complicate a graphics package, and
adding convenience constructors that
take different sets of parameters can
improve usability.20 An important fac-
tor seems to be having distinct prefix-
es for the different method names so
they are easily differentiated by typing
a small number of characters for code
completion in the editor;20

Help users recognize, diagnose, and
recover from errors. A surprising num-
ber of APIs supply unhelpful error in-
formation or even none at all when
something goes wrong, thus decreas-
ing usability and also possibly affect-
ing correctness and security. Many
approaches are available for reporting
errors, with little empirical evidence
(but lots of opinions) about which is
more usable—a topic for our group’s
current work; and

Help and documentation. A key com-
plaint about API usability is inadequate
documentation.19

Likewise, the Cognitive Dimen-
sions Framework provides a set of
guidelines that can be used to evalu-
ate APIs.4 A related method is Cogni-
tive Walkthrough2 whereby an expert
evaluates how well a user interface
supports one or more specific tasks.
We used both Heuristic Evaluation
and Cognitive Walkthrough to help
improve the NetWeaver Gateway prod-
uct from SAP, Inc. Because the SAP

The most generic
and well-known
name should be
used for the class
that programmers
are supposed
to actually use,
but this is violated
by Java in
many places.

68 COMMUNICATIONS OF THE ACM | JUNE 2016 | VOL. 59 | NO. 6

contributed articles

ideal mitigation would be to change
the API to fix the problem. However,
actually changing an API may not be
possible for a number of reasons. For
example, legacy APIs can be changed
only rarely since it would involve also
changing all the code that uses the
APIs. Even with new APIs, an API de-
signer could make an explicit trade-
off to decrease usability in favor of
other goals, like efficiency. For exam-
ple, a factory pattern might be used in
a performance-critical API to avoid al-
locating any memory at all.

When a usability problem can-
not be removed from the API itself,
many mitigations can be applied to
help its users. The most obvious is to
improve the documentation and ex-
ample code, which are the subjects
of frequent complaints from API us-
ers in general.19 API designers can
be careful to explicitly direct users
to the solutions to the known prob-
lems. For example, the Jadeite tool
adds cross-references to the docu-
mentation for methods users expect
to exist but which are actually in a dif-
ferent class.23 For example, the Java
Message class does not have a send
method, so Jadeite adds a pretend
send method to the documentation
for the Message class, telling users
to look in the mail Transport class
instead. Knowing users are confused
by the lack of this method in the Mes-
sage class allows API documentation
to add help exactly where it is needed.

Tools
This kind of help can be provided even
in programming tools (such as the code
editor or IDE), not just in the documen-
tation. Calcite15 adds extra entries into
the autocomplete menus of the Eclipse
IDE to help API users discover what ad-
ditional methods will be useful in the
current context, even if they are not
part of the current class. It also high-
lights when the factory pattern must be
used to create objects.

Many other tools can also help
with API usability. For example,
some tools that help refactor the API
users’ code may lower the barrier for
changing an API (such as Gofix for
the Go language, http://blog.golang.
org/introducing-gofix). Other tools
help find the right elements to use
in APIs, “wizards” that produce part

developers who built this tool were
using agile software-development
processes, they were able to quickly
improve the tool’s usability based on
our evaluations.8

Although a user-interface expert
usually applies these guidelines to
evaluate an API, some tools automate
API evaluations using guidelines; for
example, one tool can evaluate APIs
against a set of nine metrics, includ-
ing looking for methods that are
overloaded but with different return
types, too many parameters in a row
with the same types, and consistency
of parameter orderings across differ-
ent methods.18 Likewise, the API Con-
cepts Framework takes the context of
use into account, as it evaluates both
the API and samples of code using
the API.20 It can measure a variety of
metrics already mentioned, including
whether multiple methods have the
same prefix (and thus may be annoy-
ing to use in code-completion menus)
and use the factory pattern.

Among HCI practitioners, running
user studies to test a user interface
with target users is considered the
“gold standard.”16 Such user tests can
be done with APIs as well. In a think-
aloud usability evaluation, target us-
ers (here, API users) attempt some
tasks (either their own or experiment-
er-provided) with the API typically in
a lab setting and are encouraged to
say aloud what they are thinking. This
makes clear what they are looking for
or trying to achieve and, in general,
why they are making certain choices.
A researcher might be interested in a
more formal A/B test, comparing, say,
an old vs. new version of an API (as we
previously have done6,21,25), but the in-
sights about usability barriers are usu-
ally sufficient when they emerge from
an informal think-aloud evaluation.

Grill et al.10 described a method
where they had experts use Nielsen’s
Heuristic Evaluation to identify prob-
lems with an API and observed devel-
opers learning to use the same API in
the lab. An interesting finding was
these two methods revealed mostly
independent sets of problems with
that API.

Mitigations
When any of these methods reveals
a usability problem with an API, an

APIs specify not
just the interfaces
for programmers
to understand
and write code
against but also
for computers to
execute, making
them brittle and
difficult to change.

JUNE 2016 | VOL. 59 | NO. 6 | COMMUNICATIONS OF THE ACM 69

contributed articles

of the needed code based on API us-
ers’ answers to questions,8 and many
kinds of bug checkers that check for
proper API use (such as http://find-
bugs.sourceforge.net/).

Conclusion
Since our Natural Programming group
began researching API usability in the
early 2000s, some significant shifts
have occurred in the software indus-
try. One of the biggest is the move
toward agile software development,
whereby a minimum-viable-product
is quickly released and then iterated
upon based on real-world user feed-
back. Though it has had a positive
effect on usability overall in driving
user-centric development, it exposes
some of the unique challenges of API
design. APIs specify not just the inter-
faces for programmers to understand
and write code against but also for
computers to execute, making them
brittle and difficult to change. While
human users are nimble responding
to the small, gradual changes in user
interface design that result from an
agile process, code is not. This aver-
sion to change raises the stakes for
getting the design right in the first
place. API users behave just like other
users almost universally, but the con-
straints created by needing to avoid
breaking existing code make the evo-
lution, versioning, and initial release
process considerably different from
other design tasks. It is not clear how
the “fail fast, fail often” style of agile
development popular today can be
adapted to the creation and evolu-
tion of APIs, where the cost of releas-
ing and supporting imperfect APIs or
making breaking changes to an exist-
ing API—either by supporting mul-
tiple versions or by removing support
for old versions—is very high.

We envision a future where API de-
signers will always include usability as
a key quality metric to be optimized by
all APIs and where releasing APIs that
have not been evaluated for usability
will be as unacceptable as not evalu-
ating APIs for correctness or robust-
ness. When designers decide usability
must be compromised in favor of other
goals, this decision will be made know-
ingly, and appropriate mitigations will
be put in place. Researchers and API
designers will contribute to a body of

knowledge and set of methods and
tools that can be used to evaluate and
improve API usability. The result will
be APIs that are easier to learn and use
correctly, API users who are more effec-
tive and efficient, and resulting prod-
ucts that are more robust and secure
for consumers.

Acknowledgments
This article follows from more than a
decade of work on API usability by the
Natural Programming group at Carn-
egie Mellon University by more than
30 students, staff, and postdocs, in
addition to the authors, and we thank
them all for their contributions. We
also thank André Santos, Jack Beaton,
Michael Coblenz, John Daughtry, Josh
Sunshine, and the reviewers for their
comments on earlier drafts of this ar-
ticle. This work has been funded by
SAP, Adobe, IBM, Microsoft, and mul-
tiple National Science Foundation
grants, including CNS-1423054, IIS-
1314356, IIS-1116724, IIS-0329090,
CCF-0811610, IIS-0757511, and CCR-
0324770. Any opinions, findings, and
conclusions or recommendations ex-
pressed in this material are those of the
authors and do not necessarily reflect
those of any of the sponsors.

References
1. Beaton, J., Jeong, S.Y., Xie, Y., Stylos, J., and Myers,

B.A. Usability challenges for enterprise service-
oriented architecture APIs. In Proceedings of the
IEEE Symposium on Visual Languages and Human-
Centric Computing (Herrsching am Ammersee,
Germany, Sept. 15–18). IEEE Computer Society Press,
Washington, D.C., 2008, 193–196.

2. Blackmon, M.H., Polson, P.G., Kitajima, M., and Lewis,
C. Cognitive walkthrough for the Web. In Proceedings
of the Conference on Human Factors in Computing
Systems (Minneapolis, MN, Apr. 20–25). ACM, Press,
New York, 2002, 463–470.

3. Bloch, J. Effective Java Programming Language
Guide. Addison-Wesley, Boston, MA, 2001.

4. Clarke, S. API Usability and the Cognitive Dimensions
Framework, 2003; http://blogs.msdn.com/stevencl/
archive/2003/10/08/57040.aspx

5. Cwalina, K. and Abrams, B. Framework Design
Guidelines, Conventions, Idioms, and Patterns for
Reusable .NET Libraries. Addison-Wesley, Upper-
Saddle River, NJ, 2006.

6. Ellis, B., Stylos, J., and Myers, B.A. The factory pattern
in API design: A usability evaluation. In Proceedings of
the International Conference on Software Engineering
(Minneapolis, MN, May 20–26). IEEE Computer Society
Press, Washington, D.C., 2007, 302–312.

7. Fahl, S., Harbach, M., Perl, H., Koetter, M., and Smith,
M. Rethinking SSL development in an appified world.
In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (Berlin,
Germany, Nov. 4–8). ACM Press, New York, 2013,
49–60.

8. Faulring, A., Myers, B.A., Oren, Y., and Rotenberg, K.
A case study of using HCI methods to improve tools
for programmers. In Proceedings of Workshop on
Cooperative and Human Aspects of Software Engineering
at the International Conference on Software Engineering
(Zürich, Switzerland, June 2). IEEE Computer Society
Press, Washington, D.C., 2012, 37–39.

9. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.

Design Patterns. Addison-Wesley, Reading, MA, 1995.
10. Grill, T., Polacek, O., and Tscheligi, M. Methods

towards API usability: A structural analysis of
usability problem categories. In Proceedings of
the Fourth International Conference on Human-
Centered Software Engineering, M. Winckler et al.,
Eds. (Toulouse, France, Oct. 29–31). Springer, Berlin,
Germany, 2012, 164–180.

11. Henning, M. API design matters. ACM Queue 5, 4
(May–June, 2007), 24–36.

12. Kirschner, B. The Perceived Relevance of APIs. Apigee
Corporation, San Jose, CA, 2015; http://apigee.com/
about/api-best-practices/perceived-relevance-apis

13. Ko, A.J., Myers, B.A., and Aung, H.H. Six learning
barriers in end-user programming systems. In
Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing (Rome,
Italy, Sept. 26–29). IEEE Computer Society Press,
Washington, D.C., 2004, 199–206.

14. Ko, A.J., Myers, B.A., Coblenz, M., and Aung, H.H. An
exploratory study of how developers seek, relate,
and collect relevant information during software
maintenance tasks. IEEE Transactions on Software
Engineering 33, 12 (Dec. 2006), 971–987.

15. Mooty, M., Faulring, A., Stylos, J., and Myers, B.A.
Calcite: Completing code completion for constructors
using crowds. In Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing
(Leganés-Madrid, Spain, Sept. 21–25). IEEE Computer
Society Press, Washington, D.C., 2010, 15–22.

16. Nielsen, J. Usability Engineering. Academic Press,
Boston, MA, 1993.

17. Oracle Corp. Secure Coding Guidelines for the
Java Programming Language, Version 4.0,
2014; http://www.oracle.com/technetwork/java/
seccodeguide-139067.html

18. Rama, G.M. and Kak, A. Some structural measures of
API usability. Software: Practice and Experience 45, 1
(Jan. 2013), 75–110; https://engineering.purdue.edu/
RVL/Publications/RamaKakAPIQ_SPE.pdf

19. Robillard, M. and DeLine, R. A field study of API
learning obstacles. Empirical Software Engineering 16,
6 (Dec. 2011), 703–732.

20. Scheller, T. and Kuhn, E. Automated measurement
of API usability: The API concepts framework.
Information and Software Technology 61 (May 2015),
145–162.

21. Stylos, J., Busse, D.K., Graf, B., Ziegler, C., Ehret,
R., and Karstens, J. A case study of API design
for improved usability. In Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric
Computing (Herrsching am Ammersee, Germany,
Sept. 20–24). IEEE Computer Society Press,
Washington, D.C., 2008, 189–192.

22. Stylos, J. and Clarke, S. Usability implications of
requiring parameters in objects’ constructors. In
Proceedings of the International Conference on
Software Engineering (Minneapolis, MN, May 20–26).
IEEE Computer Society Press, Washington, D.C., 2007,
529–539.

23. Stylos, J., Faulring, A., Yang, Z., and Myers, B.A.
Improving API documentation using API usage
information. In Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing
(Corvallis, OR, Sept. 20–24). IEEE Computer Society
Press, Washington, D.C., 2009, 119–126.

24. Stylos, J. and Myers, B.A. Mapping the space of
API design decisions. In Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric
Computing (Coeur d’Alene, ID, Sept 23–27). IEEE
Computer Society Press, Washington, D.C., 2007, 50–57.

25. Stylos, J. and Myers., B.A. The implications of method
placement on API learnability. In Proceedings of the
16th ACM SIGSOFT Symposium on Foundations of
Software Engineering (Atlanta, GA, Sept. 23–27). ACM
Press, New York, 2008, 105–112.

Brad A. Myers (bam@cs.cmu.edu) is a professor in the
Human-Computer Interaction Institute in the School
of Computer Science at Carnegie Mellon University,
Pittsburgh, PA.

Jeffrey Stylos (jsstylos@us.ibm.com) is a software
engineer at IBM in Littleton, MA, and received his Ph.D.
in computer science at Carnegie Mellon University,
Pittsburgh, PA, while doing research reported in this
article.

© 2016 ACM 0001-0782/16/06 $15.00

