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Résumé 
 La tomographie par émission de positons (TEP) est une modalité d’imagerie nucléaire 

puissante, permettant des mesures fonctionnelles non-invasive dans les cellules, les animaux et 

les humains avec une haute sensibilité et résolution.  Les exosomes sont des vésicules 

extracellulaires de 30 à 120 nm qui peuvent transférer leur contenu cytoplasmique entre cellules, 

mais comprendre leurs cheminements in vivo reste un défi. Les hydrogels thermosensibles à base 

de chitosane ont été développés et sont sous optimisation pour diverses applications telles que 

l'embolisation des vaisseaux sanguins, l'administration de médicaments, l’'administration de 

lymphocytes et la réparation du cartilage et des disques intervertébraux. Il y a un besoin urgent 

de suivi in vivo à court terme pour évaluer la rétention des hydrogels et des exosomes. Le 

Hexadécyl-4- [18F]-fluorobenzoate ([18F]HFB) est un radiotraceur lipophile à longue chaîne qui 

est retenu dans les membranes cellulaires et les biomatériaux. Le but de ce travail était 

d'automatiser la radiosynthèse de [18F]HFB pour marquer des exosomes et des hydrogels. La 

radiosynthèse et la purification de [18F]HFB ont été réalisées en utilisant le synthétiseur de 

chimie commercial IBA Synthera®. [18F]HFB a été préparé via substitution du précurseur 

d’ammonium quaternaire par [18F]F-. Après une première purification via une cartouche C18, 

[18F]HFB a été élué avec de l'acétonitrile et purifié par HPLC. [18F]HFB a ensuite été reformulé 

dans une solution de DMSO (10%) après élimination du solvant HPLC sous azote, filtré et dilué 

dans une solution saline stérile. [18F]HFB a été obtenu en rendement radiochimique allant de 15 à 

45% (corrigé pour désintégration), en haute pureté radiochimique et chimique, et dans un temps 

de synthèse total de 60 minutes. Les exosomes n'ont pas été marqués avec succès. Cependant, les 

hydrogels de chitosane ont démontré un marquage élevé, avec une stabilité du complexe >90%, 

même après 8 heures d’incubation en solution saline. La TEP avec [18F]HFB d'exosomes et de 

biomatériaux présente une approche novatrice pour déterminer leur distribution in vivo.  

 

Mots clés : F-18, fluor-18, radiosynthèse, automatisé, exosome, nanovésicules, biomatériaux, 

hydrogels à base de chitosan, marquage, tomographie par émission de positons, TEP  
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Abstract  
Positron emission tomography (PET) is a powerful nuclear imaging modality allowing 

for non-invasive functional measures in cells, animals and humans with high sensitivity.  

Exosomes are 30-120 nm extracellular vesicles that can transfer their cytoplasmic contents 

between cells, however, understanding where exosomes traffic in the body remains a challenge. 

Chitosan-based thermosensitive hydrogels have been developed and are currently under 

optimization for various applications such as blood vessel embolization, drug delivery, 

lymphocyte delivery systems, and cartilage and intervertebral disc repair. There is an urgent need 

for in vivo, short term follow-up of such procedures to assess the retention of hydrogels and 

exosomes at the site of injection. Hexadecyl-4-[18F]fluorobenzoate ([18F]HFB) is a long chain 

lipophilic radiotracer that has been reported to be retained within cell membranes or 

biomaterials. The aim of this work was to automate the radiosynthesis of [18F]HFB for labeling 

exosomes and chitosan-based hydrogels. The radiosynthesis and purification of [18F]HFB was 

done using the commercial IBA Synthera® chemistry synthesiser with the R&D IFP-cassette and 

HPLC module. As previously reported, [18F]HFB was prepared by [18F]F- substitution of the 

trimethyl ammonium triflate precursor in DMSO. After removal of unreacted [18F]F- and DMSO 

via a C18 light cartridge, [18F]HFB was eluted with acetonitrile and purified by semi-prep C18 

HPLC. [18F]HFB was then reformulated in DMSO (10%) solution after removal of the HPLC 

solvent from the radioactive product peak under nitrogen, filtered, and diluted in sterile saline. 

[18F]HFB was obtained in radiochemical yield (isolated after HPLC and evaporation) ranging 

from 15 – 45% (decay-corrected), high radiochemical and chemical purities, and within a total 

synthesis time of 60 mins. Exosomes were not successfully labeled. However, high labeling 

efficiency was observed with the chitosan hydrogels displaying a stability >90%, even after 8 

hours incubation in saline. PET imaging with [18F]HFB of exosomes and biomaterials presents a 

novel approach to determining their in vivo distribution.  

 

Keywords: F-18, fluorine 18, automated, radiosynthesis, exosomes, nanovesicles, biomaterials,  

chitosan hydrogels, radiolabeling, positron emission tomography, PET.   
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Introduction  
Chapter 1: Positron Emission Tomography and Radiochemistry 

1. Nuclear Imaging  
 
 Nuclear imaging is a branch of nuclear medicine that deals with the application and 

detection of decaying radioisotopes. Typically, a radiopharmaceutical is injected, inhaled or 

swallowed by a patient and the detection of the radioactive decay is done through either positron 

emission tomography (PET) or single photon emission computed tomography (SPECT) [6]. In 

clinical nuclear medicine, roughly 95% of radiopharmaceuticals are used for diagnostic 

purposes, with the remaining 5% employed for therapy [7]. Radiopharmaceuticals usually 

contain a radioisotope linked to a small amount of active ingredient, with the main purpose of 

obtaining an image or a measure of biological activity/biodistribution. Radiopharmaceuticals do 

not usually have any pharmacological activity as they are administered in extremely small 

concentrations and therefore do not display any dose-response relationships. PET and SPECT 

have the advantage of being highly sensitive imaging modalities with the total mass of tracer 

needed to create an image being in the nanogram range[8]. However, PET and SPECT offer 

lower spatial resolution, the minimum distance between two points in an image that can be 

detected by a scanner, as compared to X-ray, CT and MRI (Table 1.1). The lower resolution 

makes it difficult to visualize small details and limits the size of structures that can be accurately 

imaged [9], although the radiation exposure that results from a clinical FDG PET scan of a 

human is approximately half that for a whole-body diagnostic x-ray CT image [10]. Finally, 

compared to optical fluorescence and echography imaging, PET and SPECT have higher 

sensitivity [9].  Our discussion will focus on PET and the various aspects involved with PET 

imaging including radiochemistry, PET tracer design and applications in translational research.  
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1.1 Introduction to the PET concept  
 

PET is a nuclear imaging modality that has become the most powerful molecular imaging 

technique currently available for clinical and basic scientific use. In recent years, PET has seen 

an increase in clinical applications due to advances in instrumentation and synthetic chemistry, 

resulting in the development of high sensitivity PET scanners and a broad range of PET tracers 

[11]. PET allows for the quantitative assessment of numerous biological processes including 

perfusion, metabolism, protein expression and enzyme activity, in vivo, in a non-invasive manner 

[12]. PET works through the detection of gamma ray photons resulting from the annihilation 

between a positron emitted from a decaying radionuclide and an electron to construct a three-

dimensional image. PET tracers are predominantly developed through combining radionuclides 

(radioactive isotopes) with biologically active molecules to produce a radiolabeled probe that can 

image a biochemical pathway or receptor. The radionuclide undergoes beta-decay through the 

emission of a positron, which travels a short distance and undergoes an annihilation event with 

an electron. This produces two high-energy 511 keV photons that travel in opposite directions 

that are detected as a coincidence event (Figure 1.1) [6]. This allows for the quantification of 

radioisotope concentration and the construction of an image based on radiotracer distribution 

throughout the body [13].  

The variety of available PET tracers combined with advanced analytical methods 

supports the application of PET for the assessment of normal biological processes, changes in 

biological processes associated with disease formation and progression, and the ability to 

longitudinally monitor the response of healthy and diseased tissues to therapeutic intervention 

[12]. Furthermore, PET also sees applications throughout the drug discovery process to assess 

novel drug biodistribution, drug occupancy at specific biological targets and biological response 
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to drug exposure [8]. The ability for PET to image biodistribution will be of high importance for 

this work and will be discussed in more detail in chapters 2 (exosomes/biomaterials). 

1.2 Introduction to Radioactivity  
 
Radionuclides are most commonly produced artificially in a cyclotron or reactor (for 

PET) although some exist naturally. Radionuclides are unstable as they have excess energy due 

to an unsuitable ratio of neutrons to protons [6]. To become stable, this excess energy can be 

emitted from the nucleus as gamma radiation or through the emission of particles such as α 

particles, ß- particles, ß+ particles, electron capture and isomeric transition. Through the emission 

of energy or various particles, the unstable nuclide is said to have undergone a decay event, 

resulting in the production of a different nuclide which may be stable or remain unstable [6].  

 Positron decay occurs when a radionuclide is proton rich and neutron poor. The process 

involves the conversion of a proton into a neutron with the emission of a positron (ß+) and a 

neutrino (v). Positron decay leads to nuclear transmutation, whereby an atom of one chemical 

element is transformed into an atom of an element with an atomic number that is less by one 

unit. This is seen in Figure 1.2 where radioactive fluorine-18 ([18F]) undergoes decay primarily 

through positron emission (96.86%) and the remainder electron capture (the nucleus captures a 

nearby orbital electron) to form stable oxygen-18. In this case, the atomic number decreased by 1 

(9 to 8), whereas the mass number remained the same (18) [6]. PET makes use of positrons 

through the resultant process that occurs after decay. As the positron is emitted, it begins to lose 

kinetic energy by interaction with matter, and then with electrons of absorber atoms where it 

combines with an electron [7]. At this moment, both particles (electron and positron) are 

annihilated due to a matter-antimatter interaction, producing two 511-keV photons emitted in 



 
 

 
  

4 

opposite directions (~ 180˚). The detection of the two opposite 511-keV photons in coincidence 

by detectors is the basis of PET [6].  

1.3 PET Imaging 
 
PET tracers are made up of a biologically active molecule and a short-lived positron-

emitting isotope. The most common radioisotopes utilized in PET are 15O, 13N, 11C and 18F, with 

18F having the longest half-life of 109.6 minutes (Table 1.2). The advantage of a longer half-life 

allows for more complex synthesis procedures, long PET imaging protocols, shipment of the 

PET tracer to offsite facilities without the infrastructure to produce PET isotopes and the ability 

to perform multiple patient scans from one production of tracer [7]. To produce PET tracers, a 

laboratory must be able to manufacture radioisotopes and combine these with precursor 

molecules to produce a final radiolabeled tracer under automated conditions.  

 PET radioisotopes are produced in a cyclotron; a cylinder-shaped high-vacuum chamber 

that combines a magnetic field and a radio-frequency system to produce an alternating electric 

field which is applied to accelerate particles to very high energies. These accelerated particles 

can in turn be utilized as projectiles to bombard stable elements loaded in a target to induce 

different types of nuclear reactions that lead to the production of radioactive elements [7].  Most 

medical cyclotrons are negative ion cyclotrons and accelerate negative hydrogen atoms (H-). 

These H- ions are accelerated in a circular path with increasing kinetic energy until they are 

stripped of two electrons to produce positive ions (protons) which are used to bombard a target. 

The proton is absorbed by the target nucleus causing a nuclear transformation which produces an 

unstable radioactive isotope (Table 1.2). For example, to produce [18F]F-, 18O enriched water is 

bombarded with 11 MeV protons, according to the nuclear reaction 18O (p, n)18F [6]:  

!"#" +	 & → 	 ( +	 )*#+
#"

#
#  
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After radioisotope production, the radioisotope is transferred to a shielded hot cell to an 

automated synthesis module. Here, the radioisotope undergoes a chemical reaction with a 

precursor molecule to produce a PET tracer.  

 To detect annihilation photons, PET scanners utilize a circular ring of pairs of gamma ray 

detectors that works off the basis of coincidence detection of gamma photons. The detection of 

the gamma rays determines a line of response (LOR) along which the annihilation took place 

(Figure 1.3). A true coincidence event is determined by imposing an acceptance window on the 

time difference between detection of the two events (a few nanoseconds wide) which helps to 

filter out scattered or random coincidences [14]. The time of flight (TOF) PET technique is based 

off the measurement of time differences in the arrival of the two photons at the detectors and 

provides the probability the event occurred at a specific location along the LOR.  

 Block detectors are the most common type of detectors and they consist of a solid 

scintillation detectors coupled to a photomultiplier tube (PM), a linear amplifier, and a pulse 

height analyzer (PHA) [6]. A scintillation detector is employed to absorb the gamma ray and 

convert this into lower energy light photons. The light photons are then converted into an 

electrical pulse by the PM, amplified and analyzed by the PHA. A PHA is a device that sorts out 

photons of different energies and in the case of PET systems, the PHA is centered at 511 keV 

[6]. If the annihilation photons are registered as a coincidence event, mathematical tomographic 

image reconstruction algorithms transform the signal into an image that represents a slice 

through the object in the plane of the detector ring. Some image reconstruction algorithms that 

are currently in use with PET scanners include: filtered backprojections, expectation 

maximization, ordered subset expectation maximization, and maximum aposteriori [12].  



 
 

 
  

6 

Modern PET scanners are often coupled with other imaging modalities such as CT or 

MRI. This helps physicians to compare the higher resolution CT or MRI images to the low-

resolution PET images to determine precise localization of anatomical structures before 

administering therapy. Furthermore, by combining PET and CT, it is possible to perform a CT 

transmission scan that can be implemented for attenuation correction for PET images, resulting 

in a more accurate image [6]. The CT scan creates a density map of the body that can be used to 

correct for the different absorption of photons through various tissues of the body. Another factor 

that helps to increase the quality of the images is to correct for the partial volume effect. The 

partial volume effect leads to a smearing of activity over a larger area than it occupies in a 

reconstructed image and this is due to the limitation in the spatial resolution of PET scans. A 

correction needs to be applied for overestimation or underestimation of activities in small 

structures to obtain better quality images [6].  

Many research efforts have been focused on maximizing the performance of PET scanners, 

which becomes more complicated when dealing with small animal imaging [12]. Small animal 

imaging (µPET) provides many advantages for completing translational research for 

understanding human diseases, however, size differences in organs and tissues between humans 

and small animals creates many challenges for µPET imaging. The human/mouse and human/rat 

mass ratios fall in the range of 2,500 to 3,750 and 250 to 375, respectively [12], which results in 

an approximate 10 times smaller volume in these small animals. Consequentially, to obtain the 

same quality of images in small animals as humans, the spatial resolution of µPET scanners 

would need to be improved by a factor of 10. Current PET scanners have a spatial resolution of 

approximately 6-8 mm and µPET scanners around 1-2.5 mm [15]. Furthermore, an important 

factor to consider when completing small animal studies is the concentration of tracer being 
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administered. In human studies, the amount of tracer being injected does not perturb any 

biological systems, however, this may not always be true for small animals due to their 

significantly smaller body weight.  

1.4 PET Tracers 
 

In theory, any biological molecule can be labeled with a radioisotope by direct 

substitution of a nonradioactive isotope, leading to a labeled compound with virtually identical 

biochemical properties to the native compound that can trace the target of interest without 

disturbing the system [8]. The range of targets available for PET imaging are essentially 

limitless, and can include, but is not limited to: specific receptors, second messenger systems, 

enzymes, proteins, metabolic pathways and perfusion. Once the target has been identified, there 

is the option of developing a new compound or opting to work with a known pharmaceutical. 

The advantages of working with an established pharmaceutical are that the pharmacological 

profile and toxicology are already known, which facilitates the approval process for human use 

by regulatory agencies such as Health Canada. Regardless of which radioisotope is utilized, it is 

important that the labeled compound maintain the biological and chemical properties of the 

native compound.  

Many factors need to be met for a PET tracer to succeed and this also depends on 

whether the target is saturable or nonsaturable. In general, the radiotracer should be present in a 

very low concentration so that it does not disturb the biological process under study and ideally 

only interact with one specific receptor or binding site, therefore minimizing non-specific 

binding. The radiotracer should also have a high target-to-background ratio, a fast clearance from 

plasma and resistance to metabolism for quantitative studies. If the radiotracer is metabolized by 

the body, this can lead to radiolabeled metabolites that can greatly interfere with interpretation of 
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the results as the signal coming from the native molecule and the labeled metabolite could have 

different pharmacological binding profiles [12].  

From a radiochemists standpoint, the radiosynthesis should be simple, fast, reproducible, 

high-yielding, easy to purify and automate with a synthesizer. Automated synthesizer units 

(ASUs) are controlled by microprocessors and software programs to carry out the sequential 

physical and chemical steps to accomplish the entire synthesis of a radiotracer (synthesis and 

purification) [6]. These ASUs have reagent vials filled with solvents and precursor molecules 

connected to a reactor through various valves that can be programed to perform actions at a 

given time point. Today, there are commercially available kits that can be prepared and loaded 

on to ASUs to produce radiotracers routinely, examples of these include 18F-fluorodeoxyglucose 

([18F]FDG), 18F-fluorothymidine ([18F]FLT) and 18F-dihydroxyphenylalanine ([18F]DOPA). The 

synthesizer that was utilized to complete this work is the IBA Synthera®, which is a kit-based 

ASU allowing for automated processes including reformulation of the final tracer.   

The concept of molar activity (MA) needs to be taken into consideration when dealing 

with receptors that are saturable, present in low densities or if there as a competing ligand for the 

binding site. The MA of a radiotracer is defined as the radioactivity per unit mass of a labeled 

compound and is usually reported in Ci/µmole. The lower the density of the receptor, the higher 

MA is needed due to competition for the binding site between the labeled and unlabeled 

compounds [6]. Many factors can affect the MA of a radiotracer, including: tubing, reagents or 

gases that contain nonradioactive isotopes of the ones being used (eg. 19F in Teflon tubing) and 

any contamination that may be present in the cyclotron target. MA is not important when dealing 

with sites that are non-saturable such as perfusion or glucose metabolism studies. 
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1.5 Fluorine-18  
 

Fluorine-18 has many advantages over the other PET radioisotopes due to its ease of 

production in high quantities, longer half-life (109 mins), its positron decay (97%) and positron 

weak energy. Out of the available positron emitters for clinical use, 18F has the lowest mean 

positron emission energy of 0.64 meV and an average range of 0.83 mm in soft tissue (Table 

1.3) which has several important consequences. The dose of radiation received by the patient will 

be lower and the distance between disintegration of the radionuclide and the annihilation site 

(positron and electron) is reduced, which results in higher resolution PET images [7]. The 

challenge of working with F-18 is that it is not common in biological molecules.  [4]. Fluorine 

can act as a bioisostere for  hydrogen and oxygen as they have similar radii, and substituting a 

hydrogen/oxygen atom for a fluorine atom does not usually result in substantial steric differences 

between both molecules [7]. However, the electronegativity difference that comes with fluorine 

can change the physicochemical properties of the molecule (reactivity, hydrogen bonding, 

interaction with receptors, metabolism) which means that the biological activity of the 

fluorinated analog must be assessed.  

There are many constraints imposed on radiosyntheses such as: radiation protection, 

working in hot-cells with ASUs, fast reaction times and the need for obtaining the radiotracer 

with high MA, chemical purity and radiochemical purity. The total synthesis time including 

synthesis, final purification (usually through high pressure liquid chromatography (HPLC)), 

formulation and the quality control (QC) must be completed as quickly as possible with the 

incorporation of the radioactive isotope as late as possible in the reaction scheme [4]. It is 

important to note that high yielding reactions are not necessarily the goal of radiochemistry 

processes due to the high sensitivity of PET scanners and the small amount of tracer needed to 
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obtain an image. Rather, the purity and reliability of the radiotracer production is desired and 

optimized by the radiochemists. 

1.6 Radiolabeling with F-18  
 

In order to incorporate 18F into a molecule, this requires either electrophilic fluorination 

starting from molecular fluorine [18F]F2, or nucleophilic substitution starting from the fluoride 

ion [18F]F- [4]. These variants of 18F depend on the target material being bombarded in the 

cyclotron. When the target is 18O enriched water, an aqueous solution of [18F]F- is obtained and 

when the target is 18O2 gas, [18F]F2 gas is obtained. The advantage of working with nucleophilic 

[18F]F- is that the reaction is much more efficient giving higher amounts of radioactivity and MA 

than electrophilic 18F production [2]. In the case of [18F]F- production, the [18F]F- anion is 

obtained and trapped on an anion exchange cartridge, and then generally eluted with a solution 

containing: potassium carbonate dissolved in a minimum of water and cryptand (Kryptofix-222) 

mixed with acetonitrile (MeCN), which increases the nucleophilicity of the [18F]F- by 

complexing with the potassium cation eventually trapped within the cryptand. The water is then 

dried through azeotropic evaporation with MeCN allowing the[18F]F- to react with a precursor 

[4]. For [18F]F2, a carrier (19F-F2) gas is sometimes added to extract the [18F]F2 from the target 

which in turn reduces the MA and the theoretical radiochemical yield of electrophilic 

fluorination reactions. This has led to the majority of radiopharmaceuticals being prepared with 

nucleophilic [18F]F- methods [2].  

For nucleophilic fluorination, [18F]F- can be introduced into aliphatic positions through 

SN2 reactions or into aromatic molecules via nucleophilic aromatic substitutions (SNAr). 

Nucleophilic substitutions are carried out in polar aprotic solvents such as dimethyl sulfoxide 

(DMSO), N,N-dimethylformamide (DMF) or acetonitrile (MeCN) under heating temperatures of 
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100 – 150˚C. Nucleophilic substitutions require precursors with good leaving groups, with the 

reactivity of leaving groups as follows: Cl < Br < I < tosylate < mesylate < nosylate < triflate [2]. 

The better the leaving group, the less likely you are to form undesired by-products through 

competitive side reactions. Depending on the stability of the precursor and other functional 

groups on the molecule, it may be necessary to complete the fluorination in the first step 

followed by the removal of a protecting group or conversion of an intermediate into the final 

product in a second step [2]. Examples of radiopharmaceuticals prepared by SN2 reactions 

include: [18F]FDG, [18F]FLT, 18F-Fluoromisonidazole ([18F]FMISO) and 

[18F]Fluoroethylflumazenil (Figure 1.4). SNAr substitutions are more favorable for activated 

phenyl rings via the presence of electron withdrawing groups (eg. -CN, -CF3, carbonyl) located 

either ortho or para to the leaving group, although SNAr substitutions are still possible without 

activation through recently developed methods including boronic esters and iodonum ylides 

[17A,17B]. Activated phenyl groups limit the availability of molecules that can be labeled via 

SNAr substitutions, however, there are still several radiopharmaceuticals prepared by this 

technique, such as: 6-[18F]fluorodopamine, (-)6-[18F]fluoronorepinepherine, and [18F]Fluoro-

Setoperone (Figure 1.4) [2, 16].  

Recently, there has been an interest in labeling bioactive molecules such as peptides, 

proteins and oligonucleotides because of their specificity in vivo. The challenge in radiolabeling 

these molecules lies in the fact that they are not stable under radio-fluorination conditions and 

often do not have easily accessible labeling sites [17]. Therefore, two methods have been 

developed to meet the need for labeling bioactive molecules. The first method is direct labeling 

and it involves [18F]F- substitution directly on the biomolecule that may have undergone 

modifications to facilitate radiolabeling. This method has been reported in the literature, 
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however, could suffer from poor MA due to difficulties in separating the modified precursor (eg 

Br- or Cl-analogs) from the desired 18F-labeled product [17]. Furthermore, the harsh reaction 

conditions, (pH, temperature) may cause hydrolysis of the biomolecule. The second approach for 

labeling biomolecules is the indirect method involving radiolabeling of a small prosthetic group 

as a first step, followed by attachment of the prosthetic group to the biomolecule via amine or 

thiol reactions, alkylation,  amidation, imidation or click chemistry [2]. Choosing a prosthetic 

group and the labeling site on the biomolecule is critical because this can affect the physical and 

physiological characteristics of the labeled molecule [18]. A typical 18F-labeled prosthetic group 

synthesis involves multiple steps with a purification step in between the conjugation with the 

biomolecule to remove fluorination reagents and other by-products that can be produced. The 

short half-life of 18F remains a challenge when designing an indirect radiosynthesis [2].   

1.7 Hexadecyl-4-[18F]fluorobenzoate  
 
Hexadecyl-4-[18F]fluorobenzoate ([18F]HFB)  is a long chain fluorinated PET tracer that 

was first developed by Ma et al in 2005 [19]. [18F]HFB was prepared in a one-step synthesis by 

SNAr  substitution of [18F]F- on hexadecyl-4-(N,N,N-trimethylamino)benzoate triflate (Figure 

1.5). Quaternary ammonium (Qat) analogs, with a triflate as a counter-ion, have been shown to 

be good leaving groups on aryl derivatives for SNAr fluorination, when combined with an 

electron withdrawing carbonyl at the para/ortho position (Figure 1.6). This results in electron 

density being pulled away from the Qat, making it susceptible to nucleophilic substitution by 

[18F]F-. [18F]HFB was employed to label rat mesenchymal stem cells (MSCs). Due to its high 

lipophilicity, [18F]HFB was efficiently and quickly absorbed into the cellular membranes of the 

MSCs in a similar fashion to fluorescent dyes used for cell labeling. The injected [18F]HFB-
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labeled MSCs were then imaged in a rat via µPET imaging allowing for short term in vivo 

tracking of the biodistribution of the labeled stem cells [19].  

 [18F]HFB was then utilized by Zhang et al [20] to label human circulating progenitor 

cells (CPCs) to evaluate cell tracking in a rat myocardial infarction model and this was compared 

to CPC labeling with [18F]FDG. It was determined that [18F]HFB cell labeling efficiency and 

stability was superior to that of [18F]FDG, whereas neither labeling approach significantly altered 

cell viability, phenotype or migration potential up to 24 h post-labeling [20]. The [18F]HFB-CPC 

signal in the target area was greater than that of [18F]FDG-CPCs, however, only 16-37% of the 

initial injection dose was retained in the injection site at 10 min post-delivery. It was concluded 

that compared to [18F]FDG labeling, human CPCs labeled with [18F]HFB provided a more 

efficient, stable, and accurate method to quantify the distribution of transplanted cells and that 

PET imaging can be applied to enhance understanding of early retention, homing, and 

engraftment with cardiac cell therapy [20].  

 [18F]HFB proved to be a versatile radiotracer when it was implemented to label an 

injectable collagen based biomaterial to evaluate the retention and distribution after injection. 

[18F]HFB and Qdot labeling were used to evaluate collagen matrix delivery in a mouse model of 

myocardial infarction via PET or fluorescence imaging, respectively. [18F]HFB was non-

covalently linked to the collagen matrix and demonstrated an 82% labeling efficiency, compared 

to 96% for covalently bound Qdots [21]. The study conducted by Ahmadi et al concluded that 

[18F]HFB labeling along with PET imaging as a promising modality for assessing the 

biodistribution of injectable biomaterials for applications in the heart [21].  

 Taken together, the work using [18F]HFB proved that this radiotracer has the potential to 

study both biodistribution, and trafficking of cells and biomaterials/matrices in vivo. In this work, 
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we describe the automated kit-based synthesis of [18F]HFB using the Synthera® to produce large 

amounts of radioactivity in high concentrations that can be utilized for long term biodistribution 

studies.  Two of the studies cited looked at only the heart, however, [18F]HFB has many possible 

applications outside of cardiology, as we will see in the following chapter.  

Chapter 2: Applications of [18F]HFB 
2.1  Drug Delivery Nanovesicles 

 Many research efforts have been dedicated to developing alternatives to traditional drug 

delivery methods to increase the bioavailability, therapeutic index and enhance the activity of 

drugs as well as decrease the degradation of other biologically active drugs. To this end, 

nanoparticles have been employed as drug delivery vectors and have been loaded with small 

molecules, peptides, proteins, DNA or siRNA [22]. Due to their structure (1 to 100 nm), 

nanoparticles have many unique properties, such as being able to efficiently cross barriers such 

as the blood-brain barrier (BBB) [23] and can be transported transdermally [24]. Furthermore, 

nanoparticles go through a process known as passive targeting to get to their targets. To enter 

tissues, nanoparticles must circulate through the blood stream. Macrophages and neutrophils that 

line the liver and spleen engulf large sized particles (250 – 1000 nm), whereas small particles 

flow through endothelial gaps [22]. Therefore, nanoparticles need to be small enough to avoid 

being eliminated through phagocytosis, but must be above a certain size to prevent absorption in 

the blood. Through various experiments, it was concluded that particles approximately 20 – 100 

nm in diameter are the ideal size for efficient delivery to target tissues [25].  

2.2 Exosomes as natural nanoparticles 

 Exosomes are 30 – 150 nm membranous vesicles that are endogenously produced by 

most cell types. Exosomes were initially believed to be a means to dispose of cellular waste, 

however, further research concluded that exosomes have important physiological and therapeutic 
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impacts [3]. Exosomes contain the critical nanoparticle characteristics required for drug delivery 

and possess additional unique characteristics such as targeting specificity as well as their 

intrinsic biological effects on the targeted cells due to the exosome cellular origin [22].  

 Exosomes are believed to originate from endosomes (or multivesicular bodies (MVBs) as 

intraluminal vesicles (ILVs). Early endosomes mature into late endosomes and during this 

process, they accumulate ILVs in their lumen. The ILVs that are formed by inward budding of 

the early endosomal membrane sequester proteins, lipids, and cytosol that are specifically sorted 

[3]. Once the ILVs are formed, the MVB can fuse to a lysosome and be degraded by lysosomal 

hydrolases or fuse to the plasma membrane and release the newly formed exosomes [26] (Figure 

2.1). To fuse to the plasma membrane, exosomes have been shown to require specific Rab 

proteins for docking and fusing of the MVB to the plasma membrane, although this is dependent 

on the cell type [27].  

Due to their unique biogenesis mechanism, exosomes have plasma membrane-derived 

receptors on their surface and cytoplasmic contents inside. The lipid composition of the exosome 

lipid bilayer includes cholesterols, ceramides, lipid rafts, and sphingomyelin, and surface protein 

markers such as Alix, TSF101, CD63, CD9, CD81 and HSP70 [26]. Exosomes can be isolated 

from a variety of fluids and tissues, including but not limited to:  blood, urine, breast milk, liver 

cells, bone cells, and saliva. The content of exosomes varies based on the cell type they are 

obtained from, although in general, exosomes contain DNA, miRNA, cytoskeletal and heatshock 

proteins, MHC class I and II molecules, and peptides [28] 

2.3 Exosomes and drug delivery  
 

Recent research demonstrates that exosomes play a critical role in intracellular 

communication through the horizontal transfer of cellular cargoes including DNA, mRNA, 
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miRNAs, peptides and proteins [26]. It was shown that exosomes promote tumor invasion and 

exosomes derived from tumor cells can transfer their contents to distant sites in mice and induce 

tumors. It was suggested that preventing the production of tumor-derived exosomes could block 

tumor invasion and this was accomplished through studies using knockdowns of Rab27a, which 

led to a decrease in primary tumor growth [29]. Furthermore, it was demonstrated that exosomes 

could reach the central nervous system via intranasal administration of exosomes leading to the 

efficient delivery of curcumin and an anti-Stat3 inhibitor to the brain [30]. Exosomes are not 

cytotoxic in the brain, and are more efficient than synthetic nanoparticles in the delivery of 

agents to the brain, making them a delivery vehicle of choice [22]. Exosomes were also recently 

tested as drug delivery vehicles for Parkinson’s disease (PD) therapy by a group at the University 

of North Carolina. Exosomes were loaded ex vivo with a potent antioxidant (catalase) used to 

treat PD and these were evaluated in a mouse model of PD. The catalase loaded exosomes 

provided significant neuroprotective effects in vitro and in vivo models and provided evidence 

that exosomes can represent a strategy to treat inflammatory and neurodegenerative disorders 

[31]. Therefore, there is increasing evidence of the benefit of gaining a better understanding of 

exosomes for their roles in clinical therapeutics.  

2.4 SiRNA as a drug  
 

The 2006 Nobel Prize in medicine was awarded for the discovery of a new type of drug: 

small interfering RNA (siRNA). siRNAs 20-25 base pairs of double stranded RNA molecules 

that can specifically silence any gene. siRNAs are incorporated into the RNA interfering-induced 

silencing complex (RISC), which mediates mRNA sequence specific binding and cleavage [32]. 

In other words, siRNA interferes with the expression of specific genes with a complementary 

sequence to itself through degrading mRNA after transcription.  
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siRNA has the potential to treat virtually any disease, however, there are many current 

limitations to using siRNA therapeutically. The major extracellular limitations to siRNA delivery 

include: siRNA degradation, aggregation of siRNA nanoparticles in serum, and targeting [32]. In 

the body, siRNAs are easily degraded by RNAses and free siRNAs have a half-life of only 

several minutes to an hour [33]. Chemical modifications can be made to the siRNA structure to 

stabilize the siRNA in serum, however, this does not solve the problem of targeting. 

Nanoparticles have been developed using monoclonal antibodies or ligands to specifically target 

antigens or cell surface receptors [32]. Successful results were obtained including a monoclonal 

antibody-protamine fusion protein to selectively target leukocytes containing lymphocyte 

function associated antigen-1 integrins [34] and N-acetylgalactosamine modified nanoparticles to 

target hepatocytes [35]. The internalization of the nanoparticles inside the cells was observed to 

be a problem as well as the aggregation of the nanoparticles due to the surface charge of siRNA 

loaded nanoparticles (net positive) [32]. In the human body, siRNAs are produced and 

transported using exosomes. This provides both protection and specific targeting for the siRNA. 

Utilizing exosomes for the delivery of specific siRNA sequences could unlock a whole new 

therapeutic approach to treating many diseases. This approach was recently applied to deliver 

siRNA loaded, lamp2b modified exosomes to a mouse brain via systemic injection. The siRNA 

resulted in the knockdown of BACE1, a therapeutic target in Alzheimer’s disease, without non-

specific uptake in other tissues [36].  

Taken together, these studies demonstrate that exosomes are excellent candidates for the 

targeted delivery of small molecules, proteins, peptides, miRNAs, siRNAs and other important 

molecules that would normally be degraded by the cell [26]. This would help overcome the 

major challenge of delivering these drugs to their targets, which has been a major obstacle for the 
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treatment of many diseases. To accomplish this, more work is needed in understanding how 

exosomes function and traffic in vivo.  

2.5 Challenges with Exosomes and drug delivery  
 

 The unique biogenesis of exosomes produces exosomes with receptors on their surface 

that cause them to interact with specific cells in a highly selective fashion. To utilize the cell to 

cell communication system that exosomes possess for the therapeutic application of exosomes as 

drug delivery vehicles, it is necessary to gain a better understanding of where exosomes traffic in 

the body. Many technical challenges have led to difficulties in studying exosome trafficking and 

no robust studies of exosome trafficking have been published. Exosomes are extremely small and 

therefore difficult to strongly label without altering their biological functions. An imaging probe 

must be introduced in a way that maintains the physiological and structural integrity of the 

system/cell in question [37]. Furthermore, it is very expensive and demanding to produce 

exosomes, with typical studies to inject a single mouse requiring purifying exosomes from 200 

mL – 1 L of cell culture [3]. Current approaches to follow exosome trafficking in vivo have used 

fluorescent hydrophobic dyes (DiR). These dyes require large amounts of exosomes for 

trafficking studies and they have also been shown to form micelles that co-purify with exosomes 

or surround exosomes. This results in inconclusive results related to the trafficking of exosomes. 

Therefore, there is an urgent need for a highly sensitive technique to follow exosome trafficking 

in animals. PET imaging of exosomes could solve the key issue in the studies of exosome 

physiology and allow for a comprehensive study of their trafficking in vivo.  

2.6 Radiolabeling Exosomes 
		

 As previously mentioned, PET has been implemented during the drug development 

process for biodistribution purposes and a similar approach can be used for exosome tracking. To 
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date, the only paper published on radiolabeled exosomes to study their trafficking was completed 

by a group in South Korea [5]. The approach utilized exosome-mimetic nanovesicles derived 

from macrophages labeled with 99mTc-hexamethylpropyleneamineoxime (HMPAO) combined 

with SPECT/CT to monitor the in vivo distribution of the exosomes in mice. 99mTc-HMPAO is 

an uncharged, highly lipophilic radiotracer that has been utilized for cell labeling. Intracellular 

glutathione converts 99mTc-HMPAO to its hydrophilic form, trapping it inside the cell [5]. The 

exosome-mimetic nanovesicles were incubated with 99mTc-HMPAO for 1 hour, followed by a 

purification to remove free 99mTc-HMPAO and analysis via instant layer thin chromatography 

(ITLC). The expression of the exosome specific protein CD63 did not change after radiolabeling 

and the labeled vesicles showed high serum stability (90%). The SPECT/CT images of the mice 

injected with 99mTc-HMPAO exhibited high uptake in the liver and no retention in the brain, 

whereas mice injected with 99mTc-HMPAO only displayed high brain uptake (Figure 2.2) [5].  

 Taking this approach one step further with PET imaging would allow for an even more 

robust study of exosome trafficking. Exosomes have never been labeled with an 18F-based 

radiotracer and [18F]HFB has potential for success. [18F]HFB is highly lipophilic and resembles 

the lipids found in the bi-layer of the exosome membrane. Based on previous studies using 

[18F]HFB to label cells, it is quickly absorbed within cell membranes and it should not disrupt 

the cell function. SPECT provides lower-resolution images that are prone to artifacts and 

attenuation, as compared to PET images. Furthermore, in the study using 99mTc-HMPAO, 

exosome-mimetic vesicles were used due to ease of purification and the larger mass of mimetic 

vesicles obtained as compared to true exosomes. The trafficking of exosomes obtained from 

different cell types has never been reported, therefore, understanding exactly where exosomes 



 
 

 
  

20 

from different cell types traffic to in the body will be key in the therapeutic application of 

exosomes as drug delivery vehicles.  

2.7 Injectable Biomaterials 
		

 Another promising application of radiotracers is for radiolabeling injectable biomaterials. 

With the increasing use of cells and injectable biomaterials for the treatment of disease and 

regeneration of tissues, there is a clear need for imaging methods that allow to follow their 

injection and possible migration within the body. Hydrogels are highly biocompatible, three-

dimensional hydrophilic polymer networks, capable of absorbing large amounts of water or 

biological fluids [38]. Their high-water content and soft consistency makes hydrogels similar to 

natural tissues. Hydrogels can be made from various materials including protein-based polymers 

(collagen, fibrin and gelatin), carbohydrate-based polymers (cellulose derivatives, agarose, 

alginate, hyaluronate and chitosan) and fully synthetic polymers (polylactic acid and 

polyglycolic acid) [38]. Recently, Dr. Sophie Lerouge’s group at the CRCHUM has developed 

chitosan-based thermosensitive hydrogels for the treatment of disease and regeneration of 

tissues. Chitosan is a natural hetero-polymer chain with ß(1-4) linked D-glucosamine and N-

acetyl-D-glucosamine residues, obtained by alkaline deacetylation of chitin, one of the most 

abundant polysaccharides obtained from crustaceans [39] (Figure 2.3). The chitosan hydrogels 

are obtained by mixing an acidic solution of chitosan with a mixture of weak bases, namely 

sodium hydrogen carbonate (SHC) with phosphate buffer (PB) or beta-glycerophosphate (BGP) 

as gelling agents (GA). These hydrogels are thermosensitive and quickly gel in vivo in a non-

reversible manner. Their iso-osmolality, physiological pH and macroporisity are suitable for cell 

encapsulation [39A]. The hydrogels are currently under optimization for various applications 
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such as blood vessel embolization, drug delivery, lymphocyte delivery systems and cartilage and 

intervertebral disc repair [38-40].  

When working with biomaterials, an important factor to consider is the mechanical properties 

of the hydrogels as well as the gelation kinetics (rheological properties). The secant modulus of 

elasticity refers to the ratio of stress to strain at any point on the curve of a stress-strain diagram 

(the slope of a line from the origin to any point on a stress-strain curve) whereas the storage 

modulus is an indicator of the ability to store deformation energy in an elastic manner [39]. 

Furthermore, the gelation kinetics refers to the time it takes for the hydrogel to fully gel and can 

change depending on the formulation of the hydrogel. These properties are unique to a given 

biomaterial and must be considered/measured when making changes to the formulation of a 

biomaterial as we will see when radiolabeling hydrogels.   

2.8 Radiolabeling Hydrogels 
		

 The safety and efficacy of minimally invasive procedures, (hydrogels), is determined by 

the behavior of the injectable scaffolds and cells in vivo. Therefore, there is an urgent need for in 

vivo, short term follow up of such procedures to assess the retention of the hydrogel and cells at 

the site of injection. The high sensitivity of PET, combined with its non-invasive imaging 

capabilities make it an ideal candidate for the study of hydrogels. Vascular endothelial growth 

factor (VEGF) loaded chitosan hydrogels were previously labeled by Kim et al using I-131 and 

analyzed via autoradiography in rat myocardial infarct models [41]. I-131 is better suited for 

long term studies due to its long half-life of 8 days, however for short term distribution studies, 

18F is the radioisotope of choice for PET studies. [18F]HFB was previously employed by Ahmadi 

et al for the non-covalent labeling of a collagen based biomaterial. The group saw high retention 

(82%) of [18F]HFB after two hours in the biomaterial and a similar approach will be completed 
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here to assess the in vivo distribution of chitosan-based hydrogels. Chitosan hydrogels have 

never been labeled with an 18F-based radiotracer for PET imaging. Radiolabeling of chitosan 

hydrogels with [18F]HFB would allow to determine their retention and possible migration at the 

site of administration in vivo in small animals. Understanding the biological mechanisms and 

local effects of transplanted cells remains mostly restricted to postmortem histological 

assessment, whereas PET provides an effective alternative to this.  This method will allow for 

the determination of the localization in vivo and efficacy of injectable hydrogels that have the 

potential for numerous clinical applications.  
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Table 1.1. Common imaging modalities and their characteristics (Adapted from: [9]). 

 
Imaging Modality Form of energy Spatial 

resolution  
Sensitivity 
(mol/L) 

Amount of 
probe used 

PET 
 
 

SPECT 
 

MRI 
 
 

Ultrasound 
 
 

CT 
 

Optical 
fluorescence 

imaging 

Annihilation 
photons 

 
Gamma Rays 

 
Radio frequency 

waves 
 

High frequency 
sound waves 

 
X-rays 

 
Visible light or 
near-infrared 

 

1-2 mm 
 
 

1-2 mm 
 

25-100 µm 
 
 

50 – 500 µm 
 
 

50 – 200 µm 
 
 

10 nm 
 
 

10-11 - 10-12 
 
 

10-10 – 10-11 
 

10-3 – 10-5 

 

 
not well 

characterized 
 

not well 
characterized 

 
~ 10-9 – 10-12 

Nano grams 
 
 

Nano grams 
 

Micrograms to 
milligrams 

 
Micrograms to 

milligrams 
 

N/A 
 
 

Micrograms to 
milligrams 

 

 

Figure 1.1. The PET concept. A radiolabeled tracer is injected into a patient, a positron is 
emitted from the tracer through beta decay. The positron produces an annihilation event with an 
electron resulting in the production of two 511 keV photons at ~ 180˚ which are detected by the 
PET scanner. Figure adapted from: [4].  
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Table 1.2. Physical characteristics of the most commonly utilized positron emitters for 
clinical use.  

Isotope T1/2 (min) % (Beta decay) Common nuclear 
reaction for production 

in cyclotron 
11C 

13N 

15O 

18F 

20.4 

9.9 

2.0 

109.6 

99.7 

99.8 

99.9 

96.7 

14N(p,α)11C 

16O(p,α)13N 

14N(d,n)15O 

18O(p,n)18F 

 

Figure 1.2. Decay scheme for fluorine-18. Unstable, high-energy fluorine 18 decays, primarily 
by positron decay (96.86%) to produce stable oxygen-18 via the emission of a positron and a 
neutrino.  
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 Table 1.3. Positron-emitter average energy and positron range in soft tissue. 

  

 

 

 

Radionuclide 11C 13N 15O 18F 

Energyavg (MeV) 

Rangeavg (mm) 

0.386 

1.52 

0.492 

2.05 

0.737 

3.28 

0.250 

0.83 

Figure 1.3. PET coincidence detection along the LOR. The circular arrangement of block 
detectors and an annihilation even corresponding to an LOR during a scan.  
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Figure 1.4.  Various [18F] radiosynthetic reactions. [18F] drying after cyclotron production 
and nucleophilic aliphatic and aromatic [18F] substitution reactions. Figure adapted from [2].  

Figure 1.5. Synthesis of Hexadecyl-4-[18F]fluorobenzoate ([18F]HFB) from the 
precursor: hexadecyl-4-(N,N,N-trimethylamino)benzoate triflate.       
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Figure 1.6. Reaction mechanism and resonance through activation of the phenyl 
ring by the carbonyl group on the precursor: hexadecyl-4-(N,N,N-
trimethylamino)benzoate triflate.       
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Figure 2.1. The biogenesis of exosomes. Once the MVB is formed, it can fuse to a lysosome 
and be degraded or fuse to the plasma membrane to release the newly formed exosomes (as 
highlighted above). Figure adapted from [3].  
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99m
TC-HMPAO-ENVs 

99m
TC-HMPAO 

Figure 2.2. SPECT/CT images of mice injected with 99mTc-HMPAO labeled exosome- 
mimetic vesicles and free 99mTc-HMPAO. After 5h, the labeled exosome-mimetic vesicles 
showed higher uptake in the liver, whereas the free 99mTc-HMPAO sowed higher brain 
uptake. Figure adapted from [5].   

Figure 2.3. Deacetylation of chitin under basic conditions to produce chitosan [1]. 
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Thesis Overview  
2.1 Hypothesis 
	

The radiosynthesis of [18F]HFB can be automated in high purity to label exosomes and 

chitosan-based hydrogels for in vivo distribution studies using PET imaging.  

2.2 Objectives  
 
1. The [18F]HFB precursor (hexadecyl-4-(N,N,N-trimethylamino)benzoate triflate) and non-

radioactive HFB will be produced as standards.  

2. Synthesize [18F]HFB in high chemical and radiochemical purity (>95%), in a reproducible 

manner using the cassette-based Synthera® ASU module.  

3. Produce [18F]HFB with a final formulation that will have the appropriate solvent 

composition and pH for working with exosomes and living cells. 

4. Use [18F]HFB to radiolabel exosomes and chitosan-based hydrogels.  

4.1 The radiolabeling of exosomes should not alter their structure and/or trafficking in 

vivo.  

4.2 The radiolabeling of the hydrogels should not have any adverse effects on their 

mechanical properties, gelation kinetics and should have high labeling stability.  
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Materials and Methods 
3.1 Chemistry 
3.1.1 Materials  

 
All reagents and solvents were purchased from Sigma-Aldrich, classified as 98% purity 

(or greater) or HPLC grade, and used without further purification or manipulation. All 

reactions were performed in oven-dried glass round-bottom flasks equipped with magnetic 

stir bars. Analytical thin layer chromatography (TLC) was performed on silica gel 60 F254 

plates from EMD. Purification of reaction products was carried out by flash column 

chromatography using silica gel. A Phenomenex Luna C18(2) column (250 x 4.6 mm, 10 

µm) or a Shimadzu C18 (50x4.6 mm, 5 µm) were used for all analytical HPLC in 

combination with either a Shimadzu LC-20AB/SPD-20A HPLC system or a Waters 1525/ 

2489 HPLC system.  

1H-Nuclear magnetic resonance (NMR) was performed at the Université de Québec à 

Montréal department of chemistry using a Bruker 300 MHz at ambient temperature. Proton 

chemical shifts are reported in parts per million (ppm) using residual solvent as the internal 

standard (CDCL3 at 7.26 ppm), coupling constants (J) are reported in Hertz (Hz). Multiplicity 

is defined by s (singlet), br (broad), d (doublet), t (triplet), q (quartet), qn (quintet), sx 

(sextet), or m (multiplet). High-resolution mass spectrometry (MS) was performed by 

technicians at the CRCHUM in positive or negative ion mode using a Thermo Scientific Q-

Exactive Plus Orbitrap Mass Spectrometer via direct injection with no chromatograph. 

Melting point measurements were completed using a Mel-Temp® melting point apparatus.  
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3.1.2 Experimental  
 

All compounds were prepared as per the literature [19] (Figure 3.1 and Figure 3.2).  

Synthesis of N-hexadecyl-4-(N,N-dimethylamino)benzoate 
 

Hexadecyl-4-(N,N-dimethylamino) benzoate was synthesized from 4-(N,N-

dimethylamino)benzoyl chloride (0.500 g, 2.72 mmol) and 1-hexadecanol (0.792 g, 3.26 

mmol) in the presence of triethylamine (0.76 ml, 5.4 mmol) and dichloromethane (DCM) (10 

mL). The reaction mixture was stirred at room temperature for 4 h and monitored via TLC. 

Once no starting material remained, the reaction mixture was extracted with water and DCM. 

The organic phase was dried over magnesium sulfate, filtered, concentrated and purified by 

column chromatography (9/1 dichloromethane/methanol (MeOH)). The product was 

recrystallized using a minimum of hot ethyl acetate to give pure N-hexadecyl-4-(N,N-

dimethylamino)benzoate.  

 

Synthesis of hexadecyl-4-(N,N,N-trimethylamino)benzoate triflate (Triflate Precursor) 
 
A mixture of N-hexadecyl-4-(N,N-dimethylamino)benzoate (0.2 g, 0.51 mmol) and 

methyl triflate (0.10 g, 0.61 mmol) in DCM (3 mL) was stirred overnight at room 

temperature under argon. The reaction mixture was monitored via TLC until no more starting 

material remained. The solvent was evaporated and the product was crystallized using 

hexanes/DCM. Analytical HPLC analysis was completed on the precursor (Shimadzu C18 

(50x4.6 mm, 5 µm), 95/5 (MeCN/AF (0.1M), 1.5 mL/min).  
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Synthesis of hexadecyl-4-fluorobenzoate (HFB Standard).  

1-Hexadecanol (0.183 g, 0.75 mmol) was dissolved in DCM (3 mL) and to this was 

added 0.175 mL (1.2 mmol) of triethylamine and 4-fluorobenzoyl chloride (0.1 g, 0.63 

mmol). The reaction mixture was stirred at room temperature for 3 h and the progress of the 

reaction was monitored via TLC. Once no starting material remained, the reaction mixture 

was extracted with water and DCM. The organic phase was dried over magnesium sulfate, 

filtered, concentrated and purified by column chromatography (96/4 hexanes/ethyl acetate). 

Analytical HPLC analysis was completed on the HFB standard. (Shimadzu C18 (50x4.6 mm, 

5 µm), 95/5 (MeCN/AF (0.1M), 1.5 mL/min). 

3.2 Radiochemistry  
 

3.2.1 Materials 
		
[18F]Fluoride was produced in our IBA Cyclone® 18 MeV cyclotron from proton 

irradiation of 97% [18O]H2O-enriched water via the 18O(p,n)18F nuclear reaction. Target 

water was delivered through polyethylene tubing and collected in a 10-mL vial in the 

dispensing cell. The radioactivity was transferred to the Synthera® once ready.  

The Synthera® ASU was purchased from IBA® (Figure 3.3), including two synthesis 

modules and one HPLC purification module (UV detector, radiation detector and HPLC 

pump). An automated syringe driver system was installed between the synthesis modules and 

the HPLC module. This was done to minimize the loss of product when transferring from the 

reactor in the synthesis module to the HPLC loop, as the previous system pushed the product 

directly to the HPLC loop using air. This can often result in losses through overshooting the 

HPLC loop, therefore, the HPLC loading was accomplished via a syringe driver system 

(Figure 3.4). Research and development (R&D) integrated fluidic processor (IFP) cartridges 
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were purchased from ABX and used for a maximum of 5 runs each (cleaned in between each 

run). The IFP’s were slightly modified to accommodate larger reagent vials; positions 3 and 

4 on the IFP (Figure 3.5) were connected to external 30 mL and 10 mL vials, respectively. 

Phenomenex Luna C8(2) and C18 (2) columns (250 x 10 mm, 10 µm) were used for semi-

preparative HPLC with a mobile phase consisting of 95/5 MeCN/ammonium formate (AF) 

(0.1 M in water). The buffer was filtered through a 0.2 µm filter paper prior to use.  

Sep-Pak Light Waters Accell Plus QMA cartridges (Waters) were utilized to trap F-18 

from the target water. These QMA cartridges were conditioned by passing 5 mL of an 8.4% 

sodium bicarbonate solution, followed by 10 mL of water and drying. The C18 light (Waters) 

cartridges were conditioned by passing 5 mL of ethanol (EtOH) or MeOH followed by 10 

mL of water.  F-18 eluent was ordered from ABX and contained per vial:  22.6 mg 

Kryptofix2.2.2, 4.2 mg potassium carbonate, 0.3 mL anhydrous acetonitrile and 0.3 mL 

water for injection. A heating block set at 120˚C was implemented post purification to 

evaporate the HPLC solvent. The final product was reformulated using sterile DMSO and/or 

saline/1x phosphate buffered saline (PBS).  

3.2.2 [18F]HFB  
3.2.2.1 Experimental 

		
For every [18F]HFB run, either a new R&D IFP was used or a previously used IFP was 

cleaned and dried using a pre-programmed cleaning recipe with the reagent vials containing 

acetonitrile, EtOH and water (1 mL each). A minimum of 12 hours was given before opening 

the hot cell to allow for decay. Several different reaction conditions (fluorination 

temperatures of 80˚C, 100˚C and 140˚C and times 20 min and 30 min) were tested to 

optimize the reaction conditions through minimizing production of side products while 
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maximizing yield of [18F]HFB. [18F]HFB was prepared via nucleophilic displacement of a 

Qat leaving group by [18F]fluoride ion (Figure 1.5).  

To remove any unreacted [18F]fluoride, other salts and dimethyl sulfoxide (DMSO) prior 

to going to semi-prep HPLC purification (to prevent damage to the column), the reaction 

mixture was passed through an activated C18 Seppak light cartridge. The elution conditions 

of HFB from a C18 light cartridge were tested by dissolving 0.5 mg of cold HFB in 600 µL 

of DMSO and passing this through a conditioned C18 light cartridge. The cartridge was then 

rinsed with 20 mL of water to remove the DMSO, and either MeCN or EtOH to elute HFB in 

0.5 mL fractions. These fractions were then analyzed via analytical HPLC to determine how 

much solvent was needed to completely remove HFB from the C18 light cartridge.  

A checklist was developed for the radiosynthesis of [18F]HFB in order to minimize 

human error prior to the synthesis. The first step in the radiosynthesis of [18F]HFB was to 

ensure that the HPLC solvent bottles (A and B) were full of solvent (1 L). Solvent bottle A 

contained 95/5 (MeCN/0.1M ammonium formate) and bottle B used for cleaning contained 

70/30 (MeCN/H2O). The HPLC procedure was then started which involved a loop and 

column cleaning with solvent B, followed by a column conditioning with solvent A. While 

this was running, slight modifications were made to the IFP to connect larger vials to 

positions 3 and 4 (Figure 3.5). This involved removing the tubing from the normal inlet to 

the reagent vials and connecting these to external 30 mL and 10 mL vials, respectively. The 

kit was then placed onto the synthera A module and the reagents were prepared as follows: 

vial 1:  Cryptand solution, vial 2: hexadecyl-4-(N,N,N-trimethylamino)benzoate triflate 

precursor (3 mg/600 uL DMSO), vial 3: Sterile Water (20 mL), and  vial 4: Acetonitrile (4 
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mL). Furthermore, the QMA light cartridge and C18 light cartridges were conditioned and 

placed in Sep-Pak positions 1 and 2 on the IFP (Figure 3.5).  

Before transferring [18F]F- to the synthera, the pre-synthesis HPLC conditioning and IFP 

tests were completed. The IFP tests involved pressurizing the reactor and reagent vials along 

with pushing air and turning the valves to ensure no lines were leaking, obstructed or vials 

malfunctioning. Once all the tests were passed, [18F]F- was transferred from the dispening hot 

cell to the synthera via the vaccum pump on the synthera module.  

3.2.2.2 Radiosynthesis 

[18F]F- (1 – 1.2 Ci) was trapped on a Waters Sep-Pak QMA light catridge through 

vaccum suction into the synthera module while the O-18 water was collected in a designated 

vial.  The [18F]F was eluted into the reactor using 0.6 mL of cryptand solution. The eluate 

was azeotropically evaporated at 110˚C for 5 min under nitrogen gas flow, leaving potassium 

[18F]fluoride complexed with Kryptofix 2.2.2. in the reactor. Next, 3 mg of  precursor in 600 

µl of DMSO was added to the reactor and fluorination was completed at 100˚C for 20 mins. 

Five mL of water was added to cool and dilute the reaction mixture, and this was passed 

through a C18 light cartridge, trapping [18F]HFB and organic compounds, and disposing of 

unreacted [18F]F- and salts. The cartridge was rinsed 3 times with 5 mL of water and then 

eluted using 4 mL of MeCN into an intermediate vial. An automated syringe driver system 

was used to transfer the eluate to semi-preparative HPLC purification using a C18 column. 

MeCN/0.1 M AF 95/5 at a flow of 10 mL/min was used as the mobile phase. The radioactive 

product peak (retention time ~ 20 min) was collected and transferred to the dispensing hot 

cell. The HPLC solvent was evaporated at 120˚C under nitrogen flow and vacuum aspiration. 

[18F]HFB was then reformulated with 0.5 to 0.7 mL of DMSO, depending on the desired 
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final concentration/activity. The formulation was filtered through a 0.22 µm filter (DMSO 

resistant Acrodisc®) into 4.5 - 6.3 mL of sterile saline or PBS for a final tracer formulation 

of 10% DMSO/Saline. The total synthesis time including purification was approximately 60 

mins.  

3.2.3 Quality Control  
 

Post-synthesis quality control (QC) was completed using analytical HPLC to confirm the 

product identity, purity and calculate the molar activity of [18F]HFB. Analytical HPLC was 

completed using a Phenomenex Luna C18(2) column (250 x 4.6 mm, 10 µm) and a mobile 

phase of 99/1 (MeCN/AF (0.1M)).  An aliquot of the final formulation of [18F]HFB was co-

injected with cold standard to confirm the product identity. Molar activity was calculated by 

injecting [18F]HFB alone and comparing the area of the UV absorbance peak (254 nm) to that 

of a known amount of standard. Gas chromatography was completed with an Agilent 7890B 

GC system with a 7697A Headspace sampler. Instant TLC (ITLC) was analyzed using an 

Eckert & Ziegler TLC scanner (B-AR200-1). All radioactivity was measured using a 

Capintec CRC-55tW.  

3.2.3.1 Gas Chromatography Analysis 
 
Gas chromatography (GC) analysis was completed to measure the amount of residual 

solvent that remained in the final formulation, after evaporation. Two approaches were tested 

to ensure full evaporation of the HPLC solvent. The first approach involved placing 15 mL of 

HPLC solvent (95/5 MeCN/AF (0.1M) in a 30-mL product vial, evaporating at 120˚C until 

no solvent remained and then adding an additional 2 minutes to ensure dryness. The second 

approach was similar; however, an additional 2.5 minutes were added to ensure complete 
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dryness. 5 mL of saline was then added to the vials and GC analysis was completed to test 

for residual: methanol, ethanol, acetone and acetonitrile.  

3.2.3.2 Calculating Molar Activity  
 

A specific volume of standard of known concentration was injected onto analytical HPLC 

and the area under the curve (AUC) was recorded (254 nm). A sample of the final 

formulation of [18F]HFB was then injected in a separate injection and the activity in the 

syringe was measured before and after injection. The AUC of the injected [18F]HFB was 

recorded (254 nm) and the amount of cold mass in the product was determined by comparing 

the two AUCs with respect to the amount of standard injected.  

3.3 Labeling exosomes and hydrogels with [18F]HFB  
 

3.3.1 Materials  
 

Exosome exclusive spin columns (MW 3000) and instant thin layer chromatography 

(ITLC) paper was ordered from Thermo Fisher scientific and disposable PD10 (MW 5000) 

desalting columns were ordered from sigma Aldrich. Purified exosomes obtained from 

different sources (lung, liver, bone) were provided by Dr. Derrick Gibbing’s lab at the 

University of Ottawa Faculty of Medicine. Centrifugation for exosome purification was 

completed using a TL-100 Ultracentrifuge (TLA 100.3 rotor). Following radiolabeling, 

removal of [18F]HFB from labeled exosomes was completed using one of two centrifuges: a 

Thermoscientific Legend Micro21R or a Beckman Coulter Optima L-90K ultracentrifuge 

with a SW40TI rotor.  

Chitosan (Chitoscience 95/100, DDA 92.6%) was purchased from Heppe Medical 

Chitosan (Germany), ß-glycerophosphate disodium salt pentahydrate (BGP) 

(C3H7Na2O6P·5H2O) was purchased from Sigma-Aldrich (Oakville, ON, Canada), sodium 
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hydrogen carbonate (NaHCO3, hereafter SHC) was purchased from MP Biomedicals (Solon, 

OH, USA) and provided by Dr Sophie Lerouge’s lab at the CRCHUM and used without 

further manipulation.  

3.3.2 Experimental  
 
3.3.2.1 Exosome Purification  

 
Exosomes were purified and isolated by sequential centrifugation by members of the 

Gibbings lab. All the centrifuge tubes were balanced using PBS. Briefly, the supernatant 

media fluid from a cell culture dish was transferred into a 50-mL centrifuge tube and 

centrifuged at 300 x g at 4˚C for 10 min. The supernatant was then transferred into a new 50 

mL centrifuge tube and centrifuged at 2000 x g at 4˚C for 10 min. The supernatant was then 

transferred into an ultracentrifuge tube and centrifuged at 10,000 x g at 4˚C for 30 minutes. 

The supernatant was then transferred to a new ultracentrifuge tube and centrifuged at 100,000 

x g at 4˚C for 2 hours. The supernatant was then removed and the pellet resuspended in 1 mL 

PBS. The pellet solution was transferred to a 1.5 mL ultracentrifuge tube and centrifuged at 

100,000 x g at 4˚C for 15 mins. The supernatant was removed and the exosome pellet was 

resuspended in a small volume of PBS (20-34 µL). The exosomes were then stored at 4˚C 

and shipped to the CRCHUM until used.  

3.3.2.2 Exosome Radiolabeling using [18F]HFB 
 

3.3.2.2.1 Exosome labeling conditions  
 

Several strategies were implemented to label exosomes, based on the radiolabeling of 

exosome-mimetic vesicles using 99mTc-HMPAO and labeling of exosomes using fluorescent 

dyes (unpublished work complete by the Gibbing’s lab) (Figures 3.6 and 3.7). The final 

formulation volume of [18F]HFB varied from 5 to 7 mL (10% DMSO/pbs) depending on the 
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desired concentration/activity per incubation with exosomes.  Three different incubation 

temperatures were tested: 4˚C, room temperature (RT) and 37˚C with an incubation time of 

30 min. Each Eppendorf tube of purified exosomes obtained from the Gibbing’s lab 

contained approximately 16 µg of exosomes dissolved in ~ 34 µL of PBS. An Eppendorf 

tube was either used completely or split into various aliquots.  The incubation volumes, 

temperatures and times that were investigated along with centrifugation conditions are 

indicated in Table 3.1. For each labeling condition, a control was also completed without 

exosomes where the volume of the exosomes was replaced with PBS.  

Table 3.1. Exosome labeling conditions.  

Volume 
of 

Exosomes 
(µL) 

Volume 
of 

[18F]HFB 
(µL) 

Volume 
of BSA 

(µL) 

Total 
volume 

(µL) 

Incubation 
conditions 
(˚C/min) 

Centrifugation 
conditions  

Rinse 

5 495 -- 500 4, RT, 37/30 12,000 rpm/1hr PBS/DMSO 

8 400 -- 408 37/30 200,000 x g /1h, 
2h, 4h,  

--------- 

10 990 -- 1000 4, RT, 37/30 21,000 rpm/1 hr PBS 

34 200 -- 234 37/30 21,000 rpm/2 hr PBS/DMSO 

34 50 -- 84 37/30 200,000 x g/ 4h --------- 

34 50 50 134 37/30 200,000 xg/4h  --------- 

 

The effect of bovine serum albumin (BSA) on the radiolabeling of exosomes was also 

investigated through completing a 30 min incubation of BSA at 37˚C with [18F]HFB prior to 

the addition of exosomes. Furthermore, normal Eppendorf tubes and low retention Eppendorf 

tubes were tested to see the effect of [18F]HFB sticking.  
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3.3.2.2.2 Purification strategies  
 
Various strategies were tested to remove free [18F]HFB from labeled exosomes 

including exosome exclusive spin columns, PD10 size exclusion desalting columns and 

centrifugation. For the exosome exclusive spin columns, the columns were hydrated with 650 

µL of 1x PBS for 15 min at RT. The spin column was then placed in a 2-mL collection tube 

and spun at 750 x g for 2 min at RT to remove excess interstitial fluid. The collection tube 

was discarded and the sample (maximum volume of 100 µL/column) was loaded directly 

onto the center of the gel bed. The column was then placed in a 1.5 mL elution tube and spun 

at 750 x g or 500 x g for 1 – 2 min at RT. The elution tube was collected and analyzed. A 

gravity protocol was used for the PD10 desalting columns, where the column was first 

equilibrated with 25 mL of 1x PBS or 25 mL of 1x PBS + 0.1% Tween, followed by sample 

application ([18F]HFB reformulated in 10% DMSO/PBS, 5% DMSO/PBS or 

10%DMSO/PBS + 0.1% Tween)  and elution using 1x PBS or 1x PBS + 0.1% Tween. 

Fractions (0.5 mL) were collected. The force of centrifugation varied from 12,000 rpm – 

21,000 rpm to 200,000 x g in the ultracentrifuge. Centrifugation times also varied from 1 to 4 

hours, with a washing step completed using PBS or 10% DMSO/PBS (in select experiments). 

Due to the long-time constraints of the ultracentrifugation (up to four hours), and the loss of 

activity associated to this step, the washing step following ultracentrifugation was by-passed. 

After centrifugation, the supernatant was collected and the pellet resuspended in a small 

volume of PBS (60 - 200 µL) PBS. Both the supernatant and resuspended pellet were 

analyzed via ITLC to confirm labeling. ITLC was also completed on the samples prior to 

centrifugation, directly after incubation and following centrifugation to assess labeling. ITLC 
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analysis was completed with a mobile phase of 9/1 (MeCN/AF (0.1M). Furthermore, the 

radioactivity in the tubes after each step or transfer was measured.  

3.3.2.3 Hydrogel Preparation  
 

 Raw chitosan (CH) was first purified by dissolution in 0.1M hydrochloric acid and 

stirring overnight at 40˚C. The solution was then filtered under vacuum and the CH was 

precipitated with 0.5 M NaOH under continuous stirring. Sodium dodecyl sulfate (SDS) 10% 

(w/v) was added to the slurry and heated at 95˚C for 5 min. After cooling down to room 

temperature, the pH was adjusted to 10 with 0.5 m NaOH. The slurry was filtered under 

vacuum and hydrated CH was washed with Milli-Q water at 40˚C. The CH was then freeze-

dried, ground and sieved to obtain a dried and purified CH powder.[39].  

A CH solution of 3.33% (w/v) was prepared by dissolving purified CH powder in 

0.12 M hydrochloric acid at room temperature, and the solution was sterilized by autoclave at 

121˚C for 20 min and stored at 4˚C. Each hydrogel was prepared at room temperature by 

mixing sterilized CH solution with a gelling agent (GA) solution (containing BGP and SHC 

to get final concentration of 0.1 M and 0.075 M in the gel, respectively) by using two 

syringes and a female-to-female Luer-lock syringe connector. This was previously shown to 

form a hydrogel which remains liquid at room temperature but rapidly gels at body 

temperature.  

3.3.3.3 Effect of DMSO on Chitosan Hydrogels  
 

Since the final formulation of [18F]HFB contains 10% v/v DMSO in saline, primary 

tests consisted in testing the possible negative effect of DMSO on the gelation kinetics and 

mechanical properties of the chitosan hydrogels. 10% DMSO/saline solution mixed with the 

CH-GA solution to label the gel (Approach 1: (CH+GA) + DMSO). Alternatively, 10% 
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DMSO/saline solution was mixed to the acidic chitosan solution prior to adding GA 

(Approach 2: (CH+ DMSO + GA). The volume and initial concentration of GA was adjusted 

each time.  

Both mixing approaches described above were tested, using 10% DMSO in water 

(without HFB). Different volumes of DMSO/saline solution were tested: 0.2 mL, 0.1 mL and 

0.05 mL (2%, 1% and 0.5% v/v, respectively), while the volume and initial concentration of 

GA solution was varied (0.2 mL, 0.3 mL and 0.35 mL of the GA at concentrations of 2x, 

1.33x and 1.14x, respectively) to keep the final concentration of each compounds constant 

within the 1mL gel solution. The rheological properties of the hydrogels during gelation at 

37°C were compared, as well as their mechanical properties in compression after 24h 

gelation.  

Rheological properties were investigated using an Anton Paar instrument (Physica MCR 

301, Germany) with a coaxial cylinder geometry (CC10/T200) in the linear viscoelastic 

region (at 5% strain and 1Hz frequency). The evolution of the storage (G’) and loss (G”) 

moduli was measured during 1h at 37 °C, immediately after mixing the hydrogel 

components.  

After complete gelation, unconfined compression tests were performed using a Bose 

ElectroForce 3200 instrument equipped with a 200 N load cell. Hydrogel solution (2mL) was 

added into cylindrical molds (14 mm diameter) and incubated at 37 °C for 24 h. Samples 

were gently removed from the container and a compression was applied at a constant rate of 

0.5 mm s−1 until reaching 50% deformation. The secant Young’s moduli were calculated as 

the slope of a line connecting the point of zero strain to a point at a specified deformation.  
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Statistical analyses of the DMSO samples as compared to controls were completed using 

an ordinary one-way ANOVA with multiple comparison test (Bonferroni) using Graphpad 

prism 7 software.  

Radiolabeling Hydrogels with [18F]HFB 

[18F]HFB was prepared as previously described (Section 3.2.2.2)  and dissolved in 0.5 

mL of DMSO in 4.5 mL of saline. Radiolabeling of chitosan hydrogels was performed using 

the two approaches described above, this time with [18F]HFB dissolved in the 10% DMSO 

solution. Both methods were compared in terms of loss of radioactivity during mixing steps 

and the efflux of [18F]HFB from the hydrogel when immersed in saline solution at 37˚C.  

Two approaches were utilized to measure the efflux of [18F]HFB from the hydrogels. A 

first set of experiments was conducted using transwells (procedure 1). A volume of 2-3 mL 

of radiolabeled hydrogel was prepared according to approach 1 or 2 and the radioactivity in 

the syringes was measured after each mixing step. The hydrogels were then dispensed in 0.5 

mL portions into 40 µm transwells. The radioactivity in each portion was measured and the 

hydrogels were allowed to gel in 5 mL of saline for 5 min at 37˚C in a hot water bath. An 

additional 10 mL of saline was then added to each hydrogel, to completely cover the gel. The 

efflux of [18F]HFB from the hydrogels was measured at time points of 5 min, 1h, 2h, 4h, 6h 

and 8h by removing the gel from the saline and rinsing with an additional 5 mL of saline. 

The radioactivity was measured in the saline and saline rinses and the labeled hydrogels. All 

data were decay corrected and compared to the initial amount of radioactivity used in the 

respective incubation.  

 The second method involved using gel molds (procedure 2) to measure the efflux of 

[18F]HFB from the chitosan hydrogels. 1 mL of labeled hydrogel was prepared according to 
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approach 1 and 2 and the radioactivity in the syringes was measured after each mixing step.  

The labeled hydrogels were then dispensed into a gel mold (a 10-mL syringe cut into small 

portions with one side covered in parafilm) and allowed to incubate at 37˚C in a cell 

incubator for 2-3 hours to gel. The hydrogel was then carefully removed from the mold and 

placed in a beaker of saline. The efflux of [18F]HFB from the hydrogels was measured at 

time points of 5 min, 1h, 2h, 4h and 6h by removing the gel from the saline and rinsing with 

an additional 5 mL of saline. The radioactivity was measured in the saline and saline rinses. 

The labeled hydrogel molds were placed in a new beaker of saline for the subsequent time 

point. All data were decay corrected and compared to the initial amount of radioactivity used 

in the respective incubation.  

3.3.3.4  Radiolabeling Hydrogels with [18F]F- 

To test the specificity of [18F]HFB to label the chitosan-based hydrogels, a control 

study using only [18F]F- to label the hydrogels was also conducted. Only approach 2 was 

performed for the mixing of the radiolabeled hydrogel replacing [18F]HFB by [18F]F- (for 1 

mL of gel: 0.6 mL of chitosan with 0.35 mL of GA (1.14x BGP) followed by the addition of 

0.05 mL of [18F]F- present in O-18 enriched water (as [18F]HF). The hydrogels were mixed 

using 3 mL syringes connected by a luer lock and the components were passed back and 

forth through the syringes to ensure complete mixing. As above, transwells and gel molds 

were used to measure the efflux of [18F]F from the hydrogels.  
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Figure 3.1. Synthetic scheme for the synthesis of the [18F]HFB precursor (4).  

Figure 3.2. Synthetic scheme for the synthesis of cold HFB (7).   
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Figure 3.3. The IBA Synthera® automated kit based radiochemistry synthesizer.  

Figure 3.4. Automated syringe driver used to inject into semi-prep HPLC from the intermediate vial.   
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Figure 3.5. Schematic representation of the [18F]HFB IFP used on the Synthera® module.   

SepPak 1 

SepPak 2 
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Phase	1:	Exosome	Stability	studies

1. Exosomes	
received	from	
Gibbings lab

• 16	µg/34	uL PBS	

2.	Split	Each	tube	
into	3	11	µL	
Fractions	(~	5	ng	
Exosomes	each)

3.	Incubate	each	
tube	with	
[18F]HFB
- Under	gentle	
agitation

30	mins/4˚C

30	mins/RT

30	mins/37˚C 5.	Centrifuge
- Centrifuge	
behind	lead	
castle	

6.	Remove	
supernatant
- Measure	activity	in	
both,	Perform	ITLC

7.	Add	450	uL PBS	for	
wash

8.	Centrifuge
- Centrifuge	
behind	lead	
castle	

9.	Remove	
supernatant	
Measure	
activity	in	
both,	perform	
ITLC		

10.	Resuspend
in	60	-100	µL	
PBS

4.	Remove	Sample	for	
ITLC

12.	ITLC

Phase	1:	Exosome	Labelling	strategy

1. Exosomes	
received	
from	
Ottawa

• 16	µg/34	
uL PBS	

2.	Incubate	
each	tube	
with		
[18F]HFB
- Under	
gentle	
agitation

30	mins/37˚C

4.	
Ultracentrifuge
- 200,000	x	g	
(1h,	2h	and	
4h)

5.	Remove	
supernatant
- Measure	
activity	in	both	
pellet	and	
supernatant,	
Perform	ITLC

6.	Resuspend
in	60	µL	PBS

7.	Remove	10	uL
to	send	back	to	
Ottawa		and	10	
uL for	ITLC

3.	Remove	
Sample	for	
ITLC

Figure 3.6. First Exosome labeling strategy. 

Figure 3.7. Second exosome labeling strategy. 
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1.	Determine	if	adding	10%	
DMSO/H2O	Affects	gelation	
and/or	mechanical	
properties	

Chitosan
(V	uL)
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DMSO/H2
O	(V	uL)
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properties	affected?	

YES

NO

2.	Re-think	labelling	
strategy	
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[18F]HFB	to	be	
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results	from	part	1.	

5.	Mixing	strategy:	
1.	(CH	+	[18F]HFB)	+	GA
2.	(CH	+	GA)	+	[18F]HFB

1.	Transwells

Measure	
radioactivity	in	
chitosan	and	
syringes	

6.	Labelling	
efficiency/stability	
studies	

2.	Gel	Molds

Figure 3.8. Hydrogel labeling strategy including preliminary study on the effect of DMSO 
on the gelation/mechanical properties of the hydrogels and the two mixing approaches.  



 
 

 
  

51 

Results  
4.1 Chemistry 
4.1.1 N-hexadecyl-4-(N,N-dimethylamino)benzoate	

 
     N-hexadecyl-4-(N,N-dimethylamino)benzoate was obtained in a 74% yield as a white 

powder. Melting point: 61-63 oC. 1H NMR (300 MHz, CDCl3) δ 7.90 (d, J = 9.0 Hz 2H), 

6.84 (d, J = 8.5 Hz, 2H), 4.26 (t, J = 6.5 Hz ,2H), 3.06 (s, 6H), 1.80 – 1.68 (m, 2H), 1.50 – 

1.12 (m, 26H), 0.88 (t, J = 6.4 Hz, 3H). HRMS, calculated for [C25H43NO2+ H]+: 

390.3363, measured: 390.3372. 

4.1.2 Triflate Precursor: Hexadecyl-4-(N,N,N-trimethylamino)benzoate triflate  
 

Hexadecyl-4-(N,N,N-timethylamino) benzoate triflate was obtained in a 98% yield as 

white fluffy powder. HPLC: Luna C8(2) semi-prep column (97:3 MeCN/AF (0.1M), flow: 8 

mL/min: 14.7 min. Melting point: 104-106 oC. 1H NMR (300 MHz, CDCl3) δ 8.25 (d, J = 8.6 

Hz, 2H), 7.92 (d, J = 8.7 Hz, 2H), 4.34 (t, J = 6.7 Hz, 2H), 3.79 (s, 9H), 1.87 – 1.68 (m, 2H), 

1.49 – 1.13 (m, 26H), 0.87 (t, J = 6.4 Hz, 3H). HRMS, calculated for [C26H46O2N] +: 

404.3529, measured: 404.3520. Analytical HPLC retention time (Rt) (Shimadzu C18 (50x4.6 

mm, 5 µm), 95/5 (MeCN/AF (0.1M), 1.5 mL/min) = 14.7 min (Figure 4.1) 

4.1.3 HFB Standard: Hexadecyl-4-fluorobenzoate  
 

Hexadecyl-4-fluorobenzoate was obtained in an 86% yield as a white powder. HPLC: 

Luna C18 analytical column (99:1 MeCN/AF (0.1M), flow: 4 ml/min): 6.01 min. Melting 

point: 43-44 oC. 1H NMR (300 MHz, CDCl3) δ 8.06 (m, 2H), 7.10 (m, 2H), 4.30 (t, J = 6.7 

Hz, 2H), 1.82 – 1.70 (m, 2H), 1.48 – 1.20 (m, 26H), 0.88 (t, J = 6.5 Hz, 3H). HRMS, 

calculated for [C23H38O2F]+: 365.2850, measured: 365.2851. Analytical HPLC retention time 
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(Rt) (Shimadzu C18 (50x4.6 mm, 5 µm), 95/5 (MeCN/AF (0.1M), 1.5 mL/min) = 6.76 min 

(Figure 4.2)  

4.2 Radiochemistry  
4.2.1 C18 Seppak Experiments  
 

 To remove any unreacted [18F] fluoride, other salts and DMSO prior to going to semi-

prep HPLC purification, the reaction mixture was passed through a C18 Seppak light 

cartridge. The amount of solvent needed to elute HFB (>90%) had to be tested and the 

following results were obtained:  

Table 4.1. Elution experiment 1: 0.5mg HFB and MeCN used as the eluting solvent (collected 
0.5 mL fractions). 

Vial 
 

Solvent Volume HPLC % of HFB eluted 

1 H2O 1 mL ------- ------- 
2 H2O 0.5 mL ------- ------- 
3 H2O 0.5 mL ------- ------- 
4 H2O 0.5 mL ------- ------- 
5 H2O 0.5 mL ------- ------- 
6 MeCN 0.5 mL HFB 0.5% (0.5%) 
7 MeCN 0.5 mL HFB 27% (27.5%) 

8 MeCN 0.5 mL HFB 61% (88.5%) 

9 MeCN 0.5 mL HFB 10% (98.5%) 
10 MeCN 0.5 mL HFB 1.5% (100%)* 

*Percentages represent total amount of HFB eluted from the C18 Seppak light cartridge  
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Table 4.2. Elution experiment 2: 0.5mg HFB and MeCN used as the eluting solvent (collected 1 
mL fractions).  

Vial Solvent Volume HPLC % of HFB eluted 

1 H2O 5 mL ------- ------- 
2 H2O 5 mL ------- ------- 
3 H2O 5 mL ------- ------- 
4 H2O 5 mL ------- ------- 
5 MeCN 1 mL HFB 9% (9%) 
6 MeCN 1 mL HFB 78% (87%) 
7 MeCN 1 mL HFB 13% (100%)* 
8 MeCN 1 mL HFB ------- 

*Percentages represent total amount of HFB eluted from the C18 Seppak light cartridge  
 

Table 4.3. Elution experiment 2: 0.5mg HFB and MeOH used as the eluting solvent (collected 
0.5 mL fractions).  

Vial Solvent Volume HPLC % of HFB eluted 

1 H2O 5 mL ------- ------- 
2 H2O 5 mL ------- ------- 

3 H2O 5 mL ------- ------- 
4 H2O 5 mL ------- ------- 
5 MeOH 0.5 mL HFB 5% (5%) 
6 MeOH 0.5 mL HFB 44% (49%) 
7 MeOH 0.5 mL HFB 31% (80%) 
8 MeOH 0.5 mL HFB 12% (92%) 
9 MeOH 0.5 mL HFB 8% (100%)* 
10 MeOH 0.5 mL HFB ------- 

*Percentages represent total amount of HFB eluted from the C18 Seppak light cartridge  
 

From these experiments, it was concluded that the majority of HFB (>90%) could be eluted 

from a C18 light cartridge using: 2.0 mL of MeCN or 2.5 mL of MeOH.  
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4.2.2 Radiochemical Results  
 

 For a typical 1hr beam, approximately 1000-1200 mCi was produced and delivered to the 

dispensing hot cell. Once the activity was measured, this was transferred to the Synthera® 

ASU by means of suction via the modules vacuum pump. For test runs of [18F]HFB, shorter 

beams or rinses were used to limit the amount of radioactivity, however, for exosome and 

hydrogel experiments, longer beams with more radioactivity were required. Following 

delivery of the radioactivity to the Synthera® module, the total synthesis time was 

approximately 40 min, followed by a 20 min HPLC purification. The synthesis of [18F]HFB 

took place in one reactor with a 20 minute fluorination step at 100˚C, to produce [18F]HFB in 

a 34% +/- 9%radiochemical yield (RCY, decay-corrected) (~ 330 mCi starting from 1200 

mCi). Following semi-prep HPLC (Retention time (Rt) of [18F]HFB = 18-20 min), the 

solvent was evaporated using a heating block, a vacuum pump and nitrogen gas flow. This 

step took approximately 10 – 15 minutes to completely evaporate all the solvent. Product 

reformulation was completed in approximately 5 minutes, to give a total synthesis time from 

end of beam (EOB) of 1 h 20 minutes, plus another 10 min for quality control by HPLC 

analysis.  

4.2.3 Optimization of fluorination conditions  
 

 Four different fluorination conditions were tested with the goal of maximizing the yield 

of [18F]HFB while minimizing the production of radioactive by-products. The four conditions 

tested were: 100˚C for 30 min, 140˚C for 30 mins, 80˚C for 30 min and 100˚C for 20 min to 

give the following results:  
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Table 4.4 Effect of fluorination conditions on [18F]HFB purity and yield.  

Condition Mass of 
precursor 

(mg) 

Fluorination 
Temperature 

(˚C)/Time (min) 

RCY (Decay-
Corrected) 

Radiochemical 
Purity (No 
semi-prep 

HPLC) 

Purity 
corrected 

yield 

A 3 100/30 43.3% 83% 36% 

B 3 140/30 36.7% 50% 18% 

C 3 80/30 6.79% 95% 6.45% 

D 3 100/20 33% 97% 32% 

  

Through increasing the fluorination temperature to 140˚C, this produced a higher proportion 

of radioactive by-product (Figure 4.3 B) than when fluorination took place at 100˚C (Figure 

4.3 D). Dropping the fluorination temperature to 80˚C produced highly pure [18F]HFB, 

however, in a very low yield (6.45%) (Figure 4.3 C). 100˚C produced the optimal ratio of 

radiochemical purity and yield.  

4.2.4 Optimization of semi-prep HPLC conditions  
 

 Initial semi-prep HPLC conditions were optimized using a Luna C8(2) column and a 

mobile phase of 97:3 (MeCN/AF (0.1M) at a flow of 10 mL/min to give a retention time of 8 

minutes for [18F]HFB. However, it was noticed that a non-radioactive impurity was co-

eluting with the [18F]HFB radioactivity peak. This peak was identified as a non-radioactive 

impurity and not cold HFB on analytical HPLC using a C18 column, where it was observed 

that there was a UV peak (254 nm) associated to [18F]HFB, followed by a large UV peak 

directly after (Figure 4.4). This second UV peak was lowering the chemical purity of the 

final formulation of [18F]HFB. The C8(2) semi-prep column was substituted for a C18 
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column and the mobile phase switched to 95:5 (MeCN/AF (0.1M) at a flow of 10 mL/min to 

obtain better resolution between the peaks (Figure 4.5). With these conditions, [18F]HFB has 

a Rt of 18 min, along with higher chemical purity (>95%).  

4.2.5 Gas Chromatography of final formulation of [18F]HFB 
 

 The results of the GC analysis of the evaporation experiments completed using HPLC 

solvent and saline to reformulate are summarized as follows: 

Table 4.5 Gas chromatography results of first evaporation experiments: 2 min evaporation.  

Sample Volume of 
solvent (mL) 

(95/5 MeCN/AF 
(0.1M) 

Evaporation 
Temperature 

(˚C) 

Evaporation 
time (dryness + 
additional time) 

(min) 

PPM of MeCN 

1 15 120 8 + 2 1207 

2 15 120 9 + 2 850 

3 15 120 10 + 2 132 

4 15 120 10 + 2 176 

 

Table 4.6. Gas chromatography results of second evaporation experiments: 2.5 min evaporation.  

Sample Volume of 
solvent (mL) 

(95/5 MeCN/AF 
(0.1M) 

Evaporation 
Temperature 

(˚C) 

Evaporation 
time (dryness + 
additional time) 

(min) 

PPM of MeCN 

1 15 120 8 + 2.5 20 

2 15 120 9 + 2.5 0 

3 15 120 10 + 2.5 0 

 

The addition of an extra 2.5 minutes after dryness in the second experiments (Table 4.6) as 

compared to 2 minutes of additional evaporation in the first experiments (Table 4.5) 
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drastically reduced the ppm of MeCN in the final formulation from an average of 591.25 

ppm to 6.66 ppm.  

4.2.6 Quality Control  
 

 Figure 4.6 demonstrates a typical analytical HPLC obtained for the final formulation of 

[18F]HFB. The identity of [18F]HFB was confirmed by a co-injection of the final formulation 

with the cold standard (Figure 4.7). The chemical and radiochemical purity were consistently 

greater than 98% (after optimization of semi-prep HPLC conditions). Due to the setup of the 

HPLC, the sample flows first through the radiation detector, followed by the UV detector, 

resulting in a small delay between the radiation and UV peak times. The molar activity 

ranged from 46 – 272  mCi/µmol. The amount of residual MeCN in the final formulation was 

consistently below the accepted limit of 410 ppm.  

4.2.7 Exosome Experiments  
4.2.7.1 Exosome Exclusive Spin Columns 
 

 To remove unbound [18F]HFB from labeled exosomes, the first strategy that was 

implemented was the use of exosome exclusive spin columns. The results were the 

following:  

Table 4.7. Radioactivity in eluate and remaining on spin column of exosome exclusive spin 
column tests. 

Centrifugation force/time Activity in eluate (µCi) Activity remaining on spin 
column (µCi) 

750 x g / 2 min 98 (98%) 2 (2%) 

700 x g / 1 min 105 (88%) 15 (12%) 

500 x g / 1 min 90 (84%) 17 (16%) 
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The majority of the radioactivity eluted through the column, while only a small fraction 

remained on the exosome exclusive spin columns, regardless of the centrifugation conditions. 

Reducing the force from 700 x g to 500 x g resulted in a small increase of radioactivity 

remaining on the column.  

4.2.7.2 PD-10 Column Experiments 
 

 The elution profiles for [18F]HFB in different reformulation conditions are summarized in 

the following figures: 10% DMSO/PSB (Figure 4.8.1), 5% DMSO/PSB (Figure 4.8.2) and 

10% DMSO/PBS + 0.1% Tween (Figure 4.8.3 and  4.8.4). Briefly, the majority of [18F]HFB 

was eluted in the solvent front (0.5 mL – 1.0 mL). The elution volume of [18F]HFB through 

the PD-10 column was slightly increased to 1.0 mL – 2.0 mL with the addition of 0.1% 

Tween in the final formulation and when it was used as the elution solvent (Figure 4.8.3-4).  

4.2.7.3 Exosome Labeling 
 

 As shown in Table 3.1 various radiolabeling conditions were tested for exosomes. The 

results of these experiments are summarized in Tables 4.9.1 - 7. The data is decay corrected 

and the percentages represented are either a percent of activity remaining from the starting 

activity, or from the previous step in the experiment. There was a large proportion of 

[18F]HFB that stuck to the tubes, while this was slightly reduced with the addition of BSA. 

The effect of [18F]HFB sticking to the incubation and centrifugation tubes was further 

increased when both of these were completed at 4˚C. Regardless of the incubation 

temperature or centrifugation conditions, there was no difference in the amount of 

radioactivity in the resuspended exosome sample and the [18F]HFB controls. In certain 

experiments (Table 4.9.5), there was more radioactivity in the resuspended pellet from the 

control samples as compared to the exosome samples.  Furthermore, there was no difference 
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in sticking of [18F]HFB between the regular Eppendorf tubes and the low retention 

Eppendorf tubes (Table 4.9.3).  

4.2.7.4 ITLC Analysis  
 

 Figure 4.10 A presents the ITLC analysis of a 34 µL sample of exosomes incubated with 

50 µL of [18F]HFB, centrifuged at 200,000 x g for 4 hours and resuspended in 60 µL of PBS 

and Figure 4.10 B is the [18F]HFB control for the same conditions. The retention factor (Rf) 

of [18F]HFB is approximately 0.83 and there was no difference in retention time, or 

appearance of a second radioactive peak in the exosome sample as compared to the [18F]HFB 

control. The same results were obtained for all the labeling conditions.  

4.2.8 Hydrogel Experiments  
4.2.8.1 Effect of 10% DMSO/Saline on hydrogel rheological and mechanical properties 
(Work completed by Yasaman Alinejad). 
 

 First, to verify that labeling would not strongly impact gel rheological and mechanical 

properties, the effect of DMSO on these factors was tested. The effect of adding [18F]HFB 

using approach 1 on the rheological and mechanical properties of hydrogel is summarized in 

Figure 4.11.1. In this method, chitosan was first mixed with DMSO/water (at 0.5%, 1% and 

2% v/v) followed by addition of the GA. As seen in Figure 4.11.1A, addition of DMSO did 

not have a great influence on the kinetics of gelation of the hydrogels at 37° C. However, 

increasing the concentration of DMSO (1% and 2% v/v) had a significant effect on the 

storage modulus of the hydrogels (G’), as measured after 30 min of gelation (Figure 

4.11.1B). A similar trend was obtained with approach 2 (chitosan mixed with DMSO/water 

(0.5%, 1% and 2% v/v), prior to addition of the gelation agent (Figure 4.11.2), however, the 

difference was not large enough to be significant. For the mechanical properties after 24h 

gelation at 37˚C, the compression tests showed a slight decrease in the secant modulus with 
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increasing concentration of DMSO for approach 2 (Figure 4.11.3), whereas there was a 

minimal change in the secant modulus for approach 1 (Figure 4.11.4) although no significant 

differences were observed for either approach.  

From these experiments, it was concluded that regardless of the method of mixing, 

DMSO did not present a considerable effect on the rheological properties of the hydrogels 

during gelation at 37˚C, however, a significant difference in the storage modulus was 

observed for increasing concentrations of DMSO (1% and 2%). Therefore, it was 

recommended to formulate the hydrogels with the lowest concentration of DMSO possible 

(0.5% v/v) as to limit the changes in the mechanical properties of the final hydrogel and for 

future studies involving cells that do not tolerate higher concentrations of DMSO.   

4.2.8.2 Hydrogel radiolabeling using [18F]HFB 
 

 During the preparation of the labeled hydrogels, approach 1 resulted in an average loss of 

radioactivity during mixing of 41.2%, whereas approach 2 had an average loss of 

radioactivity during mixing of 16.2% (Figure 4.12.1).  As seen in Figures 4.12.2-5, a similar 

trend is observed in terms of labeling stability, regardless of the approach used to prepare the 

radiolabeled hydrogels for both the transwell experiments and gel molds. After 8 hours, over 

90% of the radioactivity remained in the hydrogel, with a slight efflux of [18F]HFB observed, 

corresponding to a maximum loss of 9%. Due to the higher losses of radioactivity during 

mixing seen with approach 1, approach 2 was solely used going forward. Approach 2 was 

repeated with a larger sample size (n =3) for the transwell experiments and gel molds. The 

transwell experiments involving the same gel for all time points and gel molds displayed an 

identical trend as the previous experiments with over 90% labeling stability after 8 hours 

submerged in saline (Figure 4.12.6-7).   
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4.2.8.3 Hydrogel radiolabeling using F-18 
 
 Only approach 2 was utilized to prepare the radiolabeled hydrogels using [18F]F-. As 

observed in Figure 4.13.1, the losses during mixing were very minimal with a 5.5% and 5.1% 

for the transwell gels and molds, respectively. In terms of radiolabeling stability, Figure 4.13.2 

demonstrates that after 5 mins, only 26% of the initial F-18 remains in the gel with the rest in the 

saline rinse. After 1 hour, less than 10% of the F-18 was found in the gel and finally, after 6 

hours, only 3% of the starting F-18 remained in the hydrogel. A similar trend was observed for 

the gel mold experiments, where after 5 mins 39% of the starting F-18 remained in the gel, only 

3% of starting F-18 remained in the gel after 1 hour, while 1% of the radioactivity remained in 

the hydrogel after 4 hours (Figure 4.13.3).  
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Figure 4.1.  Analytical HPLC of the HFB standard ((Shimadzu C18 (50x4.6 mm, 5 µm), 95/5 
(MeCN/AF (0.1M), 1.5 mL/min).  

Figure 4.2.  Analytical HPLC of the precursor ((Shimadzu C18 (50x4.6 mm, 5 µm), 95/5 
(MeCN/AF (0.1M), 1.5 mL/min) with solvent switch to 100% MeCN at 28 min.  
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Figure 4.3.  Analytical Rad HPLC of the reaction mixtures (Luna C18, 99:1 (MeCN/AF (0.1M) 4 mL/min): B) 140˚C/30 min, C) 
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Figure 4.5. Semi-prep HPLC optimization. A) C8(2) column (97:3 MeCN/AF (0.1M), 10 mL/min) 
resulted in co elution of [18F]HFB (Rt = 8 min) with a non-radioactive by-product. B) Resolution was 
improved by switching to a C18 column (95/5 MeCN/AF (0.1M), 10 mL/min) ([18F]HFB Rt = 18 
min) 
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Figure 4.8.1. Elution profile of 1 mL [18F]HFB in 10% DMSO/Saline  loaded onto a PD-10 
column and eluted using PBS.  

Figure 4.8.2. Elution profile of 1 mL [18F]HFB in 5% DMSO/Saline  loaded onto a  PD-10 
column and eluted using PBS.  
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Figure 4.8.3. Elution profile of 1 mL [18F]HFB in 10% DMSO/PBS + 0.1% Tween  loaded 
onto a PD-10 column and eluted using PBS.  

Figure 4.8.4. Elution profile of 1 mL [18F]HFB in 10% DMSO/PBS + 0.1% Tween  loaded 
onto a PD-10 column and eluted using PBS + 0.1% Tween.  
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Table 4.9.1 Exosome radiolabeling results from 16 Dec 2016 (21,000 x g centrifugation).  

 
 

 
 
Percentages represent either a percentage of the starting activity or pellet from the previous step 
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Table 4.9.2. Exosome radiolabeling results from 21 Dec 2016 (21,000 x g centrifugation). 

 

 
 
Percentages represent either a percentage of the starting activity or pellet from the previous step 
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Table 4.9.3. Exosome radiolabeling results from 21 Dec 2016 (12,000 rpm centrifugation). 

 

 
Percentages represent either a percentage of the starting activity or pellet from the previous step 
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Table 4.9.4. Exosome radiolabeling results from 22 Dec 2016 (21,000 x g centrifugation). 

 
 
 

 
Percentages represent either a percentage of the starting activity or pellet from the previous step 
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Table 4.9.5. Exosome radiolabeling results from 2 Feb 2017 using ultracentrifugation (200,000 x g).   

 

 
Percentages represent either a percentage of the starting activity or pellet from the previous step 
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Table 4.9.6. Exosome radiolabeling results from 10 Feb 2017 using ultracentrifugation (200,000 
x g).  

 
Percentages represent either a percentage of the starting activity or pellet from the previous step 

Table 4.9.7 Exosome radiolabeling results from 17 Feb 2017 using ultracentrifugation (200,000 
x g). 

 
Percentages represent either a percentage of the starting activity or pellet from the previous step 
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Figure 4.10. ITLC analysis of:  A) 34 µl exosomes incubated with 50 µl of [18F]HFB and 
centrifuged at 200,000 x g for 4 hours and resuspended in 60 µl of PBS. B) [18F]HFB. 
control centrifuged at 200,000 x g for 4 hours and resuspended in 60 µl of PBS.  

A B 

Figure 4.11.1. Effect of 0.5%, 1% and 2% DMSO added first to chitosan followed by 
addition of the gelation agent (approach 1) on the (A) evolution of storage (G’) and loss 
(G’’) moduli of hydrogels during gelation at 37°C (mean, n=3) and (B) on G’ value after 30 
min at 37 °C (mean±SD, n=3).  
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Figure 4.11.2. Effect of 0.5%, 1% and 2% DMSO added following mixing of chitosan and 
the gelation agent (approach 2) on the (A) evolution of storage (G’) and loss (G’’) moduli of 
hydrogels during gelation at 37°C (mean, n=3) and (B) on G’ value after 30 min at 37 °C 
(mean±SD, n=3). 

Figure 4.11.3. Effect of 0.5%, 1% and 2% DMSO added first to chitosan followed by 
addition of the gelation agent (approach 1) on the secant modulus of hydrogels at 50% 
deformation (mean±SD, n=3).  
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Figure 4.11.4. Effect of 0.5%, 1% and 2% DMSO added following mixing of chitosan and 
the gelation agent (approach 2) on the on the secant modulus of hydrogels at 50% 
deformation (mean±SD, n=3).  
 

Figure 4.12.1 Percentage of [18F]HFB  lost during the preparation of the radiolabeled hydrogels 
via approach 1 (CH +[18F]HFB ) + GA and approach 2 (CH + GA) + [18F]HFB (mean±SD, n=5).     
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Figure 4.12.2. Percentage of [18F]HFB  remaining in labeled hydrogels and saline rinses for 
approach 1: (CH + [18F]HFB) + GA: transwell experiments (procedure 1) (n = 2).  

Figure 4.12.3. Percentage of [18F]HFB remaining in labeled hydrogels and saline rinses for 
approach 2: (CH + GA) + [18F]HFB: transwell experiments (procedure 1) (n = 2). 
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Figure 4.12.4. Percentage of [18F]HFB  remaining in labeled hydrogels and saline rinses for 
approach 1: (CH + [18F]HFB) + GA: gel mold experiments (procedure 2) (n = 2).  

Figure 4.12.5. Percentage of [18F]HFB remaining in labeled hydrogels and saline rinses for 
approach 2: (CH + GA) + [18F]HFB: gel mold experiments (procedure 2) (n = 2).  
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Figure 4.12.6. Percentage of [18F]HFB remaining in labeled hydrogels and saline rinses for 
approach 2: (CH + GA) + [18F]HFB: transwell experiments (procedure 1), using the same 
sample for each time point (mean±SD, n=3).   

Figure 4.12.7. Percentage of [18F]HFB  remaining in labeled hydrogels and saline rinses for 
approach 2: (CH + GA) + [18F]HFB: gel mold experiments (procedure 2) (mean±SD, n=3). 
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Figure 4.13.1.  Percentage of F-18 lost due to mixing (approach 2) for the transwell and 
mold experiments.  

Figure 4.13.2. Percentage of F-18 remaining in labeled hydrogels and saline rinses for 
approach 2: (CH + GA) + F-18: transwell experiments (procedure 1) (n = 2). 
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Figure 4.13.3. Percentage of F-18 remaining in labeled hydrogels and saline rinses for 
approach 2: (CH + GA) + F-18: gel mold experiments (procedure 2) (mean±SD, n=3).  
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Discussion  
5.1 Chemistry 

	
Before proceeding with the radiochemistry work, it was necessary to synthesize both the 

[18F]HFB precursor as well as the cold HFB as a standard to confirm the identity of the “hot” 

[18F]HFB product. The synthesis of these compounds was already described in the literature 

[1]. However, modifications were made to the radiosynthesis and purification to adapt the 

synthesis to the Synthera platform. The trimethyl ammonium triflate precursor of [18F]HFB 

(hexadecyl-4-(N,N,N-trimethylamino)benzoate triflate) was prepared in two steps; the first 

step involved the formation of an ester via SN2 substition of a chlorine atom on 4-(N,N-

dimethylamino)benzoyl chloride by the alcohol group of 1-hexadecanol. The reaction 

mixture was purified by column chromatography. The final product was re-crystallized using 

a minimum of hot ethyl acetate for dissolution followed by removal of leftover impurities in 

the solution at room temperature. The second step was the formation of the trimethyl 

ammonium substituted triflate salt using methyl triflate. The addition of the methyl group 

resulted in a quaternary amine which created an ionic bond with the resultant triflate group, 

turning this into a counter for the leaving group, ideal for [18F]F- displacement. The cold 

HFB standard was prepared in a one-step reaction through an SN2 substitution of a chlorine 

on 4-fluorobenzoyl chloride by the alcohol group of 1-hexadecanol, and the reaction mixture 

was purified by flash chromatography. All the compounds were characterized by mass 

spectrometry and 1H-NMR. They all contained a characteristic multiplet that integrated for 

26 protons, belonging to the long lipophilic chain. The purity of the standard was analyzed 

by analytical HPLC and it was >99% (Figure 4.1). The presence of the added methyl group 

was confirmed by the addition of 3 protons to the singlet at 3.79 ppm, which integrated for a 
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total of 9 protons. The overall yields for these reactions were all close to 80% and the triflate 

reaction yield was above 98%.  

HPLC conditions were developed for both the cold HFB standard and the precursor to 

purify the crude reaction mixture and to confirm the identify of hot [18F]HFB. The retention 

time of cold HFB was 6.0 minutes while the precursor had a longer retention time of 14.7 

mins. The large separation time between these two compounds ensure easy purification of the 

precursor from final labeled compound.  

5.2 Radiochemistry 
  

5.2.1 C18 SepPak experiments 
		

When planning the automated radiosynthesis of [18F]HFB using the Synthera® ASU, we 

wanted to ensure the highest purity of the final product and at the same time increase the 

lifespan of the semi-prep HPLC column. Since the fluorination reaction was carried out in 

DMSO - a solvent that can damage HPLC columns overtime and drastically shifts the 

retention time of compounds – removal of DMSO prior to semi-prep HPLC purification was 

done via C18 SepPak elution. The IFP of the Synthera® contains two ports for cartridges 

(Figure 3.5 SepPak positions 1 & 2); the first port is designated for a QMA cartridge for 

[18F]F- trapping, and a second is vacant. C18 SepPaks contain long carbon chains that can 

interact with the long lipophilic chain on [18F]HFB, while unreacted [18F]F- is eluted through 

the cartridge. To implement this purification step into the radiosynthesis of [18F]HFB, it was 

necessary to conduct elution experiments to determine how much volume of solvent will be 

needed to elute [18F]HFB from the cartridge, following water rinses. The C18 SepPak was 

initially conditioned and then loaded with HFB dissolved in DMSO and washed with water 

to remove DMSO and then eluted with either MeCN or MeOH, and the fractions were then 
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analyzed via analytical HPLC. From these experiments, it was determined that over 90% of 

HFB could be eluted with a smaller volume of MeCN as compared to MeOH. Considering 

the semi-prep HPLC solvent system consisted of 95% MeCN and AF (0.1M), it was decided 

that MeCN would be more ideal since this would not change the composition/polarity of the 

HPLC solvent system. This system was implemented into the automated synthesis of 

[18F]HFB. However, after the first test run using 2.0 mL of MeCN to elute [18F]HFB, it was 

noticed that a significant amount of radioactivity remained on the C18 cartridge. The volume 

of MeCN was then increased to 4 mL, which was sufficient to remove all the radioactivity 

from the C18 cartridge.  

5.2.2 Optimization of the fluorination conditions  
 
Considering the synthesis of [18F]HFB had never been completed using the Synthera® 

platform, we were interested in optimizing the fluorination conditions to maximize the RCY 

of [18F]HFB, while minimizing the production of radioactive by-products. The reported 

fluorination conditions were 95˚C for 20 mins, therefore, we decided to test 4 different 

conditions: 100˚C/30 mins, 140˚C/30 mins, 80˚C/30 mins and 100˚C for 20 mins. The crude 

reaction mixture was passed through an activated C18 SepPak and eluted with MeCN, 

followed by analytical HPLC to determine the radiochemical purity. The fluorination 

temperature had a drastic impact on the production of a radiochemical by-products that were 

eluted with the solvent front on analytical HPLC. At 140˚C, the radiochemical purity of 

[18F]HFB was only 50%, giving a RCY of approximately 36%. When the reaction 

temperature was reduced to 80˚C, the radiochemical purity was 95%, however, the reaction 

yield was only 6.45%. The radiochemical purity for 100˚C/30 mins and 100˚C/20 mins 

differed, with the 20-min reaction time having 97% radiochemical purity as compared to 
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83% with 30 mins. The RCY for the 30-min reactions was only 4% higher than the 20-min 

reaction. Since the radiochemical purity was higher for the 20-min reaction, we decided to 

choose 100˚/20 min for the fluorination conditions. Additionally, the ten-minute difference in 

the radiosynthesis can make a significant impact for the total synthesis time, which should be 

kept to a minimum. In the original manual (not automated) radiosynthesis of [18F]HFB by 

[1], they reached RCYs of 52%, while the highest yield obtained with our automated process 

(Synthera® ASU) was 45% (decay corrected).  

5.2.3 Optimization of semi-prep HPLC conditions 
		
After the first test runs of [18F]HFB, it was noticed that there was a large UV peak that 

was co-eluting with the radioactive peak of [18F]HFB on semi-prep HPLC (Figure 4.5). At 

first, we believed that this was a large mass of unlabeled product, however, when the final 

formulation was analyzed via analytical HPLC, the radioactivity peak of [18F]HFB was 

followed by a large UV peak that did not in fact correspond to the cold mass. The retention 

times of these two peaks were different enough that they could not be associated to one 

compound (Figure 4.4). The difference between the semi-prep and analytical HPLC systems 

was the use of a Luna C8(2) column for semi-prep and a Luna C18 column for analytical 

HPLC. We then substituted the C8(2) semi-prep column for a C18 semi-prep column as this 

would likely provide better resolution between the [18F]HFB radioactive peak and the 

unwanted UV peak. With a solvent system of 95/5 MeCN/AF (0.1M), it was possible to 

obtain enough separation between the [18F]HFB radioactive peak and UV bi-product peak to 

greatly increase the chemical purity of [18F]HFB to > 99%.  

The original Synthera® ASU set-up to go from the IFP module to to HPLC purification 

module involved a direct line from the end of the IFP connected to the inlet of the loop. This 
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means that the mixture to inject must be pushed into the loop by means of compressed 

nitrogen and a best guess as to how long it takes for the volume of liquid to reach the loop, 

without under or over-shooting the loop. We were not comfortable with this approach and 

quickly realized this could lead to substantial losses of radioactivity. Consequentially, we 

decided to add an automated syringe driver system to this process. We programmed the 

syringe to suck the eluted C18 SepPak purified reaction mixture and inject this into the loop 

in a two-step process. The loop size was a 5 mL loop, therefore, we had some room for error 

in case a bit of air was pushed into the loop. This proved to be a very effective and 

reproducible loading system for the semi-prep purification.  

5.2.4 Gas Chromatography Analysis 
 
Due to its inherent toxicity, the most recent guidelines for residual solvents set the 

maximum amount of MeCN that should be tolerated in pharmaceutical products at 410 ppm. 

Considering our semi-prep HPLC solvent is composed of 95% MeCN, we had to develop an 

effective protocol to remove MeCN and to ensure that it is present in less than 410 ppm in 

the final formulation of [18F]HFB. The radioactive [18F]HFB peak was collected (Figure 4.5 

– green radioactivity peak) in the dispensing hot cell in our radiochemistry lab, and the 

solvent was evaporated at 120˚C under N2 flow combined with vacuum exhaust. The time of 

evaporation depends on the volume of the peak collected and the typical collected peak 

volumes were approximately 15 mL (10 mL/min flow for 1.5 min). When the solvent was 

evaporated to dryness (+ addition of 2 more min), there was still a significant amount of 

MeCN in the samples, up to three times the allowed limit (Table 4.5). However, when the 

solvent was evaporated to dryness and an additional 2.5 min was added, this reduced the 
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amount of MeCN to well below the accepted limits (Table 4.6). Therefore, this procedure 

was adopted to remove MeCN from the final formulation of [18F]HFB.  

During the evaporation step, there would sometimes be a significant loss of product, 

amounting to 20-30% of the total activity. [18F]HFB has a very long chain and is thus non-

volatile, therefore the loss of product cannot be attributed to evaporation of the product. The 

most likely explanation for the loss of product during evaporation is that some of the product 

is aspirated through the needle that is connected to the vacuum. This needle was always 

placed above the liquid; however, the constant flow of nitrogen could have resulted in some 

of the solvent/product aspired into the needle. To counteract this, the needle was placed just 

below the septum of the [18F]HFB vial and the N2 flow was kept to a minimum.  

5.2.5 Reformulation and Quality control 
			
During the reformulation step of [18F]HFB, it was imperative to work quickly and to keep 

the [18F]HFB/DMSO as warm as possible and to minimize the time spent in syringes during 

transfers. Given that [18F]HFB is a very liphophilic molecule, it sticks to most plastics which 

can result in significant losses of radioactivity and when it cools down to room temperature, 

the solubility of [18F]HFB in DMSO is also decreased due to high concentration of saline 

solution (90%) compared to DMSO. Furthermore, when [18F]HFB was filtered through a 

0.22 µm Acrodisc® filter, this also resulted in significant losses of radioactivity due to 

sticking of the product on the filter. As a result, when very concentrated [18F]HFB was 

needed for exosome and hydrogel labeling, the filtering step was bypassed in order to 

minimize losses of activity in the filter.  

The SA calculated for [18F]HFB was in the range of 46 – 272 mCi/µmol, which is quite 

low for [18F]-labeled compounds, with the theoretical maximum molar activity being 1710 
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Ci/µmol [2]. Since we were not targeting a specific receptor that could easily be saturated by 

cold mass, we were not concerned with SA.  The low SA can be attributed to the presence of 

cold HFB in the final formulation of [18F]HFB due to reactivity with F-19 in the various 

tubing. High SA activity was not a goal with this work, changing lines to Tefzel, a 

fluoropolymer that is resilient to radiolysis, and IFP components [3], or beaming for longer 

times to produce more F-18 was not completed for this work.   

5.3 Exosome radiolabeling  
 

When completing a literature review of exosome biodistribution, there are no robust 

studies completed using either fluorescence and optical imaging or PET/SPECT imaging. 

Only one paper can be found on the radiolabeling of exosome mimetic nanovesicles using 

99mTc-HMPAO for SPECT imaging [4]. Our approach for radiolabeling exosomes with 

[18F]HFB was based off this paper, the previous work with [18F]HFB to label CPCs and non-

published reports by the Gibbings lab using fluorescent hydrophobic dyes such as DiR.  

In the paper by Choi et al [4], the use of 99mTc with a half-life of 6 hours allowed for a 1 

hour incubation at room temperature. Working with 18F (half-life of 110 min) limits the time 

available to complete manipulations, therefore, it was determined that a 30-min incubation 

would be tested at three different temperatures: 4˚C, room temperature and 37˚C, as 

completed by Zhang et al [5]to label CPCs. In terms of differences due to temperature in our 

preliminary experiments, it was noticed that there was more radioactivity in the pellet 

following centrifugation in the 4˚C incubation as compared to room temperature and 37˚C 

(Table 4.9.5). At first, we believed this was due to [18F]HFB labeling of exosomes, however, 

after attempting to resuspend the pellet and measure the activity, all of the radioactivity 

remained in the tube and none was in the PBS used for resuspension. This could have meant 
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that the colder temperatures was reducing the solubility of [18F]HFB to the point where it 

would crash out of solution and end up sticking to the walls of the tubes. We therefore opted 

to incubate the exosomes with [18F]HFB at 37˚C for the subsequent experiments.  

The next challenge was to determine how the radiolabeled exosomes were going to be 

separated from free [18F]HFB. If a purification step is not completed post-incubation in order 

to remove leftover [18F]HFB, it would be impossible to differentiate the signal of the 

radiolabeled exosomes from that of [18F]HFB. This would interfere with the accuracy of the 

biodistribution studies, therefore it was imperative to remove as much free [18F]HFB as 

possible (>95% removal). Choi et al [4] utilised two approaches for removing free 99mTc-

HMPAO from their labeled exosome mimetic vesicles. The first approach was with exosome 

exclusive spin columns (EESC) and the second utilized PD-10 size exclusion columns. Both 

techniques work on the same principle of size exclusion chromatography where larger 

molecules will pass through the column whereas smaller molecules will interact with the 

matrix of the column, leading to a longer elution time (and retention) for these free 

molecules. The EESCs have a molecular weight cutoff of 3000, meaning that molecules 

below this cutoff will interact with the matrix and be retained, whereas molecules above this 

weight will bypass the matrix and be eluted. The EESCs have the disadvantage of having a 

maximum sample loading volume of 100 µL, however, the purification step is very short; 

purified exosomes can be obtained after 2 minutes of centrifugation at 750 x g. The EESCs 

were tested with a 100 µL sample of [18F]HFB spun at 750 x g, 700 x g and 500 x g. The 

eluate was collected and the radioactivity in both the column and eluate was measured. 

Surprisingly, [18F]HFB with a molecular weight of  364 g/mol was collected in the eluate, 
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instead of being retained in the spin column (Table 4.7). This meant that the EESCs would 

not be an effective way to remove free [18F]HFB from labeled exosomes.  

The PD-10 columns have a higher molecular weight cutoff of 5000 and can tolerate 

larger sample volumes from 1- 2.5 mL. However, they require more time to complete the 

purification step as separation is done via gravity instead of centrifugation for the elution. 

Different formulations of [18F]HFB were tested: 10% DMSO/PBS, 5% DMSO/PBS and 10% 

DMSO/PBS + 0.1% Tween as well as different elution solvents: PBS and PBS + 0.1% 

Tween. As seen in Figures 4.8.1 – 4, the elution profiles of [18F]HFB through the PD-10 

columns were similar for all the conditions. [18F]HFB eluted through the column with the 

solvent front, with the majority of the radioactivity coming out within 0.5 – 1.0 mL. The 

elution volume of [18F]HFB was slightly increased to 1.5 – 2.0 mL with the addition of 0.1% 

Tween. This means that [18F]HFB did not interact with the matrix of the PD-10 columns at 

all and passed directly through the columns, the possible reason for this will be discussed in 

section 5.3.1. In the paper by Choi et al [4], PD-10 columns were utilized to separate free 

99mTc-HMPAO from their labeled exosome mimetic vesicles. The labeled vesicles eluted 

first, while the free 99mTc-HMPAO was retained in the column due to its smaller size. The 

collected fractions were analyzed via ITLC and similar fractions were combined. With this 

approach,  a 99.6% radiochemical purity was obtained in approximately 30 min [4].  Like the 

EESCs, the PD-10 columns were not effective at separating free [18F]HFB from labeled 

exosomes because [18F]HFB was eluting with the solvent front which would have given no 

resolution between labeled exosomes and free [18F]HFB. We then decided to centrifuge to 

pellet the labeled exosomes while leaving free [18F]HFB in the supernatant.  
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Considering the small size of exosomes (30 – 150 nm), it takes an enormous amount of 

force to pellet them. For their purification from cells, a series of sequential centrifugations 

are completed with the longest step consisting of 100,000 x g centrifugation for 2 hours. We 

were limited to using a small bench top centrifuge in the radiochemistry laboratory that had a 

maximum force of 21,000 x g and therefore used this as a starting point. We were also 

limited in time due to the half-life of 18F, therefore we decided to choose a 1 hour 

centrifugation at 21,000 x g. The activity in the supernatant and pellet was measured after 

centrifugation and up to 86% of the initial radioactivity was found in the pellet, however after 

resuspension, all the activity remained stuck to the tube and none was found in the 

resuspension. We believed that at this force of centrifugation, exosomes were not being 

pelleted. After consulting with Dr Mélanie Dieudé (Researcher with expertise in 

exosomes/vesicles) at the CRCHUM, we were told that to fully pellet exosomes requires 18 

hours of centrifugation at 200,000 x g. Based off this, we decided to change our strategy and 

ultracentrifuge at 200,000 x g for up to 4 hours, testing 1h and 2h centrifugations as well. 

With this strategy, the same results were obtained as before: the radioactivity was sticking to 

the tubes and no activity was found in the resuspended pellets. Furthermore, a washing step 

was sometimes completed following centrifugation and a minimum of activity was removed 

with the wash as [18F]HFB was stuck to the tubes.  Consequentially, we decided to test low 

retention Eppendorf tubes which have been shown to reduce the sticking of proteins and 

peptides and improve sample recovery. There was no difference in results between normal 

Eppendorf tubes and the low retention tubes. Finally, there was no difference between the 

control samples of [18F]HFB without exosomes in terms of re-suspended radioactivity (Table 

4.9.1-7). In certain instances, there was even more radioactivity in the re-suspended pellet of 
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the controls than in the exosome samples (Table 4.9.3). This confirmed that the radioactivity 

values come from free [18F]HFB and not labeled exosomes and that no labeling of exosomes 

occurred.  

As part of our protocol, we also decided to test different incubation volumes, with the 

lowest volume being 84 µL (34 µL of exosomes + 50 µL of [18F]HFB) and highest volume 

1000 µL (10 µL of exosomes + 990 µL of [18F]HFB). In the paper by Zhang et al [5], it was 

demonstrated that the highest labeling efficiency for CPCs was obtained when the volume of 

[18F]HFB was kept small (1 mL) and the concentration of cells was high (2 x 106 cells/mL). 

Even with 50 µL of [18F]HFB, we were able to reach activities of 1 mCi in the incubation 

which allowed for measurements of activity several hours later. Varying the concentration of 

[18F]HFB and exosomes did not impact the success of radiolabeling. Considering the small 

size of the exosomes, it is quite plausible that the tracer and exosomes did not “interact” with 

each other in solution, this not being the case for CPCs and [18F]HFB. Furthermore, BSA was 

also tested during the incubation of [18F]HFB with exosomes. Firstly, BSA has been 

demonstrated to be a fatty acid transporter across cell membranes [6] and given that 

[18F]HFB resembles a lipid, we hypothesized that BSA may help with uptake of [18F]HFB 

into exosomes. Secondly, BSA has also been shown to reduce the adhesion of proteins to 

reaction tubes, which was a major problem with [18F]HFB. The addition of BSA slightly 

reduced the amount of radioactivity that was stuck to the tubes, however, did not help with 

the radiolabeling of exosomes, as confirmed via ITLC. 

ITLC analysis was completed to verify if the exosomes were labeled or not and this 

approach was inspired by Choi et al [4]. In their paper, they could see a significant difference 

in migration distance for labeled exosomes as compared to free tracer. Radiolabeled 
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exosomes migrated a short distance on their ITLCs while their free tracer migrated the 

majority of the ITLC plate (Figure 5.1). ITLC conditions were developed for [18F]HFB 

which resulted in an Rf for [18F]HFB of 0.83. Under these conditions, it is expected that 

labeled exosomes would remain at the base line on the ITLC.  Figure 4.10 demonstrates that 

there was no difference in the ITLCs obtained for the exosome samples as compared to the 

[18F]HFB controls. The migration distance of [18F]HFB was slightly changed with the 

addition of BSA, however, only one peak was observed when labeled exosomes would have 

created a second radioactive peak with a much different Rf.  

5.3.1 Limitations with [18F]HFB for exosome labeling  
 

The original developers of [18F]HFB, Ma et al [1], claimed that [18F]HFB was absorbed 

into the membranes of cells, like hydrophobic fluorescent dyes. I hypothesize that that there 

may be a different underlying mechanism by which [18F]HFB labels cells, based off the 

results obtained with the EESCs and PD-10 size exclusion columns. I hypothesize that when 

placed in solution, [18F]HFB forms micelles/liposomes due to its inherent structure. The 

hydrophobic long-chain tail and the slightly more polar head groups align to form a micelle, 

much like a phospholipid bilayer. Consequentially, this “micelle” would greatly increase the 

molecular weight of the [18F]HFB “complex” and possibly explain why were unable to use 

EESCs and PD-10 columns to separate free [18F]HFB from labeled exosomes.  The [18F]HFB 

“complex” could be approximately the same size as exosomes explaining their direct elution 

through these columns. As for the cell labeling, I believe the [18F]HFB micelles were taken 

up by cells through an endocytosis process, rather than being incorporated into membranes, 

therefore cell labeling was still effected. In terms of exosome radiolabeling, considering 
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exosomes are much smaller than cells and the [18F]HFB micelles could be similar in size to 

exosomes, the same endocytosis process did not take place.  

To overcome the potential production of micelles, we tried adding 0.1% Tween to the 

formulation of [18F]HFB for the PD-10 column tests. Tween is a detergent used to prepare 

stable oil-in-water emulsions and is also used to increase membrane permeability. A similar 

detergent (saponin) was used to render exosome more permeable for loading of catalase for 

treatment of Parkinson’s Disease (PD) in mice [7]. The addition of Tween to the final 

formulation slightly increased the elution volume needed for [18F]HFB to pass through the 

PD-10 columns. Dr. Gibbings was against the idea of using Tween in our exosome 

incubations as it creates large holes in membranes which can greatly affect the 

biodistribution of the exosomes through drastically modifying their surface and can also 

cause exosomes to burst. Whereas in the PD study, the authors were not concerned with 

completing a robust biodistribution study of their exosomes, they simply wanted to 

demonstrate that exosomes could cross the BBB and deliver a large drug which is why 

saponin was used.  

5.3.2 Future directions for radiolabeling exosomes  
 

Although radiolabeling exosomes with [18F]HFB did not prove to be successful, I believe 

it is still a possibility to determine their biodistribution via PET through different strategies. 

Going forward, it would be interesting to try another F-18 based radiotracer that is currently 

being used in the clinic: 14(R,S)-[18F]Fluoro-6-this-heptadecanoic acid ([18F]FTHA). 

[18F]FTHA is an analogue of a long chain fatty acid utilised to measure free-fatty acid uptake 

and oxidation [8]. The same strategy could be applied for [18F]FTHA as for [18F]HFB to 

determine if [18F]FTHA can be incorporated into the membrane of exosomes. [18F]FTHA 
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precursor is commercially available and kits can be ordered from ABX to develop the 

radiosynthesis of [18F]FTHA with our Synthera® ASU which could also be applied in the 

clinic. If this strategy does not work, another strategy could be to label an antibody specific 

to CD63. CD63 is a protein that is found in most exosomes and is used a biomarker to 

identify exosomes [9]. Antibody radiolabeling is an emerging field with many possibilities 

available, and F-18 could either be directly substituted onto the antibody or can be 

incorporated into a chelator for indirect labeling. Finally, another strategy could be to use a 

longer-lived PET radioisotope such as I-124 that has a half-life of 4.18 days. It would be 

possible to develop an I-124 based radiotracer that can be incubated with cells and therefore 

incorporated into exosomes as they are formed. The longer half-life of I-124 would allow for 

this sort of approach (longer incubation and ultracentrifuge time) and the labeled exosomes 

could be easily purified from the cell media using sequential centrifugation.  

5.4 Radiolabeling chitosan-based hydrogels 
 

Before proceeding with the radiolabeling of the chitosan hydrogels, it was first necessary 

to determine the effect of adding DMSO on the gelation kinetics and mechanical properties 

of the gels. This work was completed by an expert in biomaterials, Dr. Yasaman Alinejad 

(postdoctoral fellow in Dr Lerouge’s lab) and her study set the starting point for our hydrogel 

radiolabeling experiments. From these results, it was concluded that if we maintained the 

final concentration of 10% DMSO/saline to 0.5% v/v, the hydrogels would be minimally 

affected (Figures 4.11.1-4). Concentrations above 0.5% v/v of 10% DMSO/saline had a 

significant impact on the storage modulus (approach 1) of the hydrogels, although the secant 

modulus remained unchanged. Another important factor was the sequence of mixing of the 

components of the hydrogels as there are two options: Approach 1(Chitosan + [18F]HFB) + 
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Gelation agent; or Approach 2 (Chitosan + Gelation agent) + [18F]HFB. The order of mixing 

did not seem to have a large difference in the rheological or mechanical properties of the 

hydrogels, however, after completing some radiolabeling experiments, the order of mixing 

had a large impact on the yield of labeling the hydrogel and on losses of radioactivity. As 

seen with the exosome experiments, [18F]HFB sticks to any plastics and tubes, therefore, it is 

crucial to minimize the amount of transfers involved as to minimize losses of radioactivity. 

When [18F]HFB is mixed with chitosan as a first step as in approach 1, the additional mixing 

step required to add the gelation agent results in losses of radioactivity averaging 42.1%. 

Comparing this to addition of [18F]HFB as a final step, after mixing of chitosan and the 

gelation agent as in approach 2, an average of 16.2 % of activity is lost due to mixing. 

Consequentially, after validating these losses through repeated experiments, we decided to 

forgo approach 1 and solely use approach 2 going forward where [18F]HFB was added in the 

second step.  

With regards to labeling efficiency, Ahmadi et al had observed an 82% efficiency when 

using [18F]HFB to non-covalently label a collagen matrix [10]. With our chitosan 

radiolabeling, > 90% labeling efficiency was observed up until eight hours, where we started 

to see a slight efflux of [18F]HFB thereafter, corresponding to a maximum loss of 

radioactivity of 9%. High labeling efficiency was found, regardless of the order of mixing 

(approach 1 vs. 2) and a similar trend was obtained whether the hydrogels were placed in 

transwells or in molds (Figures 4.12.1-6). We wanted to test the labeling efficiency in both 

the transwells and molds as neither approach represents in vivo conditions perfectly. For the 

transwell experiments, the hydrogel was allowed to gel only for a short period of time before 

being submerged in saline. This resulted in a more liquid gel, whereas the gel molds were 
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allowed to fully gel and form a rigid gel before being submerged in saline. We were worried 

that in a more liquid gel, there may have been a higher efflux of [18F]HFB as compared to the 

mold due to the radiotracer not being as embedded in the gel. This was not the case as there 

was similar labeling stability for the transwell and mold experiments. These experiments 

allowed us to conclude that there was uniform mixing of [18F]HFB throughout the hydrogel 

and that even if the hydrogel is not fully in a “gel state”, the interactions between [18F]HFB 

and the chitosan are strong enough to prevent [18F]HFB from being washed out of the gel. 

We hypothesized that similar results can be expected in vivo.  

To validate the specificity of [18F]HFB for radiolabeling the chitosan-based hydrogels, a 

control was completed with free F-18. The same procedure was followed with F-18, directly 

from the cyclotron, instead of [18F]HFB. As compared to [18F]HFB, there was less F-18 lost 

during the mixing of the hydrogels due to the fact that F-18 does not have the same lipophilic 

properties as [18F]HFB. Considering the hydrogels are largely composed of water and free F-

18 is in the form of a fluoride ion, one would predict that the F-18 would be retained in the 

hydrogel. But this was not the case and a large part of the F-18 was found in the saline rinses 

after just 5 minutes of incubation. After 1 hour of incubation less than 10% of the 

radioactivity remained in the hydrogel for both the transwell experiments and gel molds and 

almost no activity remained after 4 hours. This control validated our strategy to use [18F]HFB 

as a radiolabeling agent for chitosan-based hydrogel and demonstrates that [18F]HFB is an 

excellent radiotracer to be retained within the hydrogel.   

  The only other study completed on radiolabeling chitosan-based hydrogels utilized 

Na131I and they obtained 95% labeling yields with high stability over 6 days [11]. Working 

with 131I’s long half-life of 8 days allows for this type of work to be completed, however in 
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this study, we are mainly concerned with short term follow up of the localization of our 

chitosan hydrogels after injection in vivo, thus 18F is suitable for our purposes. Moving 

forward, we would like to assess the radiolabeled hydrogel in small animal models. When 

working with the animal models, it will be important to complete a control scan in parallel 

with free [18F]HFB in order to assess its retention in comparison to the labeled biomaterial 

with [18F]HFB. With this, we should be able to account for the approximatively 9% loss of 

[18F]HFB that is observed from the gels after 8 hours.  
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Figure 5.1.  ITLC analysis for radiolabeling of ENVs using [99mTc]-HMPAO and 
Radiolabeled ENVs (0.9% saline) [4].    
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Conclusion  
The automated synthesis of [18F]HFB was completed using the Synthera® ASU platform. 

Both the fluorination and semi-prep HPLC conditions were optimized to maximize the yield 

and chemical/radiochemical purity of [18F]HFB. [18F]HFB was obtained in 34% +/- 9%  

RCY with > 95% chemical/radiochemical purity within a total synthesis time of 60 minutes. 

The molar activity in the range of 46-190 mCi/µmol at EOS was low, however, we were not 

concerned with this as our target was not a saturable receptor. Various strategies were 

effected for radiolabeling exosomes, including different incubation temperatures, volumes of 

[18F]HFB/exosomes, different centrifugation forces/times and the addition of BSA. However, 

there was no difference between the exosome samples and controls (free [18F]HFB) in 

regards to radioactivity and ITLC analysis. Chitosan-based hydrogels were successfully 

labeled using [18F]HFB with a labeling stability of over 90% even after 8 hours incubated in 

saline, while a control study using free F-18 exhibited less than 10% of the radioactivity 

remaining in the hydrogel after 60 mins. The order of mixing was optimized to add [18F]HFB 

as a final step to minimize losses of radioactivity in the labeling process. [18F]HFB of 

exosomes and biomaterials presents a novel approach to determining their in vivo 

distribution. Work is underway to continue the hydrogel radiolabeling experiments and to 

determine the in vivo safety and efficacy of the hydrogels in animal models. This 

translational work will eventually lead to implementing the use of hydrogels in humans for 

various applications such as regenerative therapies and drug delivery. 

 



 
 

 
  

103 

References  
1. Ruiz, G.A.M. and H.F.Z. Corrales, Chitosan, Chitosan Derivatives and their Biomedical 

Applications, in Biological Activities and Application of Marine Polysaccharides. 2017, 
InTech. 

2. Jacobson, O., D.O. Kiesewetter, and X. Chen, Fluorine-18 radiochemistry, labeling 
strategies and synthetic routes. Bioconjugate chemistry, 2014. 26(1): p. 1-18. 

3. Colombo, M., G. Raposo, and C. Théry, Biogenesis, secretion, and intercellular 
interactions of exosomes and other extracellular vesicles. Annual review of cell and 
developmental biology, 2014. 30: p. 255-289. 

4. Le Bars, D., Fluorine-18 and medical imaging: Radiopharmaceuticals for positron 
emission tomography. Journal of fluorine chemistry, 2006. 127(11): p. 1488-1493. 

5. Choi, H., et al., Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using 
99mTc-HMPAO. Scientific reports, 2015. 5: p. 15636. 

6. Saha, G.B. and E. de Kerviller, Basics of PET imaging. J Radiol, 2006. 87: p. n719. 
7. Gad, S.C., Pharmaceutical manufacturing handbook: production and processes. Vol. 5. 

2008: John Wiley & Sons. 
8. Cherry, S.R., Fundamentals of positron emission tomography and applications in 

preclinical drug development. The Journal of Clinical Pharmacology, 2001. 41(5): p. 
482-491. 

9. Massoud, T.F. and S.S. Gambhir, Molecular imaging in living subjects: seeing 
fundamental biological processes in a new light. Genes & development, 2003. 17(5): p. 
545-580. 

10. Brix, G., et al., Radiation exposure of patients undergoing whole-body dual-modality 
18F-FDG PET/CT examinations. Journal of Nuclear Medicine, 2005. 46(4): p. 608-613. 

11. Schlyer, D.J., PET tracers and radiochemistry. ANNALS-ACADEMY OF MEDICINE 
SINGAPORE, 2004. 33(2): p. 146-154. 

12. Hutchins, G.D., et al., Small animal PET imaging. ILAR journal, 2008. 49(1): p. 54-65. 
13. Ollinger, J.M. and J.A. Fessler, Positron-emission tomography. IEEE Signal Processing 

Magazine, 1997. 14(1): p. 43-55. 
14. Lewellen, T.K., Recent developments in PET detector technology. Physics in medicine 

and biology, 2008. 53(17): p. R287. 
15. Lecomte, R., Novel detector technology for clinical PET. European journal of nuclear 

medicine and molecular imaging, 2009. 36(1): p. 69-85. 
16. Meyer, J.H., et al., Prefrontal cortex 5-HT2 receptors in depression: an [18F] setoperone 

PET imaging study. American Journal of Psychiatry, 1999. 156(7): p. 1029-1034. 
17. Jacobson, O., et al., Rapid and simple one-step F-18 labeling of peptides. Bioconjugate 

chemistry, 2011. 22(3): p. 422-428. 
17A.  Stephenson, Nickeisha A., et al. "Iodonium Ylide–Mediated Radiofluorination of 18F-

FPEB and Validation for Human Use." Journal of Nuclear Medicine56.3 (2015): 489-
492. 

17B.  Tredwell, Matthew, et al. "A General Copper-Mediated Nucleophilic 18F Fluorination of 
Arenes." Angewandte Chemie International Edition 53.30 (2014): 7751-7755. 

 
 



 
 

 
  

104 

 
18. Löser, R., et al., Use of 3-[18F] fluoropropanesulfonyl chloride as a prosthetic agent for 

the radiolabelling of amines: Investigation of precursor molecules, labelling conditions 
and enzymatic stability of the corresponding sulfonamides. Beilstein journal of organic 
chemistry, 2013. 9(1): p. 1002-1011. 

19. Ma, B., et al., A simple method for stem cell labeling with fluorine 18. Nuclear medicine 
and biology, 2005. 32(7): p. 701-705. 

20. Zhang, Y., et al., 18F-FDG cell labeling may underestimate transplanted cell homing: 
more accurate, efficient, and stable cell labeling with hexadecyl-4-[18F] fluorobenzoate 
for in vivo tracking of transplanted human progenitor cells by positron emission 
tomography. Cell transplantation, 2012. 21(9): p. 1821-1835. 

21. Ahmadi, A., et al., PET imaging of a collagen matrix reveals its effective injection and 
targeted retention in a mouse model of myocardial infarction. Biomaterials, 2015. 49: p. 
18-26. 

22. Sun, D., et al., Exosomes are endogenous nanoparticles that can deliver biological 
information between cells. Advanced drug delivery reviews, 2013. 65(3): p. 342-347. 

23. De Rosa, G., et al., Nanotechnologies: a strategy to overcome blood-brain barrier. 
Current drug metabolism, 2012. 13(1): p. 61-69. 

24. Papakostas, D., et al., Nanoparticles in dermatology. Archives of dermatological 
research, 2011. 303(8): p. 533-550. 

25. Almeida, J.P.M., et al., In vivo biodistribution of nanoparticles. Nanomedicine, 2011. 
6(5): p. 815-835. 

26. Javeed, N. and D. Mukhopadhyay, Exosomes and their role in the micro-/macro-
environment: a comprehensive review. Journal of biomedical research, 2016. 30. 

27. Savina, A., M. Vidal, and M.I. Colombo, The exosome pathway in K562 cells is 
regulated by Rab11. Journal of cell science, 2002. 115(12): p. 2505-2515. 

28. Mathivanan, S., H. Ji, and R.J. Simpson, Exosomes: extracellular organelles important in 
intercellular communication. Journal of proteomics, 2010. 73(10): p. 1907-1920. 

29. Bobrie, A., et al., Rab27a supports exosome-dependent and-independent mechanisms that 
modify the tumor microenvironment and can promote tumor progression. Cancer 
research, 2012. 72(19): p. 4920-4930. 

30. Zhang, Y., et al., Exosomes derived from IL-12-anchored renal cancer cells increase 
induction of specific antitumor response in vitro: a novel vaccine for renal cell 
carcinoma. International journal of oncology, 2010. 36(1): p. 133. 

31. Haney, M.J., et al., Exosomes as drug delivery vehicles for Parkinson's disease therapy. 
Journal of Controlled Release, 2015. 207: p. 18-30. 

32. Tokatlian, T. and T. Segura, siRNA applications in nanomedicine. Wiley Interdisciplinary 
Reviews: Nanomedicine and Nanobiotechnology, 2010. 2(3): p. 305-315. 

33. Akhtar, S. and I.F. Benter, Nonviral delivery of synthetic siRNAs in vivo. The Journal of 
clinical investigation, 2007. 117(12): p. 3623-3632. 

34. Peer, D., et al., Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an 
anti-inflammatory target. Science, 2008. 319(5863): p. 627-630. 

35. Rozema, D.B., et al., Dynamic PolyConjugates for targeted in vivo delivery of siRNA to 
hepatocytes. Proceedings of the National Academy of Sciences, 2007. 104(32): p. 12982-
12987. 



 
 

 
  

105 

36. Alvarez-Erviti, L., et al., Delivery of siRNA to the mouse brain by systemic injection of 
targeted exosomes. Nature biotechnology, 2011. 29(4): p. 341-345. 

37. Johnson, I., Review: Fluorescent probes for living cells. The Histochemical Journal, 
1998. 30(3): p. 123-140. 

38. Fatimi, A., et al., A new injectable radiopaque chitosan-based sclerosing embolizing 
hydrogel for endovascular therapies. Acta biomaterialia, 2012. 8(7): p. 2712-2721. 

39. Assaad, E., M. Maire, and S. Lerouge, Injectable thermosensitive chitosan hydrogels with 
controlled gelation kinetics and enhanced mechanical resistance. Carbohydrate 
polymers, 2015. 130: p. 87-96. 

39A.  Ceccaldi, Caroline, et al. "Optimization of injectable thermosensitive scaffolds with 
enhanced mechanical properties for cell therapy." Macromolecular bioscience (2017). 

40. Fatimi, A., F. Zehtabi, and S. Lerouge, Optimization and characterization of injectable 
chitosan-iodixanol-based hydrogels for the embolization of blood vessels. Journal of 
Biomedical Materials Research Part B: Applied Biomaterials, 2015. 

41. Kim, D.-W., et al., Radiolabeled chitosan hydrogel containing VEGF enhances 
angiogenesis in a rodent model of acute myocardial infarction. Macromolecular 
Research, 2014. 22(3): p. 272-278. 

42. Lapi, S.E. and M.J. Welch, A historical perspective on the specific activity of 
radiopharmaceuticals: What have we learned in the 35years of the ISRC? Nuclear 
medicine and biology, 2013. 40(3): p. 314-320. 

43. Studenov, A.R., et al., Studies of the mechanism of the in-loop synthesis of 
radiopharmaceuticals. Applied radiation and isotopes, 2004. 61(6): p. 1195-1201. 

44. van der Vusse, G.J., Albumin as fatty acid transporter. Drug metabolism and 
pharmacokinetics, 2009. 24(4): p. 300-307. 

45. Takala, T., et al., 14 (R, S)-[18 F] Fluoro-6-thia-heptadecanoic acid as a tracer of free 
fatty acid uptake and oxidation in myocardium and skeletal muscle. European journal of 
nuclear medicine and molecular imaging, 2002. 29(12): p. 1617-1622. 

 

 

 

  

 


