Electronic Supplementary Information

Trienamine catalyzed asymmetric synthesis and biological investigation of a cytochalasin B-inspired compound collection

Magnus Sellstedt ${ }^{1}$, Melanie Schwalfenberg ${ }^{1}$, Slava Ziegler ${ }^{1}$, Andrey P. Antonchick ${ }^{1}$, and Herbert Waldmann ${ }^{1,2, *}$

1 Max-Planck-Institute für Molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund (Germany), E-mail: herbert.waldmann@mpi-dortmund.mpg.de 2 Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund (Germany)

Table of Contents

Methods 2
General procedure I 2
General procedure II 2
Confirmation of the absolute configuration by preparation of I 6
General procedure III 8
General procedure IV. 9
General procedure V 17
Biological evaluation 19
NMR spectra 20
Determination of enantiomeric excesses 66
Supplementary references 81

Methods

All reactions were performed under argon atmosphere under dry conditions unless otherwise stated. The reactions were followed by thin layer chromatography using KMnO_{4} staining to visualize the products. Optical rotations were measured at 589 nm . NMR spectra were calibrated against the residual peeks of solvent as internal standard $\left(\mathrm{CHCl}_{3} \delta_{\mathrm{H}} 7.26 \mathrm{ppm}\right.$, $\left.\mathrm{CDCl}_{3} \delta_{\mathrm{C}} 77.16 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{HD}_{5} \delta_{\mathrm{H}} 7.16 \mathrm{ppm}\right)$. The catalysts $\mathbf{C 1}, \mathbf{C} 3, \mathbf{C 4}$, and $\mathbf{C 5}$, were purchased from Sigma-Aldrich and the catalysts $\mathbf{C 2},{ }^{\mathrm{S} 1} \mathbf{C 6},{ }^{\mathrm{S} 2} \mathbf{C 7},{ }^{\mathrm{S3}}$ and $\mathbf{C 8}{ }^{\mathrm{s4}}$ were prepared according to literature procedures. The dienals 2 were prepared as previously described. ${ }^{55}$ While dienal $\mathbf{2 a}$, could be stored cold for a few months, the dienals $\mathbf{2 b}$-d were prepared and used in the next step the same day to minimize decomposition. In some NMR spectra isomeric products are visible. The data is given for the major isomer. Racemic material of compounds 3-7 for ee determination were obtained by following the general procedures, but using a mixture of $10+10 \mathrm{~mol} \%$ of R - and S-diphenylprolinol trimethylsilyl ethers as catalysts. p-Tolylsulfinic acid was freshly prepared prior to use by dissolving the corresponding sodium salt in water and then precipitating the sulfinic acid by addition of conc. $\mathrm{HCl}(\mathrm{aq}$.$) . The sulfinic$ acid was extracted with ethyl acetate, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure to afford a white solid. (E)-hepta-2,6-dienoic acid was prepared as previously described, ${ }^{\text {S6 }}$ but further purified with reversed phase HPLC using a $21 \times 150 \mathrm{~mm}$ C18 column, a gradient of $5-60 \% \mathrm{MeCN}+0.1 \%$ TFA over 40 min , and a flow rate of $20 \mathrm{~mL} / \mathrm{min}$.

General procedure I

The catalysts, acids, solvents, temperatures, and reactions times used are stated in table 1. N-Methyl maleimide ($13.3 \mathrm{mg}, 0.12 \mathrm{mmol}$), dienal 2a, ($23 \mathrm{mg}, 0.13 \mathrm{mmol}$), the chiral catalyst ($0.024 \mathrm{mmol}, 0.20$ equiv.) , and the acid ($0.024 \mathrm{mmol}, 0.20$ equiv.) were dissolved in 1.2 mL of solvent and stirred in a sealed flask at $40^{\circ} \mathrm{C}$ or at $-10^{\circ} \mathrm{C}$ for the indicated time. The reaction mixture was concentrated under reduced pressure and the residue was purified with silica gel chromatography using hexanes: ethyl acetate $6: 1 \rightarrow 4: 1$ to give the product as colorless sticky foam.

2-((3aS,4R,7aR)-2-methyl-1,3-dioxo-5-phenyl-2,3,3a,4,7,7a-hexahydro-1 H-isoindol-4yl)acetaldehyde (3)

By following the general procedure I, using catalyst C8 ($14.7 \mathrm{mg}, 0.024 \mathrm{mmol}$), 2-F-benzoic acid ($3.4 \mathrm{mg}, 0.024 \mathrm{mmol}$), with CHCl_{3} as solvent at $-10^{\circ} \mathrm{C}$ for $120 \mathrm{~h} .27 \mathrm{mg} 3(79 \%)$ was isolated. $[\alpha]_{\mathrm{D}}{ }^{20}-35\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.79(\mathrm{t}, \mathrm{J}=0.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.51-7.42 (m, 3H), 7.27-7.22 (m, 2H), 6.11 (ddd, $J=6.3,4.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.59(\mathrm{~m}, 1 \mathrm{H})$, 3.51 (dd, $J=9.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.40 (ddd, $J=9.0,7.9,3.6 \mathrm{~Hz}, 3 \mathrm{H}$), 3.37 (ddd, $J=18.5,8.3$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.15 (s, 1H), 2.95 (ddd, $J=15.6,6.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92 (ddd, $J=18.5,6.1,0.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.67 (dddd, $J=15.6,7.9,4.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $200.5,179.6,178.8,143.7,139.5,128.3$ (2C), 127.6 (2C), 127.4, 125.7, 43.6, 43.3, 40.0, 32.6, 24.8, 24.6 ppm ; $\operatorname{IR}($ ATR $) ~ \lambda 1772,1686,1435,1382,1279,759,701 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$284.1281, found 284.1281.

General procedure II

The maleimide (1.0 equiv.), catalyst C8 (0.20 equiv.), and benzoic acid (0.20 equiv.), were dissolved in a solution of the appropriate dienal (1.5 equiv.) in CHCl_{3} ($10 \mathrm{~mL} / \mathrm{mmol}$ maleimide) and stirred at room temperature for the time indicated in table 3. (Ethoxycarbonylmethylene)-triphenylphosphorane (1.5 equiv.) was added and the reaction was stirred for $20-24 \mathrm{~h}$ at room temperature and then concentrated under reduced pressure. The residue was purified with silica gel chromatography and then further purified with preparative HPLC using a $125 \times 10 \mathrm{~mm}$ C4-column to afford the products as colorless oils, or
solids (compounds $\mathbf{4 c}$ and $\mathbf{7 d}$). The HPLC chromatography employed a gradient of 15-90\% aqueous acetonitrile $+0.1 \%$ TFA over 18 minutes with a flow rate of $6 \mathrm{~mL} / \mathrm{min}$.

(E)-ethyl 4-((3aS,4R,7aR)-1,3-dioxo-5-phenyl-2,3,3a,4,7,7a-hexahydro-1 H-isoindol-4-yl)but-2-enoate (4a)

By following the general procedure II, maleimide ($14.6 \mathrm{mg}, 0.15 \mathrm{mmol}$), and dienal $\mathbf{2 a}(26 \mathrm{mg}$, 0.15 mmol) were converted to $19 \mathrm{mg}(37 \%)$ of compound $\mathbf{4 a}$. Hexanes: ethyl acetate $5: 1 \rightarrow 2: 1$ was used as eluent during silica gel chromatography. $[\alpha]_{\mathrm{D}}{ }^{20}+10\left(c 1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.66(\mathrm{bs}, 1 \mathrm{H}), 7.33-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.71$ (dt, $\left.J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 6.06 (t, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77$ (bd, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}(\mathrm{sp}),. J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.29 (dd (sp.), $J=9.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{dt}, J=6.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.63(\mathrm{~m}, 2 \mathrm{H})$, 2.60-2.51 (m, 1H), 2.36 (ddd, $J=14.4,7.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{t}(\mathrm{sp}),. J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=180.1,178.7,166.2,146.0,143.8,139.9,128.5(2 \mathrm{C})$, 127.6, 127.1 (2C), 124.9, 123.9, 60.4, 44.8, 40.8, 38.2, 31.9, 23.8, 14.3 ppm ; $\operatorname{RR}(A T R) ~ \lambda ~ 1775,1700$, 1168, $700 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 340.1543$, found 340.1546.

(E)-ethyl 4-((3aS,4R,7aR)-2-benzyl-1,3-dioxo-5-phenyl-2,3,3a,4,7,7a-hexahydro-1Hisoindol -4-yl)but-2-enoate (4b)

By following the general procedure II, N -benzyl maleimide ($28.1 \mathrm{mg}, 0.15 \mathrm{mmol}$), and dienal 2a ($39 \mathrm{mg}, 0.23 \mathrm{mmol}$) were converted to $46 \mathrm{mg}(71 \%)$ of compound $\mathbf{4 b}$. Hexanes: ethyl acetate $8: 1 \rightarrow 5: 1$ was used as eluent during silica gel chromatography. $[\alpha]_{D}{ }^{20}-16$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.02-6.94(\mathrm{~m}$, 2 H), 6.68 (ddd, $J=15.6,8.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.96 (ddd, $J=5.7,5.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.70 (dt, $J=$ $15.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}$, 2H), 3.22 (dd, $J=9.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.17 (ddd, $J=17.5,9.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.06 (dt, $J=5.7,7.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.70 (ddd, $J=15.9,5.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.62-2.47 (m, 2H), 2.23 (ddt, $J=14.2,1.3,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=179.5,178.0,166.2$, 146.1 (CH), 144.0, 139.8, 135.8, 128.9 (2 CH), 128.7 (2 CH), 128.3 (2 CH), 128.1 (CH), $127.4(\mathrm{CH}), 127.2(2 \mathrm{CH}), 125.0(\mathrm{CH}), 123.8(\mathrm{CH}), 60.3\left(\mathrm{CH}_{2}\right), 43.3(\mathrm{CH}), 42.6\left(\mathrm{CH}_{2}\right), 39.7$ $(\mathrm{CH}), 38.5(\mathrm{CH}), 31.7\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR(ATR) $\lambda 1696,1431,1167,699$ cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+} 430.2013\right.$, found 430.2014.

(E)-ethyl 4-((3aS,4R,7aR)-1,3-dioxo-2,5-diphenyl-2,3,3a,4,7,7a-hexahydro-1 H -isoindol-4-yl)but-2-enoate (4c)

By following the general procedure II, N-phenyl maleimide ($26.0 \mathrm{mg}, 0.15 \mathrm{mmol}$), and dienal 2a ($39 \mathrm{mg}, 0.23 \mathrm{mmol}$) were converted to $47 \mathrm{mg}(75 \%)$ of compound $\mathbf{4 c}$. Hexanes: ethyl acetate $7: 1 \rightarrow 5: 1$ was used as eluent during silica gel chromatography. $[\alpha]_{D}{ }^{20}-19$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.23(\mathrm{~m}$, $5 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{dt}, J=15.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{dd}, J=9.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{ddd}, J=9.5,8.4$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dt}, J=5.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{ddd}, J=16.2,8.4,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42$ (ddt, $J=14.2,1.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=178.8,177.4,166.1,145.8,143.9,139.9,131.9,129.3(2 \mathrm{CH}), 128.8(\mathrm{CH}), 128.5$ $(2 \mathrm{CH}), 127.6(\mathrm{CH}), 127.1(2 \mathrm{CH}), 126.5(2 \mathrm{CH}), 125.0(\mathrm{CH}), 124.0(\mathrm{CH}), 60.3\left(\mathrm{CH}_{2}\right), 43.5$ $(\mathrm{CH}), 39.7(\mathrm{CH}), 38.6(\mathrm{CH}), 31.9\left(\mathrm{CH}_{2}\right)$, $24.3\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; $\operatorname{IR}(\mathrm{ATR}) \lambda 1703,1495$, 1379, 1267, 1159, 756, $692 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$416.1856, found 416.1857.

(E)-ethyl 4-((3aS,4S,8aS,8bR)-2-methyl-1,3-dioxo-1,2,3,3a,4,6,7,8,8a,8b-decahydrocyclo penta[e]isoindol-4-yl)but-2-enoate (5a)

By following the general procedure II, N-methyl maleimide ($16.7 \mathrm{mg}, 0.15 \mathrm{mmol}$), and dienal 2b ($31 \mathrm{mg}, 0.23 \mathrm{mmol}$) were converted to 16 mg (34\%) of compound $5 \mathbf{a}$. Hexanes: ethyl acetate $8: 1 \rightarrow 5: 1$ was used as eluent during silica gel chromatography. $[\alpha]_{D}{ }^{20}-35$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.01(\mathrm{dt}, J=15.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dt}, J=15.7,1.6$ Hz, 1H), 5.46-5.42 (m, 1H), 4.18 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04$ (dd, $J=8.4$,
$5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92 (ddt, $J=14.8,1.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87 ($\mathrm{s}, 3 \mathrm{H}$), 2.75 (ddt, $J=14.8,1.6,7.5 \mathrm{~Hz}$, $1 \mathrm{H})$, 2.55-2.45 (m, 1H), 2.41-2.07 (m, 4H), 2.01-1.90 (m, 1H), 1.62 (quin, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.0,177.8,166.7,148.3$, $147.2(\mathrm{CH}), 123.3(\mathrm{CH}), 120.2(\mathrm{CH}), 60.4\left(\mathrm{CH}_{2}\right), 44.7(\mathrm{CH}), 43.0(\mathrm{CH}), 40.0(\mathrm{CH}), 36.6(\mathrm{CH})$, $34.1\left(\mathrm{CH}_{2}\right)$, $31.5\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR(ATR) 入 1689, 1435, 1382, 1284, 1032, $734 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 318.1700$, found 318.1703.

(E)-ethyl 4-((3aS,4S,8aS,8bR)-2-benzyl-1,3-dioxo-1,2,3,3a,4,6,7,8,8a,8b-decahydrocyclo penta[e]isoindol-4-yl)but-2-enoate (5b)

By following the general procedure II, N-benzyl maleimide ($28.1 \mathrm{mg}, 0.15 \mathrm{mmol}$), and dienal 2b ($31 \mathrm{mg}, 0.23 \mathrm{mmol}$) were converted to $15 \mathrm{mg}(25 \%)$ of compound 5b. Hexanes: ethyl acetate $9: 1 \rightarrow 6: 1$ was used as eluent during silica gel chromatography. $[\alpha]_{D}^{20}-46$ (c 0.5, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.29-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{dt}, J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.97 (dt, $J=15.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45-5.41(\mathrm{~m}, 1 \mathrm{H}), 4.6(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=14.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ (dd, $J=8.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (dddd, $J=14.9,7.5,7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (dddd, $J=14.9,8.7,7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (q, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.53$ (d quin, $J=12.5$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39$ (d quin, $J=12.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.6,177.3,166.7,148.4,147.2(\mathrm{CH}), 136.0,128.6(2 \mathrm{CH}), 128.2(2 \mathrm{CH})$, $127.8(\mathrm{CH}), 123.3(\mathrm{CH}), 120.3(\mathrm{CH}), 60.4\left(\mathrm{CH}_{2}\right), 44.7(\mathrm{CH}), 43.0(\mathrm{CH}), 42.1\left(\mathrm{CH}_{2}\right), 40.1(\mathrm{CH})$, $36.8(\mathrm{CH}), 34.1\left(\mathrm{CH}_{2}\right)$, $31.4\left(\mathrm{CH}_{2}\right)$, $27.8\left(\mathrm{CH}_{2}\right)$, $26.6\left(\mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR(ATR) $\lambda 1692$, 1397, 1174, 1031, 733, $700 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+}\right.$394.2013, found 394.2007.

(E)-ethyl 4-((3aS,4S,8aS,8bR)-1,3-dioxo-2-phenyl-1,2,3,3a,4,6,7,8,8a,8b-decahydrocyclo penta[e]isoindol-4-yl)but-2-enoate (5c)

By following the general procedure II, N-phenyl maleimide ($26.0 \mathrm{mg}, 0.15 \mathrm{mmol}$), and dienal 2b ($31 \mathrm{mg}, 0.23 \mathrm{mmol}$) were converted to 26 mg (46%) of compound 5c. Hexanes: ethyl acetate $9: 1 \rightarrow 6: 1$ was used as eluent during silica gel chromatography. $[\alpha]_{D}{ }^{20}-61$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}$, $2 \mathrm{H}), 7.03$ (dt, $J=15.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{bd}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{bs}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.32 (dd, $J=8.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.22 (dd, $J=8.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (dt, $J=14.8,7.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.81 (dt, $J=14.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 ($\mathrm{q}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.51-2.40 (m, 1 H), 2.36-2.18 (m, 3H), 2.01 (ddt, $J=13.2,8.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.68 (quin, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=177.0,176.7,166.7,148.2,147.1(\mathrm{CH}), 132.0$, $129.2(2 \mathrm{CH})$, $128.7(\mathrm{CH}), 126.7(2 \mathrm{CH})$, $123.5(\mathrm{CH}), 120.6(\mathrm{CH}), 60.4\left(\mathrm{CH}_{2}\right), 44.8(\mathrm{CH}), 43.1$ $(\mathrm{CH}), 40.2(\mathrm{CH}), 36.9(\mathrm{CH}), 34.1\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; $\operatorname{IR}(A T R) \lambda 1701,1381,1181,734,691 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 380.1856, found 380.1860.

(E)-ethyl 4-((3aS,4R,7R,7aR)-2-benzyl-5,7-dimethyl-1,3-dioxo-2,3,3a,4,7,7a-hexahydro1 H -isoindol-4-yl)but-2-enoate (6a)

By following the general procedure II, N -benzyl maleimide ($24.4 \mathrm{mg}, 0.13 \mathrm{mmol}$), and dienal 2c ($25 \mathrm{mg}, 0.23 \mathrm{mmol}$) were converted to $29 \mathrm{mg}(58 \%)$ of compound $6 \mathbf{a}$. Hexanes: ethyl acetate $8: 1 \rightarrow 6: 1$ was used as eluent during silica gel chromatography. $[\alpha]_{D}^{20}-83$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=7.30-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{dt}, J=15.7,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.02 (bd, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{bs}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.18(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{dd}, J=8.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.73(\mathrm{~m}, 1 \mathrm{H})$, 2.48-2.31 (m, 2H), $1.59(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-$ NMR (100 MHz, CDCI_{3}): $\delta=177.5,177.1,166.6,147.3(\mathrm{CH}), 138.3,136.1,129.1(\mathrm{CH}), 128.6$ $(2 \mathrm{CH}), 128.2(2 \mathrm{CH}), 127.7(\mathrm{CH}), 123.8(\mathrm{CH}), 60.4\left(\mathrm{CH}_{2}\right), 45.4(\mathrm{CH}), 43.7(\mathrm{CH}), 42.1\left(\mathrm{CH}_{2}\right)$, $38.9(\mathrm{CH}), 31.6(\mathrm{CH}), 30.8\left(\mathrm{CH}_{2}\right), 19.1\left(\mathrm{CH}_{3}\right), 16.7\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right)$ ppm; IR(ATR) 入 1693, 1396, 1170, 734, $700 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+} 382.2013\right.$, found 382.2020.

(E-ethyl 4-((3aS,4R,7R,7aR)-5,7-dimethyl-1,3-dioxo-2-phenyl-2,3,3a,4,7,7a-hexahydro1 -isoindol-4-yl)but-2-enoate (6b)

By following the general procedure II, N -phenyl maleimide ($22.5 \mathrm{mg}, 0.13 \mathrm{mmol}$), and dienal 2c ($24 \mathrm{mg}, 0.19 \mathrm{mmol}$) were converted to $37 \mathrm{mg}(78 \%)$ of compound 6 b. Hexanes: ethyl acetate $8: 1 \rightarrow 5: 1$ was used as eluent during silica gel chromatography. [$\alpha]_{\mathrm{D}}{ }^{20}-120$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}$, 2 H), 7.07 (ddd, $J=15.6,8.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.06 (bd, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.50 (bs, 1H), 4.19 (q, J $=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.23 (dd, $J=8.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.15 (ddd, $J=14.7,8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (dd, J $=8.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80 (ddt, $J=14.7,1.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.42$ (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=177.0$, 176.4, 166.6, 147.2 (CH), 138.7, 132.0, 129.2 (2C), 128.9 (CH), 128.6 (CH), 126.7 (2 CH), $124.1(\mathrm{CH}), 60.4\left(\mathrm{CH}_{2}\right), 45.4(\mathrm{CH}), 43.8(\mathrm{CH}), 39.0(\mathrm{CH}), 31.7(\mathrm{CH}), 30.9\left(\mathrm{CH}_{2}\right), 19.3\left(\mathrm{CH}_{3}\right)$, $16.8\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right)$ ppm; IR(ATR) λ 1703, 1378, 1178, 751, $691 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+} 368.1856\right.$, found 368.1864.

(E)-ethyl 4-((3aS,4S,7aR)-2,6-dimethyl-1,3-dioxo-2,3,3a,4,7,7a-hexahydro-1 H-isoindol-4-yl)but-2-enoate (7a)

By following the general procedure II, N -methyl maleimide ($16.6 \mathrm{mg}, 0.15 \mathrm{mmol}$), and dienal 2d ($25 \mathrm{mg}, 0.23 \mathrm{mmol}$) were converted to $31 \mathrm{mg}(71 \%)$ of compound 7a. Hexanes: ethyl acetate $10: 1 \rightarrow 6: 1$ was used as eluent during silica gel chromatography. [a] ${ }_{D}{ }^{20}-1$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.98(\mathrm{dt}, J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dt}, J=15.6,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.32$ (bs, 1 H), 4.17 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.10$ (ddd, $J=8.6,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 (dd, $J=8.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{ddt}, J=14.8,1.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.54(\mathrm{~m}, 1 \mathrm{H})$, $2.55(\mathrm{bd}, \mathrm{J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=15.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$, $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=179.7,178.0,166.6,146.9$ (CH), 137.3, $124.9(\mathrm{CH}), 123.4(\mathrm{CH}), 60.4\left(\mathrm{CH}_{2}\right), 42.8(\mathrm{CH}), 40.6(\mathrm{CH}), 35.8(\mathrm{CH}), 33.9\left(\mathrm{CH}_{2}\right), 29.5$ $\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{3}\right), 23.2\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; $\operatorname{IR}(\mathrm{ATR}) \lambda 1688,1437,1382,1282,1175$, 1025, $735 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$292.1543, found 292.1546.

(E)-ethyl 4-((3aS,4S,7aR)-2-benzyl-6-methyl-1,3-dioxo-2,3,3a,4,7,7a-hexahydro-1 Hisoindol -4-yl)but-2-enoate (7b)

By following the general procedure II, N -benzyl maleimide ($28.2 \mathrm{mg}, 0.15 \mathrm{mmol}$), and dienal 2d ($25 \mathrm{mg}, 0.23 \mathrm{mmol}$) were converted to $32 \mathrm{mg}(58 \%)$ of compound 7b. Hexanes: ethyl acetate $8: 1 \rightarrow 6: 1$ was used as eluent during silica gel chromatography. [$\alpha]_{\mathrm{D}}{ }^{20}-7$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=7.30-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{dt}, J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.95 (dt, $J=15.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{bs}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=14.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.11$ (ddd, $J=8.7,7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 (ddd, $J=8.7,5.8 \mathrm{~Hz}$, 1 H), 2.82 (ddt, $J=14.8,1.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.60 (dddd, $J=14.8,8.5,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.53 (bd, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=15.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=179.3,177.6,166.6,146.9(\mathrm{CH}), 137.4$, 135.9, $128.6(2 \mathrm{CH})$, $128.2(2 \mathrm{CH}), 127.8(\mathrm{CH}), 125.1(\mathrm{CH}), 123.4(\mathrm{CH}), 60.4\left(\mathrm{CH}_{2}\right), 42.9$ $(\mathrm{CH}), 42.4\left(\mathrm{CH}_{2}\right), 40.6(\mathrm{CH}), 36.0(\mathrm{CH}), 33.8\left(\mathrm{CH}_{2}\right)$, $29.8\left(\mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; $\operatorname{IR}\left(\right.$ ATR) $\lambda 1694,1432,1168,734,700 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 368.1856 , found 368.1869 .

(E)-ethyl 4-((3aS,4S,7aR)-6-methyl-1,3-dioxo-2-phenyl-2,3,3a,4,7,7a-hexahydro-1Hisoindol -4-yl)but-2-enoate (7c)

By following the general procedure II, N -phenyl maleimide ($25.9 \mathrm{mg}, 0.15 \mathrm{mmol}$), and dienal 2d ($25 \mathrm{mg}, 0.23 \mathrm{mmol}$) were converted to $30 \mathrm{mg}(57 \%)$ of compound 7c. Hexanes: ethyl acetate $8: 1 \rightarrow 5: 1$ was used as eluent during silica gel chromatography. $[\alpha]_{D}{ }^{20}-14$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.14$ (m , 2H), 7.02 (dt, $J=15.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.99$ (dt, $J=15.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{bs}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.29 (ddd, $J=8.9,7.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=8.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (ddt, $J=$ $14.8,1.4,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.71-2.61 (m, 2H), 2.52-2.42 (m, 1H), $2.28(\mathrm{dd}, J=14.9,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.79(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.8,177.0$,
166.7, 146.8 (CH), 137.6, 132.0, 129.2 (2 CH), 128.8 (CH), 126.6 (2 CH), 125.1 (CH), 123.6 $(\mathrm{CH}), 60.4\left(\mathrm{CH}_{2}\right), 43.0(\mathrm{CH}), 40.7(\mathrm{CH}), 36.2(\mathrm{CH}), 33.9\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{3}\right), 14.4$ $\left(\mathrm{CH}_{3}\right)$ ppm; $\operatorname{IR}(\mathrm{ATR}) \lambda$ 1703, 1499, 1381, 1181, $691 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+}$354.1700, found 354.1704.

(E)-ethyl 4-((3aS,4S,7aR)-3a,6-dimethyl-1,3-dioxo-2-phenyl-2,3,3a,4,7,7a-hexahydro-1H-isoindol-4-yl)but-2-enoate (7d)

By following the general procedure II, 2-methyl- N -phenyl maleimide ($28.2 \mathrm{mg}, 0.15 \mathrm{mmol}$), and dienal 2d ($25 \mathrm{mg}, 0.23 \mathrm{mmol}$) were converted to $14 \mathrm{mg}(25 \%)$ of compound 7d. Hexanes: ethyl acetate $9: 1 \rightarrow 7: 1$ was used as eluent during silica gel chromatography. [$\alpha]_{\mathrm{D}}{ }^{20}$ +42 (c 0.5, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H})$, 7.21-7.16 (m, 2H), 6.92 (ddd, $J=15.7,8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ (bd, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.40 (bs, $1 \mathrm{H}), 4.19$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.87 (dd, $J=6.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.77$ (m, 1H), 2.68 (dd, $J=$ $15.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=15.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{bd}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 179.9, 177.7, 166.6, 147.6 (CH), 138.4, 132.1, $129.2(2 \mathrm{CH}), 128.7(\mathrm{CH}), 126.5(2 \mathrm{CH})$, $124.9(\mathrm{CH}), 123.1(\mathrm{CH}), 60.5\left(\mathrm{CH}_{2}\right), 49.5(\mathrm{CH}), 47.5(\mathrm{CH}), 42.9(\mathrm{CH}), 32.8\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right)$, $23.3\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right)$ ppm; IR(ATR) $\lambda 1703,1388,1371,1180,691 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 368.1856$, found 368.1864.

ethyl 2-((3aR/S,7S/R,7aS/R,9S/R)-2-benzyl-5-methyl-1,3-dioxo-1,2,3,4,7,7a-hexahydro-3a,7-ethanoisoindol-9-yl)acetate (8)

7b, ($36.8 \mathrm{mg}, 0.10 \mathrm{mmol}$), and cesium carbonate, ($32.7 \mathrm{mg}, 0.10 \mathrm{mmol}$), were taken up in 1 mL DMSO and stirred at room temperature for 24 h . The mixture was quenched with 1 M aqueous HCl and extracted with ethyl acetate. The organic phase was washed once with a small portion of water and then dried over anhydrous MgSO_{4}, filtrated and concentrated under reduced pressure. The residue was purified with silica gel chromatography using hexanes: ethyl acetate 8:1 \rightarrow 6:1 as eluent, which afforded 21 mg (57%) of compound 8 as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 3 \mathrm{H}), 5.69-$ $5.64(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.12-3.98(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}), 2.58-2.48(\mathrm{~m}$, $2 \mathrm{H}), 2.37(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.7-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{ddd}, \mathrm{J}$ $=13.0,9.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.24-1.18(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.1$, 176.0, 171.8, 136.1, 133.4, $129.4(2 \mathrm{CH})$, $128.8(2 \mathrm{CH}), 128.1(\mathrm{CH}), 127.3(\mathrm{CH}), 60.6\left(\mathrm{CH}_{2}\right)$, $56.3(\mathrm{CH}), 52.8,44.0(\mathrm{CH}), 42.1\left(\mathrm{CH}_{2}\right), 41.4\left(\mathrm{CH}_{2}\right), 41.0\left(\mathrm{CH}_{2}\right), 36.4(\mathrm{CH}), 36.2\left(\mathrm{CH}_{2}\right), 22.7$ $\left(\mathrm{CH}_{3}\right)$, $14.3\left(\mathrm{CH}_{3}\right)$ ppm; A NOESY spectrum were recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$, which revealed a crosspeak between the C9-H (2.58-2.48 ppm) and its closest C4-H (2.15 ppm). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.20(\mathrm{~m}, 1 \mathrm{H})$, $4.43(\mathrm{~s}, 2 \mathrm{H}), 3.98-3.83(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{dd}, \mathrm{J}=16.2,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.65(\mathrm{dd}, J=16.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-$ $1.25(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR(ATR) 入 1732, 1704, 1383, 1337, 1159, $700 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 368.1856$, found 368.1870.

Confirmation of the absolute configuration by preparation of I

i) $5 \mathrm{~d}, \mathrm{C} 3, \mathrm{PhCO}_{2} \mathrm{H}$ $\mathrm{CHCl}_{3}, \mathrm{RT}, 20 \mathrm{~h}$
ii) 0.5 M 2-Naphthyl MgBr
$\mathrm{THF}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 1 \mathrm{~h}$
iii) PCC, DCM, RT, 2 h

(3aS,4S,7aR)-2-(4-bromophenyl)-6-methyl-4-(2-(naphthalen-2-yl)-2-oxoethyl)-3a,4,7,7a-tetrahydro-1H-isoindole-1,3(2H)-dione (I)

N -(4-Bromophenyl)maleimide, ($126 \mathrm{mg}, 0.50 \mathrm{mmol}$), catalyst C3 ($37 \mathrm{mg}, 0.10 \mathrm{mmol}$), and benzoic acid ($12 \mathrm{mg}, 0.10 \mathrm{mmol}$) were dissolved in 5 mL CHCl 3 . Dienal 2d ($83 \mathrm{mg}, 0.75$ mmol) was added and the solution was stirred at room temperature for 20 h . The reaction was quenched by addition of saturated aqueous NaHCO_{3}, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated from toluene. The residue was dissolved in 5 mL THF and cooled to $0^{\circ} \mathrm{C}$. 0.5 M 2-Naphthylmagnesiumbromide in THF ($1.7 \mathrm{~mL}, 0.85$ mmol) was added slowly and the reaction was then stirred at room temperature for 1 h . The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with ethyl acetate, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. Non-polar side products were removed by passing the residue through a small silica plugusing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. Further elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:ethyl acetate 1:1 afforded an impure mixture of products that contain a 5:4 diasteremeric mixture of the desired alcohols. Without further purification, the product mixture was dissolved in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Crushed $3 \AA$ molecular sieves (220 mg) and pyridinium chlorochromate ($162 \mathrm{mg}, 0.75 \mathrm{mmol}$) were added and the mixture was stirred at room temperature 2 h and then concentrated under reduced pressure. Silica gel chromatography using hexanes: ethyl acetate $8: 1 \rightarrow 4: 1$ gave $85 \mathrm{mg}(35 \%)$ of I as a white solid. NMR data is in agreement with previously published data. ${ }^{57}[\alpha]_{D}^{20}-5.3$ ($c 0.5$, ethyl acetate)

(E-6-methoxy-2-methylhexa-1,3-diene (9a)

$5-$ Methyl-3,4-hexadienol, ${ }^{\text {S8 }}$ ($999 \mathrm{mg}, 8.91 \mathrm{mmol}$) was dissolved in 35.6 mL THF and cooled to $0^{\circ} \mathrm{C}$. NaH (washed with pentane), ($256 \mathrm{mg}, 10.7 \mathrm{mmol}$) was added and the mixture was then stirred at room temperature for 30 minutes before addition of methyl iodide (0.67 mL , 10.8 mmol). The reaction was stirred at room temperature overnight and then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted with pentane and concentrated at room temperature to $\sim 65 \mathrm{mbar}$ and then purified with silica gel chromatography using pentane: DCM $2: 1$ as eluent. After concentration at room temperature to $\sim 65 \mathrm{mbar} 494 \mathrm{mg} 9 \mathrm{a}(44 \%)$ was obtained as a colorless liquid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=6.20(\mathrm{bd}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dt}, J=15.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 3.44(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.35(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=142.1,134.8,126.9,115.1,72.5,58.8,33.3,18.8 \mathrm{ppm} ; \operatorname{IR}(\mathrm{ATR}) \lambda 1742,1610$, 1454, 1379, 1119, 965, $882 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$127.1117, found 127.1119.

(E)-6-(allyloxy)-2-methylhexa-1,3-diene (9b)

5-Methyl-3,4-hexadienol, ${ }^{\text {s8 }}$ ($1.096 \mathrm{~g}, 9.77 \mathrm{mmol}$) was dissolved in 5 mL THF and cooled to $0^{\circ} \mathrm{C} . \mathrm{NaH}$ (washed with pentane), ($355 \mathrm{mg}, 14.8 \mathrm{mmol}$) was added and the mixture was then stirred at room temperature for 30 minutes before addition of allyl bromide ($1.27 \mathrm{~mL}, 14.7$ mmol). The reaction was stirred at room temperature overnight and then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted with pentane and concentrated at room temperature to $\sim 65 \mathrm{mbar}$ and then purified with silica gel chromatography using pentane: DCM 4:1 as eluent. After concentration at room temperature to $\sim 65 \mathrm{mbar} 745 \mathrm{mg} 9 \mathrm{~b}(50 \%)$ was obtained as a colorless liquid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=6.21(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{dt}, J=15.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-$ $5.24(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.15(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=142.1,135.1,134.7$, 126.9, 117.0, 115.0, 72.0, 70.0, 33.4, 18.8 ppm ; IR(ATR) $\lambda 1086,977916,731 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$153.1274, found 153.1270.

N -(2-(trimethylsilyl)ethyl)-maleimide (1g)

2 -trimethylsilylethanol, ($237 \mathrm{mg}, 2.00 \mathrm{mmol}$), and maleimide, ($214 \mathrm{mg}, 2.20 \mathrm{mmol}$), were dissolved in 8.0 mL THF and cooled to $0^{\circ} \mathrm{C}$. Diethylazodicarboxylate, $(1.00 \mathrm{~mL}, 40 \%$ in toluene, 2.2 mmol), was added followed by slow addition of a solution of triphenylphosphine,
($577 \mathrm{mg}, 2.20 \mathrm{mmol}$) in 2.0 mL THF. The reaction was stirred overnight allowing the mixture to reach room temperature. The reaction was concentrated and the residue was purified with silica gel chromatography using hexanes: ethyl acetate 1:0 \rightarrow 20:1 as eluent. Compound $\mathbf{1 g}$, $224 \mathrm{mg}(57 \%)$ was obtained as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.59(\mathrm{~s}, 2 \mathrm{H})$, 3.49-3.41 (m, 2H), 0.86-0.79 (m, 2H), -0.05 (s, 9H) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 170.6 (2C), 134.1 (2C), 34.2, 17.0, -1.9 (3C) ppm; IR(ATR) $\lambda 1692,1407,1349,1246,1136$, 1017, $691 \mathrm{~cm}^{-1}$; LCMS (ES ${ }^{+}$) Calcd. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 198$, mass not found.

N -(tert-butyldimethylsilyl)-maleimide (1h)

Maleimide, ($971 \mathrm{mg}, 10.0 \mathrm{mmol}$), 4-dimethylaminopyridine, ($122 \mathrm{mg}, 1.0 \mathrm{mmol}$), and dimethyl-tert-butylsilylchloride, ($1.969 \mathrm{~g}, 13.0 \mathrm{mmol}$) were taken up in 10 mL ethyl acetate. Triethylamine, ($1.80 \mathrm{~mL}, 13.0 \mathrm{mmol}$) was added and the reaction was stirred at room temperature overnight. The mixture was concentrated onto silica and purified with silica gel chromatography using hexanes: ethyl acetate $20: 1$ as eluent. $1.630 \mathrm{~g}(77 \%) \mathbf{1 h}$ was obtained as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.63(\mathrm{~s}, 2 \mathrm{H}), 0.88$ (s, 9H), 0.39 (s, 6 H$) \mathrm{ppm}$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=176.5$ (2C), 136.3 (2C), 26.3 (3C), 18.9, -4.5 ppm ; IR(ATR) λ 1697, 1326, 1252, 1144, 998, 848, 823, $694 \mathrm{~cm}^{-1}$; LCMS (ES ${ }^{+}$) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{NSi}[\mathrm{M}+$ $\mathrm{H}]^{+} 212$, found 212.

General procedure III

Maleimide 1a, 1f, $\mathbf{1 g}$, or $\mathbf{1 h}$, (1.0 equiv.) and diene $\mathbf{9 a}$ or $\mathbf{9 b}$ (1.1 equiv.) were dissolved in toluene ($2 \mathrm{~mL} / \mathrm{mmol}$ maleimide) and heated at $110^{\circ} \mathrm{C}$ for $1.5-3.5 \mathrm{~h}$ and then concetrated under reduced pressure. The residue was purified with silica gel chromatography to give the compounds 10 as colorless oils.
(3aS/R,4S/R,7aR/S)-3a,4,7,7a-tetrahydro-4-(2-methoxyethyl)-2,6-dimethyl-2H-isoindole-1,3-dione (10a)
By following general procedure III, N-methyl maleimide, ($278 \mathrm{mg}, 2.50 \mathrm{mmol}$), and 9a, (348 $\mathrm{mg}, 2.76 \mathrm{mmol}$), were converted to $502 \mathrm{mg}(85 \%)$ 10a after 3 h of heating. Hexanes: ethyl acetate $8: 1 \rightarrow 2: 1$ were used as eluent during the chromatography. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta=5.24(\mathrm{bs}, 1 \mathrm{H}), 3.54-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.92(\mathrm{~m}$, 2H), $2.77(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{bs}, 1 \mathrm{H}), 2.14-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.78(\mathrm{~m}$, 1H), $1.59(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=179.7,178.1,136.4,125.6,70.5,58.5$, 42.6, 40.5, 32.9, 31.0, 29.3, 24.6, 23.0 ppm ; IR(ATR) $\lambda 1692,1433,1382,1284,1115,1003$ cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$238.1438, found 238.1438.
(3aS/R,4S/R,7aR/S)-2-(4-methoxybenzyl)-3a,4,7,7a-tetrahydro-4-(2-methoxyethyl)-6-methyl-2H-isoindole-1,3-dione (10b)
By following general procedure III, N-(4-methoxybenzyl) maleimide, ($98 \mathrm{mg}, 0.45 \mathrm{mmol}$), and 9a, ($62 \mathrm{mg}, 0.49 \mathrm{mmol}$), were converted to 130 mg (84%) 10b after 3.5 h of heating. Hexanes: ethyl acetate $10: 1 \rightarrow 3: 1$ were used as eluent during the chromatography. ${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.27$ (bs, 1H), 4.51 (d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.44(\mathrm{~m}$, $1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.10-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{bd}, \mathrm{J}=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40(\mathrm{bs}, 1 \mathrm{H})$, 2.21-2.07 (m, 2H), 1.99-1.88 (m, 1H), $1.59(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=179.6,178.0$, 159.1, 136.6, 129.7 (2C), 128.4, 126.0, 113.8 (2C), 70.7, 58.7, 55.3, 42.8, 41.7, 40.7, 33.3, 31.2, 29.7, 23.1 ppm ; IR(ATR) $\lambda 1695,1515,1399,1248,1177,1116 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$344.1856, found 344.1860.

(3aS/R,4S/R,7aR/S)-3a,4,7,7a-tetrahydro-4-(2-methoxyethyl)-6-methyl-2-(2-(trimethylsilyl)ethyl)-2H-isoindole-1,3-dione (10c)

By following general III, 1g, ($296 \mathrm{mg}, 1.50 \mathrm{mmol}$), and 9a, ($208 \mathrm{mg}, 1.65 \mathrm{mmol}$), were converted to 409 mg (84\%) 10c after 1.5 h of heating. Hexanes: ethyl acetate $15: 1 \rightarrow 6: 1$
were used as eluent during the chromatography. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=5.34$ (bs, $1 \mathrm{H})$, 3.65-3.58 (m, 1H), 3.54-3.47 (m, 1H), 3.44-3.37 (m, 2H), 3.34 (s, 3H), 3.08-2.96 (m, 2H), 2.52 (bd, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.42 (bs, 1H), 2.23-2.11 (m, 2H), 2.01-1.91 (m, 1H), 1.69 ($\mathrm{s}, 3 \mathrm{H}$), $0.81-0.73(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=179.7,178.2,136.6$, 125.9, 70.8, 58.8, 42.8, 40.7, 35.3, 33.3, 31.3, 29.7, 23.2, 16.4, -1.7 (3C) ppm; IR(ATR) λ 1692, 1249, 1119, 859, $837 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}$324.1990, found 324.1996.

(3aS/R,4S/R,7aR/S)-2-(tert-butyldimethylsilyl)-3a,4,7,7a-tetrahydro-4-(2-methoxyethyl)6 -methyl-2 H -isoindole-1,3-dione (10d)

By following general procedure III, 1h, ($317 \mathrm{mg}, 1.50 \mathrm{mmol}$), and 9 a , ($208 \mathrm{mg}, 1.65 \mathrm{mmol}$), were converted to 392 mg (77\%) 10d after 2 h and 15 min of heating. Hexanes: ethyl acetate $20: 1 \rightarrow 8: 1$ were used as eluent during the chromatography. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 5.37 (bs, 1H), 3.60 (ddd, $J=9.8,6.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.50 (ddd, $J=9.8,6.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33 (s, 3H), 3.08 (ddd, $J=9.1,6.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (dd, $J=9.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (bd, $J=14.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.39(\mathrm{bs}, 1 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.36$ (s, 6 H) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=185.9,184.3,137.2,126.2,70.8,58.8,44.7$, 43.1, 33.4, 31.4, 30.0, 26.3 (3C), 23.4, 18.9, -4.1, -4.2 ppm; IR(ATR) $\lambda 1689,1317,1172$, 1118, $845 \mathrm{~cm}^{-1}$; LCMS (ES ${ }^{+}$) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+} 338$, found 338.
(3aS/R,4S/R,7aR/S)-2-(tert-butyldimethylsilyl)-4-(2-(allyloxy)ethyl)-3a,4,7,7a-tetrahydro6 -methyl-2H-isoindole-1,3-dione (10e)
By following general procedure III, 1h, ($940 \mathrm{mg}, 4.45 \mathrm{mmol}$), and 9b, ($745 \mathrm{mg}, 4.89 \mathrm{mmol}$), were converted to $1222 \mathrm{mg}(76 \%) \mathbf{1 0 e}$ after 2 h of heating. Hexanes: ethyl acetate $20: 1 \rightarrow$ 10:1 were used as eluent during the chromatography. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=5.74-$ $5.63(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{bs}, 1 \mathrm{H}), 5.11-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.04-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.82$ (ddd, $J=10.4,6.7$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (ddd, $J=10.4,6.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ (ddd, $J=8.7,7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.04$ (dd, $J=8.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{bd}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.18$ (dd, $J=14.8$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.038(\mathrm{~s}, 3 \mathrm{H})$, 0.036 (s, 3H) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=179.5,177.8,136.5,130.9,126.4,117.1$, $61.2,43.0,40.8,40.7,34.2,33.0,29.7,26.1$ (3C), 23.2, 18.4, -5.2 (2C, splitted) ppm; $\operatorname{IR}(\mathrm{ATR}) \lambda 1690,1316,1173,845 \mathrm{~cm}^{-1}$; LCMS (ES ${ }^{+}$) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+} 364$, found 364.
(3aS/R,4S/R,7aR/S)-4-(2-(allyloxy)ethyl)-3a,4,7,7a-tetrahydro-2,6-dimethyl-2H-isoindole-1,3-dione (10f)
By following general procedure III, N-methyl maleimide, ($400 \mathrm{mg}, 3.60 \mathrm{mmol}$), and 9b, (603 $\mathrm{mg}, 3.96 \mathrm{mmol}$), were converted to 799 mg (84%) 10f after 2 h of heating. Hexanes: ethyl acetate $9: 1 \rightarrow 4: 1$ were used as eluent during the chromatography. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=5.84-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{bs}, 1 \mathrm{H}), 5.18-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.02(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.84$ ($\mathrm{m}, 2 \mathrm{H}$), 3.56 (ddd, $J=9.8,6.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.46 (ddd, $J=9.8,6.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03-2.92 (m, 2H), $2.77(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{bd}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{bs}, 1 \mathrm{H}), 2.13-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.79$ (m, 1H), $1.59(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=179.7,178.0,136.3,134.8,125.7$, 116.6, 71.6, 68.0, 42.6, 40.5, 33.0, 31.2, 29.2, 24.5, 23.0 ppm ; IR(ATR) $\lambda 1686,1435,1382$, $1284 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 264.1594$, found 264.1592.

General procedure IV

The compound 10, (1.0 equiv.) was dissolved in DCM ($10 \mathrm{~mL} / \mathrm{mmol} 10$) and the solution was cooled to $-78^{\circ} \mathrm{C}$. Diisobutylaluminiumhydride (1.2 M in toluene, $1.25 \mathrm{~mL} / \mathrm{mmol} 10$) was added slowly and then stirred for 1 h . The reaction was placed in a $0^{\circ} \mathrm{C}$ ice-bath and a roomtemperated solution of p-tolylsulfinic acid, ($625 \mathrm{mg} / \mathrm{mmol} 10,4.0$ equiv.) in DCM ($5 \mathrm{~mL} /$ mmol 10) and trimethylsilyl trifluoromethylsulfonate, ($0.452 \mathrm{~mL} / \mathrm{mmol} 10,2.5$ equiv.), was immediately added and the mixture was stirred 25 minutes. The reaction was then quenched
with saturated aqueous NaHCO_{3} and extracted with DCM. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. The resulting sulfone was concentrated once from toluene and then dissolved in THF (10 mL / mmol 10) and cooled to $0^{\circ} \mathrm{C}$. A separate flask was charged with ZnBr_{2}, ($450 \mathrm{mg} / \mathrm{mmol}$ 10, 2.0 equiv.) and THF ($4 \mathrm{~mL} / \mathrm{mmol} 10$) and cooled to $0^{\circ} \mathrm{C}$. The Grignard-reagent, (1 M in diethylether, $4 \mathrm{~mL} / \mathrm{mmol} 10$) was added slowly and the mixture was stirred for 30 minutes. A syringe was then used to transfer the produced reagent to the flask containing the sulfonesolution, leaving as much as possible of the precipitated salts behind. The resulting mixture was stirred overnight, allowing the reaction to reach room temperature. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with ethyl acetate, washed with saturated aqueous NaHCO_{3}, extracted with ethyl acetate and then concentrated under reduced pressure. The resulting residue was purified with silica gel chromatography, and if necessary with reversed phase HPLC.

(3S/R,3a R/S,7S/R,7aS/R)-3-benzyl-2,3,3a,4,7,7a-hexahydro-7-(2-methoxyethyl)-2,5-dimethylisoindol-1-one (11a)

By following general procedure IV, compound 10a, ($475 \mathrm{mg}, 2.00 \mathrm{mmol}$) and benzyl magnesium chloride were reacted to give compound 11a, 257 mg (41%) as colorless oil. Hexanes: ethyl acetate $4: 1 \rightarrow 1: 1$ was used as eluent in the silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.43-$ $5.38(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=13.5,4.7 \mathrm{~Hz}$, 1 H), $2.80(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{dd}, J=13.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=8.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.39(\mathrm{~m}$, $1 \mathrm{H})$, 2.39-2.30 (m, 1H), 2.16-2.06 (m, 1H), $1.93(\mathrm{dd}, J=16.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 1 \mathrm{H})$, 1.61 (s, 3H), 1.52 (dd, $J=16.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.8$, 137.1, 134.6, 129.4 (2C), 128.8 (2C), 126.9, 125.8, 71.1, 68.7, 58.6, 42.9, 39.2, 36.3, 33.3, 32.6, 31.2, 28.4, 23.8 ppm ; IR(ATR) $\lambda 1678,1453,1398,1114,700 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+} 314.2115\right.$, found 314.2120.

(3S/R,3aR/S,7S/R,7aS/R)-2-(4-methoxybenzyl)-3-benzyl-2,3,3a,4,7,7a-hexahydro-7-(2-methoxyethyl)-5-methylisoindol-1-one (11b)

By following general procedure IV, compound 10b, ($546 \mathrm{mg}, 1.59 \mathrm{mmol}$) and benzyl magnesium chloride were reacted to give compound 11b, 340 mg (51%) as colorless oil. Hexanes: ethyl acetate $6: 1 \rightarrow 2: 1$ was used as eluent in the silica gel chromatography. Mixed fractions were further purified with HPLC employing a $21 \times 150 \mathrm{~mm}$ C4-column, a gradient of $15-100 \% \mathrm{MeCN}$ over 35 min , and a flow rate of $20 \mathrm{~mL} / \mathrm{min}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.32-7.20 (m, 3H), 7.09-7.03 (m, 4H), $6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{bs}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.07-$ $3.01(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=13.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=8.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=$ $13.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{dd}, \mathrm{J}=16.3$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.50(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{dd}, \mathrm{J}=16.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=175.1,159.1,137.4,134.9,129.6$ (2C), 129.3 (2C), 128.7 (2C), 128.5, 126.8, 126.0, 114.1 (2C), 71.1, 64.7, 58.6, 55.4, 43.7, 42.9, 38.7, 36.0, 33.8, 32.8, 31.3, 23.7 ppm ; IR(ATR) λ 1714, 1512, 1243, 1175, 1111, 1031, $701 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 420.2533, found 420.2533.
(3S,3aR,7S,7aS)-3-benzyl-2,3,3a,4,7,7a-hexahydro-7-(2-methoxyethyl)-5-methyl-2-(2-(trimethylsilyl)ethyl)isoindol-1-one (11c)
By following general procedure IV, compound 10c, ($387 \mathrm{mg}, 1.20 \mathrm{mmol}$) and benzyl magnesium chloride were reacted to give compound 11c, 267 mg (56\%) as colorless oil. Hexanes: ethyl acetate $10: 1 \rightarrow 5: 1$ was used as eluent in the silica gel chromatography. $[\alpha]_{\mathrm{D}}{ }^{20}+16\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}$, $1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{bs}, 1 \mathrm{H}), 3.70(\mathrm{dt}, J=13.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.42(\mathrm{~m}, 2 \mathrm{H})$, 3.39-3.34 (m, 1H), $3.31(\mathrm{~s}, 3 \mathrm{H}), 2.93$ (dd, $J=13.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.72 (dt, $J=13.6,4.5 \mathrm{~Hz}$, 1 H), 2.63 (dd, $J=13.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.59(\mathrm{dd}, J=8.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.26-$ $2.16(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{dd}, J=16.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{dt}, J=$
13.6, $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 0.59 (dt, $J=13.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}),-0.01(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta=174.5,137.7,134.0,129.3$ (2C), 128.8 (2C), 126.8, 125.9, 71.1, 65.0, 58.6, 42.6, 39.1, 36.5, 36.2, 33.7, 32.5, 31.3, 23.7, 15.3, -1.7 (3C) ppm; IR(ATR) $\lambda 1677,1248,1117$, 860, 834, $699 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{NSi}\left[\mathrm{M}+\mathrm{H}^{+} 400.2666\right.$, found 400.2662.

(3S,3aR,7S,7aS)-7-(2-(allyloxy)ethyl)-3-benzyl-2,3,3a,4,7,7a-hexahydro-2,5-dimethylisoindol-1-one (11d)

By following general procedure IV, compound 10f, ($632 \mathrm{mg}, 2.40 \mathrm{mmol}$) and benzyl magnesium chloride were reacted to give compound 11d, $325 \mathrm{mg}(40 \%)$ as colorless oil. Hexanes: ethyl acetate $6: 1 \rightarrow 2: 1$ was used as eluent in the silica gel chromatography. The material was further purified with HPLC employing a $21 \times 150 \mathrm{~mm}$ C18-column, a gradient of $20-90 \% \mathrm{MeCN}+0.1 \%$ TFA over 35 min , and a flow rate of $20 \mathrm{~mL} / \mathrm{min}$. $[\alpha]_{\mathrm{D}}{ }^{20}+43$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}$, $2 \mathrm{H}), 5.95-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{bs}, 1 \mathrm{H}), 5.28-5.21(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.12(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.92(\mathrm{~m}$, 2H), 3.60-3.47 (m, 2H), 3.24-3.18 (m, 1H), 3.02 (dd, $J=13.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.63$ (dd, $J=13.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.58(\mathrm{dd}, J=8.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.11(\mathrm{~m}$, $1 \mathrm{H}), 1.98-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{dd}, J=16.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta=175.4,137.4,135.2,134.4,129.4$ (2C), 128.8 (2C), 126.9, 126.0, 116.8, 71.8, $68.8,68.5,42.7,39.1,36.3,33.4,32.6,31.4,28.3,23.8 \mathrm{ppm}$; IR(ATR) $\lambda 1679,1398,1087$, $734,700 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 340.2271$, found 340.2279.

(3S/R,3a R/S,7S/R,7aS/R)-7-(2-(allyloxy)ethyl)-2,3,3a,4,7,7a-hexahydro-3-isobutyl-2,5-dimethylisoindol-1-one (11e)

By following general procedure IV, compound 10f, ($158 \mathrm{mg}, 0.60 \mathrm{mmol}$) and iso-butyl magnesium bromide were reacted to give compound 11e, $37 \mathrm{mg}(20 \%)$ as colorless oil. Hexanes: ethyl acetate $6: 1 \rightarrow 3: 1$ was used as eluent in the silica gel chromatography. The material was further purified with HPLC employing a $10 \times 150 \mathrm{~mm}$ C18-column, a gradient of $20-100 \% \mathrm{MeCN}+0.1 \%$ TFA over 35 min , and a flow rate of $6 \mathrm{~mL} / \mathrm{min}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}): $\delta=5.95-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{bs}, 1 \mathrm{H}), 5.28-5.20(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.11(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.93$ (m, 2H), 3.64-3.49 (m, 2H), $2.95(\mathrm{dt}, J=9.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=8.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (s, 3H), 2.43 (bs, 1H), 2.38-2.30 (m, 1H), 2.25-2.15 (m, 2H), 1.95-1.85 (m, 1H), 1.83 (dd, J= $16.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{ddd}, \mathrm{J}=13.2,9.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.27$ (ddd, $J=13.2,9.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.9,135.3,134.1,126.1,116.7,71.8,68.8,65.5,42.5,42.0$, 37.2, 33.8, 32.6, 31.4, 28.0, 25.1, 24.0, 23.9, 22.2 ppm; IR(ATR) $\lambda 1682,1428,1399,1093$, $920 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+} 306.2428\right.$, found 306.2434 .

(3S/R,3aR/S,7S/R,7aS/R)-3-benzyl-2,3,3a,4,7,7a-hexahydro-7-(2-methoxyethyl)-5-methylisoindol-1-one (11f)

By following general procedure IV, compound 10d, ($371 \mathrm{mg}, 1.10 \mathrm{mmol}$) and benzyl magnesium chloride were reacted to give compound $11 \mathrm{f}, 150 \mathrm{mg}(46 \%)$ as colorless solid. Hexanes: ethyl acetate $4: 1 \rightarrow 1: 2$ was used as eluent in the silica gel chromatography. ${ }^{1} \mathrm{H}-$ NMR (400 MHz, CDCl_{3}): $\delta=7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.05$ (bs, 1H), 5.50-5.45 (m, 1H), 3.55-3.41 (m, 2H), 3.30 (s, 3H), 3.29-3.24 (m, 1H), 2.83 (dd, J= $13.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.06(\mathrm{~m}, 2 \mathrm{H})$, 1.85-1.74 (m, 2H), $1.68(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.0,137.7,134.8$, 129.1 (2C), 128.8 (2C), 126.8, 125.9, 71.1, 62.3, 58.5, 43.0, 42.7, 39.4, 32.5, 32.1, 31.3, 24.0 ppm; IR(ATR) λ 1688, 1436, 1117, 749, $694 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 300.1958, found 300.1966.

(3S/R,3aR/S,7S/R,7aS/R)-7-(2-(allyloxy)ethyl)-3-benzyl-2,3,3a,4,7,7a-hexahydro-5-

 methylisoindol-1-one (11g)By following general procedure IV, compound 10e, ($218 \mathrm{mg}, 0.60 \mathrm{mmol}$) and benzyl magnesium chloride were reacted to give compound $11 \mathrm{~g}, 85 \mathrm{mg}$ (44%) as colorless oil that solidified upon standing. Hexanes: ethyl acetate $3: 1 \rightarrow 1: 1$ was used as eluent in the silica gel chromatography. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H})$, 7.17-7.12 (m, 2H), 6.31 (bs, 1H), 5.94-5.81 (m, 1H), 5.49-5.44 (m, 1H), 5.27-5.19 (m, 1H), 5.15-5.09 (m, 1H), 3.96-3.90 (m, 2H), 3.59-3.45 (m, 2H), 3.31-3.24 (m, 1H), $2.80(\mathrm{dd}, J=$ $13.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=13.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=9.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.46(\mathrm{~m}$, 1 H), 2.41 (bs, 1 H), 2.17-2.03 (m, 2H), 1.84-1.72 (m, 2H), $1.66(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.1,137.6,125.1,124.6,129.1$ (2C), 128.7 (2C), 126.7, 125.8, 116.6, 71.7, 68.7, 62.3, 43.0, 42.5, 39.3, 32.4, 32.1, 31.4, 23.9 ppm ; IR(ATR) $\lambda 1685,1434,1087$, $700 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+} 326.2115\right.$, found 326.2123.

(1S/R,3aS/R,4S/R,7aR/S)-tert-butyl 1-benzyl-3a,4,7,7a-tetrahydro-4-(2-methoxyethyl)-6-methyl-3-oxo-1 H -isoindole-2(3H)-carboxylate (11h)

Compound 11f, ($60 \mathrm{mg}, 0.20 \mathrm{mmol}$), and 4-dimethylaminopyridine, ($12 \mathrm{mg}, 0.10 \mathrm{mmol}$), was dissolved in a small amount of DCM and then concentrated, leaving a residue that contained approximately 8 mg DCM. Di-tert-butyl dicarbonate, ($87 \mathrm{mg}, 0.40 \mathrm{mmol}$), was added and the mixture was stirred at room temperature 1 h and then diluted with DCM, quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with DCM and concentrated under reduced pressure. The residue was purified with silica gel chromatography using hexanes: ethyl acetate $10: 1 \rightarrow 6: 1$ as eluent. 70 mg 11h (87%) was obtained as colorless oil that solidified upon standing. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 3 \mathrm{H}), 5.30(\mathrm{bs}, 1 \mathrm{H})$, 3.89 (dd, $J=10.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.57-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{dd}, J=13.3,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.80(\mathrm{dd}, J=6.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=13.3,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.34-$ $2.22(\mathrm{~m}, 2 \mathrm{H})$, 2.06-1.96 (m, 2H), 1.75-1.66 (m, 1H), 1.59-1.56 (m, 3H), $1.55(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.1,150.6,137.7,132.6,129.3$ (2C), 128.8 (2C), 126.9, 124.7, 82.9, 70.7, 65.3, 58.7, 42.3, 37.9, 33.51, 33.49, 31.8, 31.4, 28.2 (3C), 23.4 ppm; IR(ATR) λ 1776, 1744, 1712, 1367, 1295, $1147 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 400.2482 , found 400.2487 .

(1S/R,3aS/R,4S/R,7aR/S)-tert-butyl 4-(2-(allyloxy)ethyl)-1-benzyl-3a,4,7,7a-tetrahydro-6-methyl-3-oxo-1 H -isoindole-2(3H)-carboxylate (11i)

Compound 11g, ($75 \mathrm{mg}, 0.23 \mathrm{mmol}$), and 4-dimethylaminopyridine, ($14 \mathrm{mg}, 0.11 \mathrm{mmol}$), was dissolved in a small amount of DCM and then concentrated, leaving a residue that contained approximately 8 mg DCM. Di-tert-butyl dicarbonate, ($101 \mathrm{mg}, 0.46 \mathrm{mmol}$), was added and the mixture was stirred at room temperature 1 h , and then concentrated from DCM. Another 30 mg di-tert-butyl dicarbonate, (0.14 mmol), was added and the mixture was stirred another 30 min and then diluted with DCM, quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with DCM and concentrated under reduced pressure. The residue was purified with silica gel chromatography using hexanes: ethyl acetate $10: 1 \rightarrow 8: 1$ as eluent. $75 \mathrm{mg} \mathrm{11i}(76 \%)$ was obtained as colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.18$ (m, $3 H), 5.97-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.23(\mathrm{~m}, 2 \mathrm{H}), 5.19-5.14(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{dd}, \mathrm{J}$ $=10.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{dd}, J=13.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=6.8,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=13.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.96(\mathrm{~m}$, 2 H), 1.70 (dd, $J=17.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta=174.0,150.6,137.7,135.1,132.5,129.2$ (2C), 128.8 (2C), 126.8, 124.7, 116.7, 82.8, 65.2, 42.2, 37.8, 33.5, 33.4, 31.8, 31.4, 28.2 (3C), $23.4 \mathrm{ppm} ; \operatorname{IR}(A T R) \lambda 1776,1745$, 1711, 1367, 1297, $1147 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+} 426.2639\right.$, found 426.2642.
(3S/R,3aS/R,7S/R,7aR/S)-3-benzyl-2,3,3a,4,7,7a-hexahydro-7a-hydroxy-7-(2-methoxyethyl)-2,5-dimethylisoindol-1-one (12a)
Compound 11a, ($63 \mathrm{mg}, 0.20 \mathrm{mmol}$), was dissolved in 2.0 mL THF and cooled to $-78{ }^{\circ} \mathrm{C}$. Lithium diisopropylamide, $(1.00 \mathrm{~mL}, 0.50 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF, freshly prepared from 1.6 M

BuLi (hex) and diisopropylamine), was added slowly and the solution was stirred for 20 minutes. Triethylphosphite, ($0.14 \mathrm{~mL}, 0.82 \mathrm{mmol}$), was added and the reaction was moved to $0^{\circ} \mathrm{C}$. After a few minutes, dry $\mathrm{O}_{2}(\mathrm{~g})$ was bubbled through the solution for 20 minutes and the reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with ethyl acetate, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. Silica gel chromatography using hexanes: ethyl acetate $4: 1 \rightarrow 1: 2$ afforded $27 \mathrm{mg}(41 \%)$ of the more polar hydroxylated isomer 12a as a colorless solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.34-7.29 (m, 2H), 7.28-7.23 (m, 1H), 7.22-7.17 (m, 2H), 5.35-5.30 (m, 1H), $4.08(\mathrm{~s}, 1 \mathrm{H})$, 3.55-3.48 (m, 1H), 3.43-3.36 (m, 1H), 3.34 (s, 3H), $3.20(\mathrm{dd}, J=13.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.05$ $(\mathrm{m}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{dd}, J=13.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.20(\mathrm{~m}, 3 \mathrm{H}), 1.97$ (dd, $J=16.1$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{dd}, J=16.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.0,137.1,136.1,129.4$ (2C), 128.9 (2C), 127.0, 124.5, 78.7, 72.0, 65.3, 58.6, 46.3, 43.1, 40.8, 31.5, 29.8, 28.3, 23.6 ppm; IR(ATR) λ 3389, 1667, 1055, 741, $699 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+} 330.2064\right.$, found 330.2067.

(1S/R,3aR/S,4S/R,7aS/R)-tert-butyl 1-benzyl-3a,4,7,7a-tetrahydro-3a-hydroxy-4-(2-methoxyethyl)-6-methyl-3-oxo-1 H-isoindole-2(3H)-carboxylate (12b)

Compound 11h, ($72 \mathrm{mg}, 0.18 \mathrm{mmol}$), was dissolved in 3.6 mL THF and cooled to $-78{ }^{\circ} \mathrm{C}$. Lithium diisopropylamide, ($0.72 \mathrm{~mL}, 0.36 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF, freshly prepared from 1.6 M BuLi (hex) and diisopropylamine), was added slowly and the solution was stirred 15 min and then cooled in an etanol/ $\mathrm{N}_{2}(\mathrm{I})$ bath until the solution started to freeze. 2-(Phenylsulfonyl)-3-phenyl-oxaziridine, ${ }^{59}$ ($99 \mathrm{mg}, 0.38 \mathrm{mmol}$), in 1.8 mL THF was added rapidly and the mixture was moved back to $-78{ }^{\circ} \mathrm{C}$ and stirred 45 min . The reactions was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with ethyl acetate and then concentrated under reduced pressure. The residue was passed through a silica plug using hexanes: ethyl acetate $6: 1 \rightarrow 3: 1$ as eluent and then further purified with preparative TLC using hexanes: ethyl acetate $2: 1$ as eluent. Compound 12b, $34 \mathrm{mg}(45 \%)$, was obtained as a colorless solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta=7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 3 \mathrm{H}), 5.19(\mathrm{bs}, 1 \mathrm{H}), 5.13(\mathrm{bs}, 1 \mathrm{H}), 3.69(\mathrm{dt}, \mathrm{J}=$ $10.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dt}, J=3.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{dd}, J=$ $12.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.95 (dd, $J=12.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.77-2.65 (m, 1H), 2.37-2.29 (m, 1H), 2.27-2.21 (m, 1H), 2.21-2.12 (m, 1H), 1.63-1.58 (m, 4H), $1.57(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{dd}, \mathrm{J}=16.3$, 3.8 $\mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.8,150.3,137.9,135.4,129.8$ (2C), 128.8 (2C), 126.7, 124.8, 83.2, 78.6, 72.5, 65.1, 58.6, 43.8, 41.9, 40.9, 34.5, 29.7, 28.3 (3C), 23.2 ppm; IR(ATR) λ 1781, 1750, 1714, 1368, 1297, 1150, $701 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 416.2432$, found 416.2435.

(1S/R,3aR/S,4S/R,7aS/R)-tert-butyl 4-(2-(allyloxy)ethyl)-1-benzyl-3a,4,7,7a-tetrahydro-3a-hydroxy-6-methyl-3-oxo-1 H-isoindole-2(3H)-carboxylate (12c)

Compound 11i, ($68 \mathrm{mg}, 0.16 \mathrm{mmol}$), was dissolved in 3.2 mL THF and cooled to $-78{ }^{\circ} \mathrm{C}$. Lithium diisopropylamide, ($0.56 \mathrm{~mL}, 0.28 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF, freshly prepared from 1.6 M BuLi (hex) and diisopropylamine), was added slowly and the solution was stirred 15 min and then cooled in an etanol/ $\mathrm{N}_{2}(\mathrm{I})$ bath until the solution started to freeze. 2-(Phenylsulfonyl)-3-phenyl-oxaziridine, ${ }^{59}$ ($84 \mathrm{mg}, 0.32 \mathrm{mmol}$), in 1.6 mL THF was added rapidly and the mixture was moved back to $-78{ }^{\circ} \mathrm{C}$ and stirred 45 min . The reactions was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with ethyl acetate and then concentrated under reduced pressure. The residue was passed through a silica plug using hexanes: ethyl acetate $8: 1 \rightarrow 5: 1$ as eluent and then further purified with preparative TLC using hexanes: ethyl acetate 4:1 as eluent. Compound 12c, $31 \mathrm{mg}(44 \%)$, was obtained as a colorless solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 5.96-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.33-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.23-$ 5.17 (m, 2H), 4.89 (bs, 1H), 4.10 (ddt, $J=12.8,5.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99 (ddt, $J=12.8,5.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.51$ (dt, $J=3.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=12.8,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.92 (dd, $J=12.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.30(\mathrm{~m}, 1 \mathrm{H})$, 2.28-2.22 (m, 1H), 2.14 (dd, $J=16.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}), 1.47$ (dd, $J=16.5,3.9 \mathrm{~Hz}$, 1H) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.8,150.2,137.8,135.4,134.3,129.8$ (2C), 128.8 (2C), 126.8, 124.7, 117.6, 83.3, 78.7, 71.8, 69.7, 64.8, 43.7, 42.1, 40.9, 34.2, 29.8,
28.3 (3C), 23.3 ppm; IR(ATR) $\lambda 1778,1716,1296,1149,701 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 442.2588$, found 442.2591.

(3S,3aS,7S,7aR)-7-(2-(allyloxy)ethyl)-3-benzyl-2,3,3a,4,7,7a-hexahydro-7a-hydroxy-2,5-dimethylisoindol-1-one (12d)

Compound 11d, ($44 \mathrm{mg}, 0.13 \mathrm{mmol}$), was dissolved in 1.3 mL THF and cooled to $-78{ }^{\circ} \mathrm{C}$. Lithium diisopropylamide, ($0.65 \mathrm{~mL}, 0.33 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF, freshly prepared from 1.6 M BuLi (hex) and diisopropylamine), was added slowly and the solution was stirred for 20 minutes. Triethylphosphite, $(0.09 \mathrm{~mL}, 0.52 \mathrm{mmol})$, was added and the reaction was moved to 0 deg C. After a few minutes, dry $\mathrm{O}_{2}(\mathrm{~g})$ was bubbled through the solution for 20 minutes and the reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with ethyl acetate, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. Silica gel chromatography using hexanes: ethyl acetate $4: 1 \rightarrow 1: 2$ as eluent, followed by preparative TLC using hexanes: ethyl acetate $1: 4$ as eluent afforded $12.5 \mathrm{mg}(27 \%)$ of the more polar hydroxylated isomer 12d as a colorless solid. $[a]_{\mathrm{D}}{ }^{20}+121$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 5.95-5.83(\mathrm{~m}$, $1 \mathrm{H})$, 5.37-5.32 (m, 1H), 5.29-5.22 (m, 1H), 5.18-5.13 (m, 1H), 4.06-3.91 (m, 3H), 3.62-3.55 (m, 1H), 3.48-3.40 (m, 1H), 3.21 (dd, $J=13.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H})$, 2.59 (dd, $J=13.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.22(\mathrm{~m}, 3 \mathrm{H}), 1.96(\mathrm{dd}, J=16.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}$, 3 H), $1.53-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{dd}, J=16.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 174.9, 137.1, 136.0, 134.7, 129.4 (2C), 128.9 (2C), 127.0, 124.5, 117.2, 78.7, 71.9, 69.5, $65.1,46.4,43.1,40.8,31.4,29.9,28.3,23.7 \mathrm{ppm}$; IR(ATR) $\lambda 3367,1672,1057,737,700 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$356.2220, found 356.2227.
(2E)-(1S/R,3aR/S,4S/R,7aS/R)-1-benzyl-2,3,3a,4,7,7a-hexahydro-4-(2-methoxyethyl)-2,6-dimethyl-3-oxo-1 H-isoindol-3a-yl 4-hydroxybut-2-enoate (13a)
(E)-4-(tert-butyldimethylsilyloxy)-but-2-enoic acid, ${ }^{\text {S10 }}$ ($38 \mathrm{mg}, 0.18 \mathrm{mmol}$), was dissolved in THF and cooled to $0^{\circ} \mathrm{C}$. Ghosez's reagent, 1 -chloro- $N, N, 2$-trimethyl-1-propenylamine, (23 $\mu \mathrm{L}, 0.17 \mathrm{mmol}$), was added and the mixture was stirred 2.5 h at $0^{\circ} \mathrm{C}$ to generate the corresponding acid chloride. In a separate flask compound 12a, ($16.5 \mathrm{mg}, 0.050 \mathrm{mmol}$), was dissolved in 1 mL THF and 60% sodium hydride in mineral oil, ($16 \mathrm{mg}, 0.40 \mathrm{mmol}$), was added. The mixture was stirred at room temperature 20 min and then the previously prepared acid chloride solution was added using a syringe and the reaction was stirred another 75 min . The reaction was quenched with saturated aqueous NaHCO_{3}, extracted with ethyl acetate, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. The resulting residue was dissolved in 1 mL methanol and (+)-10-camphorsulfonic acid, ($17.5 \mathrm{mg}, 0.075 \mathrm{mmol}$), was added. The reaction was stirred at room temperature for 1 h and then concentrated under reduced pressure. The residue was dissolved in DCM, washed with saturated aqueous NaHCO_{3}, and extracted with DCM. The combined organic extracts were concentrated under reduced pressure and purified with silica gel chromatography using hexanes: ethyl acetate $2: 1 \rightarrow 1: 6$. Compound 13a, $6.3 \mathrm{mg}(30 \%)$, was obtained as a colorless film. Compound 12a, $8.5 \mathrm{mg}(52 \%)$ was also reisolated. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{dt}$, $J=15.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dt}, J=15.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.32(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=3.9,2.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.48-3.40 (m, 2H), $3.30(\mathrm{~s}, 3 \mathrm{H}), 3.26$ (dd, $J=12.7,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.09-3.02 (m, 1H), 2.87 ($\mathrm{s}, 3 \mathrm{H}$), 2.81 (dd, $J=12.7,10.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.71-2.65 (m, 1H), 2.55-2.47 (m, 1H), 2.25$2.15(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{dd}, J=15.5,3.5 \mathrm{~Hz}$, 1H) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.3,165.7,148.0,137.5,129.5$ (2C), 128.9 (2C), 126.9, 123.4, 120.4, 85.7, 71.3, 65.1, 62.0, 58.5, 43.4, 39.4, 39.3, 31.8, 28.9, 28.4, 23.9 ppm ; IR(ATR) λ 3401, 1686, 1262, 1169, 1105, 1029,737, $702 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 414.2275$, found 414.2274 .
(2E)-(1S/R,3aR/S,4S/R,7aS/R)-1-benzyl-2,3,3a,4,7,7a-hexahydro-4-(2-methoxyethyl)-6-methyl-3-oxo-1 H -isoindol-3a-yl 4-hydroxybut-2-enoate (13b)
(E)-4-(tert-butyldimethylsilyloxy)-but-2-enoic acid, ${ }^{\text {sio }}$ ($43 \mathrm{mg}, 0.20 \mathrm{mmol}$), was dissolved in 1 mL THF and cooled to $0{ }^{\circ} \mathrm{C}$. Ghosez's reagent, 1 -chloro- $\mathrm{N}, \mathrm{N}, 2$-trimethyl-1-propenylamine, $(27 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$, was added and the mixture was stirred 2.5 h at $0^{\circ} \mathrm{C}$ to generate the corresponding acid chloride. In a separate flask compound 12b, ($21 \mathrm{mg}, 0.051 \mathrm{mmol}$), was dissolved in 1.0 mL THF and sodium hydride, (60% in mineral oil, $12 \mathrm{mg}, 0.30 \mathrm{mmol}$), was added and the mixture was stirred at room temperature for 20 min . Then the acid chloride solution was transferred to the second flask and the mixture was stirred at room temperature for 70 min and then quenched with saturated aqueous NaHCO_{3}. The reaction mixture was extracted with ethyl acetate, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated, and concentrated under reduced pressure. The residue was passed through a silica plug using hexanes: ethyl acetate: methanol 12:1:0 $\rightarrow 0: 100: 2$ which afforded a mixture of TBS-protected and TBSdeprotected product. This material was then dissolved in 1.0 mL MeOH and $1 S$-camphor-10sulfonic acid, ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$) was added. The reaction was stirred at room temperature 1 h , and then concentrated under reduced pressure. The residue was dissolved in 0.54 mL DCM and 0.06 mL TFA was added. The reaction was stirred another hour at room temperature and concentrated under reduced pressure. The crude product was purified with silica gel chromatography using hexanes: ethyl acetate: methanol 1:1:0 \rightarrow 10:40:1, which gave $7.0 \mathrm{mg}(35 \%)$ of 13b as a colorless solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.35-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.18-6.11(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{bs}, 1 \mathrm{H}), 5.47-5.40(\mathrm{~m}$, 1 H), 4.36 (dd, $J=3.9,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.51-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{dt}, J=5.7,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.91-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.80-$ $1.68(\mathrm{~m}, 5 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.4,165.7,148.1$, 137.7, 136.9, 129.2 (2C), 129.1 (2C), 127.1, 123.4, 120.3, 85.4, 71.1, 62.0, 59.2, 58.5, 45.8, 42.1, 39.0, 31.4, 29.1, $24.2 \mathrm{ppm} ; \operatorname{IR}(\mathrm{ATR}) \lambda 3279,1708,1263,1168,1107,1032 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 400.2119$, found 400.2113 .

(2E)-(1S/R,3aR/S,4S/R,7aS/R)-1-benzyl-2,3,3a,4,7,7a-hexahydro-4-(2-methoxyethyl)-6-methyl-3-oxo-1 H -isoindol-3a-yl but-2-enoate (13c)

Compound 12b, ($10.5 \mathrm{mg}, 0.025 \mathrm{mmol}$), was dissolved in 0.5 mL THF and cooled to $0^{\circ} \mathrm{C}$. 60% Sodium hydride in mineral oil ($5 \mathrm{mg}, 0.13 \mathrm{mmol}$) was added and the mixture was stirred 30 min . Trans-crotonyl chloride, ($5 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$), was added and after 1 h at $0^{\circ} \mathrm{C}$, more 60% sodium hydride ($6 \mathrm{mg}, 0.15 \mathrm{mmol}$) was added and the mixture was stirred at room temperature for 10 min . Trans-crotonyl chloride, $(7 \mu \mathrm{~L}, 0.08 \mathrm{mmol}$), was added and the reaction was stirred 25 min at room temperature and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The intermediate Boc-protected product was extracted with ethyl acetate, washed with saturated aqueous NaHCO_{3}, and then again extracted with ethyl acteate. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. The residue was passed through a silica plug using hexanes: ethyl acetate $12: 1 \rightarrow 8: 1$ to afford 7 mg of the intermediate product. This material was dissolved in 0.27 mL DCM and cooled to $0^{\circ} \mathrm{C} .0 .03 \mathrm{~mL}$ TFA was added and the reaction was then stirred at room temperature for 1 h . The mixture was diluted with toluene and concentrated under reduced pressure to remove the TFA and the residue was purified with silica gel chromatography using hexanes: ethyl acetate $3: 1 \rightarrow 1: 2$. Compound 13c, $5.0 \mathrm{mg}(52 \%)$, was obtained as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.18$ $(\mathrm{m}, 3 \mathrm{H}), 7.07-6.96(\mathrm{~m}, 1 \mathrm{H}), 5.92-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{bs}, 1 \mathrm{H}), 5.46-5.40(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.45(\mathrm{~m}$, $2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{dt}, J=5.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.91-2.86(\mathrm{~m}, 1 \mathrm{H})$, 2.60-2.52 (m, 1H), 2.30-2.19 (m, 2H), 1.89 (d, 3H), 1.79-1.72 (m, 4H), 1.62-1.51 (m, 1H) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.5,165.8,145.7,137.8,136.9,129.2$ (2C), 129.0 (2C), 127.0, 123.4, 123.0, 85.1, 71.2, 59.2, 58.5, 45.8, 42.1, 39.0, 31.4, 29.1, 24.2, 18.2 ppm; $\operatorname{IR}(A T R) ~ \lambda 1710,1179,1114,1101,1034,802,743 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+} 384.2169$, found 384.2179.
(1S/R,3aR/S,4S/R,7aS/R)-tert-butyl 3a-((E)-hepta-2,6-dienoyloxy)-4-(2-(allyloxy)ethyl)-1-benzyl-3a,4,7,7a-tetrahydro-6-methyl-3-oxo-1H-isoindole-2(3H)-carboxylate (13d)
(E)-hepta-2,6-dienoic acid, ($35 \mathrm{mg}, 0.28 \mathrm{mmol}$), was dissolved in 1.6 mL THF and cooled to $0^{\circ} \mathrm{C}$. Ghosez's reagent, 1 -chloro- $\mathrm{N}, \mathrm{N}, 2$-trimethyl-1-propenylamine, ($37 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$), was added and the mixture was stirred 2.5 h at $0^{\circ} \mathrm{C}$ to generate the corresponding acid chloride. In a separate flask compound 12c, ($35 \mathrm{mg}, 0.079 \mathrm{mmol}$), was dissolved in 1.6 mL THF and sodium hydride, (60% in mineral oil, $19 \mathrm{mg}, 0.48 \mathrm{mmol}$), was added. The mixture was stirred at room temperature 20 min and then the previously prepared acid chloride solution was added using a syringe and the reaction was stirred another 75 min . The reaction was quenched with saturated aqueous NaHCO_{3}, extracted with ethyl acetate, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. The residue was purified with silica gel chromatography using hexanes: ethyl acetate $15: 1 \rightarrow 10: 1$ as eluent and then preparative TLC using hexanes: ethyl acetate 6:1 as eluent. Compound 13d, 5.5 $\mathrm{mg}(13 \%)$, was obtained as a colorless film. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-7.28$ (m , 2H), 7.26-7.20 (m, 3H), 7.02 (dt, $J=15.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.75(\mathrm{~m}, 3 \mathrm{H}), 5.37-5.32(\mathrm{~m}, 1 \mathrm{H})$, 5.28-5.21 (m, 1H), 5.17-5.11 (m, 1H), 5.10-5.00 (m, 2H), 4.00-3.89 (m, 2H), 3.57-3.46 (m, $4 \mathrm{H})$, 2.95-2.85 (m, 1H), 2.60-2.47 (m, 2H), 2.37-2.16 (m, 5H), 1.86 (dd, $J=15.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.63(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 10 \mathrm{H}), 1.12(\mathrm{dd}, J=15.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta=170.0,165.7,150.1,149.8,137.8(2 \mathrm{C}), 137.1,135.2,129.6(2 \mathrm{C}), 128.8$ (2C), $126.8,123.1,121.4,116.6,115.8,85.3,83.2,71.6,68.8,62.9,41.4,40.1,39.7,32.8,32.1$, $31.7,28.8,28.3$ (3C), 23.9 ppm ; IR(ATR) $\lambda 1791,1760,1716,1369,1350,1256,1155 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 550.3163$, found 550.3170 .

(2E)-(1S,3aR,4S,7aS)-4-(2-(allyloxy)ethyl)-1-benzyl-2,3,3a,4,7,7a-hexahydro-2,6-dimethyl-3-oxo-1 H-isoindol-3a-yl hepta-2,6-dienoate (13e)

(E)-hepta-2,6-dienoic acid, ($22 \mathrm{mg}, 0.17 \mathrm{mmol}$), was dissolved in 1.0 mL THF and cooled to $0^{\circ} \mathrm{C}$. Ghosez's reagent, 1 -chloro- $\mathrm{N}, \mathrm{N}, 2$-trimethyl-1-propenylamine, ($24 \mu \mathrm{~L}, 0.18 \mathrm{mmol}$), was added and the mixture was stirred 2.5 h at $0^{\circ} \mathrm{C}$ to generate the corresponding acid chloride. In a separate flask compound 12d, ($18 \mathrm{mg}, 0.051 \mathrm{mmol}$), was dissolved in 1.0 mL THF and sodium hydride, (60% in mineral oil, $7 \mathrm{mg}, 0.18 \mathrm{mmol}$), was added. The mixture was stirred at room temperature 20 min and then the previously prepared acid chloride solution was added using a syringe and the reaction was stirred another 70 min . The reaction was quenched with saturated aqueous NaHCO_{3}, extracted with ethyl acetate, and concentrated under reduced pressure. The residue was passed through a silica plug using hexanes: ethyl acetate $10: 1 \rightarrow 1: 1$ as eluent and then purified with reversed phase HPLC using a 10×150 mm C18-column, a gradient of $20-100 \% \mathrm{MeCN}+0.1 \%$ TFA over 40 min , and a flow rate of 6 $\mathrm{mL} / \mathrm{min}$. Compound $13 \mathrm{e}, 3.2 \mathrm{mg}(14 \%)$, was obtained as a colorless film. $[\alpha]_{\mathrm{D}}{ }^{20}+210(c 0.25$, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{dt}, \mathrm{J}=$ $15.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.75(\mathrm{~m}, 3 \mathrm{H})$, 5.39-5.33 (m, 1H), 5.29-5.21 (m, 1H), 5.17-5.11 (m, 1H), 5.10-4.98 (m, 2H), 4.00-3.88 (m, 2H), 3.56-3.45 (m, 2H), 3.26 (dd, $J=12.7,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.09-3.01 (m, 1H), 2.87 (s, 3H), 2.81 (dd, $J=12.7,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (td, $J=5.6,3.5 \mathrm{~Hz}$, $1 \mathrm{H})$, 2.56-2.48 (m, 1H), 2.36-2.27 (m, 2H), 2.27-2.17 (m, 3H), 1.86 (dd, $J=15.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.61 (s, 3H), 1.60-1.53 (m, 1H), 1.16 (dd, $J=15.4,3.5 \mathrm{~Hz}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta=170.3,165.9,149.3,137.6,137.2,137.0,135.3$, 129.5 (2C), 128.8 (2C), 126.9, 123.6, 121.9, 116.6, 115.7, 85.6, 71.6, 69.0, 65.1, 43.4, 39.5, 39.3, 32.1, 31.9, 31.7, 29.2, 28.4, 23.9 ppm ; IR(ATR) $\lambda 1701,1263,1173,1082,1031,701 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 464.2795$, found 464.2801.
($1 R / S, 4 E, 8 E, 14 S / R, 18 S / R$)-19-benzyl-16-methyl-20-aza-2,11-dioxatricyclo[12.7.0.0 ${ }^{1,18}$]henicos-4,8,15-trien-3,21-dione (14a)
Compound 13d, ($2.1 \mathrm{mg}, 3.8 \mu \mathrm{~mol}$), was dissolved in a 0.3 mM solution of Grubbs 1st generation catalyst in DCM, ($0.76 \mathrm{~mL}, 0.23 \mu \mathrm{~mol})$, and stirred in a sealed tube at $35^{\circ} \mathrm{C}$ for 22 h . The solution was concentrated under reduced pressure and the residue was then dissolved in a 0.2 mM solution of Grubbs 1st generation catalyst in DCM, ($0.76 \mathrm{~mL}, 0.15$ $\mu \mathrm{mol}$), and stirred in a sealed tube at room temperature for 24 h . TFA, ($42 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$),
was added and the reaction was stirred at room temperature 1 h and then concentrated under reduced pressure. Preparative TLC using hexanes: ethyl acetate $1: 1$ afforded 0.9 mg (56%) of 14a as a colorless film. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23$ ($\mathrm{m}, 1 \mathrm{H}$), $7.20-7.17$ (m, 2H), 6.99 (ddd, $J=15.9,8.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.74 (dt, $J=15.9,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.68-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.59$ (bs, 1 H), 5.53 (ddd, $J=15.3,8.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.24-5.21 (m, $1 \mathrm{H})$, 4.06-3.99 (m, 2H), 3.70 (td, $J=9.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44 (ddd, $J=9.0,8.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99-2.91 (m, 3H), 2.84 (td, $J=4.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.29(\mathrm{~m}, 5 \mathrm{H}), 2.26-$ $2.18(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 171.7, 165.2, 150.1, 138.2, 137.8, 133.5, 131.2, 129.1 (2C), 129.0 (2C), 127.0, 125.2, 122.4, 86.3, 72.0, 69.0, 58.6, 47.4, 42.3, 39.5, 32.1, 31.9, 31.8, 29.9, 24.2 ppm ; IR(ATR) $\lambda 1713$, 1456, 1259, $1087 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 422.2326$, found 422.2323.

(1R, 4E, 8E, 14S, 18S)-19-benzyl-16,20-dimethyl-20-aza-2,11-dioxatricyclo[12.7.0.0 ${ }^{1,18}$]henicos-4,8,15-trien-3,21-dione (14b)

Compound 13e, ($2.2 \mathrm{mg}, 4.7 \mu \mathrm{~mol}$), was dissolved in a 0.3 mM solution of Grubbs 1st generation catalyst in DCM, ($0.95 \mathrm{~mL}, 0.29 \mu \mathrm{~mol})$, and stirred in a sealed tube at $35^{\circ} \mathrm{C}$ for 22 h. The solution was concentrated under reduced pressure and the residue was then dissolved in a 0.2 mM solution of Grubbs 1st generation catalyst in DCM, ($0.95 \mathrm{~mL}, 0.19$ $\mu \mathrm{mol}$), and stirred in a sealed tube at room temperature for 24 h and then concentrated under reduced pressure. Preparative TLC using hexanes: ethyl acetate 1:1 afforded 1.1 mg (53%) of $\mathbf{1 4 b}$ as a colorless film. $[\alpha]_{\mathrm{D}}{ }^{20}+108\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.34-7.29 (m, 2H), 7.26-7.23 (m, 1H), $7.19(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{dt}, J=15.9,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.73-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.63$ (ddd, $J=15.2,7.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51$ (ddd, $J=15.2,7.9,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.16-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=12.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=12.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (td, J $=9.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{td}, J=9.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=12.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dt}, J=$ $10.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{dd}, \mathrm{J}=12.6,10.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.71-2.67 (m, 1H), 2.51-2.45 $(\mathrm{m}, 1 \mathrm{H}), 2.43-2.32(\mathrm{~m}, 4 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{bd}, \mathrm{J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H})$, 1.62 (s, 3H), 1.09-1.04 (m, 1H) ppm; ${ }^{13} \mathrm{C}-$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.5,165.3,149.8$, 138.0, 137.5, 133.5, 131.2, 129.5 (2C), 128.8 (2C), 126.9, 125.1, 122.7, 86.6, 72.0, 69.1, 64.3, 44.7, 39.7, 39.3, 32.1, 31.94, 31.90, 30.1, 28.4, 23.9 ppm; IR(ATR) $\lambda 1699,1256,1030$, $735,702 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~N}\left[\mathrm{M}+\mathrm{H}^{+} 436.2482\right.$, found 436.2486.

General procedure V

The maleimide to be reacted, (1.0 equiv.), benzoic acid, ($24 \mathrm{mg} / \mathrm{mmol}$ maleimide, 0.20 equiv.), and catalyst C8, ($122 \mathrm{mg} / \mathrm{mmol}$ maleimide, 0.20 equiv.), were dissolved in chloroform, ($10 \mathrm{~mL} / \mathrm{mmol}$ maleimide). Dienal 2d, ($165 \mathrm{mg} / \mathrm{mmol}$ maleimide, 1.5 equiv.), was added and the reaction was stirred at room temperature for 21 h and then concentrated under reduced pressure. The residue was dissolved in methanol, ($10 \mathrm{~mL} / \mathrm{mmol}$ maleimide), and saturated aqueous $\mathrm{NaHCO}_{3},(0.2 \mathrm{~mL} / \mathrm{mmol}$ maleimide), was added and the mixture was cooled to $0^{\circ} \mathrm{C}$. Sodium borohydride, ($57 \mathrm{mg} / \mathrm{mmol}$ maleimide, 1.5 equiv.), was added and the reaction was moved to room temperature and stirred for 30 min . The reaction was quenched with ice and $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq}$.$) and then diluted with brine and extracted with DCM. The$ organic extract was concentrated under reduced pressure and the residue was purified with silica gel chromatography.
(3aS,4S,7aR)-3a,4,7,7a-tetrahydro-4-(2-hydroxyethyl)-6-methyl-2-(2-(trimethylsilyl)ethyl)-2H-isoindole-1,3-dione (15a)
Maleimide 1g, ($197 \mathrm{mg}, 1.00 \mathrm{mmol}$), was converted to 253 mg (82%) 15a by following the general procedure V. Hexanes: ethyl acetate $6: 1 \rightarrow 1: 1$ was used as eluent in the chromatography and the product was obtained as a slightly yellowish oil. $[\alpha]_{0}{ }^{20}+13$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.31$ (bs, 1 H$), 3.94-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.72(\mathrm{~m}, 1 \mathrm{H})$, 3.44-3.37 (m, 2H), 3.17 (dd, $J=8.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (ddd, $J=8.6,6.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ (bd, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.34(\mathrm{bs}, 2 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 0.80-$
0.72 (m, 2H), 0.01 (s, 9H) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=179.6,178.8,136.8,125.9$, $61.6,42.8,40.7,35.4,34.1,34.0,29.5,23.2,16.4,-1.7$ (3C) ppm; IR(ATR) $\lambda 3439,1686$, 1402, 1349, 1249, 1150, 860, $836 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}$ 310.1833, found 310.1841.
(3aS,4S,7aR)-3a,4,7,7a-tetrahydro-4-(2-hydroxyethyl)-2,6-dimethyl-2H-isoindole-1,3dione (15b)
N-Methyl maleimide, ($389 \mathrm{mg}, 3.50 \mathrm{mmol}$), was converted to 681 mg (87%) 15b by following the general procedure V. Hexanes: ethyl acetate $4: 1 \rightarrow 1: 2$ was used as eluent in the chromatography and the product was obtained as a yellowish oil. $[\alpha]_{\mathrm{D}}{ }^{20}+24\left(c 1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.29(\mathrm{~s}, 1 \mathrm{H}), 3.89-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{dd}, \mathrm{J}$ $=8.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.36(\mathrm{~m}, 3 \mathrm{H})$, 2.19-2.06 (m, 2H), 1.94-1.83 (m, 1H), $1.67(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=180.0,179.0,136.8$, 125.8, 61.4, 42.8, 40.8, 34.1, 33.7, 29.4, 24.8, 23.1 ppm ; IR(ATR) λ 3445, 1682, 1435, 1383, 1284, 1055, $1004 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$224.1281, found 224.1282.
(3aS,4S,7aR)-3a,4,7,7a-tetrahydro-4-(2-methoxyethyl)-6-methyl-2-(2-(trimethylsilyl)ethyl)-2H-isoindole-1,3-dione ((+)-10c)
Compound 15a, ($217 \mathrm{mg}, 0.701 \mathrm{mmol}$), was dissolved in 2.8 mL DCM and cooled to $0^{\circ} \mathrm{C}$. 50% aqueous $\mathrm{HBF}_{4},(0.09 \mathrm{~mL}, 0.71 \mathrm{mmol})$, was added and to the stirring mixture was 2 M TMS-diazomethane in $\mathrm{Et}_{2} \mathrm{O}$, ($0.35 \mathrm{~mL}, 0.70 \mathrm{mmol}$), added slowly over 5 min . After 30 min another 0.35 mL TMS-diazomethane solution was added over 5 min and after another 30 min 0.18 mL TMS-diazomethane solution was added over 5 min . After 30 min the reaction was quenched with $1 \mathrm{M} \mathrm{HCl}($ aq. $)$, extracted with DCM , dried over anhydrous MgSO_{4}, filtrated and concentrated under reduced pressure. The residue was dissolved in 2.8 mL DCM and cooled to $0{ }^{\circ} \mathrm{C} .50 \%$ aqueous HBF_{4}, $(44 \mu \mathrm{~L}, 0.35 \mathrm{mmol})$, was added and to the stirring mixture was 2 M TMS -diazomethane in $\mathrm{Et}_{2} \mathrm{O}$, ($0.18 \mathrm{~mL}, 0.36 \mathrm{mmol}$), added slowly over 5 min . After 30 min , another 0.17 mL TMS-diazomethane solution was added slowly over 5 min . After 30 min the reaction was quenched with $1 \mathrm{M} \mathrm{HCl}($ aq.), extracted with DCM, and concentrated under reduced pressure. Silica gel chromatography using hexanes: ethyl aceate $10: 1 \rightarrow 6: 1$ as eluent gave $168 \mathrm{mg}(74 \%)(+)-10 \mathrm{c}$ as colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}+7$ (c 1.0, CHCl_{3}); NMR-data was identical to the racemic material.
(3aS,4S,7aR)-4-(2-(allyloxy)ethyl)-3a,4,7,7a-tetrahydro-2,6-dimethyl-2H-isoindole-1,3dione ((+)-10f)
Compound 15b, ($223 \mathrm{mg}, 1.00 \mathrm{mmol}$), and allyl-tert-butyl carbonate, ${ }^{\mathrm{S} 11}$ ($238 \mathrm{mg}, 1.50 \mathrm{mmol}$), triphenylphosphine, ($11 \mathrm{mg}, 0.04 \mathrm{mmol}$), were dissolved in 3.0 mL THF and degassed by evacuation and refilled with argon three times. Palladium-tetrakis(triphenylphosphine), (11.5 $\mathrm{mg}, 0.010 \mathrm{mmol}$), was added and the mixture was evacuated and refilled with argon once more. The reaction was vigorously refluxed for 2.5 h , and then concentrated under reduced pressure. Silica gel chromatography using hexanes: ethyl acetate $8: 1 \rightarrow 5: 1$ as eluent gave $207 \mathrm{mg}(79 \%)(+)-10 \mathrm{f}$ as a slightly yellow oil. $[\alpha]_{\mathrm{D}}{ }^{20}+12$ (c $0.5, \mathrm{CHCl}_{3}$); NMR-data was identical to the racemic material.

Biological evaluation

Cell lines

Human colon carcinoma HCT116 (obtained from DSMZ, DMSZ-no. ACC-581) and human cervix carcinoma HeLa (obtained from ATCC, ATCC-no. CCL-2) cell lines were cultured in Dulbecco's Modified Eagle's medium (DMEM, high glucose) supplemented with 10% fetal bovine serum, L-glutamine, penicillin and streptomycin. Cell lines were maintained at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$ humidified atmosphere.

2-Deoxy-D-glucose (2DG) uptake assay

40000 HCT116 cells/well were seeded in 96 -well microtiter plates and incubated overnight. 2DG uptake in presence of compounds was determined as previously reported ${ }^{512}$ with minor modifications. Briefly, cells were incubated with compounds or DMSO and 1 mM 2DG in glucose-free KRB buffer (20 mM HEPES, $5 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}, 1 \mathrm{mM} \mathrm{MgSO} 4$, $1 \mathrm{mM} \mathrm{CaCl} 2,136 \mathrm{mM}$ $\mathrm{NaCl}, 0.1 \% \mathrm{BSA}, \mathrm{pH} 7.4$) buffer for 30 min . Cells were then washed and lysed. The amount of 2DG in the lysate was determined based on resorufin fluorescence as described by Yamamoto et al. ${ }^{12}$ Fluorescence intensity was measured at ex/em $535 / 590 \mathrm{~nm}$ with a Tecan Infinite 200 plate reader (Tecan, Switzerland. Blank values were subtracted from all readings and values were normalized to the DMSO control.

Immunocytochemistry

Hela cells were seeded on cover slips and incubated overnight. After treatment with the compounds at a concentration of $180 \mu \mathrm{M}$ for 1 hour cells were fixed with formaldehyde and permeabilized with Triton X-100. Cells were then stained for actin with TRITC-phalloidin. Coverslips were then washed again and mounted onto glass slides. Samples were examined by means of fluorescence microscopy using the Zeiss Observer Z1 (Carl Zeiss, Germany) and a Plan-Apochromat 63x/1.40 Oil DIC M27 objective.

NMR spectra

1 g

1h

3

4b

5a

5b

5c

6a

6b

7b

7c

7d

8

9a

9b

10a

10e

11b

11c

11d

11e

11g

11i

12b

12c

13a

13d

13e

14a

14b

15a

15b

Determination of enantiomeric excesses

Column: Chiralpak® IA, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size Mobile phase: Hexanes:EtOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 7: 2: 1$
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 230 nm
ee: 83\%

4a

rac-4a

Column: Chiralpak® IC, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size
Mobile phase: Hexanes:EtOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 7:2:1
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 235 nm
ee: 78\%

Column: Chiralpak® IC, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size Mobile phase: Hexanes:EtOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 12:2:1
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 235 nm
ee: 72\%

rac-4c

Column: Chiralpak® IA, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size Mobile phase: Hexanes:EtOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 12:2:1
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 230 nm
ee: 92\%

5a

rac-5a

Column: Chiralpak® IC, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size
Mobile phase: Hexanes:EtOH 4:1
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 235 nm
ee: 81\%

Column: Chiralpak® IA, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size Mobile phase: Hexanes:EtOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 12:2:1
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 230 nm
ee: 73\%

5c

rac-5c

Column: Chiralpak® IC, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size Mobile phase: Hexanes:EtOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 12:2:1
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 235 nm
ee: 73\%

rac-6a

Column: Chiralpak® IC, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size
Mobile phase: Hexanes:EtOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 12:2:1
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 235 nm
ee: 85%

Column: Chiralpak® IC, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size
Mobile phase: Hexanes:EtOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 12:2:1
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 235 nm
ee: 85\%

7a

rac-7a

Column: Chiralpak® IC, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size
Mobile phase: Hexanes:EtOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 12:2:1
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 235 nm
ee: 76\%

7b

rac-7b

Column: Chiralpak® IC, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size
Mobile phase: Hexanes:EtOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 17:2:1
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 235 nm
ee: 81\%

7c

rac-7c

Column: Chiralpak® IC, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size
Mobile phase: Hexanes:EtOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 12:2:1
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 235 nm
ee: 79\%

Column: Chiralpak® IC, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size
Mobile phase: Hexanes:EtOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 27:2:1
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 235 nm
ee: 82\%

Column: Chiralpak® IC, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size
Mobile phase: Hexanes:EtOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 72: 2: 1$
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 254 nm
ee: 85%
(+)-10f

rac-10f

Column: Chiralpak® IC, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size
Mobile phase: Hexanes:EtOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 17:2:1
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection wavelength: 254 nm
ee: 77\%

Supplementary references

S1. Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 44, 4212-4215 (2005).

S2. Marigo M, Wabnitz TC, Fielenbach D, Jørgensen KA. Angew. Chem. Int. Ed. 44, 794-797 (2005).

S3. Zhu M-K, Wei Q, Gong L-Z. Adv. Synth. Cat. 350, 1281-1285 (2008).
S4. Liu Y-k, Ma C, Jiang K, Liu T-Y, Chen Y-C. Org. Lett. 11, 2848-2851 (2009).
S5. Jia Z-J, Zhou Q, Zhou Q-Q, Chen P-Q, Chen Y-C. Angew. Chem. Int. Ed. 50, 86388641 (2011).

S6. Whittaker M, McArthur CR, Leznoff CC. Canad. J. Chem. 63, 2844-2852 (1985).
S7. Xiong X-F, Zhou Q, Gu J, Dong L, Liu T-Y, Chen Y-C. Angew. Chem. Int. Ed. 51, 4401-4404 (2012).

S8. Taber DF, Guo P, Guo N. J. Am. Chem. Soc. 132, 11179-11182 (2010).
S9. Vishwakarma LC, Stringer OD, Davis FA. Org. Synth. 66, 203 (1988).
S10. Tilley SD, Reber KP, Sorensen EJ. A Rapid, Org. Lett. 11, 701-703 (2009).
S11. Kraus JM, Gits HC, Silverman RB. Tetrahedron Lett. 53, 1319-1322 (2012).
S12. Yamamoto N, Ueda M, Sato T, Kawasaki K, Sawada K, Kawabata K, et al. Curr. Protoc. Pharmacol. 55: 12.14.51-12.14.22 (2011).

