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1. Course Overview: Stellar Atmospheres vs. Interiors

The discussion in DocOnotes1-stars gives a general overview of how the basic observables

of stars – position, apparent brightness, and color spectrum – can be used, together with

some basic physical principles, to infer or estimate their key physical properties – mass, lu-

minosity, radius, etc. DocOnotes2-spectra show that, while the spectral energy distributions

(SED) from observed stars can be roughly approximated by a Planck BlackBody function,

the detailed spectrum contains a complex myriad of absorption lines imprinted by atomic

absorption of radiation escaping the stellar atmosphere.

The goals of this course, and the notes here, are now to extend these relatively simplifed

concepts to gain a more complete understanding of both the atmospheres and interiors of

stars.

While the atmosphere consists of only a tiny fraction of the overall stellar radius and

mass (respectively about 10−3 and 10−12), it represents a crucial boundary layer between the

dense interior and the near vacuum outside, from which the light we see is released, imprint-

ing it with detailed spectral signatures that, if properly interpreted in terms of the physics

principles coupling gas and radiation, provides essential information on stellar properties. In

particular, the identities, strengths, and shapes (or profile) of spectral lines contain impor-

tant clues to the physical state of the atmosphere – e.g., chemical composition, ionization

state, effective temperature, surface gravity, rotation rate. However these must be properly

interpreted in terms of a detailed model atmosphere that accounts properly for basic phys-

ical processes, namely: the excitation and ionization of atoms; the associated absorption,

scattering and emission of radiation and its dependence on photon energy or frequency; and

finally how this leads to such a complex variation in emitted flux vs. frequency that charac-

terizes the observed spectrum. Such model atmosphere interpretation of stellar spectra form

the basis for inferring basic stellar properties like mass, radius and luminosity.

But once given these stellar properties, a central goal is to understand how they inter-

relate with each other, and how they develop and evolve in time. The first represents the

problem of stellar structure, that is the basic equations describing the hydrostatic support

against gravity, and the source and transport of energy from the deep interior to the stellar

surface.

The latter problem of stellar evolution breaks naturally into questions regarding the

origin and formation of stars, their gradual aging as their nuclear fuel is expended, and how

they eventually die.

The first issue regarding origin and formation of stars represents a very broad area

of active research; it could readily encompass a course of its own, but is usually part of
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a course on the Inter-Stellar Medium (ISM), which indeed provides the source mass, from

gas and dust in dense, cold molecular clouds, that is condensed by self gravity to form a

proto-star. Apart from some brief discussions, e.g. of the critical “Jean’s” length or mass

for gravitational collapse of a cloud, we will have little time for discussion of star formation

in this course.

Instead, our examination of stellar evolution will begin with the final phases of contrac-

tion (on what’s known as the “Hayashi track”) toward the Zero-Age Main Sequence (ZAMS),

representing when the core of a star is first hot enough to allow a nuclear-fusion burning of

hydrogen into helium. This then provides an energy source to balance the loss by the radia-

tive luminosity, allowing the star to remain on this MS for many millions or even (e.g. for the

Sun) billions of years. But the gradual MS aging as this core-H fuel is spent leads ultimately

to the Terminal Age Main Sequence (TAMS), when the core H is exhausted, whereupon the

star actually expands to become a cool, luminous “giant”.

A key overall theme is that the luminosity and lifetime on the MS, and indeed the very

nature of the post-MS evolution and ultimate death of stars, all depend crucially on their

initial mass.

1.1. Differences between Atmospheres and Interiors

But our path to this heart of a star and its life passes necessarily through the atmosphere,

the surface layers that emit the complex radiative spectrum that we observe and aim to

interpet. So let us begin by listing some key differences between stellar atmospheres vs.

interiors:

• Scale: Whereas a stellar interior extends over the full stellar radius R, the atmosphere

is just a narrow surface layer, typically only about 10−3R.

• Mean-Free-Path: By definition an atmosphere is where the very opaque nature of

the interior finally becomes semi-transparent, leading to escape of radiation. This

transparency can be quantified in terms of the ratio of photon mean-free-path ℓ to

a characteristic length to escape. In the interior ℓ is very small (a few cm), much

smaller than the stellar radius scale R. But in the atmospheric surface ℓ becomes of

comparable to the scale height H (which is also of order 10−3R), allowing single flight

escape.

• Isotropy: The opaqueness of the interior means its radiation field is nearly isotropic,

with only a tiny fraction (of order ℓ/R ≪ 1) more photons going up than down. By
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contrast, the esape from the photosphere makes the radiation field there distinctly

anisotropic, with most radiation going up, and little or none coming down from the

nearly empty and transparent space above.

• Radiation Transport: Given the above distinctions, we can see that the transport

of radiative energy out of the interior can be well modeled in terms of a local diffusion;

by contrast, the transition to free escape in the atmosphere must be cast in terms of a

more general equation of radiative transfer that in principle requires an integral, and

thus inherently non-local, solution.

• LTE vs. NLTE: In the interior extensive absorption of radiation implies a strong

radiation-matter coupling that is much like a classical blackbody, and so leads very

nearly to a Local Thermodynamic Equilibrium (LTE), with the radiation field well

characterized by the Planck function Bν(T ). In contrast, the inherently non-local

transport in an atmosphere, particularly in a case with a strong degree of scattering

that does not well couple the radiation to the thermal properties of the gas, can lead

to a distinctly Non Local-Thermodynamic-Equilibrium 1 (NLTE).

• Temperature: The escape of radiation makes an atmospheric surface relatively “cool”,

typically ∼ 104 K, in contrast to the ∼ 107 K temperature of the deep interior, where

the opaqueness of overlying matter acts much like a very heavy “blanket”.

• Pressure: To balance its own self-gravity, a star has to have much higher pressure in

the interior than at the surface.

• Density: Even with the high temperature, this gravitational compression also leads

to a much higher central density.

• Energy Balance: While the surface luminosity represents energy loss from the at-

mosphere, the very high density and temperature within the deep stellar core results

in a nuclear burning that provides an energy source to the interior.

Despite these many important differences, there are a few fundamental concepts that are

essential for both atmospheres and interiors. The next few sections cover some key examples,

for example the opacity that couples radiation to matter, and the balance between pressure

gradient and gravity the supports both a star and its atmosphere in hydrostatic equlibrium.

1The negation of the “Non” here is of the whole concept of LTE, and not, e.g., a TE that happens to be

non-local (NL).
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2. Escape of Radiation from a Stellar Envelope

Most everything we know about a star comes from studying the light it emits from

its visible surface layer or “atmosphere”. But the energy for this visible emission can be

traced to nuclear fusion in the stellar core. As illustrated in fig. 1, to reach the surface, the

associated photons must diffuse outward via a “random walk” through the stellar envelope.

To decribe the extent of this diffusion, one needs to estimate a typical photon mean-

free-path (mfp) in the stellar interior,

ℓ ≡ 1

nσ
=

1

κρ
, (2.1)

where mass and number densities (ρ and n) are related through the mean mass per particle

µ, i.e. ρ = µn, and the opacity κ is likewise just the interaction cross section σ per particle

mass, i.e. κ = σ/µ.

Fig. 1.— Illustration of the random-walk diffusion of photons from the core to surface of a

star.
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Fig. 2.— Illustration of the free-electron and bound-electron processes that lead to scattering,

absorption, and emission of photons.

2.1. Sources of Stellar Opacity

The opacity of stellar material is a central issue for both interiors and atmospheres, so

let’s briefly summarize the sources of stellar opacity in terms of the basic physical processes.

Because light is an electromagnetic wave, its fundamental interaction with matter occurs

through the variable acceleration of charged particles by the varying electric field in the

wave. As the lightest common charged particle, electrons are most easily accelerated, and

thus they are generally key for the interaction of light with matter. But the details of the

interaction, and thus the associated cross sections and opacities, depend on the bound vs.

free nature of the electron. The relevant combinations are illustrated in figure 2, and are

briefly listed as follows:

1. Free electron (Thomson) scattering

2. Free-free (f-f) absorption
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3. Bound-free (b-f) absorption

4. Bound-bound (b-b) absorption or scattering

Because a completely isolated electron has no way to store both the energy and mo-

mentum of a photon, it cannot by itself absorb radiation, and so instead simply scatters, or

redirects it. Such “Thomson scattering” by free electrons (item #1) is thus distinct from

the “true” absorption of the free-free (item #2) interaction of electrons that are unbound,

but near enough to an ion to share the momentum and energy of the absorbed photon. In

the latter, the electron effectively goes from one hyperbolic orbital energy to another. Since

the hyperbolic orbital energies of such free electrons are not quantized, such f-f absorption

can thus in principal occur for any photon energy.

Moreover, for photons with sufficient energy to ionize or kick off an electron bound to

an atom or ion, there is then also bound-free absorption (item #3). This is non-zero for any

energy above the ionization threshhold energy.

Lastly, for photons with just the right energy to excite an atom or ion from one discrete

bound level to a higher bound level, there can be bound-bound absorption (item #4). This

is the basic process behind the narrow absorption lines in observed stellar spectra. Following

such initial absorption to excite an electron to a higher bound level, quite often the atom

will then simply spontaneously de-excite back to the same initial level, emitting a photon

of nearly the same original energy, but in a different direction, representing then a b-b

scattering. On the other hand, if before this spontaneous decay can occur, another electron

collisionally de-excites the upper level, then overall there is a “true” absorption, with the

energy of the photon ending up in the colliding electron, and thus ultimately shared with

the gas.

A key distinction between scattering and true absorption is thus that the latter provides

a way to couple the energetics of radiation and matter, and so tends to push both towards

thermodynamical equilibrium (TE).

Note finally that the emission of radiation generally occurs by the inverse of the last 3

absorption processes in the above list, known thus as

1. Free-free (f-f) emission

2. Free-Bound (f-b) emission

3. Bound-bound (b-b) emission
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2.2. Thomson Cross-Section and the Opacity for Electron Scattering

In the deep stellar interior, where the atoms are generally highly ionized, a substantial

component of the opacity comes just from the scattering off free electrons. This is a relatively

simple process that can be reasonably well analyzed in terms of classical electromagnetism,

in contrast to the quantum mechanical models needed for photon interaction with electrons

that are bound within atoms.

The upper left panel of figure 2 illustrates how the acceleration of an electron induces

a corresponding variation of its own electric field, which then induces a new electromag-

netic wave, or photon, that propagates off in a new direction. The overall process is called

“Thomson scattering”, after J.J. Thomson, who in the late 19th century first worked out the

associated ‘Thomson cross section’ using Maxwell’s equations for E&M. Details can usually

be found in any undergraduate E&M text, but the site here gives a basic summary of the

derivation: http://farside.ph.utexas.edu/teaching/jk1/lectures/node85.html

Intuitively, the result can be roughly understood in terms of the so-called “classical

electron radius” re. This is obtained through the equality,

e2

re

≡ mec
2 , (2.2)

where again e is the magnitude of the electron charge, me is the electron mass, and c is the

speed of light. The left side is just the classical energy needed to assemble the total electron

charge within a uniform sphere of radius re, while the right side is the rest mass energy of an

electron from Einstein’s famous equivalence formula between mass and energy. Eqn. (2.2)

can be trivially solved for the associated electron radius,

re =
e2

mec2
. (2.3)

In these terms, the Thomson cross section for free-electron scattering is just

σTh =
8

3
πr2

e = 0.66 × 10−25 cm2 = 2/3 barn . (2.4)

(The term “barn” represents a kind of physics joke, because compared to the cross sections

associated with atomic nuclei, it is a huge, “as big as a barn door”.) Thus we see that

Thomson scattering has a cross section just 8/3 times greater than the projected area of a

sphere with the classical electron radius.

For stellar material to have an overall neutrality in electric charge, even free electrons

must still be loosely associated with corresponding positively charged ions, which have much

spowocki
Comment on Text
-24
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greater mass. Defining then a mean mass per free electron µe, we can then write the electron

scattering opacity κe ≡ σTh/µe. Ionized hydrogen gives one proton mass mp per electron,

but for fully ionized helium (and indeed for most all heavier ions), there are two proton

masses for each electron. For fully ionized stellar material with hydrogen mass fraction X,

we find then that

µe = mp/(1 +X) . (2.5)

Since mp ≈ 5/3 × 10−24 g, we thus obtain

κe = 0.2 (1 +X)
cm2

g
= 0.34 cm2/g , (2.6)

where the last equality applies a “standard” solar hydrogen mass fraction X = 0.72.

Two particularly simple properties of electron scattering are: 1) it is generally almost

spatially constant, and 2) it is “gray”, i.e. independent of photon wavelength. This contrasts

markedly with many other sources of opacity, which can depend on density and temperature,

as well as on wavelength, particularly for line-absorption between bound levels of an atom.

We discuss such other opacity source and their scalings in greater detail below.

2.3. Random-Walk Model for Photon Diffusion from Stellar Core to Surface

For a star with mass M and radius R, the mean stellar density is ρ̄ = M/((4/3)πR3),

which for the sun with M⊙ ≈ 2 × 1033 g and R⊙ ≈ 7 × 1010 cm works out to be

ρ̄⊙ =
M⊙

4πR3
⊙/3

≈ 1.4 g/cm3 , (2.7)

i.e. just above the density of water. Multiplying this by the electron opacity and taking the

inverse then gives an average mean-free-path from electron scattering in the sun,

ℓ̄⊙ =
1

0.34 × 1.4
= 2 cm . (2.8)

Of course, in the core of the actual sun, where the mean density is typically a hundred

times higher than this mean value, the mean-free-path is yet a factor hundred smaller, i.e

ℓcore ≈ 0.2 mm!

But either way, the mean-free-path is much, much smaller than the solar radius R⊙ ≈
7 × 1010, implying a typical optical depth,

τ =
R⊙
ℓ̄⊙

≈ 3.5 × 1010 . (2.9)

spowocki
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The total number of scatterings needed to diffuse from the center to the surface can then

be estimated from a classical “random walk” argument. The simple 1D version states that

after N left/right random steps of unit length, the root-mean-square (rms) distance from

the origin is
√
N . For the 3D case of stellar diffusion, this rms number of unit steps can be

roughly associated with the total number of mean-free-paths between the core and surface,

i.e. τ . This implies that photons created in the core of the sun need to scatter a total of

τ 2 ≈ 1021 times to reach the surface! Along the way the cumulative path length travelled is

ℓtot ≈ τ 2ℓ̄⊙ ≈ τR⊙. For photons travelling at the speed of light c = 3 × 1010cm/s, the total

time for photons to diffuse from the center to the surface is thus

tdiff = τ 2 ℓ̄⊙
c

≈ τ
R⊙
c

= 3.5 × 1010 × 2.3 s ≈ 2600 yr , (2.10)

where for the last evaluation, it is handy to note that 1 yr ≈ π × 107 s.

Once the photons reach the surface, they can escape the star and travel unimpeded

through space, taking, for example, only a modest time tearth = au/c ≈ 8 min to cross the

1 au distance from the sun to the earth. The stellar atmospheric surface thus marks a quite

distinct boundary between the interior and free space. From deep within the interior, the

stellar radiation field would appear nearly isotropic (same in all directions), with only a small

asymmetry (of order 1/τ) between upward and downward photons. But near the surface,

this radiation becomes distinctly anisotropic, emerging upward from the surface below, but

with no radiation coming downward from empty space above.

We shall see below that this atmospheric transition between interior and empty space

occurs over a quite narrow layer, typically a few hundred kilometers or so, or about a

thousandth of the stellar radius.

3. Density Stratification from Hydrostatic Equilibrium

In reality of course stars are not uniform density, because the star’s self-gravity attracts

material into a higher inward concentration. In a static star, the inward gravitational accel-

eration g = GMr/r
2 on stellar material of density ρ at local radius r must be balanced by a

(negative) radial gradient in the gas pressure P ,

dP

dr
= −ρ g = −ρGMr

r2
, (3.1)

a condition known as Hydrostatic Equilibrium. This is one of the fundamental equations

of stellar structure, with important implications for the properties of both the interior and



– 14 –

atmosphere. For the atmosphere, the mass and radius are fixed at surface values M and R.

But within a spherical stellar envelope, the local gravitational acceleration is set by just the

total mass interior to the local radius r, i.e.

Mr ≡
∫ r

0

4πρ(r′)r′2 dr′ . (3.2)

To relate the density and pressure, a key auxiliary equation here is the Ideal Gas Law,

which in this context can be written in the form,

P = ρ
kT

µ̄
, (3.3)

where k = 1.38 × 10−16erg/K is Boltzmann’s constant, T is the temperature, and µ̄ is the

average mass of all particles (e.g. both ions and electrons) in the gas. For any given element,

the fully ionized molecular weight is just set by the ratio of the nuclear mass to charge.

For fully ionized mixture with mass fraction X, Y , and Z for H, He, and metals, the overall

mean molecular weight comes from the inverse of the inverse sum of the individual molecular

weights,

µ̄ =
mp

2X + 3Y/4 + Z/2
≈ 0.6mp (3.4)

where the last equality is for the solar case with X = 0.72, Y = 0.27, and Z = 0.01.

The ratio of eqns. (3.3) to (3.1) defines a characteristic scale height for variations in the

gas pressure,

H ≡ P

|dP/dr| =
kT

µ̄g
=

kTr2

µ̄GM
. (3.5)

The huge differences in temperataure between the interior vs. surface imply a correspondly

large differences in the pressure scale height H in these regions.

3.1. Million-Kelvin Virial Temperature of Stellar Interiors

Over the full stellar envelope, the pressure drops from some large central value to effec-

tively zero just outside the surface radius R. This means that, averaged over the whole star,

H ≈ R.

Applying this in eqn. (3.5), and approximating the gravity by its surface value at r = R,

we can readily estimate a characteristic temperature for a stellar interior,

Tint ∼
GMµ̄

kR
∼ 13 × 106K

M/M⊙
R/R⊙

. (3.6)
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The latter evaluation for stellar mass and radius in units of the solar values shows directly

that stellar interior temperatures are typically of order 10 million Kelvin!

This close connection between thermal energy of particles in the interior (∼ kT ) and

their stellar gravitational binding energy (∼ GMµ̄/R) turns out to be an example of a general

property for bound systems, often referred to as the “virial theorum”. We will return to this

again in our discussion of stellar interiors, but for now you can find further details in in R.

Townsend’s Stellar Interior notes 01-virial.pdf.

Note that this “virial temperature” for stellar interiors is also comparable to that needed

for nuclear fusion of hydrogen into helium in the stellar core, which is about 15 MK. This

correspondence is also not a coincidence. As stars contract from interstellar gas, they go

through a phase wherein the gravitational energy from contraction powers their radiative

luminosity. This contraction stops when the core temperature becomes hot enough for

hydrogen fusion to provide the energy for the stellar luminosity. Such processes will be a

central focus of our later discussion of stellar structure and evolution in the interiors part of

this course.

3.2. Thinness of Atmospheric Surface Layer

In contrast to this million-Kelvin interior, the characteristic temperature in the atmo-

spheric surface layers of a star are typically of order a few thousand Kelvin, i.e. near the

stellar effective temperature, which for a star of luminosity L and radius R is given by

Teff =

[

L

4πσR2

]1/4

= 5800K
(L/L⊙)1/4

√

R/R⊙
, (3.7)

where (as discussed in sec. 5.2 of DocOnotes1-stars) σ here is the Stefan-Boltzmann constant.

For the solar surface gravity ggrav = GM⊙/R
2
⊙ ≈ 2.7 × 104 cm/s2, molecular weight µ̄ ≈

0.6mp ≈ 10−24 g, and photospheric temperature T⊙ = 5800 K, we thus obtain a surface

pressure scale height that is only a tiny fraction of the solar radius,

H⊙ ≈ 0.0005R⊙ ≈ 300 km . (3.8)

This relative smallness of the atmospheric scale height is a key general characteristic of

static stellar atmospheres, common to all but the most extremely extended giant stars. In

general, for stars with mass M , radius R, and surface temperature T, the ratio of scale height

to radius can be written in terms of the ratio of the associated sound speed a∗ ≡
√

kT/µ̄ to
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surface escape speed ve ≡
√

2GM/R,

H

R
=

2a2
∗

v2
e

≈ 5 × 10−4 T

T⊙

R/R⊙
M/M⊙

(3.9)

For the solar surface, the sound speed is a∗ ≈ 9 km/s, about 1/70th of the surface escape

speed ve = 620 km/s.

Because of this relative thinness of atmopheric scale heights, the emergent spectrum

from a star can generally be well modeled in terms of a 1D planar atmosphere, in which

local conditions vary only with vertical height z = r − R. While this height is measured

relative to some reference layer z = 0 near the stellar radius R, the characteristics of the

model are themselves largely independent2 of R.

Within the atmosphere itself, the scale length for variation in temperature, T/|dT/dr|, is

typically much larger than a pressure scale height H. If we thus approximate the atmosphere

as being roughly isothermal with a constant temperature T ≈ Teff , then both the density

and pressure will have an exponential stratification with height z = r −R ,

P (z)

P∗
≈ ρ(z)

ρ∗
≈ e−z/H , (3.10)

where the asterisk subscripts denote values at the surface layer where z ≡ 0.

Once the density drops to a level where the photon mean-free-path becomes comparable

to this relatively small atmospheric scale height, radiation no longer diffuses, but rather

escapes fully into an unimpeded propagation away from the star. This transition between

diffusion and free escape occurs over just a few scale heights H ≪ R. This explains the very

sharp edge to the visible solar photosphere.

4. The Stellar Radiation Field

4.1. Surface Brightness or Specific Intensity I

The radiation field within a star can be fundamentally described in terms of the specfic

intensity, I. For radiation of frequency ν at some spatial location r, Iν(n̂, r) represents the

2Analogously, the properties of earth’s atmosphere are quite sensitive to the height above sea level, which

is at a central radial distance of roughly an earth’s radius. But otherwise, the actual value of earth’s radius

plays little role in the physics of the atmosphere, which is also much more affected by earth’s gravity and

characteristic surface temperature.
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Ω
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Aem

I
rec

I
em

I
em

θ

A
rec=d 2Ω

rec

Ωem=Aem cosθ/d2

dd

I
rec

θ

Fig. 3.— Left: The intensity Iem emitted into a solid angle Ωrec located along a direction

that makes an angle θ with the normal of the emission area Aem. Right: The intensity Irec

received into an area Arec = D2Ωrec at a distance D from the source with projected solid

angle Ωem = Aem cos θ/D2. Since the emitted and received energies are equal, we see that

Iem = Irec, showing that intensity is invariant with distance D.

energy per-unit-area, per-unit-time, per-unit-frequency, and per-unit solid angle3 about the

radiation direction n̂. It can also be thought of the “surface brightness” of a small patch of

the sky in a given direction.

As illustrated in figure 3, a key point is that the specific intensity remains unchanged

3A solid angle is a 2-D generalization of a 1-D angle in a plane. Much as the circumference of a unit

circle implies there are 2π radians along the full arc of the circle, so the area of a unit sphere implies that

the solid angle of the full sky is 4π steradians. If one imagines a sphere centered on the observer but outside

some observed object, then the solid angle of the object is given by the area of the shadow the object makes

on the sphere divided by the square of the radius of the sphere. For an object with an area A and surface

normal that makes an angle θ with the line of sight to observer, the solid angle seen from a large distance D

is approximately Ω = A cos θ/D2 steradian.
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during propagation through a vacuum, i.e. without any material to absorb or emit radiation.

This may seem at first surprising because intuitively we know that the flux from a radiative

source typically falls off with the inverse square of the distance. But note then the specific

intensity represents a kind of flux per unit solid angle.

Since the solid angle of a source with fixed size, like the sun, also declines with inverse

distance squared, the specific intensity of the resolved source, for example the surface bright-

ness of the sun, remains the same viewed from any distance. When we see the sun in earth’s

sky, its disk has the same brightness (ignoring absorption by earth’s atmosphere) as it would

have if we were to stand on the surface of the sun itself!! See §5.1 of DocOnotes1-stars for

some further discussion on the constancy of specific intensity and the meaning of solid angle.

In contrast to this constancy of specific intensity for radiation propagating through free

space, the specific intensity at any point within the atmosphere or interior of a star depends

on the sources and sinks of radiation from its interaction with stellar matter. As we shall see

in the discussion below, this can in general quite difficult to determine. But within the very

deep stellar interior, it again becomes relatively simple to describe, set by Iν ≈ Bν , where

the Planck blackbody function depends only on the local temperature T . Note this implies

that Iν in the interior is isotropic, i.e. the same in all directions n̂.

Between these simple limits of the isotropic, Planckian intensity of the deep interior and

the free-streaming constancy of intensity through empty space, lies the stellar atmosphere,

where Iν is generally a complex function of spatial location r, frequency ν, and direction

n̂. But if one ignores the complex 3-D spatial structure seen in actual views of, e.g. the

solar atmosphere, the overall radial thinness of an atmosphere implies that the directional

dependence can be completely described in terms of the projection of the radiation direction

onto the local vertical, i.e. µ = n̂ · ẑ, giving then Iν(µ, z).

Moreover, if we defer for now discussion of the dependence on frequency, we can suppress

the ν index, and so simply write I(µ, z).

4.2. Mean Intensity J

In some contexts, it is of interest just to describe the angle-averaged intensity, that is,

I integrated over the full 4π steradians of solid angle Ω,

J ≡ 1

4π

∮

I(n̂) dΩ =
1

2

∫ +1

−1

I(µ)dµ , (4.1)

where the latter applies to the case of a planar atmosphere, noting that dΩ = −dµdφ, and

carrying out the integral over the 2π radians of the azimuthal angle φ, over which I is
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assumed to be constant. In such a planar case, the mean intensity depends only on height,

J(z).

For light propagating at speed c, the mean intensity gives directly the radiative energy

density per unit volume,

U =
4πJ

c
. (4.2)

4.3. Eddington Flux H

The vector radiative flux is given by

F ≡
∮

n̂ I(n̂) dΩ = 2π ẑ

∫ +1

−1

µ I(µ) dµ ≡ 4πH ẑ , (4.3)

where again the second equality applies for the vertical flux in a planar atmosphere. The

last equaility defines the Eddington flux,

H ≡ 1

2

∫ +1

−1

µ I(µ) dµ , (4.4)

which is constructed to have an analogous form to the mean intensity J , but now with a µ

factor within the integral.

4.4. Second Angle Moment K

The mean intensity and Eddington flux can also be characterized as the two lowest

angle moments of the radiation field. For a planar atmosphere, the general “j-th” moment

is defined by

Mj ≡
1

2

∫ +1

−1

µj I(µ) dµ , (4.5)

by which we see that J and H represent respectively the zeroth and first moments. The next

highest, or second moment, is given by setting j = 2,

K ≡ 1

2

∫ +1

−1

µ2 I(µ) dµ . (4.6)

Physically K is related to the radiation pressure, PR. In a planar atmosphere, this

just represents the vertical transport of the vertical momentum of radiation. Since radiative
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momentum is given by the energy divided by light speed, we find

PR ≡ 4π

∫ +1

−1

I(µ)

c
µ2 dµ =

4πK

c
. (4.7)

α∗

θ

R

R

r

sinθ = rsinα/R=sinα/sinα∗

α

μ = cosθ = (1−sin2θ)1/2

I(μ)

I(α)

I(μ=0)

Fig. 4.— A diagram to illustrate how the surface intensity I(µ) relates to that seen by an

observer at distance r from a star of radius R, with the observer angle α and surface angle

θ = arccosµ related through the law of signs.

Exercise: As illustrated in figure 4, consider an observer at a distance r from the

center of a star of radius R that has an uniformly bright surface, i.e., I(µ) = Io
= constant for all µ > 0.

a. Derive analytic expressions for J(r), H(r), and K(r) in terms of α∗ ≡
sin−1(R/r).

b. Use these to write expressions for the ratios H/J and K/J in terms of α∗,

and in terms of r/R.

c. Plot both ratios vs. r/R over the range [1, 5].

Exercise: The angular diameter of the sun is ∆α = 30′. Suppose that terrestrial

atmospheric seeing effects limit our angular resolution to δα = 1”.

a. Show that this sets a lower bound on the µ for which we can infer I(µ).

b. Derive a formula for this µmin in terms of ∆α and δα.

c. Compute a numerical value for the solar/terrestrial parameters given above.
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4.5. The Eddington Approximation for Moment Closure

We can in principle continue defining higher and higher moments, but their physical

meaning becomes more and more obscure. Instead, it often useful to truncate this moment

procedure by finding a closure relation between a higher and a lower moment, usually K and

J . It then becomes useful to define the ratio f ≡ K/J , which was first emphasized by Sir

Arthur Eddington, and so is known as the Eddington factor. In particular, note that for an

isotropic radiation field with I(µ) = Io = constant, we have

f ≡ K

J
=
PR

U
=

1

3
. (4.8)

This certainly holds very well for the near-isotropic radiation in the stellar interior. But we

will see below that the “Eddington approximation”, f ≈ 1/3, or equivalently J ≈ 3K, is

actually quite useful in modeling the stellar atmosphere as well, even though it ultimately

becomes harder to justify near, and especially beyond, the stellar surface.

Exercise: Indeed, show that, far from a stellar surface, the intensity approaches

a point source form, I(µ) = Ioδ(µ − 1), for which then J = H = K and thus

f = 1.

Exercise: On the other hand, consider the physically quite reasonable model

that, at the stellar surface, I(µ) = Io is constant for µ > 1, and zero otherwise.

Show that f = 1/3, and thus that the Eddington approximation still holds.

The full homework set includes some further illustrative exercises with the Eddington

factor f .

5. Radiation Transfer: Absorption and Emission in a Stellar Atmosphere

The atmospheres and interiors of stars are, of course, not at all a vacuum, and so we

don’t expect in general for I to remain spatially constant through a star. Rather the material

absorption and emission of radiation will in general lead to spatial changes in the radiation

field I, something known generally as “radiation transport” or “radiative transfer”. To derive

a general equation for radiative transfer, let us first consider the case with just absorption,

ignoring for now any emission source of radiation.
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I(μ,τo)

I(μ,τ=0)

dI=(I-S)dτ/μ

+z

θ

μ
=
co
s

θ

+τ

dI=(η-κρI)dz/μdτ=−κρdz

τ(z=0)=1 0

τ(zo)=τo

τ(z=+∞)=0 +∞S=η/κρ

zo

dz

Fig. 5.— Illustration of the emergent intensity from emission and absorption in a stratified

planar atmosphere. The lower boundary at z = zo and τ = τo is assumed to have an intensity

I(µ, τo), where µ = cos θ is the vertical projection cosine of the ray.

5.1. Absorption in Vertically Stratified Planar Layer

This near-exponential stratification of density over a narrow atmospheric layer near the

stellar surface implies a strong increase in absorption of any light emitted from lower heights

z. The basic situation is illustrated by figure 5, but for now neglecting any gas emission

(η = 0). For density ρ and opacity κ over a local height interval dz, the differential reduction

in specific intensity I(µ, z) along some direction with projection cosine µ to the vertical gives

µ
dI

dz
= −κρI . (5.1)

Integration from a lower height zo, with intensity I(µ, zo), to a distant observer at z = +∞
gives an observed intensity,

I(µ, z = +∞) = I(µ, zo)e
−τ(zo)/µ , (5.2)
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where the vertical optical depth from the observer to any height z is defined generally by

τ(z) ≡
∫ ∞

z

κρ(z′)dz′ . (5.3)

In an atmosphere with a constant opacity κ and an exponentially stratified density, ρ(z) =

ρ∗ exp(−z/H), this optical depth integral evaluates to

τ(z) = κHρ∗e
−z/H = e−z/H . (5.4)

where the last equality defines the height z = 0 to have a characteristic density ρ(z = 0) =

ρ∗ = 1/κH. Note that this defines this reference height z = 0 to have a vertical optical

depth τ(0) = 1.

For hot stars with surface temperatures more than about 10,000 K, hydrogen remains

almost fully ionized even in the photosphere, and so the opacity near the surface is again

roughly set by electron scattering, κ ≈ κe, while the scale height is again roughly comparable

to the solar value H ≈ 300 km. This thus implies a typical photospheric density ρ∗ ≈
10−7 g/cm3.

At the much cooler solar surface, hydrogen is either neutral, or even negatively charged,

H−. The latter occurs through an induced dipole binding of a second electron, with ionization

potential of just 0.75 eV, i.e. almost a factor 20 lower than the 13.6 eV ionization energy

of neutral H. (See, e.g., §3 of DocOnotes2-spectra.) Because a substational fraction of the

photons in the photosphere have sufficient energy to overcome this weak binding, it turns

out the “bound-free” (b-f) absorption of H− is a dominant source of opacity in the solar

atmosphere, with a characteristic value of κbf ≈ 100 cm2/g, i.e. more than a hundred times

the opacity from electron scattering. This implies a solar photospheric density is likewise

more than a factor hundred lower than in hotter stars, ρ∗ ≈ 3 × 10−10 g/cm3.

5.2. Radiative Transfer Equation for a Planar Stellar Atmosphere

Let us thus now generalize the above pure-absorption analysis to account also for a

non-zero radiative emissivity η, specifying the rate of radiative energy emission per-unit-

volume, and again into some solid angle. As illustrated in figure 5, this adds now a positive

contribution ηdz/µ to the the change in specific intensity dI defined in eqn. (5.1), yielding

a general first-order, ordinary differential equation for the change of intensity with height,

µ
dI

dz
= η − κρI , (5.5)
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Commonly known as the Radiative Transfer Equation (RTE), this represents the basic con-

trolling relation for the radiation field within, and emerging from, a stellar atmosphere. It

can alternatively be written with the optical depth τ as the independent variable,

µ
dI

dτ
= I − S , (5.6)

where the ratio of the emission to absorption, S ≡ η/κρ, is called the source function. The

emissivity η represents an emitted energy/volume/time/solid-angle, and when this is divided

by the opacity and density, with combined units of inverse-length, it gives the source function

units of specific intensity (a.k.a. surface brightness).

Exercise: Consider a planar slab of physical thickness ∆Z and constant density

ρ , opacity κ, and nonzero emissivity η. If the intensity impingent on the slab

bottom is Io(µ), compute the emergent (µ > 0) intensity I(µ) at the slab top,

writing this in terms of the slab vertical optical thickness ∆τ and the source

function S = η/κρ.

Solution: Since the coefficients in eqn. (5.5) are all constant, straightforward

integration (using an integrating factor exp[−κρz/µ]), gives

I(µ) = Io(µ) e−∆τ/µ + S
(

1 − e−∆τ/µ
)

. (5.7)

In the pure-absorption case η = S = 0, the second (source) term is zero, and we

recover the simple result that the lower boundary intensity is just exponentially

attenuated. For no lower boundary intensity, Io = 0, we obtain the emergent

intensity from slab emission,

I(µ) = S
(

1 − e−∆τ/µ
)

≈ S ; ∆τ/µ≫ 1

≈ S∆τ/µ = η∆z/µ ; ∆τ/µ≪ 1

In cases with significant scattering, the source function can depend in an inherently

non-local way on the radiation field itself, and thus can only be solved for in terms of some

global model of the atmospheric scattering.

But the problem becomes much simpler in cases like H− absorption/emission, for which

the LTE detailed balance property (6.1) implies that this source function is just given by

the Planck function, S = B(T ), which is fixed by the local gas temperature T (z). Indeed,

if the opacity, density, and temperature are all known functions of spatial depth z, then the

spowocki
Comment on Text
This hasn't been derived yet. Thus, we hould reword this iniital introduction of LTE.
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temperature, and thus the Planck/Source function, can also be written as a known function

of optical depth τ . In this case, the radiative transfer equation, which is just a first-order,

ordinary differential equation, can be readily integrated.

5.3. The Formal Solution of Radiative Transfer

The resulting integral form of the intensity is commonly called the “Formal Solution”,

essentially because it can be ‘formally’ written down even in the case when the source function

is non-local, and thus not known as an explicit function of optical depth. Multiplying the

transfer equation (5.6) by an integrating factor e−τ/µ, and then integrating by parts with

respect to vertical optical depth τ , we find that for upwardly directed intensity rays with

µ > 0, the variation of intensity with optical depth in the planar atmosphere model illustrated

in figure 5 is given by,

I(µ, τ) = I(µ, τo)e
(τ−τo)/µ +

∫ τo

τ

S(t)e(−t+τ)/µ dt/µ ; µ > 0, τ < τo , (5.8)

where τo is the total optical thickness of the planar slab under consideration, and t is just a

dummy integration variable in optical depth (and not, e.g., the time!). For downward rays

with µ < 0, the solution takes the form

I(µ, τ) =

∫ τo

τ

S(t)e(−t+τ)/|µ| dt/|µ| ; µ < 0, τ < τo , (5.9)

where we’ve assumed an upper boundary condition I(µ, τ = 0) = 0, i.e. no radiation illumi-

nating the atmosphere from above.

5.4. Eddington-Barbier Relation for Emergent Intensity

A particularly relevant case for observations of stellar atmospheres is the emergent

intensity (µ > 0) from a semi-infinite slab, i.e. for which τo → ∞. The intensity seen by the

external observer at τ = 0 is then given as a special case of eqn. (5.8),

I(µ, 0) =

∫ ∞

0

S(t)e−t/µ dt/µ ; µ > 0. (5.10)

To gain insight, let us consider the simple case that the source function is just a linear

function of optical depth, S(t) = a + bt. In this case, eqn. (5.10) can be easily integrated

analytically (using integration by parts), yielding

I(µ, 0) = a+ bµ = S(τ = µ) . (5.11)
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Of course the variation of a source function in a stellar atmosphere is usually more compli-

cated than this linear function, but the approximate result,

I(µ, 0) ≈ S(τ = µ) , (5.12)

which is known as the Eddington-Barbier (E-B) relation, turns out to be surprisingly accurate

for a wide range of conditions. The reason is that the exponential attenuation represents

a strong localization of the integrand in eqn. (5.10), meaning then that a first-order Taylor

expansion gives a roughly linear variation of the source function around the region where

the optical depth terms in the exponential are of order unity.

Fig. 6.— Visible light picture of the solar disk, showing the center to limb darkening of the

surface brightness.

5.5. Limb Darkening of Solar Disk

A key application of the E-B relation regards the variation of the sun’s surface brightness

as one looks from the center to limb of the solar disk. At disk center, one is looking vertically

down into the local planar atmosphere, i.e. with µ = 1. On the limb, one’s view just grazes

the atmosphere nearly along the local horizontal, i.e. with µ = 0. The E-B relation gives for

spowocki
Rectangle
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the limb/center brightness ratio,

I(0, 0)

I(1, 0)
=

a

a+ b
=

S(0)

S(0) + dS/dτ
≈ B(0)

B(0) + dB/dτ
. (5.13)

The second equality uses the fact that the linear source function coefficients a and b just

represent the surface value and gradient of the source function, a = S(0) and b = S ′ = dS/dτ .

The last approximation assumes the LTE case that S = B. Since the Planck function

depends only on temperature, B = B(T ), we have

dB

dτ
= −dT

dz

1

κρ

dB

dT
. (5.14)

Since dB/dT > 0, and since the temperature of an atmosphere generally declines with height,

i.e. dT/dz < 0, we see that dB/dτ > 0.

Eqn. (5.13) thus predicts I(0, 0)/I(0, 1) < 1, and so an overall limb darkening of the

solar surface brightness. As illustrated by the image of the solar disk in figure 6, this is

indeed what is observed.

Measurements of the functional variation of solar brightness across the solar disk can

even be used to infer the temperature structure of the solar atmosphere. We will consider

this further later when we develop solar atmosphere models.

Exercise: For far UV wavelengths λ < 912Å, the photon energy E > 13.6 eV is

sufficient to ionize neutral hydrogen, and so the associated bound-free absorption

by hydrogen makes the opacity in the far UV very high.

a. Compared to visible light with lower opacity, are we able to see to deeper or

shallower heights in the far UV?

b. If a far UV picture of the sun shows limb brightening instead of limb dark-

ening, what does that suggest about the temperature stratification of the

solar atmosphere?

c. Combining this with results for the limb darkening in optical light, sketch

the overall variation of the sun’s temperature T vs. height z.

6. Emission, absorption, and scattering: LTE vs. NLTE

In addition to absorption, the material in a stellar atmosphere (or indeed most any

matter with a finite temperature) will generally also emit radidation, for example through the
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inverse processes to absorption. Since microscopic atomic processes in physics are generally

all symmetric under time reversal, this can be thought of as somewhat like running the clock

backward.

For example, for the sun a dominant source of emission is from the “free-bound”(f-b)

recombination of electrons and neutral hydrogen to form the H−, reversing then the “bound-

free” (b-f) absorption that dissociates the H− ion.

Superficially, the overall process may appear to resemble electron scattering, with ab-

sorption of radiation by one H− ion followed shortly thereafter by remission of radiation

during the formation of another H− ion.

But a key distinction is that, in constrast to the conservative nature of scattering –

wherein the energy of the scattered photon essentially4 remains the same –, the sequence

of H− absorption and emission involves a constant shuffling of the photon energy, very

effectively coupling it to the pool of thermal energy in the gas, as set by the local temperature

T (z). This is very much the kind of process that tends to quickly bring the radiation and

gas close to a Local Thermodynamic Equilibrium (LTE). As discussed in §4.2 of DocOnotes1-

stars, this means that the local radiation field becomes quite well described by the Planck

Blackbody function given in eqns. (I-16) and (I-17).

In contrast, because the opacity of hotter stars is dominated by electron scattering, with

thus much weaker thermal coupling between the gas and radiation, the radiation field and

emergent spectrum can often deviate quite markedly from what would be expected in LTE.

Instead one must develop much more complex and diffult non-LTE (NLTE) models for such

hot stars. We will later outline the procedures for such NLTE models, including also some

specific features of the solar spectrum (e.g. the so-called “H and K” lines of Calcium) that

also require an NLTE treatment.

6.1. Absorption and Thermal Emission: LTE with S = B

One important corollary is that processes in LTE exhibit a “detailed balance”, i.e. a

direct link between each process and its inverse5. Thus for example, the thermal emissivity

4That is, ignoring the electron recoil that really only becomes signifcant for gamma-ray photons with

energies near or above the electron rest mass energy, mec
2 ≈ 0.5 MeV.

5Einstein exploited this to write a set of relations between the atomic coefficients (related to cross section)

for absorption and their emission inverse. As such, once experiments or theoretical computations give one,

the inverse is also directly available. See §9.1 below.
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ηth from LTE processes like H− f-b emission is given by the associated bound-free absorption

opacity κabs times the local Planck function,

ηth = κabs ρB(T ) . (6.1)

This implies then that, for such pure-absorption and thermal emission, we obtain the simple

LTE result,

S(τ) =
ηth

κabs ρ
= B(T (τ)) . (6.2)

6.2. Pure Scattering Source Function: S = J

In contrast, for the case of pure scattering opacity κsc, the associated emission becomes

completely insensitive to the thermal properties of the gas, and instead depends only on the

local radiation field. If we assume (or approximate) the scattering to be roughly isotropic, the

scattering emissivity ηsc in any direction depends on both the opacity and the angle-averaged

mean-intensity,

ηsc = κsc ρJ . (6.3)

This implies then that, for pure-scattering,

S(τ) = J(τ) . (6.4)

Since J is the angle-average of I, which itself depends on the global integral given by the

formal solution (eqns. 5.8 and 5.9), the solution is inherently non-local, representing then a

case of non-LTE or NLTE.

6.3. Source Function for Scattering and Absorption: S = ǫB + (1 − ǫ)J

For the general case in which the total opacity consists of both scattering and absorption,

k ≡ κabs +κsc, the total emissivity likewise contains both thermal and scattering components

η = ηth + ηsc = κabsρB + κscρJ . (6.5)

If we then define an absorption fraction

ǫ ≡ κabs

κabs + κsc

, (6.6)

we can write the general source function in the form

S = ǫB + (1 − ǫ)J . (6.7)
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6.4. Thermalization Depth vs. Optical Depth

In physical terms, the absorption fraction ǫ can be also thought of as a photon destruction

probability per encounter with matter. In cases when ǫ ≪ 1, a photon that is created

thermally somewhere within an atmosphere can scatter many (Nsc ≈ 1/ǫ) times before it is

likely to be absorbed. By a simple random walk argument, the root-mean-square number of

mean-free-paths between its thermal creation and absorptive destruction is thus
√
N = 1/

√
ǫ,

which thus corresponds to an optical depth change of ∆τ = 1/
√
ǫ. This implies that from

locations of the atmosphere with total vertical optical depth τ < ∆τ = 1/
√
ǫ, any photon

that is thermally created will generally escape the star, instead of being destroyed by a true

absorption.

The thermalization depth,

τth =
1√
ǫ
, (6.8)

thus represents the maximum optical depth from which thermally created photons can scatter

their way to escape through the stellar surface, without being destroyed by a true absorption.

It is important to understand the distinction here between thermalization depth and

optical depth. If we look vertically into a stellar atmosphere, we can say that the photons we

see had their last encounter with matter at an optical depth of order unity, τ ≈ 1. But the

energy that created that photon can, in the strong scattering case with ǫ≪ 1, come typically

from a much deeper layer, characterized by the thermalization depth τth ≈ 1/ǫ≫ 1.

A physical interpretation of the Eddington-Barbier comes from the first notion that we

can see vertically down to a layer of optical depth order unity, and so the observed vertical

intensity just reflects the source function at that layer, I(1, 0) ≈ S(τ = 1).

But in cases with strong scattering, any thermal emission within a thermalization depth

of the surface, τ < τth can escape to free space. Since this represents a loss or “sink” of

thermal energy, the source function in this layer general becomes reduced relative to the

local Planck function, i.e.

S(τ < τth) < B(τ) . (6.9)

In particular, since S(τ = µ) < B(τ = µ), one can no longer directly infer B(τ = µ), or the

associated surface temperature temperature T (τ = µ), by applying the Eddington-Barbier

relation to interpetation of observations of the emergent intensity I(µ, 0).

In general, we must thus go down to deep layer with τ ∼> τth to recover the LTE

condition,

S(τ ∼> τth) ≈ B(τ) . (6.10)
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For example, in the atmospheres of hot stars – for which the opacity is dominated by free-

electron scattering – the photon destruction probibilty can be quite small, e.g. ǫ ≈ 10−4,

implying that LTE is only recovered at depths τ ∼> 100.

But note in the case of nearly pure-absorption – which is not a bad approximation for

the solar atmosphere wherein the opacity is dominated by H− b-f absorption – we do recover

the LTE result quite near the visible surface, τ ≈ τth ≈ 1. So solar limb darkening can indeed

be used to infer the temperature stratification of the solar atmosphere.

6.5. Effectively Thick vs. Effectively Thin

Associated with the thermalization depth is the concept of effective thickness, to be

distinguished from optical thickness.

A planar layer of material with total vertical optical thickness τ is said to be optically

thin if τ < 1, and optically thick if τ > 1.

But it is only effectively thick if τ > τth. If τ < τth, it is effectively thin, even in cases

when it is optically thick, i.e. with 1 < τ < τth.

We will discuss below solutions of the full radiative transfer for planar slabs that are

effectively thick vs. thin.

7. Properties of the Radiation Field

7.1. Moments of the Transfer Equation

The radiation field moments J , H, and K defined above provide a useful way to charac-

terize key properties like energy density, flux, and radiation pressure, instead of dealing with

the more complete angle dependence given by the full specific intensity I(µ). To relate these

radiation moments to their physical source and dependence on optical depth, it is convenient

to carry out progressive angle moments j = 0, 1, . . . of the radiative transfer equation,

1

2

∫ +1

−1

dµµj µ
dI

dτ
=

1

2

∫ +1

−1

dµµj (I − S) . (7.1)

Since optical depth is independent of µ, we can pull the d/dτ operator outside the integral.

The j = 0 or “0th” moment equation then becomes

dH

dτ
= J − S . (7.2)
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Note for example that in the case of pure, conservative scattering we have S = J , implying

dH/dτ and thus a spatially constant flux H. Since scattering neither creates nor destroy

radiation, but simply deflects its direction, the flux in a scattering atmosphere must be

everywhere the same constant value.

For the first (j = 1) moment of the transfer equation, the oddness of the integrand over

the (angle-independent) source function S means that the contribution of this term vanishes,

leaving
dK

dτ
= H . (7.3)

In both eqns. (7.2) and (7.3), note that a lower moment on the right-hand-side, e.g. J or H,

is related to the optical depth derivative of a higher moment, H or K, on the left-hand-side.

In principal, one can continue to define higher moments, but both the usefulness and physical

interpretation become increasingly problematic.

To truncate the process, we need a closure relation that relates a higher moment like K

to a lower moment like J . As noted previously, a particular useful example is the Eddington

approximation, J ≈ 3K, which then implies

1

3

dJ

dτ
≈ H , (7.4)

which when combined with the zeroth moment eqn. (7.2), yields a 2nd order ODE for J ,

1

3

d2J

dτ 2
= J − S . (7.5)

Given S(τ), this can be readily integrated to give J(τ).

7.2. Diffusion Approximation at Depth

At sufficiently deep layers of the atmosphere, i.e. with large optical depths beyond the

thermalization depth, τ ∼> τth ≫ 1, we expect the radiation field to become isotropic and

near the local Planck function, J → S → B. Let us thus assume that the variation of the

Source function near some reference depth τ can be written as a Taylor expansion of the

Planck function about this depth,

S(t) ≈ B(τ) +
dB

dτ

∣

∣

∣

∣

τ

(t− τ) +O
(

d2B/dτ 2
)

, (7.6)

where, noting that each higher term is Order 1/τ (commonly written O(1/τ)) smaller than

the previous, we truncate the expansion after just the second, linear term. Application in
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the formal solution (5.8) then gives for the local intensity,

I(µ, τ) ≈ B(τ) + µ
dB

dτ
. (7.7)

Applying this in the definitions of the radiation field moments gives

J(τ) ≈ B(τ) +O
(

d2B/dτ 2
)

(7.8)

H(τ) ≈ 1

3

dB

dτ
+O

(

d3B/dτ 3
)

(7.9)

K(τ) ≈ 1

3
B(τ) +O

(

d2B/dτ 2
)

. (7.10)

If we keep just the first-order terms, then comparison of eqns. (7.8) and (7.10) immediately

recovers the Eddington approximation, J = 3K, while the flux H is given by the diffusion

approximation form,

H ≈ 1

3

dB

dτ
= −

[

1

3κρ

∂B

∂T

]

dT

dz
, (7.11)

where the latter equality shows how this diffusive flux scales directly with the vertical tem-

perature gradient dT/dz, much as it does in, e.g., conduction. Indeed, the terms in square

bracket can be thought of as a radiative conductivity, which we note depends inversely on

opacity and density, 1/κρ.

7.3. The Rosseland Mean Opacity for Diffusion of Total Radiative Flux

Note that the physical radiative flux is just F = 4πH. In modeling stellar interiors6,

we will use this corresponding flux form in spherical symmetry, replacing height with radius,

z → r,

Fν(r) ≈ −
[

4π

3κνρ

∂Bν

∂T

]

dT

dr
, (7.12)

where we now have also reintroduced subscripts ν to emphasize that this, like all the equa-

tions above, depends in principal on photon frequency. But to model the overall energy

transport in a stellar atmosphere or interior, we need the total, frequency-integrated (a.k.a.

bolometric) flux

F (r) ≡
∫ ∞

0

Fν dν . (7.13)

6For a lucid summary of radiative transfer in stellar interiors, see Rich Townsend’s notes 06radiation.pdf.
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Collecting together all of the frequency-dependent terms of Fν , we have

F (r) = −4π

3ρ

dT

dr

∫ ∞

0

1

κν

∂Bν

∂T
dν. (7.14)

The required frequency integral can be conveniently represented by introducing the Rosseland

mean opacity, defined by

κR ≡
∫ ∞

0
∂Bν

∂T
dν

∫ ∞
0

1
κν

∂Bν

∂T
dν

(7.15)

We can see that κR represents a harmonic mean of the frequency-dependent opacity κν , with

∂Bν/∂T as a weighting function. The numerator can be readily evaluated by taking the

temperature derivative outside the frequency integral,

∫ ∞

0

∂Bν

∂T
dν =

∂

∂T

∫ ∞

0

Bν dν =
∂

∂T

( ac

4π
T 4

)

=
acT 3

π
, (7.16)

where the radiation constant a is given by

a =
8π5k4

15c3h3
. (7.17)

We can thus write the integrated flux as

F (r) = −
[

4ac

3

T 3

3κRρ

]

dT

dr
. (7.18)

This final result – which tells us the total radiative flux F given the temperature, its gradient,

the density and the Rosseland-mean opacity – is known as the radiative diffusion equation.

Sometimes it is instructive to write this as

F (r) = − c
3

1

κρ

dU

dr
, (7.19)

where

U ≡ aT 4 (7.20)

is the density of radiative (photon) energy per unit volume.

7.4. Exponential Integral Moments of Formal Solution: the Lambda Operator

Let us now return to the problem of solving for the radiation moments in the full

atmosphere where the above diffusion treatment can break down. Applying the definition
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of mean intensity J from eqn. (4.1) into the formal solution eqns. (5.8) and (5.9), we find

(again suppressing the ν subscripts for simplicity),

J(τ) =
1

2

∫ 1

0

dµ

∫ ∞

τ

S(t) e−(t−τ)/µ dt/µ− 1

2

∫ 0

−1

dµ

∫ τ

0

S(t) e−(τ−t)/µ dt/µ (7.21)

=
1

2

∫ ∞

0

S(t)E1 (|t− τ |) dt (7.22)

= Λτ [S(t)] . (7.23)

Here the second equality uses the first (n = 1) of the general exponential integral defined by,

En(x) ≡
∫ ∞

1

e−xtdt

tn
. (7.24)

Some simple exercises in the homework problem set help to illustrate the general properties

of exponential integrals. An essential point is that they retain the strong geometric factor

attenuation with optical depth, and so can be qualitatively thought of just a fancier form of

the regular exponential e−τ .

Exercise: Given the definition of the exponential integral in eqn. (7.24), prove

the following properties:

a. E ′
n(x) = −En−1(x).

b. En(x) = [e−x − xEn−1(x)]/(n− 1).

c. En(0) = 1/(n− 1)

d. En(x) ≈ e−x/x for x≫ 1.

The last equality in (7.23) defines the Lambda Operator Λτ [S(t)], which acts on the

full source function S[t]. In the general case in which scattering gives the source function a

dependence on the radiation field J , finding solutions for J amounts to solving the operator

equation,

J(τ) = Λτ [ǫB(t) + (1 − ǫ)J(t)] , (7.25)

which states that the local value of intensity at any optical depth τ depends on the global

variation of J(t) and B(t) over the whole atmosphere 0 < t <∞. One potential approach to

solving this equation is to simply assume some guess for J(t), along with a given B(t) from

the temperature variation T (t), then compute a new value of J(τ) for all τ , apply this new

J into the Lambdda operator, and repeat the whole process it converges on a self-consistent

solution for J . Unfortunately, such Lambda iteration turns out to have a hopelessly slow

convergence, essentially because the ability of deeper layers to influence upper layers scales
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as e−τ with optical depth, implying it can take eτ steps to settle to a full physical exchange

that ensures full convergence. However, a modified form known as Accelerated Lambda

Iteration (ALI) turns out to have a suitably fast and stable convergence, and so is often used

in solving radiative transfer problems in stellar atmospheres. But this is rather beyond the

scope of the summary discussion here.

One can likewise define a formal solution integral for the flux,

H(τ) =
1

2

∫ ∞

τ

S(t)E2 (t− τ) dt− 1

2

∫ τ

0

S(t)E2 (τ − t) dt , (7.26)

which can be used to define another integral operator, commonly notated Φ. An analogous

equation can be written for the K-moment, which involves E3, and can be used to define yet

another operator, commonly denoted X.

Exercise: Assume a source function that varies linearly with optical depth, i.e.

S(t) = a+ bt, where a and b are constants.

a. Apply this S(t) in eqn. (7.23) and carry out the integration to obtain the op-

tical depth variation of mean intensity J(τ) in terms of exponential integrals

En(τ).

b. Next apply S(t) in eqn. (7.26) and carry out the integration to obtain the

optical depth variation of the Eddington flux H(τ) in terms of exponential

integrals En(τ).

c. For the case a = 2 and b = 3, plot H(τ) and the ratio J(τ)/S(τ) vs. τ over

the range [0, 2].

7.5. The Eddington-Barbier Relation for Emergent Flux

For the case of a source function that is linear in optical depth, S(t) = a + bt, we can

use eqn. (7.26) to derive a formal solution for the emergent flux,

H(0) =
1

2

∫ ∞

0

(a+ bt)E2[t] dt =
a

4
+
b

6
. (7.27)

Recalling that the physical flux F = 4πH, we thus find that

F (0) = π (a+ (2/3)b) = πS(τ = 2/3) , (7.28)

which now represents a form of the Eddington-Barbier relation for the emergent flux, asso-

ciating this with the source function at a characteristic, order-unity optical depth τ = 2/3.
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This can be used to interpret the observed flux from stars for which, unlike for the sun, we

cannot resolve the surface brightness, I(µ, 0). Indeed, note that the basic Eddington flux

relation (7.27) can also be derived by taking the outward flux moment of the Eddington-

Barbier relation for emergent intensity (5.11).

7.6. Radiative Equilbrium

Since atmospheric layers are far away from the nuclear energy generation of the stellar

core, there is no net energy produced in any given volume. If we further asssume energy is

transported fully by radiation (i.e. that condution and convection are unimportant), then

the total, frequency-integrated radiative energy emitted in a volume must equal the total

radiative energy absorbed in the same volume. This condition of radiative equilibrium can

be represented in various alternative forms,
∫ ν

0

dν

∮

dΩ ην =

∫ ν

0

dν

∮

dΩ ρkνIν (7.29)

∫ ν

0

kνSν dν =

∫ ν

0

kνJν dν (7.30)

∫ ν

0

κνBν dν =

∫ ν

0

κνJν dν , (7.31)

where kν = κν +σν is the total opacity at frequency ν, with contributions from both absorp-

tion (κν) and scattering (σν) opacity components. The second relation uses the isotropy and

other basic properties of the volume emissivity,

ην = kνSν = κνBν + σνJν . (7.32)

The third relation uses the conservative property of the coherent scattering component at

each frequency Jν = 4πηsc
ν /σν , and shows that, when integrated over frequency, the total

true absorption of radiation must be balanced by the total thermal emission.

Upon frequency integration of the flux moment of the radiative transfer equation, we

find for the bolometric fluxes H or F

dH

dz
=
dF

dz
= 0 , (7.33)

which shows that the bolometric flux is spatially constant throughout a planar atmosphere

in radiative equilibrium.

Indeed, along with the surface gravity, the impingent radiative flux F from the underying

star represents a key characteristic of a stellar atmosphere. Moreover, since the flux from a
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blackbody defines an effective temperature Teff through F = σT 4
eff , models of planar stellar

atmospheres are often characterized in terms of just the two parameters log g and Teff .

By contrast, the overall structure of a star is generally described by three parameters, e.g.

luminosity L, mass M , and radius R. But because the radius cancels in the ratio of surface

gravity to surface flux, just log g and Teff suffice to characterize a planar atmosphere, whose

properties are insenstive to the stellar radius R.

7.7. Two-Stream Approxmation for Radiative Transfer

An alternative to using moment equations is to approximate the radiative field as con-

fined to just two rays, one upward (+) and the other downward (-), with associated intensities

I+ and I−. In this approach, one has the freedom to choose the magnitude of the projection

cosine of these rays, |µ| = µ1. In this two-stream model the transfer equation for each of the

± directions can be written

±µ1
dI±

dτ
= I± − S . (7.34)

The mean intensity and Eddington flux now reduce from integrals to mere sums,

J =
I+ + I−

2
, (7.35)

and

H = µ1
I+ − I−

2
. (7.36)

Adding the (+) and (-) transfer equations then gives

dH

dτ
= J − S = ǫ(J −B) , (7.37)

where the latter equality again assumes a source function of the form S = (1 − ǫ)J + ǫB.

Subtracting the two equations gives

µ1
dJ

dτ
=
H

µ1

. (7.38)

Combining these gives a second order equation in J ,

µ2
1

d2J

dτ 2
= J − S = ǫ(J −B) . (7.39)

Comparison with eqn. (7.5) shows that, if we set µ1 = 1/
√

3, then this two-stream approach

becomes fully equivalent to the Eddington approximation.
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7.8. Transmission through Planar Layer: Scattering vs. Absorption

We can use this two-stream approximation to estimate the transmission through a pure-

scattering layer or cloud, much like the clouds here on earth. For such a pure scattering

(ǫ = 0) case, the right side of eqn. (7.37) is zero, implying then that the flux H must be

constant; physically, this again reflects the fact that for pure-scattering, radiation can be

neither created or destroyed. By integration of eqn. (7.38), we find that the mean intensity

must vary linearly with optical depth,

J(τ) =
Hτ

µ2
1

+ C , (7.40)

where C is an integration constant. This can be evaluated by boundary conditions on the

I± at the cloud’s top and bottom.

For a cloud in which the vertical optical depth ranges from τ = 0 at the top to some total

cloud optical thickness τc at the bottom, let us assume an incoming (downward) intensity

I−(0) = Io impingent along the direction µ1 at the top, with zero upward intensity at the

bottom, I+(τc) = 0. Note that

I±(τ) = J ± H

µ1

(7.41)

=
H

µ1

(

τ

µ1

± 1

)

+ C (7.42)

=
H

µ1

(

τ

µ1

± 1 + 1

)

+ Io , (7.43)

where the third equality follows from the upper boundary condition I−(0) = Io. Applying

the lower boundary condition I+(τc) = 0 then gives for the (downward) transmitted flux

through the cloud

H = − µ1Io
τc/µ1 + 2

=
Ho

τc/2µ1 + 1
, (7.44)

where the latter equality scales the transmitted flux by its value Ho without any cloud layer,

i.e., with τc = 0. If we assume nearly vertical illumination µ1 ≈ 1 (as would apply near

noon around midsummer), then we see that a scattering cloud’s reduction of the sun’s flux

scales as 1/(τc/2 + 1). A typically very cloudy day with τc ≈ 10 would thus have the sun’s

flux reduced by a factor 1/6. Thus when taking a picture, you might need to increase the

exposure time by a factor of 6.

This relatively modest reduction should be contrasted with the much stronger, expo-

nential attenuation of the transmitted flux by a pure-absorbing cloud with the same optical
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thickness,

Habs = −(µ1Io/2)e−τc/µ1 = Hoe
−τc/µ1 . (7.45)

For the same example with µ1 = 1 and τc = 10, this would give a much stronger flux

reduction of about a factor e−10 ≈ 5 × 10−5. Thus, for example, if the clouds were made

of black absorbing coal dust instead of highly reflective water vapor, a cloudy day would

be nearly pitch dark! Thus dust from a volcano, or from the meteor impact that killed the

dinosaurs, could make the affected surface quite dark, and cold.

This difference in flux attenuation is one of the key physical distinctions between a

scattering vs. absorption layer.

8. Radiative Transfer for Gray Opacity

In general, the complex frequency dependence of stellar opacity greatly complicates the

full solution for the radiation field. But we can gain great insight into the overall properties

of an atmosphere and its radiation if we make the (strong) simplifying assumption that the

opacity is gray, i.e. independent of frequency or wavelength. In this case the Rosseland mean

opacity is just given by this constant, gray opacity, κR = κ. If we now identify unsubscripted

symbols for the intensity I and its angle moments J , H, and K with their bolometric values,

then the transfer equation and its moments have the basic forms defined above,

µ
dI

dτ
= I − S (8.1)

dH

dτ
= J − S (8.2)

dK

dτ
= H . (8.3)

8.1. Gray Atmospheres in Radiative Equilibrium: the Hopf Function

Now if we further assume a condition of radiative equilibrium, we have generally S = J ,

regardless of the admixture of absorption and thermal emission vs. scattering. As such, the

second equality above immediately implies a constant flux H. This allows us to immediately

integrate to obtain for the K-moment

K(τ) = H(τ + c) , (8.4)
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where c is an integration constant. A complete solution requires now that we relate K to J .

So recall again that at large depth τ ≫ 1 we recover a diffusion limit for which the radiation

field has only a small deviation from isotropy, giving then the Eddington approximation

J ≈ 3K. This suggests we write the solution for mean intensity in the form,

J(τ) = 3H(τ + q(τ)) , (8.5)

where q(τ) is called the “Hopf function”, and use of the Eddington approximation at large

optical depth τ → ∞ shows that q(∞) = c. Application of S = J from eqn. (8.5) in

the formal solution for mean intensity (7.23) means that finding the Hopf function requires

solving the integral equation,

τ + q(τ) =
1

2

∫ ∞

0

(t+ q(t)) E1 [|t− τ |) dt . (8.6)

8.2. The Eddington Gray Atmosphere

While it is possible to tabulate full solutions of the integral equation (8.6), a more

analytically tractable approach is to assume validity of the Eddington approximation every-

where. Recalling from the exercises in problem set #1 that the Eddington approximation

nearly holds for a wide range range of forms for I(µ), such an Eddington gray atmosphere

approach, while not exact, turns out to give pretty accurate, and very insightful, results.

Using J = 3K, let us now rewrite eqn. (8.4) as a solution for the Eddington approxi-

mation for mean intensity

JE(τ) = 3Hτ + c′ , (8.7)

where c′ = 3Hc is just an alternative definition for the integration constant. Using the formal

solution eqn. (7.26), we find that the surface flux is

H(0) =
1

2

∫ ∞

0

J(t)E2(t) dt (8.8)

=
1

2

∫ ∞

0

(3H t+ c′)E2(t) dt (8.9)

=
c′

4
+
H

2
. (8.10)

Setting H(0) = H, we find c′ = 2H, implying c = 2/3, and thus that for the Eddington

approximation, the Hopf function is just a constant, qE(τ) = 2/3. This gives a simple

analytic form for the mean intensity in an Eddington gray atmosphere,

JE(τ) = 3H

(

τ +
2

3

)

. (8.11)
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Using then JE = B(T ) = σT 4/π and H = σT 4
eff/4π, we find that the temperature in a gray

atmosphere varies according to

T 4(τ) =
3

4
T 4

eff

(

τ +
2

3

)

. (8.12)

This shows that the temperature increases in the inner regions with large optical depth,

giving T ≈ Teff τ
1/4 for τ ≫ 1. Note moreover that T (τ = 2/3) = Teff , showing again

that such τ of order unity corresponds to rougly to the visible photosphere. On the other

hand, for very small optical depth, we find a “surface temperature” To ≡ T (0) = Teff/2
1/4 ≈

0.841Teff . This agrees pretty closely with the exact value for a non-Eddington gray model

To/Teff = (
√

3/4)1/4 ≈ 0.8114.

8.3. Eddington Limb-Darkening Law

Let us next apply this Eddington gray atmosphere result into the formal solution (5.10)

for the surface intensity,

IE(µ, 0) = 3H

∫ ∞

0

(t+ 2/3) e−t/µ dt/µ (8.13)

= 3H(µ+ 2/3) . (8.14)

This gives the Eddington limb-darkening law

IE(µ, 0)

IE(1, 0)
=

3

5

(

µ+
2

3

)

. (8.15)

For example, this predicts a limb-to-center brightness ratio IE(0, 0)/IE(1, 0) = 2/5 = 0.4,

which is in good agreement with optical observations of the solar disk.

8.4. Lambda Iteration of Eddington Gray Atmosphere

It is important to realize that, while very helpful for providing insight, this Eddington

gray atmosphere model is not a fully self-consistent solution for the radiation transport.

To see this, let us compute a new intensity from the Lambda operator form of the formal

solution (7.23),

J
(1)
E (τ) = Λτ

[

J0
E(t)

]

(8.16)

= 3H Λτ [t+ 2/3] (8.17)

= 3H (τ + 2/3 + E3(τ)/2 − E2(τ)/3) , (8.18)
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where the superscript indicates that this is a first-order iteration on the basic Eddington

solution, J
(0)
E . For large optical depth τ ≫ 1 the exponential integral terms all vanish, and

so we find J
(1)
E → J

(0)
E , showing that this Lambda iteration does not affect the solution deep

in the atmosphere, where the Eddington approximation is indeed well justified. But at the

surface we find J
(1)
E (0)/J

(0)
E (0) = 7/8, so the solution has changed by 1/8, or 12%. This now

gives a surface temperature T
(1)
o /Teff = (7/16)1/4 = 0.813, which is substantially closer to

the exact result To/Teff = 0.8114 than the earlier result T
(0)
o /Teff = 1/21/4 = 0.841.

As shown in the exercise below, a similar application of the Eddington solution for mean

intensity into the formal solution for the flux shows that the flux is not constant, as required

by radiative equilibrium. This thus represents an inherent insconsistency in the Eddington

gray atmosphere model, but as shown in the exercise, the relative error is quite small, at

most only a few percent.

Exercise:

a. Apply S(t) = JE(t) in the formal integral solution for the flux given by eqn.

(7.26), and obtain thereby an integral expression for the next-order iteration

for the radiative flux, H(1)(τ).

b. Evaluate the required integral using properties of the exponential integrals,

and show thereby that H(1)(τ) is not constant.

c. Using your favorite analysis and plotting software, e.g. Maple or Mathemat-

ica, plot the relative flux error H(1)/H − 1 vs. τ for τ = 0 to τ = 5.

d. What is the maximum error, and at about what optical depth does it occur?

In principal one can continue to reapply the Lambda operator to get an sequence of

higher iterations of J , but the process requires difficult integrals involving product of ex-

ponential integrals, and moreover converges very slowly. To see this, let us focus on the

Hopf function q(τ), and specifically assume that some guess for this differs from the “exact”

solution by a constant, i.e. q(t) = qexact(t) +C. Application of the Lambda operator to both

sides gives

Λτ [t+ q(t)] = Λτ [t+ qexact(t) + C] (8.19)

τ + q(1)(τ) = τ + qexact(τ) + Λτ [C] (8.20)

∆q(1)(τ) ≡ q(1) − qexact = C(1 − E2(τ)/2) . (8.21)

From this we see that the new error is reduced by half at the surface, i.e. ∆q(1)(0) = C/2,

whereas at large optical depth there is essentially no improvement, i.e. ∆q(1)(∞) = C.
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Physically, this failure to improve the solution much beyond the surface can be traced to the

fact that a photon mean-free-path corresponds to ∆τ = 1, which then essentially represents

the depth of influence for each Λ-iteration. As such the full convergence of Λ-iteration is

very slow, especially at great depth.

8.5. Isotropic, Coherent Scattering + Thermal Emission/Absorption

In this context of a gray atmosphere, a formally similar, but conceptually distinct, form

for radiation transport arises in the case when the radiation remains “self-contained” within

a single “coherent” frequency ν. The opacity in this case need not be gray, and indeed, we

will see below such an approach can provide a first approximation for treating spectral lines

with a highly frequency-dependent opacity. Nonetheless, such coherent frequency transport

has many similarities to the gray case developed above.

As a specific example, consider a case in which the source function is given by

Sν(τν) = ǫBν(τν) + (1 − ǫ)Jν(τν) . (8.22)

This first term on the right represents thermal emission for a (now assumed known) depth

variation of the Planck function Bν(τν). The second terms represents isotropic, coherent7

scattering that depends on the mean intensity Jν at the same frequency ν, for which the

optical depth variation must be derived from a global solution of the scattered radiation

transport.

Let us thus write the flux and K-moments of the tranfer equation as

dHν

dτν
= Jν − Sν = ǫ(Jν −Bν) (8.23)

and
dKν

dτν
= Hν =

1

3

dJν

dτν
, (8.24)

where the last equality again assumes the Eddington approximation Jν = 3Kν . If we next

assume a Planck function that is linear in optical depth, i.e.

Bν(τν) = a+ bτν , (8.25)

7“Coherent” here refers to frequency, i.e. that the energy and thus frequency of the photon is not changed

through the scattering process. In practice, line-scattering by ions leads to a “frequency redistribution”

associated with the Doppler effect from thermal motions of the ions. We will return to this in our discussion

of line-scattering below.
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we can combine these first-order ODE’s into a single second-order one,

1

3

d2

dτ 2
ν

(Jν −Bν) = ǫ(Jν −Bν) . (8.26)

This can be readily integrated to give

Jν −Bν = αe−
√

3ǫ τν + βe
√

3ǫ τν , (8.27)

where α and β are integration constants. Since we know the solution is bounded at large

optical depth, we must have β = 0. The other boundary condition comes from the gray-

atmosphere surface condition Jν(0) =
√

3Hν(0) = (1/
√

3)(dJν/dτν)0, which here implies

a+ α = b/
√

3 − α
√
ǫ, or

α =
b/
√

3 − a

1 +
√
ǫ
. (8.28)

The fully analytic solution for the mean intensity is thus

Jν(τν) = a+ bτν +
b/
√

3 − a

1 +
√
ǫ
e−

√
3ǫ τν . (8.29)

Eqn. (8.29) quantifies nicely the above physical arguments about thermalization in an

atmosphere with non-zero scattering. For example, note that the LTE condition J ≈ B

is generally only recovered for optical depths of order the thermalization depth, i.e. for

τν ∼> τth ≈ 1/
√
ǫ.

In contrast, at the τν = 0 surface we find, for the simple case of an isothermal atmosphere

with b = 0 and so Bν = a =constant, that the mean intensity is

Jν(0) =

√
ǫ

1 +
√
ǫ
Bν . (8.30)

For ǫ ≪ 1, with thus a substantial level of scattering, we obtain Jν/Bν ≪ 1, reflecting the

exensive “leakage” of radiative energy due to the diffusive loss to empty space.

Figure 7 plots Jν − Bν vs. log τν for various ǫ, assuming the standard Eddington at-

mosphere coefficients a = 2 and b = 3. Note that for small ǫ, representing weak absortion

and strong scattering, the mean intensity remains well below the Planck function from the

surface down to optical depths of order the thermalization depth, τth = 1/
√
ǫ.

Exercise: Assume a two-stream approximation in which the radiation field is

characterized by the specific intensities I±ν along just two discrete directions µ =

±µ1, where µ1 is fixed.
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Fig. 7.— J − B vs. log τν for mean-intensity solution (8.29), assuming a = 2, b = 3, and

various absorption fractions ǫ.

a. Write down the discrete angle forms for both the mean intensity Jν and the

flux Hν in terms of the I±ν and µ1.

b. By adding and subtracting the separate transfer equations for I+
ν and I−ν ,

derive equations for dJν/dτν and dHν/dτν .

c. Now combine these to get a second-order equation for Jν . For what value of

µ1 does this become equivalent to the second-order equation for Jν in the

Eddington approximation?

d. For a finite slab of optical thickness τs = 2τm, write out boundary conditions

for the I± at the appropriate surfaces τν = 0 and τν = τs.

e. Assume a source function of the form Sν = ǫBν + (1 − ǫ)Jν , appropriate to

coherent scattering plus thermal emission. For the case Bν = constant and

ǫ =constant, use symmetry arguments to replace one of the surface B.C.’s

with a B.C. at the slab midpoint τ = τm. Then derive an expression for the

ratio J/B at the slab midpoint in terms of ǫ and τm.

f. A slab for which this midpoint ratio is approximately unity is called effectively

thick. What then is the requirement for such a slab to be “effectively thick”?
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Compare this to the requirement for the slab to be “optically thick”.

9. Line Opacity and Broadening

9.1. Einstein Relations for Bound-Bound Emission and Absorption

Let us now focus on cases wherein the opacity has a significant contribution from bound-

bound processes. Because this leads to narrow “lines” of modified flux or intensity in a stellar

spectrum, the overall process is call “line transfer”. There are 3 basic kinds of line processes

associated with bound-bound transitions of atoms or ions:

1. Direct Absortion. In which the absorbed photon induces a bound electron to go into a

higher energy level.

2. Spontaneous Emission. In which an electron in a higher energy level spontaneously

decays to lower level, emitting the energy difference as a photon.

3. Stimulated Emission. In which an incoming photon induces an electron in a higher

energy level to decay to a lower level, emitting in effect a second photon that is nearly

identical in energy (and even phase) to the original photon.

For lower and upper levels i and j, we can associate with these three processes the

Einstein coefficients, written Bij, Aji, and Bji. The first of these is related to the opacity κν

via the associated energy removed from an intensity beam Iν ,

ρκνIν ≡ niBij
hνij

4π
φνIν , (9.1)

where ni is the number of atoms or ions in the lower atomic state i, and φv is called the

profile function, defining just how the opacity varies for frequencies ν near the resonance

(a.k.a. “line-center”) value νij. It is normalized to unity when integrated over all frequencies,

∫ ∞

0

φν dν = 1 . (9.2)

In the idealized case that both the upper and lower energy levels are infinitesmally sharp

and well defined, the profile function meansured in the rest-frame of the atom can be written

as a Dirac delta functiion, φν = δ(ν − νij). In practice, the Heisenberg uncertainty principal

means a level with a finite lifetime has energy uncertainty, giving the profile what is known

as “natural broadening”. Moreover, the perturbative effect of other atoms and ions leads
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to a kind of “pressure” (a.k.a. “Stark”) broadening. These both act on the intrinsic profile

in the atom’s frame, but if one accounts for the random thermal motion of atoms, then the

Doppler effect leads to an additional “thermal Doppler broadening” for the profile measured

in the rest frame of the overall stellar atmosphere. We will discuss these further below.

The Einstein coefficients for emission have to be divided between spontaneous and stim-

ulated components,

ηspon
ν ≡ njAij

hνij

4π
ψν , (9.3)

and

ηstim
ν ≡ njBji

hνij

4π
ψνIν , (9.4)

where nj is the number density of ions in the upper level j, and ψν is the emission profile.

In practice, one can often assume ψν = φν , which implies a randomization or complete

redistribution (CRD)8 of the photon frequencies between absorption and emission within the

line profile φν .

To proceed, let us consider the case of a gas in strict thermodynamic equilibrium (TE),

with Iν = Bν , and the ratio of the population in upper and lower levels set by

n∗
j

n∗
i

=
gi

gj

e−hνij/kT , (9.5)

where gi and gj are the statistical weights of the lower and upper levels, and the asterisks

emphasize that we’re specifically referring to TE level populations. The exponential term is

the “Boltzmann factor”, with eqn. (9.5) then known as the “Boltzmann relation”. It is one

of the fundamental underpinnings of thermodynamics and statistical mechanics.

In TE, the principal of detailed balance requires φν = ψν . It also requires that the

energy absorbed be equal to that emitted,

n∗
i BijBν = n∗

j (Aji +BjiBν) , (9.6)

Solving for the Planck function, we find

Bν =
Aji/Bji

giBij

gjBji
ehν/kT − 1

=
2hν3/c2

ehν/kT − 1
. (9.7)

8More generally, one needs to consider a frequency redistribution function R(ν, ν′) ≡ φνψν′ , describing

the probability that absorption of a photon of initial frequency ν is followed by reemission of a photon of

different frequency ν′. In CRD, R(ν, ν′) = φνφν′ .
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But because the Einstein coefficients don’t depend on temperature or, for that matter the

conditions of LTE, in order to recover the proper form for the Planck function, we must

require these two Einstein relations

Aji =
2hν3

ij

c2
Bji , (9.8)

and

giBij = gjBji . (9.9)

It should be emphasized again that these Einstein relations are quite general, and do not

depend on an assumption of LTE. At a base level, they really stem from the time-reversal

nature of microscopic laws of physics, since running a clock backwards on an absorption looks

like an emission, and vice versa. It is the basis of the general rule of thumb: “a good absorber

is a good emitter”. In general then, once we know the absorption coefficient Bij, we can use

these Einstein relations to obtain the stimulated and spontaneous emission coefficents Bji

and Aji.

9.2. The Classical Oscillator

A key issue in line-transfer is computing the line-absorption opacity,

κν =
ni

ρ
σν , (9.10)

in terms of the level population ni for the lower level i, and the associated bound-bound

cross section,

σν = σtot φν , (9.11)

where σtot is the total, frequency-integrated cross section, with units cm2 Hz. For complex

atoms with many electrons and energy levels, it can be quite difficult to calculate these cross

sections, and often they are best determined by experiment.

But within the context of a basic classical model of an atom, one can derive a quite

simple scaling, known as the “classical oscillator”, for which the frequency-integrated cross

section is just

σcl ≡
πe2

mec
= πrec , (9.12)

where again e and me are the electron charge and mass, and the latter equality casts this

in terms of the classical electron radius re = e2/mec
2. More complete calculations based on
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modern quantum mechanics are generally written with the integrated cross sections scaled

by this classical oscillator,

σtot = fij σcl = Bij
hνij

4π
, (9.13)

where fij is a dimensionless “oscillator strength”, typically of order unity for quantum me-

chanically allowed transitions, but very small for “forbidden” transitions that violate some

first-order selection rule. The latter equality above shows the relationship to the Einstein

absorption coefficient Bij.

Collecting these relations together, we have for the frequency-dependent line-opacity,

κν =
ni

ρ
fij σcl φν . (9.14)

9.3. Gaussian Line-Profile for Thermal Doppler Broadening

Let us now derive a form for the line-profile function φν that results from the Doppler

broadening by the thermal motion of atoms in an (otherwise static) atmosphere. If v is the

speed of an atom’s thermal motion in the direction of a photon with rest frequency ν, then

by the standard formula for Doppler shift, the frequency in the atom’s frame is

νa = ν(1 − v/c) . (9.15)

For gas of temperature T , the mean kinetic energy due to random thermal motion is kT =

mv2
th/2, where vth is the average thermal speed, and m is the mass of the absorbing atom.

The fraction of atoms in a speed interval between v and v + dv is then given by a simple

Gaussian distribution,9

f(v)dv =
e−(v/vth)2

√
πvth

dv , (9.16)

The line-profile in the star’s frame φν can be obtained by convolving this distribution with

the profile in atom’s frame φνa
.

For the idealized case that the atomic-frame profile is represented by a Dirac delta-

9This is another application of the Boltzmann distribution discussed above, which says that the distribu-

tion of states of energy E is proportional to e−E/kT , where here the energy is just the kinetic energy of the

individual atoms of speed v, i.e. E = mv2/2, with the thermal speed given by vth =
√

2kT/m.
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function δ(νa − νo), the convolution integral becomes quite straightforward to evaluate,

φD(ν) =

∫ ∞

−∞
δ[ν(1 − v/c) − νo]

e−(v/vth)2

√
πvth

dv (9.17)

=
e−(ν−νo)2/∆ν2

D

√
π∆νD

, (9.18)

where

∆νD =
vth

c
νo =

√

2kT/m

c
νo (9.19)

represents a characteristic thermal Doppler width for the line. Thus lines from a gas with finite

temperature are broadened by ±∆νD on both the lower (red) and higher (blue) frequency

side of line-center frequency νo.

Exercise: Fill in the steps in the integral evaluation between (9.17) and (9.18),

by making variable substitutions and accounting explicitly for the dimensions of

the delta function. Then integrate eqn. (9.18) over all frequencies to confirm that

the Doppler profile φD(ν) has the proper unit normalization from eqn. (9.2).

Sometimes the profile function is instead defined in terms of the photon wavelength

λ instead of frequency ν. But to keep the proper units and normalization, note that one

requires φνdν = φλdλ. It is often convenient to write a thermally broadened line-profile in

terms of thermal Doppler widths x from line center,

φD(x) ≡ e−x2

√
π
. (9.20)

Depending on the context, the variable x can either be in wavelength, xλ = (λ/λo−1)c/vth =

(λ − λo)/∆λD or in frequency, xν = (ν − νo)/∆νD. But for the usual case that ∆λD/λo =

∆νD/νo = vth/c≪ 1, these two definitions are just related by a simple sign flip.

Exercise: For narrow lines characterized by fractional width vth/c ≪ 1, show

that indeed xλ ≈ −xν .

For hydrogen atoms at the solar effective temperature T = 5800 K, vth ≈ 7 km/s,

and even in hotter stars the dominant lines from partially ionized “metals” typically have

vth ∼ 10 km/s. Comparing this to the speed of light c = 3× 105 km/s, we conclude that the

fractional thermal width of lines is thus typically of order

∆λD

λo

=
∆νD

νo

=
vth

c
≈ 3 × 10−5 . (9.21)
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9.4. The Resonant Nature of Bound vs. Free Electron Cross Sections

The concentration of line-opacity into such very narrow seqments in frequency or wave-

length is one key factor is making line absorption strong relative to continumm processes

at frequencies near an atomic resonance. But this is not the whole, or even main, reason

for the inherent strength of line opacity. In particular, even if one averages the total line

cross section over a much larger frequency interval given by its own resonance frequency,

i.e. σtot/νo, this turns out to be much greater than a characteristic continuum cross section,

like the Thomson cross section for electron scattering σTh. For example, for an allowed line

transition with oscillator strength fij ≈ 1, we can define a characteristic line-strength ratio

Qλ in terms the classical oscillator σcl,

Qλ ≡ σcl

νo σTh

=
πrec

νo (8/3)πr2
e

(9.22)

=
3

8

λo

re

(9.23)

= 7.5 × 108 λ5000 , (9.24)

where re = e2/mec
2 ≈ 2.5 × 10−13 cm is the classical electron radius discussed previously.

The last equality shows that, in terms of a wavelength scaled by a typical optical value, i.e.

λ5000 ≡ λ/5000 Å, this ratio is very large. By this measure, one can thus think of line cross

sections as being roughly a billion times stronger than for electron scattering!

The basic physical reason for this great intrinsic strength of lines lies in the ability of

bound electrons to resonate with narrow bands of the incident radiation, greatly increasing

the total cross section. This is much the same principle that makes a whistle loud, with a

response tuned to a specific frequency, in contrast to the softer, broadband noise from just

blowing into open air. Indeed, by next examining the finite lifetime and damping of the

resonance, we will see that the ratio Qλ is closely related to quality of the resonance10.

9.5. Frequency Dependence of Classical Oscillator: the Lorentz Profile

This simple classical model of a bound oscillator can also be used to derive the frequency-

dependent cross section, measured in the rest frame of the atom, σν . Multiplied by the

10I am indebted to Ken Gayley for first pointing out to me this very deep insight into the resonant nature

of line absorption. The discussion in this and the next two sections is largely taken from unpublished notes

he shared with me. But for some interesting applications of this general property in the context of radiative

driving in stellar winds, I highly recommend Gayley (1995, ApJ 454, 410).
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oscillator strength fij to account for quantum mechanical effects, the result is (from Mihalas

1968, eq. [4-32]):

σν = fij σTh
ν4

(ν2 − ν2
o )

2 + ν2(Γ/2π)2
, (9.25)

where

Γ =
8π2

3

reν
2
o

c
=
gj

gi

Aji

3fij

(9.26)

is a rate parameter for the damping of the oscillator. The latter equality makes use of the

Einstein relations and eqn. (9.13) to show this classical damping rate is closely related to

the quantum mechanical transition rate Aji.

Eqn. (9.25) yields physically different behavior over three regimes in ν:

1. Thomson scattering (ν ≫ νo). For high frequencies well away from the resonance, we

recover (with f = 1) the simple Thomson cross section for free electron scattering,

σν ≈ σTh ; ν ≫ νo . (9.27)

2. Rayleigh scattering (ν ≪ νo). In the opposite limit of low frequency well below the

resonance, we obtain the Rayleigh scattering limit, with

σν ≈ σTh

(

ν

νo

)4

; ν ≪ νo . (9.28)

The strong frequency dependence of Rayleigh scattering leads to a substantially red-

denng of a light source, with the scattered, diffuse light dominated by bluer color.

In the context of scattering by molecules in the earth’s atmosphere, such Rayleigh

scattering makes the sky blue, and leads to the distinct redness of the solar disk at

sunset.

3. Line absorption (ν ≈ νo). When ν is very close to νo, we obtain a line-opacity of the

form

σν = fijσcl φL(ν) , (9.29)

where

φL(ν) =
Γ/4π2

(ν − νo)2 + (Γ/4π)2
(9.30)

is known as the normalized Lorentz profile.

Exercise: Derive the Lorentz profile (9.30) from the general eqn. (9.25) in the

case that ν ≈ νo. Hint: Note that in this case, (ν2 − ν2
o )

2 ∼= 4ν2
o (ν − νo)

2.
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Note that all three regimes are present for any resonator, and free electrons can be

treated simply by taking νo and Γ to be zero, with unit oscillator strength, in eqn. (9.25).

This suggests that eqn. (9.25) can be rewritten in a simple approximate form that underscores

these points,

σν
∼= fijσTh min{1, ν4/ν4

o} + fijσclφL(ν). (9.31)

Eqn. (9.31) allows us to examine the relative importance of bound and free electrons. It

shows that the Thomson cross section is present even for bound electrons. Thus the use of the

Lorentz profile is actually an approximation to eqn. (9.25) in the vicinity of the resonance.

Using eqn. (9.25) instead eliminates the confusion between the units of σTh and σcl, and it

is readily seen from eqn. (9.31) that the presence of a resonance merely enhances the cross

section in the vicinity of νo, and sets up a wide Rayleigh regime where the cross section is

somewhat reduced. These are constructive and destructive interference effects, respectively,

and the constructive effects far outweigh the destructive ones for a flat continuum. The

oscillator strength is an overall multiple that applies in all three regimes, and effectively

gives the probability that the oscillator in question is quantum mechanically realized.

9.6. The High “Quality” of Line Resonance

As shown in eqn. (9.26), the damping rate Γ is closely related to the transition rate Aji,

meaning 1/Γ effectively characterizes the lifetime of the state, or equivalently, the duration

of the resonance. As such, we can readily define the classical “Q” or quality of the resonance,

Q =
νo

Γ
=

3

8π2

λo

re

=
Qλ

π2
≈ 8 × 107 λ5000 , (9.32)

which effectively gives the number of cycles required to damp the oscillation after external

driving is turned off. It also gives the number of cycles over which the oscillator can retain

phase coherence, which measures its potential for constructive interference. This interference

allows the bound electrons to dominate the free electrons by essentially the factor QA, where

A is the relative fraction of bound vs. free electrons in the stellar atmosphere.

For example, in the atmosphere of a cool star like the sun, most electrons are still bound

to hydrogen, and so photons with a frequency near the resonance for one of the bound-bound

transitions of a hydrogen, the opacity can be enormous compared to electron scattering.

Hydrogen lines in the sun are thus typically very strong, even greater than Q ∼ 108 times

the opacity for free electrons.

On the other hand, in hotter stars, hydrogen is fully ionized, and the dominant lines

come from various incomplete ionization states of much less abundant “metals”, e.g. carbon,
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nitrogen, oxygen and iron. With relative abundance of bound electrons thus of order A ∼
10−4, the strengths of lines relative to electron scattering is somewhat reduced, but still

large, QA ∼ 103.
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Fig. 8.— log[φ(x)] vs. x for Voigt (heavy solid), Doppler (medium dashed) and Lorentz

(light dotted) profiles with various damping parameters av. The intersection points x∗ at

which φD(x∗) ≡ φL(av, x∗) mark the transition frequency between Doppler core and Lorentz

damping wings. The light solid curves show that the sum of the Doppler and Lorentz profiles

gives a good, simple approximation to the full Voigt profile for x > 1, as noted in eqn. (9.41).

9.7. The Voigt Profile for Combined Doppler and Lorentz Broadening

The above shows that the intrinsic profile in the atom’s frame is not completely sharp

like a delta-function, but rather, due to the finite liftetime of the state, has an inherent

broadening characterized by the Lorentz profile φL(ν), as given by eqn. (9.30). To obtain
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the overall profile in the frame of the stellar atmosphere, we must convolve this Lorentz

profile with the Gaussian distribution of speeds that give thermal Doppler broadening,

φV (ν) =

∫ ∞

−∞
φL[ν(1 − v/c)]

e−(v/vth)2

√
πvth

dv . (9.33)

For such a “Voigt profile”, it is traditional to define a parameterized Voigt function,

H(av, x) ≡ av

π

∫ ∞

−∞

e−y2

(x− y)2 + a2
v

dy (9.34)

=
ea2

v−x2

2
ℜ

[

e2iavxerfc(av + ix) + e−2iavxerfc(av − ix)
]

, (9.35)

where the latter analytic form was obtained from Mathematica. Here we have again used a

Doppler-unit frequency difference from line-center,

x ≡ ν − νo

∆νD

, (9.36)

and we have now defined a scaled damping parameter,

av ≡ Γ

4π∆νD

, (9.37)

which is typically quite small, av ∼ 10−4 ≪ 1. In these scaled units, the Doppler profile is

given by eqn. (9.20), while the Lorentz profile is

φL(av, x) =
av/π

x2 + a2
v

. (9.38)

Figure 8 compares log plots of the frequency variation of Voigt, Doppler, and Lorentz profiles,

for various values of av.

Exercise: Show that the dimensionless damping parameter av can be written in

terms of the resonance quality Q defined in eqn. (9.32), and the ratio of thermal

speed to light speed vth/c. For the typical values quoted above for Q of an allowed

transition with wavelength in the optical, and for thermal speed vth in a stellar

atmosphere, estimate an associated numerical value of av, confirming thereby

that it is indeed very small, av ≪ 1.
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We can now write a Doppler-unit Voigt profile

φv(av, x) =
H(av, x)√

π
(9.39)

≈ φD(x) ; |x| ≤ 1 (9.40)

≈ φD(x) + φL(av, x) ; |x| > 1 . (9.41)

Figure 8 compares the full Voigt profile with Doppler and Lorentz profiles, and also their

sum. As illustrated by the vertical dashed lines, the frequency x∗ – defined implicitly as

the outer root of φD(x∗) = φL(av, x∗) – marks the transition from the Doppler core to the

Lorentz damping wings. This can be solved explicitly using the “Lambert” or “ProductLog”

function11, but for the usual case of a very small damping parameter, av ≪ 1, figure 8 shows

that typically x∗ = 2− 4. Using x∗ ≈ 3 as first approximation, we can write an explicit next

approximation in the form

x∗ ≈
√

ln(3
√
π/av) . (9.42)

For example, for a typical value av = 10−4, this approximation gives x∗ ≈ 3.3, whereas the

exact solution is x∗ = 3.5.

10. Classical Line Transfer: Milne-Eddington Model for Line + Continuum

Let us now derive the emergent intensity and/or flux from an atmosphere in which the

opacity has contributions from both line and continuum. For this, note that in §8.5 we

have already solved the radiative transfer for thermal emission plus coherent, scattering at

a single, fixed, isolated frequency ν. In that solution, no restriction was made for what the

source of the opacity might be at the chosen frequency, and so we are free now to specify

this, using both the continuum and line opacity sources we have been examining above.

So consider now a case where at the given frequency ν the total opacity kν stems from

a combination of both continuum and line processes,

kν = kc + kl φν , (10.1)

with also correponding emissivities

ην = ηc + ηl φν . (10.2)

11See http://mathworld.wolfram.com/LambertW-Function.html or

http://en.wikipedia.org/wiki/Lambert W function .
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Let us further assume that these opacities are divided between scattering and absorption

components, with associated photon destruction probabilities.

kc = κcs + κca (10.3)

kl = κls + κla (10.4)

ǫc = κca/kc (10.5)

ǫl = κla/kl . (10.6)

We can then define a frequency-dependent destruction probability

ǫν =
ǫc + ǫl βν

1 + βν

, (10.7)

where the relative strength of the total line to continuum opacity is defined by

βν =
kl

kc

φν . (10.8)

This still gives a source function of the form in eqn. (8.22),

Sν(τν) = ǫνBν(τν) + (1 − ǫν)Jν(τν) . (10.9)

As in §8.5, let us assume a Planck function that is linear in optical depth, defined now by

the continuum opacity,

Bν(τc) = a+ b τc (10.10)

≡ a+ pν τν , (10.11)

where the second equality gives the variation with frequency-dependent optical depth through

the coefficient

pν ≡ b
kc

kν

=
b

1 + βν

. (10.12)

An essential point here is that, with just these redefinitions, the solution is entirely

analogous to that given by eqn. (8.29),

Jν(τν) = a+ pντν +
pν/

√
3 − a

1 +
√
ǫν

e−
√

3ǫν τν . (10.13)

We can use this to obtain the emergent flux

Hν(0) =
Jν(0)√

3
=

1

3

√
3ǫν a+ pν

1 +
√
ǫν

. (10.14)
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For continuum opacity, we have βν → 0, ǫν = ǫc, and pν = b, yielding

Hc(0) =
1

3

√
3ǫc a+ b

1 +
√
ǫc

. (10.15)

The ratio of these gives the residual flux of the line,

Rν ≡ Hν(0)

Hc(0)
=

(√
3ǫν a+ b/(1 + βν)√

3ǫc a+ b

) (

1 +
√
ǫc

1 +
√
ǫν

)

. (10.16)

This general result contains interesting behaviors in various special cases, as we now explore.

10.1. Scattering line with thermal continuum

Let us first consider the case of a pure-scattering line, with ǫl = 0, coupled with a

pure-aborption, thermal continuum, ǫc = 1, which together also imply ǫν = 1/(1 + βν). We

then find

Rν = 2

√
3a+ b/

√
1 + βν

(
√

3 a+ b) (1 +
√

1 + βν)
. (10.17)

Note then that for a very strong scattering line, i.e. with βν → ∞, we obtain Rν → 0,

meaning it becomes completely saturated or dark.

10.2. Absorption line with thermal continuum

For the case of pure-absorption in both continuum and line, with ǫc = ǫl = 1, eqn.

(10.16) becomes

Rν =

√
3a+ b/(1 + βν)√

3 a+ b
. (10.18)

Now for the limit of strong absorption line, βν → ∞, we find

Rν = Ro =
1

1 + b/
√

3a
, (10.19)

which is generally nonzero. Very strong absorption lines thus do not become completely

dark.

Figure 9 compares line profiles for this absorption case (left) with the scattering case

above (right), for a Voigt parameter av = 10−3, and Eddington gray atmosphere values for

the ratio b/a = 3/2. The overplots are for line-center strength βo = 1 to 106 in steps of factor
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Fig. 9.— The residual flux Rx vs. Doppler-scaled frequency x for the case of pure-absorption

continuum ǫc = 1 with b/a = 3/2, and Voigt line damping parameter av = 10−3. The left

panel is for pure-absorption lines (ǫl = 1) and the right is for pure-scattering lines (ǫl = 0),

with the overplots showing profiles for central line strengths from βν = 1 to βo = 106 in step

factors of one decade.

10. Note that the strong scattering lines become black at line center, while absorption lines

saturate to a level that depends on b/a.

Strong lines have a dual profile character, with a saturated Doppler core, and broad,

gradual Lorentz damping wings. Once lines saturate in core, the additional growth of absorp-

tion with increasing line opacity βo occurs through a very gradual (logarithmic) expansion

of the core. But with further increase in βo, there develops a stronger growth in absorption

with the expansion of the damping wings. Further details are given in the “curve of growth”

discussion below.

Exercise: Consider the analytic Milne-Eddington model for the case of a pure-

absorption continuum (ǫc = 1). Assume βν = βoφv(x) and Bν(τc) = a+ bτc with

b/a = 3/2.

a. For pure-scattering lines (ǫl = 0), plot the residual flux profiles Rx vs.

Doppler-unit frequency displacement x over the range [−10, 10], overplotting

curves for βo = 100 and 104, and for av = 10−4, 10−3, and 10−2.

b. Do the same for pure-absorption lines (ǫl = 1).
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c. For the case βo = 100 and av = 10−2, compute the source function Sν

at optical depth τν = 2/3 for both a pure-scattering and a pure-absorption

line. Use the Eddington-Barbier relation to relate these to the residual fluxes

obtained for this case in parts (a) and (b). Do the same for the βo = 104

case.

10.3. Absorption lines in a Gray Atmosphere

For a gray atmosphere, we have Sc = Jc = Bν , with

Bν(τ) = Bν(To) +
dBν

dτc
τc = a+ bτc , (10.20)

and [cf. eqn. (8.12)]

T 4 = T 4
o

(

1 +
3

2
τc

)

, (10.21)

where To ≈ Teff/2
1/4 is the surface temperature. From these relations we see that

b

a
=

3

8
Xo =

3

8

hν/kTo

ehν/kTo − 1
. (10.22)

For a strong absorption line in such a gray atmosphere, we find residual flux

Ro =
1

1 +
√

3Xo/8
. (10.23)

For example, To = 4800 K, and for λ ≈ 5000 Å, we get Xo ≈ 6, which applied to eqn. (10.23)

gives Ro = 1/(1 + 3
√

3/4) = 0.44. This is in good agreement with the central depth of the

Hydrogen Balmer line, Hα, which as a “subordinate line” (originating from an upper level),

behaves like almost like a pure absorption.

In contrast, strong “resonances lines”, which start at the ground level, tend to behave

like scattering lines, and when very strong, they do indeed become nearly black at line center.

10.4. Center to Limb Variation of Line Intensity

The formal solution gives for the emergent intensity,

Iν(µ, 0) =

∫ ∞

0

[Bν + (1 − ǫν)(Jν −Bν)] e
−t/µ dt/µ (10.24)

= a+ pνµ+
(pν −

√
3a)(1 − ǫν)√

3(1 +
√
ǫν)(1 +

√
3ǫνµ)

. (10.25)
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For pure-absorption continuum with βν = 0 and ǫc = 1, we find again Ic = a + bµ, from

which we can now define the residual intensity profile

rν(µ) ≡ Iν(µ, 0)

Ic(µ)
. (10.26)

For a pure-absorption line with ǫl = ǫc = ǫν = 1, we find

rν(µ) ≡ a+ bµ/(1 + βν)

a+ bµ
→ 1 as µ→ 0 , (10.27)

from which we see that the scattering lines disappear at the limb, regardless of the value of

βν .

By contrast, for a scattering line with ǫl = 0 and thus ǫν = 1/(1 + βν), we find that for

βo → ∞, rν(µ) → 0 for all µ. Thus strong scattering lines are dark all across the solar disk.
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Fig. 10.— Line profiles for Schuster model for an LTE line (ǫl = 1) in a pure-scattering

continuum (ǫc = 0). The Voigt parameter is fixed at av = 10−4, and the line-center strength

is set to βo = 10 (left) or βo = 100 (right). The overplots show results for various values for

the ratio of constants a/b, illustrating how a large a/b causes the line to go into emission.

10.5. Schuster Mechanism: Line Emission from Continuum Scattering Layer

In a star’s spectrum, the lines most commonly appear in absorption, meaning the in-

tensity or flux in the line is lower than in the nearby continuum. But occasionally lines can

also appear in emission, with the intensity or flux higher than in the continuum. One of a

spowocki
Comment on Text
absorption
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handful of processes for producing emission lines is known as the Schuster mechanism, which

results when the continuum opacity is dominated by scattering, such as from free electrons.

Supposing that the continuum is pure scattering, ǫc = 0, then ǫν = ǫlβν/(1 + βν).

Plugging these into eqn. (10.16), the resulting residual flux profile becomes

Rν =
1/(1 + βν) +

√
3ǫν a/b

1 +
√
ǫν

. (10.28)

If the line opacity is also pure scattering, with ǫl = 0, then the residual flux is given by

Rν =
1

1 + βν

< 1 , (10.29)

which thus is always in absorption.

But for an absorption line with ǫl = 1, we find for strong lines βo → ∞,

Rν →
√

3

2

a

b
, (10.30)

which, for a weak temperature gradient with small b/a, can exceed unity, implying a net line

emission instead of absorption.

Physically this can be understood from the fact that scattering makes the continuum

source function low near the surface, Sc(0) = Jc(0) ≪ B(0), which by the Eddington-Barbier

relation implies a weak continuum flux. By comparison, the absorption nature of the line

means its surface source function is at the much higher Planck level, Sl(0) ≈ B(0). This

indicates the line can potentially be brighter, but only if the decline from the negative

temperature gradi.ent term is not too steep.

Figure 10 plots sample line profiles for a moderate and strong line (βo = 10, left; and

βo = 100, right), assuming various values for the ratio a/b. Note that for a/b < 1/
√

3,

the lines remain always in absorption, while for a/b >
√

3/2 they are always in emission.

For theintermediate case, the profiles have a mixed character, with emission wings that has

a central reversal toward the line-core, sometimes even going below the continuum at line

center. The critical case a/b = 5/2
√

3 shows a case where the center of a strong line reverses

just down to the continuum, with the rest of the line in emission.

Exercise

In the Schuster-Schwarzschild model, line formation is assumed confined to a

finite “reversing layer”, of optical thickness Tν , and illuminated from below by an

incident intensity Io. In the reversing layer, there is no continuum absorption or

scattering, and Bν(τν) = a+ bτν . Assume a two-stream approximation, in which

Iν(µ) = I±ν , with only two discrete µ = ±1
2
.
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a. For pure, coherent, line-scattering, show that Hν ≡ 1
4
(I+

ν − I−ν ) = constant

= 1
4
Io/(1 + Tν), and that Jν(τν) = 2Hν(1 + 2τν), where 0 ≤ τν ≤ Tν . Why

are these results independent of the Planck function parameters a and b?

b. Now derive Hν and Jν for a pure absorption line. Contrast the dependence

here on a and b with that from part (a), and briefly discuss the physical

reasons for the difference.

11. Curve of Growth of Equivalent Width

11.1. Equivalent Width
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Fig. 11.— Illustration of the definition of equivalent width Wx. The left panel plots the

residual flux for a sample line (here with parameters βo = 100, ǫc = 1, ǫl = 0, b/a = 3/2, and

av = 10−3), with the shaded area illustrating the total fractional reduction of continuum light.

The right panel plots a box profile with width Wx, defined such that the total absorption

area is the same for the curve to the left. In this example, Wx = 3.01.

Because lines are so typically very narrow, with fractional widths ∆νD/νo = vth/c .

10−4, being able to actually resolve individual line profiles in a star’s spectrum demands a

very high spectral resolution, R ≡ ν/∆ν ≈ λ/∆λ & 10, 000, which requires some combina-

tion of a very bright star, a very large aperture telescope, or a very long exposure, to attain

a sufficient number of photons within each frequency (or wavelength) resolution element.

In lower-resolution survey spectra of stars, the individual line profiles are not discernible,

and so the information about a given line is limited to some measure of its over strength,
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Fig. 12.— Curves of growth for the case of pure-absorption continuum ǫc = 1, with b/a =

3/2, and Voigt line damping parameters av = 10−4, 10−3, and 10−2. The left panel shows the

pure absorption case given by eqn. (11.7), while the right panel is for the MIlne-Eddington

model for scattering lines with ǫl = 0. The dashed lines compare linear (blue) and square root

(red) functions, to show the limiting forms for very weak and very strong lines. The flatter

portion bridging between these limits shows the “logarithmic” growth from intermediate

strength lines with saturated Doppler cores, but no significant Lorentz damping wings.

meaning the total fraction of the continuum flux that has been reduced near the line.

This reduction can be characterized in terms of the equivalent width, defined mathemat-

ically as the frequency integral over the absorption fraction Aν ≡ 1 −Rν ,

Wν ≡
∫ ∞

0

Aν dν . (11.1)

As illustrated in figure 11, Wν can be intuitively thought of as the width of a box profile

with the same total flux reduction as the actual line.

11.2. Curve of Growth for Scattering and Absorption Lines

Given the residual flux Rν and thus the absorption fraction Aν , the Wν can be computed

from direct (usually numerical) integration from eqn. (11.1). In practice, it convenient to

scale this width by the thermal Doppler width, Wx ≡ Wν/∆νD, with the Doppler-scaled

frequency x = (ν − νo)/∆νD used to define the frequency variation of line strength through

βν = βoφv(x). Here φv(x) is the scaled Voigt profile, and βo a measure of line-strength at
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line-center, defined in terms of basic line parameters by

βo = σclfij
ni

ρκc

1

∆νD

. (11.2)

This is proportional to the number of line absorbing atoms, and so the increase in of Wx with

increasing βo, known as the curve of growth, represents how the integrated line attenuation

from lines depends on the total number of absorbers.

The right panel of figure 12 shows such a theoretical curve of growth, computed from

direct frequency integration of Aν = 1 − Rν , as derived from the above Milne-Eddington

model of a pure scattering line with ǫl = 0 in pure-absorbing continuum. The left panel

shows correponding curves of growth for a pure absorption line. Note that the basic forms of

the curves of growth is quite similar in both the scattering and absorption cases, and indeed

we will now see that this results mainly from the characteristics of the Voigt line profile.

To see this, it is helpful to focus on this relatively simple case of pure-absorption in

both line and continuum, with again a linear Planck function B(τ) = a + bτc. But rather

than use the above Milne-Eddington scalings that assume the Eddington approximation, in

this pure-absorption case we can apply the moment form of the formal solution to compute

directly the emerging flux,

Hν(0) =
1

2

∫ ∞

0

(a+ bt)E2[(1 + βν)t](1 + βν)dt (11.3)

=
1

4

(

a+
b

1 + βν

)

. (11.4)

From the ratio to the continuum, we obtain for the absorption strength

Aν = 1 −Hν(0)/Hc =
βν

1 + βν

1

1 + 3a/2b
≡ Ao

βν

1 + βν

, (11.5)

and thus the equivalent width

Wν = Ao

∫ ∞

0

βν

1 + βν

dν = 2Ao∆νDβo

∫ ∞

0

φv(x)

1 + βoφv(x)
dx . (11.6)

11.3. Linear, Logarithmic, and Square-Root Parts of the Curve of Growth

To isolate just this dependence on the number of absorbers through βo, it is convenient

to define a “reduced equivalent width”,

Wν

2Ao∆νD

≡ W ∗(βo) = βo

∫ ∞

0

φv(x)

1 + βoφv(x)
dx . (11.7)
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Note that this reduced equivalent width depends only on βo and the form of the (Voigt)

profile function φv(x). Knowing that form, we can readily understand the various parts of

the theoretical curves of growth in figure 12.

First, for weak lines with βo . 1, we can generally ignore the βo term in the denominator

of the integrand, implying that the integral just become the unit normalization of the profile

function, and thus that the equivalent width just scales linearly with number of absorbers,

W ∗ ∼ βo. Referring to the pure-absorption line profiles plotted in figure 9, this weak line

regime corresponds to cases when the absorption is just started to appear within the Doppler

core of the line. Such relatively weak lines are said to lie on the “linear” part of the curve of

growth.

But as we increase the number absorbers, we soon come to a regime where this Doppler

core becomes saturated, whereupon adding more absorbers hardly increases the total attenu-

ation, since this requires expanding the width of the Doppler core against its strong Gaussian

dependence on frequency. The increase in equivalent width for such intermediately strong

lines is thus very slow, as W ∗ ∼
√

log βo, and so this regime is known as the “logarithmic”

part of the curve of growth.

If, however, we increase βo still further, we now find that the line is becoming optically

thick in the Lorentz damping wings, for which the line profile now scales only with the

inverse square power of frequency displacement from line center, φv(x) ∼ av/x
2. As the

increased number of absorbers extends the optical thick wings against this Lorentz scaling,

the equivalent width approachs a scaling W ∗ ∼
√
βo, and so this very strong lines with

Lorentz damping lines represent a “square root” part of the curve of growth.

These separate domains are apparent for both the absorption (left) and scattering (right)

line cases plotted in figure 12, but note that the transition from the logarithmic to square-root

parts depends on the value of the Voigt damping parameter av.

Exercise:

a. For the case av = 10−2, sketch a plot ofW ∗ vs. βo by estimatingW∗ in limiting

regimes appropriate to the “linear”, “logarithmic”, and “square root” parts

of this curve of growth, marking the values for the transitions between these

regimes.

b. Considering the definitions of W ∗ and βo, for each of these regimes discuss

the dependencies of the actual equivalent width Wν on the Doppler width

∆νD and the number of absorbers ni.

c. Based on your answer to (b), which part of an empirical curve of growth
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do you expect to be most appropriate for inferring the presence of “micro-

turbulent” velocity fields? Which part for inferring elemental abundances?

Explain the reasoning for your answers.

11.4. Doppler Broadening from Micro-turbulence

In our previous analysis of Doppler-broadening of a line profile, we assumed

that the only speed to consider was that due to the random thermal motion of

individual atoms, with an average thermal speed given in terms of the tempera-

ture T and atomic mass m, vth =
√

kT/m. But in practice, a stellar atmosphere

is typically not completely static, but can include a spatially complex collection

of eddies and swirls, for example associated with convective transport of energy

from the interior, or from stellar pulsations, or from localized disturbances like

flares. In lieu of developing a detailed model of a specific type of motion and its

spatial character, it is often assumed that the motions can themselves be charac-

terized in some simple statistical way, for example taking the fraction of atoms

with a given turbulent speed v to again scale as a Gaussian function, e−(v/vturb)
2

,

where vturb now characterizes a root-mean-square measure of the turbulent ve-

locity amplitude. Under the further assumption that the spatial scale of such

turbulence is much smaller than a typical photon mean-free-path, then the net

effect would be add to the Doppler broadening of a line profile. Indeed, since the

thermal motion of atoms and the random motion of such “microturbulence” are

likely to be uncorrelated, the individual speeds should be added in quadrature,

giving then a total average speed

vtot =
√

v2
th + v2

turb , (11.8)

which then implies a total Doppler broadening

∆νD = νo
vtot

c
. (11.9)

Since the reduced curve of growth is scaled by the Doppler width, matching an

observed curve of growth can allow one to infer ∆νD. If vth can then be inferred

from the known stellar temperature e.g., T ≈ Teff and known atomic mass, then

such a measure of ∆νD can provide an estimate of the micro-turbulent velocity

vturb. The details here are left as an exercise.
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12. NLTE Line Transfer

While very helpful for insight, the classical line transfer models of the previous sections

have been deficient is several respects, and so now let us develop a physically more realistic

model, with emphasis on two particularly important improvements:

1. CRD vs. Coherent Scattering. Instead of assuming a “coherent” scattering in which

each frequency remains isolated from all others, let us allow for frequency redistribution,

specifically the opposite assumption to coherent scattering, namely that the photons

undergo a randomization or Complete ReDistritrubition (CRD) in frequency within the

line.

2. Atomic Physics with Statistical Equilibrium. Moreover, instead of assuming that the

absorption and scattering opacities are given as fixed parameters – which then also set

the line destruction probability ǫl = κabs/(κabs +κscat)–, let us now compute these from

basic atomic physics properties of absorbers, given also a solution to the ionization and

excitation fractions of the ions based an general assumption of statistical equilibrium.

12.1. Two-Level Atom

A relatively simple example for this can be given by an approximate model of an atom

that assumes it consists of just two bound energy states, representing an upper (u) and

lower (l) level. In terms of the Einstein coefficients for excitation from the lower level, and

spontaneous and stimulated decay from the upper level, the equation of radiative transfer

can be written as

µ
dIν
dz

= [−nlBlu + nu(Aul +BulIν)]φν
hν

4π
, (12.1)

where here we have effectively assumed CRD in invoking an equivalence between the emission

and absorption profiles, ψν = φν . Let us next define a line-averaged opacity by

ρκlu = (nlBlu − nuBul)
hν

4π∆ν
(12.2)

= σcl
flu

∆ν

(

nl −
gl

gu

nu

)

, (12.3)
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where ∆ν is the line width, and the second term from stimulated emission now represents a

kind of “negative absorption”12. To cast the transfer equation in its familiar form,

µ
dIν
dτ

= Iν − Sl , (12.4)

we now define the line source function by

Sl ≡
nuAul

nlBlu − nuBul
=

2hν3/c2

nlgu

nugl
− 1

, (12.5)

where the latter equality uses the Einstein relations. In the special condition of thermody-

namic equilibrium (TE), the level populations follow the Boltzmann distribution,

nlgu

nugl

= ehν/kT , (12.6)

in which case the line source function reduces to the Planck function, Sl = Bνo
.

However, in general conditions, Sl depends on the level populations nl and nu, and

these in turn depend on the radiation field. A more general condition for determining these

populations is to assume a steady state in which the net processes creating and destroying

each level must balance with the net processes creating and destroying the competing level.

This balance is known as statistical equilibrium, and can be expressed by an equality between

the total destruction rates from each of the two levels,

nl

(

BluJ̄ + Clu

)

= nu

(

Aul +BulJ̄ + Cul

)

. (12.7)

Here Clu and Cul represent collisional rates for excitation and de-exciatation, and, under

the assumption of CRD, the radiative rates now depend on the line-profile-averaged mean-

intensity,

J̄ =

∫ ∞

−∞
φ(x)J(x)dx (12.8)

Typically the free electrons that dominate the collisional rates have themselves a nearly

Maxwell-Boltzmann distribution in energy, as in LTE. Thus, by a detailed balance argu-

ment, we require a further Einstein relation, now between the collisional exciatation and

de-excitation,

Clu =
n∗

u

n∗
l

Cul = e−hν/kTCul , (12.9)

12Indeed, in the case of a popluation inversion with nl < nugl/gu, this stimulated emission can dominate

over positive absorption, producing a net amplification in intensity along a given beam. Such population

inversions are the principle behind a “Light Amplfication by Stimulated Emission of Radiation”, or a laser.
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where the asterisks denote the LTE populations. Applying this and the statistical equilibrium

equation (12.7) in the line source function definition (12.5), we find

Sl =
J̄ + ǫ′Bνo

1 + ǫ′
= (1 − ǫ)J̄ + ǫBνo

, (12.10)

where the ratio of collisional to spontaneous decay is

ǫ′ ≡ Cul

Aul

(

1 − e−hν/kT
)

, (12.11)

with then the collisional destruction probability given by

ǫ ≡ ǫ′

1 + ǫ′
. (12.12)

This is similar to the line destruction probability ǫl defined above for classical line transfer,

except that now it applies to the entire line, not just to a single frequency within the line.

Otherwise, the meaning is quite similar, with ǫBνo
representing the thermal creation of

photons, and (1 − ǫ)J̄ representing the scattering source.

But we now can readily see the essential physical scaling of this destruction probability,

namely that since it is depends the electron collisional rate Cul, it scales with the electron

density, i.e., ǫ ∼ ǫ′ ∼ Cul ∼ ne. This implies that at great depth, ǫ′ → ∞, and thus

that ǫ → 1. Again, this leads the high-density regions at great depth toward LTE, ǫ ≈ 1

whereas lower density regions in the atmosphere can have ǫ≪ 1, implying a strong scattering

component that characterizes NLTE.

But even in this strong scattering, NLTE regime, it is important realize that one cannot

disregard the relatively small thermal term ǫBνo
, since it ultimately provides the source for

creative of photons, which are then scattered within the atmosphere.

Indeed, if one sets ǫ = 0, then note that the transfer equation becomes entirely homoge-

neous, with thus no scale for the radiation field, unless imposed externally through boundary

conditions. In actual stellar atmospheres, this scale is indeed set by the small, ǫBνo
ther-

mal term, which when averaged over the volume of the thermalization depth, provide the

ultimate source of the radiation.

However, we shall now see that the scaling for this thermalization depth is somewhat

altered in the current case of CRD vs. the previous assumption of coherent scattering.
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12.2. Thermalization for Two-Level Line-Transfer with CRD

For photons interacting in a spectral line, the destruction probability per encounter is

given by

Pd =
Cul

Aul + Cul

= ǫ . (12.13)

This is is to be compared with the probability for direct escape of a line photon with scaled

frequency x into direction cosine µ from a location with vertical line optical depth τ ,

Pe(x, τ, µ) = e−τφ(x)/µ . (12.14)

Averaged over the line profile φ(x) and all directions µ,

Pe(τ) =
1

2

∫ ∞

−∞
dxφ(x)

∫ 1

0

e−τφ(x)/µ dµ (12.15)

=
1

2

∫ ∞

−∞
E2[τφ(x)]φ(x) dx . (12.16)

For strong lines with τ ≫ 1, let us define a line-edge frequency x1 by φ(x1) ≡ 1/τ . We then

find that the exponential integral term in the integrand can be approximated by E2 → 0 for

x < x1, and by E2 → 1 for x > x1. Physically this states that photons are trapped in the

core (with x < x1, but can escape in the line wings, x > x1. Thus the total escape probabilty

can be approximated by

Pe(τ) ≈
∫ ∞

x1

φ(x) dx . (12.17)

The evaluation of this integral can be divided between the case of moderately strong line,

for which x1 is still in the Doppler core of the Voigt profile φ(x), and the case of very strong

lines, for which x1 lies in the Lorentz damping wings.

For intermediately strong lines with a Doppler profile, we find

Pe(τ) =
1

2
erfc(x1) ≈

e−x2

1

2
√
πx1

(12.18)

=
φ(x1)

2x1

=
1

2x1τ
≈ C

τ
, (12.19)

where in the last equality we note that C = 1/2x1 ≈ 1/2
√

ln(τ/
√
π) is nearly just a constant

order unity.

If we then define a thermalization depth by setting the escape and destruction proba-

bilities equal, Pe(τth) = Pd, we find that for CRD line-transfer within the Doppler core the

thermalization depth now scales as

τth =
C

ǫ
. (12.20)



– 73 –

Recall that for coherent scattering, we found above that τth ∼ 1/
√
ǫ. For the usual case

that ǫ≪ 1, the thermalization depth for CRD line-transfer is thus substantially deeper than

in the coherent scattering case. For example, for a quite typical value ǫ ≈ 10−4, we find that

in CRD, τth ≈ 104, or a factor hundred greater than the τth ≈ 100 obtained by a coherent

scattering model!

The physical reason for this difference stems from the difference in the nature of photon

escape in coherent scattering vs. CRD. In coherent scattering, the photons can only escape

through an extensive spatial diffusion, a random walk from their point of creation to the

τ ≈ 1 layer for free photon flight and escape. By contrast, in CRD photons trapped in the

very optically thick Doppler core of the line have a chance to be redistributed to a frequency

in the line wings, where the optical depth can be of order unity or less, thus allowing a direct

escape in a single flight, without the necessity of a protracted spatial diffusion. This greater

“leakage” of thermally created photons means that the escape of radiatio from the surface

can be sensed to a much deeper level, implying then a much deeper themalization depth.

Exercise: Show that for very strong lines with saturated Lorentz damping wings,

the thermalization depth now scales as τth ∼ 1/ǫ2 if one assumes CRD holds

through full Voigt profile out to the Lorentz wings.13 Give a physical explanation

for this still deeper thermalization depth scaling.

13. The Energies and Wavelengths of Line Transitions

13.1. The Bohr Atom

The discretization of atomic energy that leads to spectral lines can be understood

through the simple Bohr model of the Hydrogen atom. In analogy with planets orbiting

the sun, this assumes that electrons of charge −e and mass me are in a stable circular orbit

around the atomic nucleus (for hydrogen just a single proton) of charge +e whose mass

is effectively infinite compared to the electron. The electrostatic attraction between these

charges then balances the centrifugal force from the electron’s orbital speed v along a circular

orbit of radius r,
e2

r2
=
mev

2

r
. (13.1)

13The assumption CRD actually falters for the Lorentz wings, which are better approximated by coherent

scattering. As such, the actual thermalization depth for saturated line wings is not so deep in practice.
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In classical physics, this orbit could, much like a planet going around the sun, have any

arbitrary radius. But in the microscopic world of atoms and electrons, such classical physics

has to be modified – indeed replaced – by quantum mechanics. Just as a light wave has its

energy quantized into discrete bundles called photons, it turns out that the orbital energy

of an electron is also quantized into discrete levels, much like the steps of a staircase. The

basic reason stems from the fact that, in the ghostly world of quantum mechanics, electrons

are themselves not entirely discrete particles, but rather, much like light, can also have a

“wavelike” character. In fact any particle with momentum p = mv has an associated ‘‘de

Broglie wavelength” given by

λ =
h

mv
, (13.2)

where again, h is Planck’s constant.

This wavy fuzziness means an orbiting electron cannot be placed at any precise location,

but is somewhat spread along the orbit. But then to avoid “interfering with itself”, integer

multiples n of this wavelength should match the orbital circumference 2πr, implying

nλ = 2πr =
nh

mv
. (13.3)

Note that Planck’s constant itself has units of speed times distance 14, which represents

an angular momentum. So another way to view this is that the electron’s orbital angular

momentum J = mvr must likewise be quantized,

J = mvr = n~ , (13.4)

where ~ ≡ h/2π is a standard notation shortcut. The integer index n is known as the

principal quantum number.

Exercise 2-1: Use eqns. (13.1) and (13.4) to derive the orbital radius rn in

terms of the integer step n.

Exercise 2-2: For an electron and proton that are initially a distance r apart,

show that the energy needed to separate them to an arbitrarily large distance is

given by −U(r) = e2/r. Use the resulting potential energy U(r) together with

the orbital kinetic energy T = mev
2/2 to derive the expressions in eqn. (13.5) for

the total energy E = U + T .

14Or also, energy times time, which when used with Heisenberg’s Uncertainty ∆E∆t ∼> h, will lead us to

conclude that an atomic state with finite lifetime tlife must have a finite width or “fuzziness” in its energy

∆E ∼ h/tlife. See the section below on “natural broadening” of spectral lines.
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The quantization condition in eqn. (13.3) or (13.4) implies that the orbital radius can

only take certain discrete values rn, numbered by the level n. But instead of radius, it is

generally more useful to cast this in terms of the associated orbital energy. The total orbital

energy is a combination of the negative potential energy U = −e2/r, and the positive kinetic

energy T = mev
2/2. Using the orbital force balance eqn. (13.1), we find that the total energy

is

En = − e2

2rn

= −mee
4

2~2

1

n2
= −E1

n2
, (13.5)

where

E1 ≡
mee

4

2~2
= 2.2 × 10−11erg = 13.6 eV (13.6)

denotes the ionization (a.k.a. binding) energy of Hydrogen from the ground state (with

n = 1). Figure 13 gives a schematic rendition of the energy levels of Hydrogen, measured in

electron Volts (eV), which is the energy gained when a charge of one electron falls through

an electrical potential of one volt.

Exercise 2-3: Confirm the validity of eqn. (13.5) by using eqn. (13.1) to

show that E = U/2 = −T , where U , T , E are the potential, kinetic, and total

energy of an orbiting electron. (Note: this result is sometimes referred to as a

corollary of the Virial Theorum for bound systems, which is discussed further

below.)

When an electron changes from one level with quantum number m to another with

quantum number n, then the associated change in energy is

∆Emn = E1

(

1

n2
− 1

m2

)

. (13.7)

13.2. Line Wavelengths for Term Series

Instead of energy, light is more commonly measured in terms of its wavelength λ =

c/ν = hc/E. Using this conversion in eqn. (13.7), we find the wavelength of a photon

emitted by transition from a level m to a lower level n is

λmn =
λ1

1
n2 − 1

m2

, (13.8)

where

λ1 ≡
hc

E1

=
h3c

2π2mee4
= 91.2nm = 912 Å (13.9)
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Fig. 13.— The energy levels of the Hydrogen atom. The figure is taken from

http://hyperphysics.phy-astr.gsu.edu/hbase/hyde.html#c3

is the wavelength at what is known as the Lyman limit, corresponding to a transition to the

ground state n = 1 from an arbitrarily high bound level with m→ ∞. Of course, transitions

from a lower level m to a higher level n require absorption of a photon, with the wavelength

now given by the absolute value of eqn. (13.8).

The lower level of a transition defines a series of line wavelengths for transitions from

all higher levels. For example, the Lyman series represents all transition to/from the ground

state n = 1. Within each series, the transitions are denoted in sequence by a lower case greek

letter, e.g. λ21 = (4/3) 912 = 1216 Å is called Lyman-α, while λ31 = (9/8)912 = 1026 Å is

called Lyman-β, etc. The Lyman series all falls in the ultraviolet (UV) part of the spectrum,

which due to UV absorption by the earth’s atmosphere is generally not possible to observe

from ground-based observatories.

More accessible is the Balmer series, for transitions between n = 2 and higher levels

with m = 3, 4, etc., which are conventionally denoted Hα, Hβ, etc. These transitions are
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pretty well positioned in the middle of the visible, ranging from λ32 = 6566 Å for Hα to

λ∞2 = 3648 Å for the Balmer limit.

The Paschen series, with lower level n = 3, is generally in the InfraRed (IR) part of the

spectrum. Still higher series are at even longer wavelengths.

14. Equilibrium Excitation and Ionization Balance

14.1. Boltzmann equation

A key issue for formation of spectral lines from bound-bound transitions is the balance

of processes that excite and de-excite the various energy levels of the atoms. In addition to

the photon absorption and emission processes discussed above, atoms can also be excited or

de-excited by collisions with other atoms. Since the rate and energy of collisions depends on

the gas temperature, the shuffling among the different energy levels also depends sensitively

on the temperature.

In Thermodynamic Equilibrium (TE), the numbers in each level i is just proportional

to the number of quantum mechanical states, gi, associated with the orbital and spin state

of the electrons in that level15; but between a lower level i and upper level j with an energy

difference ∆Eij, the relative population is also weighted by an exponential term called the

Boltzmann factor,
nj

ni

=
gj

gi

e−∆Eij/kT , (14.1)

where k = 1.38× 10−16erg/K is known as Boltzmann’s constant. At low temperature, with

the thermal energy much less than the energy difference, kT ≪ ∆Eij, there are relatively

very few atoms in the more excited level j, nj/ni → 0. Conversely, at very high temperature,

with the thermal energy much greater than the energy difference, kT ≫ ∆Eij, the ratio just

becomes set by the statistical weights, nj/ni → gj/gi.

As the population in excited levels increases with increased temperature, there are thus

more and more atoms able to emit photons, once these excited states spontaneously decay

to some lower level. This leads to an increased emission of the associated line transitions.

On the other hand, at lower temperature, the population balance shifts to lower levels.

So when these cool atoms are illuminated by continuum light from hot layers, there is a net

15These orbital and spin states are denoted by quantum mechanical number ℓ and m, which thus supple-

ment the principal quantum number n.
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absorption of photons at the relevant line wavelengths, leading to a line-absorption spectrum.

14.2. Saha Equation for Ionization Equilibrium

At high temperatures, the energy of collisions can become sufficient to overcome the full

binding energy of the atom, allowing the electron to become free, and thus making the atom

an ion, with a net positive charge. For atoms with more than a single proton, this process of

ionization can continue through multiple stages up to the number of protons, at which point

it is completely stripped of electrons. Between an ionization stage i and the next ionization

stage i+ 1, the exchange for any element X can be written as

Xi+1 ↔ Xi + e− . (14.2)

In thermodynamic equilibrium, there develops a statistical balance between the neigh-

boring ionization stages that is quite analogous to the Boltzmann equilibrium for bound

levels given in eqn. (14.1). But now the ionized states consist of both ions, with many

discrete energy levels, and free electrons, with a kinetic energy E = p2/2me given by their

momentum p and mass me. The number of bound states of an ion in ionization stage i is

now given by something called the partition function, which we will again write as gi. But

to write the equilibrium balance, we now need also to find an expression for the number of

states available to the free electron.

For ionization of a stage i with ionization energy ∆Ei, the Boltzmann relation for the

ratio of upper vs. lower ionization state can then be written

ni+1(p)

ni

=
gi+1

gi

ge(p) e
−(∆Ei+p2/2me)/kT , (14.3)

where ni+1(p) dp is the number of ionized atoms with an associated electron of momentum

between p and p+ dp, and ge(p) is the statistical weight for such electrons, representing the

number of quantum mechanical states available to them. Because electrons with momentum

p have an associated de Broglie wavelength λp = h/p, each electron occupies a minimum

volume h3 in “phase space”, with dimensions of length times momentum. For an isotropic

momentum distribution, the momentum volume is that for shell of radius p and thickness

dp, i.e. 4πp2 dp, while the spatial volume is just the inverse of the total density. Accounting

for the two possible states of the electron spin, we then find the number of available states

is

ge(p) dp =
2

ne

4πp2 dp

h3
. (14.4)
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If we define a de Brolie wavelength associated with thermal-speed electrons,

Λ ≡ h√
2πmekT

, (14.5)

then after integrating eqn. (14.3) over all p from zero to infinity, we obtain the Saha-

Boltzmann equation for ionization balance

ni+1

ni

=
gi+1

gi

[

2

neΛ3

]

e−∆Ei/kT (14.6)

=
gi+1

gi

2

ne

(

2πmekT

h2

)3/2

e−∆Ei/kT . (14.7)

Throughout a normal star, the electron state factor in square brackets is typically a huge

number16. For example, for conditions in a stellar atmosphere, it is typically of order 1010.

This large number of states acts like a kind of “attractor” for the ionized state. It means

the numbers in the more vs. less ionized states can be comparble even when the exponential

Boltzman factor is very small, with a thermal energy that is well below the ionization energy,

i.e. kT ≈ ∆Ei/10.

For example, hydrogen in a stellar atmosphere typically starts to become ionized at a

temperature of about T ≈ 104K, even though the thermal energy is only kT ≈ 0.86 eV,

and thus much less than the hydrogen ionization energy Ei = 13.6 eV. But this leads to a

Boltzman factor e−13.6/0.86 = 1.4 × 10−7 that is roughly offset by this large electron states

factor. Since the partition ratio is of order unity, this gives a roughly equal fraction of

Hydrogen in neutral and ionized states.

14.3. Absorption Lines and Spectral Type

The line-absorption patterns that appear in a star’s spectrum depend on the elemental

composition and degree of ionization of the atoms. Because ionization depends sensitively on

temperature, the lines in stars with higher (lower) surface temperatures generally come from

higher (lower) ionization stages. The effect is so systematic that a judicious classification of

the spectral lines from a star can be used to infer the surface temperature. Figure 14 com-

pares the spectra of stars of different surface temperature, showing that this leads to gradual

changes and shifts in the detailed pattern of absorption lines. The letters “OBAFGKM”

16As discussed later, it only becomes order unity in very compressed conditions, like in the interior of a

white dwarf star, which is thus said to be electron degenerate.
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Fig. 14.— Stellar spectra for the full range of spectral types OBAFGKM, corresponding to

a range in stellar surface temperature from hot to cool.

represent various categories, known as “spectral class”, assigned to stars with different spec-

tral patterns. It turns out that class O is the hottest, with temperatures about 50,000 K,

while M is the coolest, with temperatures of ca. 3500 K. The sequence is often remembered

through the mneumonic “Oh, Be A Fine Gal/Guy Kiss Me”.

Figure 15 shows some further spectra, now broken down into subtypes denoted by an

added number from 0 to 9, representing a further delineation of hot to cool within the main

spectral type. For example, the sun is a G3 star, with a spectrum somewhat intermediate

between the slightly hotter G0 and slightly cooler G5 types shown in the figure. The labels

along the top and bottom now also identify the specific elements responsible for the most

prominent absorption lines. Note for the high temperature stars, the labels along the top

generally correspond to atoms or ions, whereas for cooler stars the labels along the bottom

are often for molecules. At high temperature, the higher energy of both the photons and the

collisions between the atoms is sufficient to strip off the electrons from atoms, whereas at

low temperatures, the energy of the photons and collisions is low enough to allow the much

weaker bonds of molecules to still survive.
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Fig. 15.— Stellar spectra showing various subtypes of the main spectral classes OBAFGKM,

denoted by class plus a number ranging from 0 to 9. The labels along the top and bottom

identify the specific atom, ion, or molecule responsible for the most prominent absorption

lines. For ions the roman numerical denotes degree of ionization, with I representing neutral,

II representing singly ionized, etc.

14.4. Luminosity class

The Saha equation shows that ionization depends on density as well as temperature, and

for a given temperature, density depends on pressure. Through the equation of hydrostatic

equilibrium, the pressure in an atmosphere can be written as P = mg = τg/κ, where the

mass column density m is related to the optical depth through the opacity κ by m = τ/κ.

Thus at the photospheric layers τ = 1, we see that the pressure scales directly with the stellar

gravity, which, for given stellar mass, depends in turn on the stellar radius, g = GM/R2.
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For a given surface temperature, a larger radius implies a larger surface area and so a larger

luminosity, L ∼ σT 44πR2.

The upshot then is that an ionization balance that suggests a lower density – and thus

lower pressure, lower gravity, larger radius – also implies a higher luminosity. This is the

basis of the luminosity class of stellar spectra, conventionally denoted with roman numerals

I, II, III, IV and V, denoting a declining luminosity sequence. Class I are called supergiants,

representing very large, and very luminous stars. Class III are just ordinary giants, still large

and luminous, but less so. Finally class V are dwarfs, representing “normal” stars like the

sun.

15. H-R Diagram: Color-Magnitude or Temperature-Luminosity

15.1. H-R Diagram for Stars in Solar Neighborhood

A key diagnostic of stars comes from the Hertzsprung-Russel (H-R) diagram. Observa-

tionally, it relates stellar colors to their (absolute) magnitude, or spectral type and luminosity

class; physically, it relates surface temperature to luminosity. Figure 16 shows an H-R di-

agram for a large sample of stars with known luminosities and colors. The horizontal lines

show the luminosity classes.

The extended band of stars running from the upper left to lower right is known as the

main sequence, representing “dwarf” stars of luminosity class V. The reason there are so

many stars in this main sequence band is that it represents the long-lived phase when stars

are stably burning Hydrogen into Helium in their cores.

The medium horizontal band above the main sequence represent “giant stars” of lumi-

nosity class III. They are typically stars that have exhausted hydrogen in their core, and

are now getting energy from a combination of hydrogen burning in circum-core shells, and

burning Helium into Carbon in their cores.

The relative lack here of still more luminous supergiant stars of luminosity class I stems

from both the relative rarity of stars with sufficiently high mass to become this luminous,

coupled with the fact that such luminous stars only live for a very short time. As such,

there are only a few such massive, luminous stars in the solar neighborhood. Studying them

requires broader surveys that encompass a greater fraction of the galaxy.

The band of stars below the main sequence are called white dwarfs; they represent the

slowly cooling remnant cores of low-mass stars like the sun.
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Fig. 16.— H-R diagram relating stellar luminosity to surface temperature. The points

include 22,000 stars from the Hipparcos Catalogue together with 1000 low-luminosity stars

(red and white dwarfs) from the Gliese Catalogue of Nearby Stars.

This association between position on the H-R diagram, and stellar parameters and

evolutionary status, represents a key link between the observable properties from stellar

atmosphere and the physical properties associated with the stellar interior. Understanding

this link through examination of stellar structure and evolution will constitute the major

thrust of our studies of stellar interiors below.
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Fig. 17.— Left: H-R diagram for globular cluster M55, showing how stars on the upper main

sequence have evolved to lower temperature giant stars. Right: Schematic H-R diagram for

clusters, showing the systematic peeling off of the main sequence with increasing cluster age.

15.2. H-R Diagram for Clusters – Evolution of Upper Main Sequence

The above volume-limited sample near the sun consists of stars of a wide range of ages,

distances, and perhaps even chemical composition. But stars in a stellar cluster are all at

a similar distance, and since the likely formed over a relatively short time span out of the

same interstellar cloud, they should all have nearly the same age and composition. The left

panel of figure 17 plots an H-R diagram for the globular cluster M55. Note that all the stars

in the upper left main sequence have evolved to a vertical branch of cooler stars extending

up to the red giants. This reflects the fact that more luminous stars exhaust their hydrogen

fuel sooner that dimmer stars. The right panel illustrates this schematically, showing how

the turnoff point from the main sequence is an indicator of the cluster age. Plots like this

thus provide a direct diagnostic of stellar evolution of stars with different luminosity. As we

shall now see, the main sequence luminosity of stars is set primarily by the stellar mass.
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Fig. 18.— A log-log plot of luminosity vs. mass (in solar units) for a sample of astrometric

(blue, lower points) binaries and eclipsing (red, upper points) binaries. The best-fit line

shown follows the empirical scaling, log(L/L⊙) ≈ 0.1 + 3.1 log(M/M⊙).

16. The Stellar Mass-Luminosity Relation

16.1. Stellar Masses Inferred from Binary Systems

As discussed in sections 6 and 7 of DocONotes1-Stars, the most direct and robust way

to infer stellar masses comes from using Kepler’s laws to interpret their inferred motion in

binary systems, with the most accurate masses derived from astrometric binaries and double

line eclipsing binaries.

In astrometric binaries, the positions of the stars can be directly measured as they orbit

their common center-of-mass (CM), and since the CM lies at a focus of the elliptical orbit, the

inclination of the orbit can be inferred. For a given inclination, measuring the Doppler shift

of spectral lines of each star (if bright enough) gives their orbital velocities, which combined

with the measured orbital period gives the absolute dimensions of the orbits, the semi-major

axes. Through Kepler’s third law the orbital period and semi-major axes of each star gives

the mass of each component. Furthermore, a comparison of the absolute dimensions with

the apparent angular size gives the distance to the binary, allowing apparent magnitudes to

be converted to absolute magnitudes and hence luminosities.

In double-line eclipsing binaries, the inclination of the orbit is obtained from the eclipse

light curve. The masses can then be obtained in the same way as for the astrometric binaries.
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If the distance is not known from trigonometric parallax, a distance estimate can be obtained

from the eclipse durations, which give the sizes of the eclipsing stars. If the temperatures of

the stars can be obtained from their spectra, combining with the stellar radii gives the stellar

luminosity. The distance is then obtained by comparing with the apparent magnitudes.

Figure 18 plots logL vs. logM (in solar units) for a sample of astrometric (blue) and

ecliping (red) binaries. A key result is that the data can be roughly fit by a straight line in

this log-log plot, implying a power-law relation between luminosity and mass,

L

L⊙
≈

(

M

M⊙

)3.1

. (16.1)

16.2. Simple Theoretical Scaling Law for Mass vs. Luminosity

This empirical mass-luminosity relation can roughly explained by considering two basic

relations of stellar structure, namely hydrostatic equilibrium and radiative diffusion, as given

in eqns. (3.1) and (7.18) above. As in the virial scaling for internal tempeature given in

section 3.1, we can use a single point evaluation of the pressure gradient to derive a scaling

between interior temperature T , stellar radius R and mass M , and molecular weight µ,

dP

dr
= −ρGMr

r2

ρ
T

µR
∼ ρ

M

R2

T R ∼ M µ , (16.2)

Likewise, a single point evaluation of the temperature gradient in the radiative diffusion

equation gives,

F (r) = −
[

4ac

3

T 3

3κRρ

]

dT

dr

L

R2
∼ R3

κM

T 4

R

L ∼ (RT )4

κM

L ∼ M3 µ4

κ
, (16.3)
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where the last scaling uses the hydrostatic equilbrium result to derive the basic scaling law

L ∼M3, assuming a fixed molecular weight µ and opacity κ.

We thus see that the empirical scaling found from binary systems plotted in figure 18

can be understood just in terms of the two basic equations for the structure of the stellar

envelope, namely hydrostatic balance against gravity, and radiative diffusion transport of

the stellar luminosity outward.

Note in particular that it does not depend on the details of the nuclear generation of

the luminosity in the stellar core! Indeed, this scaling was understood from stellar structure

analyses that were done (e.g. by Eddington, and Schwarzschild) in the 1920’s, long before

nuclear burning was firmly established (in a famous 1957 paper by Burbidge, Burbidge,

Fowler and Hoyle).

It is also completely independent of the stellar radius R, which cancels in the above

scaling for luminosity.

16.3. Virial Theorum

The hydrostatic balance of star can be used to derive a relation – known as the virial

theorum – between the internal thermal energy and the graviational binding energy of a star.

Detailed derivations are given in Rich Townsend’s notes “01-virial.pdf” and Jim MacDonald’s

“Notes Part 3.pdf”, so here we just give an abridged derivation. Let us first multiply the

standard hydrostic equilibrium equation (3.1) by the radius r, and integrate over a mass

coordinate dm = 4πr2ρdr, with m ranging from 0 to M as r goes from 0 to R,

−
∫ M

0

Gm

r
dm =

∫ M

0

r

ρ

dP

dr
dm (16.4)

=

∫ M

0

4πr3 dP

dm
dm

=
[

4πr3P (r)
]r=R

r=0
−

∫ M

0

P

ρ
dm

= −3(γ − 1)

∫ M

0

u dm

Φ = −3(γ − 1)U . (16.5)

On the left side, −Gm/r is the gravitational potential, defined such that zero potential is at

r → ∞; the integrand thus gives the gravitational energy gained by adding each mass shell

dm, so that the total integral represents the total gravitational energy Φ. On the right side,
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integration by parts leads to the square bracket term, which vanishes at both the center,

r = 0, and at surface, where the gas pressure effectively become negligible, P (R) = 0. For

the remaining term, we note that for a perfect gas, P/ρ = (γ − 1)u, where u is the internal

energy-per-unit mass. The integration over mass thus gives the right side in terms of the

total internal energy of the star, U . For monotonic gas with γ = 5/3, we thus find

Φ = −3(γ − 1)U = −2U , (16.6)

This implies that the total stellar energy is given by

E ≡ Φ + U =
3γ − 4

3γ − 3
Φ =

Φ

2
< 0 , (16.7)

where again the last equality is for the case of a monotonic gas case γ = 5/3, which is indeed

the most appropriate for stellar interiors.

The virial theorum thus implies that the total energy of a star is negative (meaning it is

bound), with a numerical value just half of the gravitational binding energy. This reduction

by one-half stems from the positive internal energy, which equals half the absolute value of

the gravitational energy.

However, we will discuss later that in very massive stars the internal energy can become

dominated by radiation instead of gas. In the limit of a star with pure radiation, we find

γ → 4/3, which by eqn. (16.7) implies a total energy E → 0. Such a star is no longer

gravitationally bound, and so is very unstable. This may be a key factor in setting an upper

mass limit of stars, on the order of a few hundred M⊙.

17. Characteristic Timescales

17.1. Shortness of Chemical Burning Timescale for Sun and Stars

When 19th century scientists pondered the possible energy sources for the sun, some

first considered whether this could come from the kind of chemical reactions that provide

a key energy source (e.g. from fossil fuels like coal) on earth. But such chemical reactions

involve transitions of electrons among various bound states of atoms, and, as discussed in the

above Bohr model of the Hydrogen, the scale of energy release in such transitions is limited

to about an order of electron volt (eV). In contrast, the rest mass energy of the atom itself,

consisting protons and neutrons, is typically of order 10 Gev, or 1010 times higher. With

the associated mass-energy efficiency of ǫ ∼ 10−10, we can readily estimate a timescale for
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maintaining the solar luminosity from chemical reactions,

tchem = ǫ
M⊙c

2

L⊙
= ǫ 4.5 × 1020 sec = ǫ 1.5 × 1013 yr ≈ 15, 000 yr . (17.1)

Even in the 19th century, it was clear, e.g. from geology processes like erosion, that the

earth – and so presumably also the sun – had to be much older than this.

17.2. Kelvin-Helmholtz Timescale for Luminosity Powered by Gravity

So let us instead consider a timescale associated with gravitational contraction as the

energy source. The above virial relation shows that, as a star undergoes a gradual contraction

that roughly maintains hydrostatic equilibrium, half of the gained energy goes into internal

energy U of the star. But then the other half is availalble to be radiated away, powering

the stellar luminosity. Following the work by Kelvin and Helmholtz, we can thus define an

associated gravitational contraction lifetime for the sun

tKH ≡ −Φ

L
. (17.2)

To estimate a value for the gravitational binding energy, let us first consider the somewhat

artificial assumption that the sun has a uniform density, given by its mass over volume,

ρ = M⊙/(4πR
3
⊙/3. Then the equation for gravitational binding energy gives

−Φ =

∫ M⊙

0

Gm

r
dm =

16π2

3
Gρ2

∫ R

0

r′4 dr′ =
3

5

GM2
⊙

R⊙
. (17.3)

Applying this in eqn. (17.2), we find

tKH ≈ 3

5

GM2
⊙

R⊙L⊙
≈ 30Myr . (17.4)

Although substantially longer than the chemical burning timescale, this is still much shorter

than the geologically inferred minimum age of the earth, which is at least a Byr.

17.3. Nuclear Burning Timescale

We now realize, of course, that the main sequence age of stars like the sun is set by a

much longer nuclear burning timescale. When four hydrogen nuclei are fused into a helium

nucleus, the helium mass is about 0.7% lower than the original four hydrogen. For nuclear
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fusion the above-defined mass-energy burning efficiency is thus ǫ ≈ 0.007. But in typical

main sequence star, only some core fraction f = 1/10 of the stellar mass ever become hot

enough to allow hydrogen fusion. Applying this we thus find for the nuclear burning timescale

tnuc = ǫnuc f
Mc2

L
= 0.007 × 0.1 × 1.5 × 1013 yr = 1010 yr , (17.5)

where the latter equality apples the solar values. This is the basic rationale for the above

quote (e.g. eqn. (17.6)) that the sun’s main sequence lifetime is about 10 Byr.

17.4. Main Sequence Lifetimes

The above scaling of main-sequence luminosity with a high power of the stellar mass pro-

vides a simple explanation for the progressively truncated form of the upper main-sequence

in older stellar clusters. Let us make the reaonable assumption that a fixed fraction of the

total hydrogen mass of any star is available for nuclear burning into helium in its stellar

core. Since then the fuel available scales with the mass, but the burning rate depends on

the luminosity. Normalized to the sun, the main-sequence lifetime scales as

tms = tms,⊙
M/M⊙
L/L⊙

≈ 10Byr

(

M⊙
M

)2.1

. (17.6)

The most massive stars, of order 100M⊙, thus have main-sequence lifetimes about about

1 Myr, much shorter the multi-Byr timescale for solar mass stars.

For cluster H-R diagrams, the above scalings mean that luminosity of stars at the turn-

off point of the main sequence, Lto, can be used to infer the cluster age,

tcluster ≈ 10Byr

(

L⊙
Lto

)0.68

. (17.7)


