
Bidirectionalising HaXML

Shin-Cheng Mu Zhenjiang Hu Masato Takeichi

Graduate School of Information Science and Technology,
The University of Tokyo

{scm,hu,takeichi}@mist.i.u-tokyo.ac.jp

Abstract

A transformation from the source data to a target view is saidto bebidirectionalif, when the target is altered,
the transformation somehow induces a way to reflect the changes back to the source, with the updated source
satisfying certain healthiness conditions. Several bidirectional transformation languages have been proposed. In
this paper, on the other hand, we aim at making existing transformations bidirectional. As a case study we chose
the Haskell combinator library, HaXML, and embed it intoInv, a language the authors previously developed to
deal with bidirectional updating. With the embedding, existing HaXML transformations gain bidirectionality.

Keywords XML, bidirectional updating, domain-specific language, reversible computation

1. Introduction

XML [5], partly stimulated by the growth of the Web and e-commerce, has emerged as thede factostandard for
representation of structured data and information interchange. Many organizations use XML as an interchange
format for data produced by applications like graph-plotters, spreadsheets, and relational databases.

Transformation of XML documents from one format (structure) to another plays a significant role in data
interchange. The XML address book in Figure 1, where each entry contains a name, an email address, and a
telephone number may be transformed to an HTML document in Figure 2, with an index of names and a table
enlisting the contact details. The transformation may be written in a domain-specific language, such as XSLT.
We may use this transformation in an XML editor where the source XML document is displayed to the user as
HTML, or a homepage builder where a webpage is generated froman XML database.

However, it is not specified how the XML document shall be updated if the HTML view is altered. Yet this
reverse transformation from the view to the source, although not yet well-studied, is also important [12]. In an
XML editor or in a homepage builder, we may wish that when the user, for example, adds or deletes a person in
the view in Figure 2, the original document in Figure 1 be updated correspondingly. Further more, the changes
should also trigger an update of the index of names in Figure 2. We may even wish that when an additional name
is added to the index, a fresh, empty person will be added to the person bodies in both the source document and
the view.

This so-calledbidirectional updatingproblem (coined by, to the best of the authors’ knowledge, [9]) is
attracting lots of interests recently, as people identifiedvarious situations where one wants to transform some

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICFP ’05 September 26-28, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM supplied by printer. . . $5.00.

<addrbook>

<person>

<person>

<name> Shin-Cheng Mu </name>

<email> scm@mist.i.u-tokyo.ac.jp </email>

<tel> +81-3-5841-7411 </tel>

</person>

<name> Zhenjiang Hu </name>

<email> hu@mist.i.u-tokyo.ac.jp </email>

<tel> +81-3-5841-7411 </tel>

</person>

<person>

<name> Masato Takeichi </name>

<email> takeichi@acm.org </email>

<tel> +81-3-5841-7430 </tel>

</person>

</addrbook>

Figure 1. An XML document representing an address book.

<html>

<body>

<h1>IPL Address Book</h1>

 Shin-Cheng Mu

 Zhenjiang Hu

 Masato Takeichi

<table>

<tr><th>Name</th>

<th>Email</th>

<th>Tel</th>

</tr>

<tr><td> Shin-Cheng Mu </td>

<td> scm@mist.i.u-tokyo.ac.jp </td>

<td> +81-3-5841-7411 </td>

</tr>

<tr><td> Zhenjiang Hu </td>

<td> hu@mist.i.u-tokyo.ac.jp </td>

<td> +81-3-5841-7411 </td>

</tr>

<tr><td> Masato Takeichi </td>

<td> takeichi@acm.org </td>

<td> +81-3-5841-7430 </td>

</tr>

</table>

</body>

</html>

Figure 2. A wiew of the address book in HTML.

data structure into a different form and wishes that changesmade to the new form be reflected back to the
source data. One may want modification on the view to be reflected back to the original database, which is
known asview updatingin the database commuinity [3, 6, 8, 19, 1]. One may want to synchronize the bookmark
files of several different web browsers (on different machines) [9], allowing bookmarks and bookmark folders
to be added, deleted, edited, and reorganized in any browserand later combining the changes performed in
different browsers. One may want to have a programmable editor [12] supporting interactive refinement in the
development of structured documents, where one performs a sequence of editing operations on the document
view, and the editor automatically derives an efficient and reliable source document and a transformation that
produces the document view.

Several domain-specific languages [9, 16, 18, 12] have been proposed to define bidirectional transformations.
In the forward direction, these transformations map asourcetree to aview; in the backward direction, they map
a modified view, together with the original source, to a correspondingly modified source. One would like to
know, however, whether an existing transform written in tree-transformation languages, like XSLT, can be made
bidirectional. As far as we are aware, there is little work onthis.

As a case study, we show in this paper how tobidirectionalisean existing XML processing language, HaXML.
HaXML [23] is a collection of utilities for parsing, filtering, transforming, and generating XML documents using
Haskell. It provides, among other tools, a combinator library which can be seen as a domain-specific language
embedded in the general-purpose functional language Haskell. XML documents are represented using native
Haskell data type, and HaXML provids a set of powerful higherorder functions to process them. A transform
coded in the HaXML combinators is usually more compact than its equivalent in DOM, SAX, or XSLT. For the
rest of the paper when we talk about HaXML, we will be referingto its combinator library.

If we think of the forward transformation as a function from the source to the view, bidirectional updating,
at the first glance, is the problem of looking for a suitable source among the inverse image of the given view.
The situation is made a bit more difficult, however, when the transformation involves duplication and structural
constraints. If we delete a name in the index part in Figure 2,for example, the edited view is not in the range of
the transform. Yet we still need to produce a reasonable updated source.

In [18], we developed a languageInv to deal with bidirectional updating, paying special attention to the
handling of duplication and structural alignments. The development ofInv takes a layered approach. In the
original semantics ofInv, the programmer is allowed to define injective functions only. In an extended semantics,
the reverseof everyInv function maps an edited output, which might not be in the range of the function, to a
reasonable input. In this paper, we add another layer by developing an embedding of HaXML toInv. Therefore,
when the programmer designs a forward transformation, we get a backward transformation for free.

The rest of the paper is organized as follows. We start by briefly reviewing the core of HaXML [23], a general-
purpose unidirectional transformation language, in Section 2. Then, we highlight the bidirectional updating
problem in Section 3. After explaining the basic concepts ofbidirectionality and the languageInv in Section 4,
we show that any transformation specified by HaXML can be embedded into a bidirectional transformation in
Inv in Section 5. Related works are discussed in Section 6, and conclusions are made in Section 7.

2. Tree Documents and Tree Transformations

In this section we will briefly review the core components of the combinator library of HaXML [23]. An XML
content is either an element or a text fragment. An element consists of a tag and a sequence of contents. HaXML
represents XML documents by native Haskell data structure.For presentation of this paper, we will use a more
simplified representation of XML trees. The languages defined in this paper will deal with a range of values
defined by the syntax below:

V ::= String | [V] | (V, V) |T
T ::= N String [T] |L String
[a] ::= [] | a : [a]

addrbook = N Addrbook

N Person

[N Name [Shin-Cheng Mu],
N Email [scm@ipl.i.u-tokyo.ac.jp],
N Tel [+81-3-5841-7411]],

[N Person

[N Name [Zhenjiang Hu],
N Email [hu@mist.i.u-tokyo.ac.jp],
N Tel [+81-3-5841-7411]],

N Person

[N Name [Masato Takeichi],
N Email [takechi@mist.i.u-tokyo.ac.jp],
N Tel [+81-3-5841-7411]]

]

Figure 3. An example of simplified representation of tree documents.

For the purpose of this paper, the string is the only atomic type. We use typewriter font to denote a string literal.
We can construct pairs(V, V), lists [a], and trees. A tree is either a leaf, or a node with a label and a list of
subtrees. When it is clear from the context we would omit theL constructor to save space. This rather simplified
view of XML omits some features, such as attributes, that aretrivial to add, and some features such as IDRefs,
which will be our future work. The range of values will be further extended in Section 4 to record user editing.

Figure 3 gives an example of this representation of the the document source in Figure 1.

2.1 Tree Transformations

Combinators in HaXML are calledfilters. They have typeT → [T], taking a tree and returning a sequence of
tree. The result might be empty, a singleton list, or a collection of trees.

Basic Filters

A set of basic filters in HaXML is given in Figure 4. The simplest filters arenone andkeep; none fails on any
input (returning an empty list), andkeep takes any tree and returns just that tree.

The filterelm returns just this item if it is not a leaf, otherwise it fails.Conversely,txt returns this item only
if the item is a leaf. The filtertag t returns the input only if it is a tree whose root has the tag name t. The filter
literal s always returns a leaf labelleds, while replaceTag s changes the labels if the input is a node, and returns
empty list otherwise. The filters so far return either a singleton list if the input satisfies certain predicate, or
empty list otherwise. In this paper we will call themsingletonfilters.

Other filters do not have fixed constraints on the length of theoutput list. The filterchildren returns the
immediate children of the tree, if any.

Filter Combinators

Figure 5 lists all combinators to compose filters out of simpler ones. The sequential compositionf ;̂ g ap-
plies f to the input, before applyingg to each of the output and concatenating the results. For example,
tag title ;̂ children ;̂ txt returns all the plain-text children immediately enclosed by the input, provided that
the input is labelledtitle. In [23], composition is actually written backwards, as ing ◦ f . In this paper we use
forward composition to be consistent with the syntactical choice we made inInv.

The combinatorf ||| g concatenates the results of filtersf andg, while cat fs is a generalisation of||| to a list
of filters. The combinatorf with g acts as a guard on the results off , keeping only those that are productive
(yielding non-empty results) underg. Its dual,f without g, excludes those results off that are productive under
g. The filter f et g appliesf to the input if it is a leaf tree, and appliesg to the input otherwise. The expression

Predicates:
none :: Filter { zero}
keep :: Filter { identity}
elm :: Filter { tagged element?}
txt :: Filter { plain text?}
tag :: String → Filter { named root}

Selection:

children :: Filter { children of the root}

Construction:

literal :: String → Filter { build plain text}
mkElem :: String → [Filter] → Filter { build a tree with an inner node}
replaceTag :: String → Filter { replace root’s tag}

Figure 4. Basic filters.

;̂ :: Filter → Filter → Filter { sequential composition}
(|||) :: Filter → Filter → Filter { append results}
cat :: [Filter] → Filter { concatenate ressults}
with :: Filter → Filter → Filter { guard}
without :: Filter → Filter → Filter { negative guard}
et :: (String → Filter) → Filter → Filter { disjoint union}
?〉 :〉 :: Filter → Filter → Filter → Filter { condition}

chip :: Filter → Filter { in-place children application}

Figure 5. Basic filter combinators.

p?〉 f :〉g represents conditional branches; if the (predicate) filterp is productive given the input, the filterf is
applied to the input, otherwiseg is applied. The filterchip f appliesf to the immediate children of the input. The
results are concatenated as new children of the root.

The filter mkElem t fs builds a tree with the root labelt; the argumentfs is a list of filters, each of which
is applied to the current item. The results are concatenatedand become the children of the created ele-
ment. For example, the filtermkElem m [children ;̂ tag a, children], applied to inputN r [N a [],N b []], produces
N m [N a [],N a [],N b []]. The first child,N a [], results fromchildren ;̂ tag a, while the rest result fromchildren.

Derived Combinators

A number of useful tree transformations can be defined as HaXML filters. For instance, we may define the
following two path selection combinators/〉 and〈/.

f /〉 g = f ;̂ children ;̂ g
f 〈/ g = f with (children ;̂ g)

Both of them applyf to the input and prune away those subtrees of the result that does not makeg productive
(i.e.,g does not fail):/〉 is an ‘interior’ selector, returning the inner structure;〈/ is an ‘exterior’ selector, returning
the outer structure.

Another class of useful filter combinators allows one to process trees recurively. The combinatordeep f
defined by

deep f = f?〉 f :〉(children ;̂ deep f)

<xsl:template match="/">

<html>

<body>

<h1>IPL Address Book</h1>

<xsl:for-each select="addrbook/person">

<xsl:value-of select="name"/>

</xsl:for-each>

<table>

<tr>

<th>Name</th>

<th>Email</th>

<th>Tel</th>

</tr>

<xsl:for-each select="addrbook/person">

<tr>

<td><xsl:value-of select="name"/></td>

<td><xsl:value-of select="email"/></td>

<td><xsl:value-of select="tel"/></td>

</tr>

</xsl:for-each>

</table>

</body>

</html>

</xsl:template>

Figure 6. A transformation in XSLT.

potentially pushes the action of filterf deep inside the document sub-tree. It first tries the given filter on the
current node: if the filter is productive then it stops, otherwise it moves to the children recursively. Another
powerful recursion combinator isfoldXml: the expressionfoldXml f applies the filterf to every level of the tree,
from the leaves upwards to the root.

foldXml f = (chip (foldXml f)) ;̂ f

Consider the transformation in XSLT in Figure 6, which can map the XML address book in Figure 1 to the
HTML document in Figure 2. We can define it in HaXML as in Figure7.

3. The Bidirectional Updating Problem

Consider again the filter

f = mkElem m [children ;̂ tag a, children]

upon receiving a source documentN r [N a [],N b []], producing the viewN m [N a [],N a [],N b []].
It is conventional to call the source-to-view transform GET, and the view-to-source transform PUT. Now

assume that the user changes the view toN m [N a [],N a [c],N b []]. The altered view is not in the range of the
function defined byf anymore. However, the system shall somehow know that theN a [] andN a [c] came from
the same subtree in the source, and PUT it to the updated source N r [N a [c],N b []]. If we perform GET again,
we get a new viewN m [N a [c],N a [c],N b []], which is now in the range off . The two subtrees, the source and
the view, are thus synchronised.

If the user changes the view toN m [N a [],N c [],N b []], the system should PUT the view toN r [N c [],N b []].
In the next GET the filtertag a would produce a null result and the resulting view would beN m [N c [],N b []].

html

[body

[h1 [literal IPL Address Book],
ul [(keep /〉 tag person /〉 tag name) ;̂ replaceTag li]
table

[tr [th [literalName, th [literalEmail], th [literalTel]],
(keep /〉 tag person) ;̂ mkRow]]]

where
mkRow = tr [(tag person/〉tag name) ;̂ replaceTag td,

(tag person/〉tag email) ;̂ replaceTag td,
(tag person/〉tag tel) ;̂ replaceTag td]

html = mkElem html

body = mkElem body

h1 = mkElem h1

ul = mkElem ul

li = mkElem li

table = mkElem table

tr = mkElem tr

th = mkElem th

td = mkElem td

Figure 7. A transformation in HaXML.

Had the user changed the view toN m [N c [],N a [],N b []], however, the system may choose to declare that this
is an invalid change and warn the user, sincetag a could not have producedN c [].

Apart from editing labels, the user is allowed to insert new elements too. Assume a new elementN b [] is
inserted between the results oftag a andchildren (inserting into the result of the latter is relatively easier to deal
with), resulting inN m [N a [],N b [],N a [],N b []]. The reasonable choice is to assume thatN b [] is the result of
children and produces the sourceN r [N b [],N a [],N b []]. If the inserted element isN a [], however, the system
needs to make a biased choice.

In general, the edited view may not be in the range of the transform. We may want to, in reasonable cases,
have it be PUT to some source. The updated source, after a GET operation, results in an update view. It may be
the case that the editing shall not be allowed, and the editedview is not mapped to any source. Or there may be
more than one possible source, and the system has to make a choice.

That raises the question: what is a legal source? A more ambitious formulation of bidirectional updating
may, for example, attempt to choose a source based on some external criteria (for example theminimal change
principle in [16]). At present, however, we enforce only a conservative constraint, one that making sure that
we do not need repeated GET and PUT. For every transformationx, we assume the existence of two functions:
getx :: S → V defines the transformation from the source to the view, whileputx :: (S × V) → S takes the
original source and an edited view, and returns an updated source.

DEFINITION 1 (Bidirectionality). A pair of functionsgetx :: S → V and putx :: (S × V) → S is called
bidirectionalif they satisfy the following two properties:

GET-PUT-GET: getx (putx s v) = v wherev = getx s
PUT-GET-PUT: putx s′ (getx s′) = s′ wheres′ = putx s v

The GET-PUT-GET property says that updatings with v and taking its view, we getv again, provided thatv was
indeed resulted froms — for generalv this property may not hold. The PUT-GET-PUT property says that if s′

Inv ::= Inv˘ | nil | cons | node | isStr | neq
| δ | dupNil | dupStr String
| Inv; Inv | id | Inv ∪ Inv

| Inv × Inv | assocr | assocl | swap
| µ(V: InvV)

[|[nil]]| () = []
[|[cons]]| (a, x) = a : x
[|[node]]| (a, x) = N a x
[|[id]]| a = a
[|[p?]]| a = a if p a

[|[swap]]| (a, b) = (b, a)
[|[assocr]]| ((a, b), c) = (a, (b, c))
[|[assocl]]| (a, (b, c)) = ((a, b), c)

[|[dupNil]]| a = (a, [])
[|[dupStr]]| s a = (a, s)

[|[δ]]| a = (a, a)

[|[f ; g]]| x = [|[g]]| ([|[f]]| x)
[|[f × g]]| (a, b) = ([|[f]]| a, [|[g]]| b)
[|[f ∪ g]]| = [|[f]]| ∪ [|[g]]|,
if dom f ∩ dom g = ran f ∩ ran g = ∅

[|[isStr]]| s = s if s is a string
[|[neq]]| (a, b) = (a, b) if a 6= b
[|[f ˘]]| = [|[f]]|◦

[|[µF]]| = [|[F µF]]|

Figure 8. The languageInv and its semantics when restricted to values without editingtags.

is a recently updated source, mapping it to its view and immediately performing the backward update does not
change its value. This property only needs to hold for thoses′ in the range ofputx . The two properties together
ensures that when the user alters the view, we need to performonly oneput followed by oneget. No further
updating is necessary. In Section 5.4 we will show that our HaXML embedding is indeed bidirectional.

Remark: The following GET-PUT and PUT-GET properties are required in [16, 9] to hold for arbitraryv
ands′:

GET-PUT: putx s (getx s) = s for any sources
PUT-GET: getx (putx s v) = v for any viewv

For our application, the PUT-GET property does not hold for generalv, as seen in our examples above. The GET-
PUT property (which actually holds for our HaXML embedding if we restricts to untaggedvalues) implies our
PUT-GET-PUT property, but we specify only the weaker constraint in the definition of bidirectionality. (End of
remark)

4. The Language Inv

The languageInv was developed to study the bidirectional updating behaviour. In [17], Inv was designed to be
a programming language defining injective functions only, due to the our belief that a study of bidirectional
updating can be made more elegant if we first concentrate on injective functions. In [18], the language was
given an extended semantics, where everyInv expression of typeA → B induces a binary relation betweenA
andB, mapping the edited values inA to a reasonable choice of source inB. The sometimes biased choice can
be inferred by algebraic rules.

In Section 4.1 we give a brief introduction toInv, and in Section 4.2 we discuss how its extended semantics
handles duplication and structural alignment. To be self-contained, we provide a brief, simplified summary
about the extended semantics in Section 4.3. The reader is referred to [18] for a more complete account.

4.1 The Language Inv

Shown in Figure 8 is a subset ofInv we need for this article. ByInvV we denote the union ofInv expressions
with the set of variable names. We denote by[|[]]| the semantics function. The full semantics ofInv is discussed
in [18]. For the purpose of this paper, it suffices to think of each construct as defining a relation which, when its

domain and range are restricted to the types defined in Section 2, reduces to an injective partial function. When
the input is ataggedvalue, to be defined in Section 4.2, the relation maps the input to an updated result induced
by the algebraic rules in to be mentioned in Section 4.3.

The languageInv deals with a wider range of datatypes, including unit, pairs, lists, and trees. A list is built by
constructorsnil andcons, where the input ofnil is restricted to unit type. The constructornode produces a tree
from a pair consisting of a label and a list of subtrees. One can also produce a fresh empty list or a string using
dupNil or dupStr.

The function id is the identity function, the unit of composition. The function isString is a subset ofid
returning strings only, whileneq returns a pair unchanged only of the two components are not the same. Function
composition is denoted by semicolon. Union of relations, modelling conditional branches, is simply defined as
set union, with a restriction that the two relations have disjoint domains and ranges. The product(f × g) takes a
pair and appliesf andg to the two components respectively. Note that composition binds tighter than product.
Therefore(f ; g × h) should be bracketed as((f ; g) × h).

The functionsswap, assocl andassocr distributes the components of the input pair. All functionsthat move
around the components in a pair can be defined in terms of products, assocr, assocl, andswap. We find the
following functions useful:

subr = assocl; (swap × id); assocr
trans = assocr; (id × subr); assocl

In the injective semantics[|[subr]]| (a, (b, c)) = (b, (a, c)) and[|[trans]]| ((a, b), (c, d)) = ((a, c), (b, d)).
Theconverseof a relationR is defined by

(b, a) ∈ R◦ ≡ (a, b) ∈ R

In the injective semantics, thereverseoperator()˘ corresponds to converses on relations. The reverse ofcons,
for example, decomposes a non-empty list into the head and the tail. The reverse ofnil matches only the empty
list and maps it to the unit value. The reverse ofswap is itself, andassocr andassocl are reverses of each other.
The reverse operator distributes into composition, products and union by the following rules, all implied by the
semantics definition[|[f ˘]]| = [|[f]]|◦:

[|[(f ; g)˘]]| = [|[g˘]]|; [|[f ˘]]| [|[f ˘˘]]| = [|[f]]|
[|[(f × g)˘]]| = [|[(f ˘ × g˘)]]| [|[(µF)˘]]| = [|[µ(X : (F X˘)˘)]]|
[|[(f ∪ g)˘]]| = [|[f ˘]]| ∪ [|[g˘]]|

In particular, the reverse of two functions composed is their reverses composed backwards.
Theδ operator is worth our attention. It generates a copy of its argument. We restrict the use ofδ to atomic

strings only. Its reverse is a partial function accepting only pairs of identical elements. Therefore, the inverse of
duplication is equality test.

A number of list processing functions can be defined using thefixed-point operator. The standard functions
foldr, map, and unzip (transposing a list of pair to a pair of lists) can be defined exactly as the point-free
counterpart of their usual definitions:

foldr f g = µ(X : nil˘; g ∪
cons˘; (id × X); f)

map f = foldr ((f × id); cons) nil
unzip = µ(X : nil˘; δ; (nil × nil) ∪

cons˘; (id × X); trans; (cons × cons))

In Inv there is no higher-order functions. However,foldr andmap can be seen as macros.

With unzip we can define a generic duplication operator. Letdupa be a type-indexed collection of functions,
each having typea → (a × a):

dupString = δ
dup(a×b) = (dupa × dupb); trans
dup[a] = map dupa; unzip
dupTree = µ(X : node˘; (dupString × map X; unzip); trans; (node × node))

In particular, to duplicate a list we shall duplicate each element and unzip the resulting list of pairs. In the
discussion later we will omit the type subscript.

Concatenating two listsx ++ y is not injective. Nor is the standard functionconcat :: [[A]] → [A] flattening a
list of lists. However, the functioncatx(x, y) = (x, x ++ y) is injective:

catx = µ(X : swap; dupNil˘; dupNil; swap∪
(cons˘ × id); assocr; (dup × X); trans; (cons × cons))

With catx we can define the following injective variant ofconcat:

concatx = foldr cx (nil; dup)
where cx = subr; (id × catx); assocl; (swap; cons × id)

which is informally specified byconcatx [x, y, . . . , z] = ([x, y, . . . z], x ++ y ++ . . . ++ z). This function turns out
to be crucial in our HaXML embedding.

4.2 Duplication, Alignment, and Concatenation

One of the motivation behind the development ofInv was to study the handling of duplication and structural
alignment. To do so we have to extend the domain of values we deal with:

V ::= A |V+ |V− | [V] | (V, V) |T
T ::= N A [T]
[a] ::= [] | a : [a]
A ::= String | ∗String | >

Theediting tags()+, ()−, ∗(), and> are used to record the action performed by the user of the editor. The
∗() tags applies to atomic values (strings). When the user changes the value of a string the editor marks the
string with the∗() tag. The()+ tag indicates that the tagged element is newly inserted by the user. When
the user deletes an element it is wrapped by a()−, keeping note that it ought to be deleted but we temporary
leave it there for further processing. The symbol> denotes an unconstrained value, to be further refined1.
Values containing any of the tags are calledtagged, otherwise they areuntagged. The injective semantics ofInv

deals with untagged values only. In this section, we will informally talk about howInv programs behave, in the
extended semantics, given tagged input. In the next sectionwe will give it a more formal account.

As described in the previous section,δ˘ is a partial function performing equality test. The two components in
the pair are compared, and one of them is returned only when they are identical. When the user edits an atomic
value, the action is recorded by a∗() tag. In the extended semantics, we generaliseδ such that it recognises the
tag:

[|[δ˘]]| (∗n, ∗n) = ∗n [|[δ˘]]| (n, n) = n
[|[δ˘]]| (m, ∗n) = n [|[δ˘]]| (n,>) = n
[|[δ˘]]| (∗n, m) = ∗n [|[δ˘]]| (>, n) = n

When the two values are not the same but one of them was edited by the user, the edited one gets precedence
and goes through. Therefore(∗n, m) is mapped to∗n. If both values are edited, however, they still have to be the
same.
1 In the semantics in [18], there is no>. Instead, a relation may non-deterministically map the input to many outputs, and refined when
composed with other relations. However,> was indeed used in the implementation.

concatw = µ(X :
nil˘; nil; dup ∪
cons˘; (

swap; dupNil˘; X; (dupNil; swap; cons × id)∪
(wrap˘ × id); (dup; (wrap × id) × X);

trans; (cons × cons)∪
(cons˘ × id); assocr;

(dup × cons; X; (revcons × id));
trans; (assocl; swap × id); assocr;
(id × (cons × cons)); assocl;
(swap; cons × id)))

Figure 9. Definition of concatw.

Still, theδ operator handles atomic values only. To unify structural data, we have to synchronise their shapes
as well. Letzip = unzip˘. This partial function of type([A] × [B]) → [(A × B)] zips together two lists only if
they have the same length. In general zipping functions are useful as constraints on shape. In an editor, however,
the user may add or delete elements in one of the list. The edited lists may not have the same lengths, and we
have to somehow zip them and still align the paired elements together.

One of the main achievement of [18] is that, using the same definition of unzip above with a small
amount of annotations,zip in the extended semantics knows how to zip together two listswhen they contain
inserted or deleted elements. For example,unzip [(1, a), (2, b), (3, c)] yields ([1, 2, 3], [a, b, c]). If we label
one element with a delete tag,zip ([1, 2−, 3], [a, b, c]) yields [(1, a), (2, b)−, (3, c)] — the corresponding
element is deleted as well. If we insert an element, say([1, 2, 3], [a, b, d+ , c]), zipping them together yields
[(1, a), (2, b), (>, d)+, (3, c)]. An unconstrained value is invented and paired with the newly insertedd, and
might later be further constrained byδ or other structural constraints.

Recall thatdup[a] = map dupa; unzip. The use ofunzip synchronises the shape of the two lists in the backward
updating. Similarly withdupTree where we useunzip to synchronise the list of subtrees.

The reverse ofconcatx maps([x1, x2, . . . , xn], x) to [x1, x2, . . . , xn] if x1++x2 . . .++xn = x. Rather than simply
returning the first component of the pair, every element inx is checked against elements in[x1, x2, . . . , xn].
There are a number of ways to partition a listx into segments, but, in the injective semantics, only one of them
is consistent with the original input. In the extended semantics where we have to deal with alteration ofx,
however, we have to make a biased choice when new items are inserted to the list. According to the semantics
in [18], this particular definition ofconcatx tend to glue the new element at the edge of lists to the back. For
example,([[1, 2], [3, 4]], [1, 2, 5+ , 3, 4]) is mapped to[[1, 2], [5+, 3, 4]].

However, such a choice is not always preferred. In some occasions we need to make the new element a stand
alone singleton list. The following Haskell functionconcatw deals with singleton list separately:

concatw [] = ([], [])
concatw ([] : xs) = (([] :) × id) (concatw xs)
concatw ([a] : xs) = (([a] :) × (a :)) (concatw xs)
concatw ((a : b : x) : xs) = ((λ((b : x) : xs) → (a : b : x) : xs) × (a :)) (concatw ((b : x) : xs))

Its Inv translation, given in Figure 9, coincides withconcatx in the injective semantics. In the extended
semantics,concatw˘ breaks the list after newly inserted elements. For example, ([[1, 2], [3, 4]], [1, 2, 5+ , 3, 4]) is
mapped to[[1, 2], [5]+, [3, 4]]. We need bothconcatx andconcatw in the embedding.

4.3 The Extended Semantics

To be self-contained, in this section we give a brief, simplified summary of the results in [18], explaining how
the extended semantics deals with bidirectional updating.The readers can safely skip this section at first reading.

The main instructive example will beunzip, defined in Section 4.1. Its reverse,zip = unzip˘, according to the
distributivity of ˘, is given by:

zip = µ(X : (nil˘ × nil˘); δ˘; nil ∪
(cons˘ × cons˘); trans; (id × X); cons)

The puzzle is: how to make it work correctly in the presence of()+ and()− tags?
We introduce several additional operators:

• del andins, parameterised by a value. The functiondel a takes a listx to a− : x, while ins a takesx to a+ : x;
• fstb andsnda, defined by:

fstb (a, b) = a
snda (a, b) = b

That is,fstb eliminates the second component of a positive pair only if itequalsb. Otherwise it fails. Similarly,
snda eliminates the first component of an ordinary pair only of it equalsa. When interacting with existing
operators, they should satisfy the algebraic rules in Figure 10, which are obviously true given their semantics.

• Also, we restrict the domain ofcons˘ to lists whose head isnot tagged by either()+ or ()−.

An extendedzip capable of dealing with deletion can be extended, from the original zip by (here “. . .” denotes
the original two branches ofzip):

µ(X : . . . ∪ ∀a, b·
((ins a)˘ × (ins b)˘); X; ins (a, b) ∪
((ins a)˘ × isList); X; ins (a, b) ∪
(isList × (ins b)˘); X; ins (a, b) ∪
((del a)˘ × (del b)˘); X; del (a, b) ∪
((del a)˘ × cons˘; sndb); X; del (a, b) ∪
(cons˘; snda × (del b)˘); X; del (a, b))

wherea andb are universally quantified, andisList = nil˘; nil ∪ cons˘; cons, a subset ofid letting through only
lists having no tag at the head. Look at the branch starting with ((ins a)˘ × (ins b)˘). It says that, given a pair
of lists both starting with insertion tagsa+ andb+, we should deconstruct it, pass the tails of the lists to the
recursive call, and put back an(a, b)+ tag. If only the first of them is tagged (matching the branch starting with
((ins a)˘ × isList)), we temporarily remove the heada+, recursively process the lists, and put back(a, b)+ with
a freshly generatedb. It is non-deterministic whichb is chosen, and might be further constrained whenzip is
further composed with other relations.

The situation is similar with deletion. In the branch starting with((del a)˘× cons˘; sndb) where we encounter
a list with ana deleted by the user, we remove an element in the other list andremember its value inb. Here
universally quantifiedb is used to match the value — all the branches with differentb’s are unioned together,
with only one of them resulting in a successful match. After processing it recursively, we cons the list with the
head(a, b)− indicating that a pair(a, b) was removed from the resulting list.

It would be very tedious if the programmer has to explicitly write down these extra branches for all functions
(let alone that we did not provide the construct for universal quantification.) We wish thatdel, ins, fst and
snd do not appear in the programs, but the system can somehow derive the additional branches. Luckily, these
additional branches can be derived automatically using therules in Figure 10.

In the derivations later we will omit the semantics function[|[]]| and use the same notation for the language
and its semantics, where no confusion would occur. This is merely for the sake of brevity.

In place of ordinarycons, we define two constructs addressing the dependency of structures. Firstly, thebold
cons is defined by::

cons = cons ∪⋃
a::A(snda− ; del a) ∪

⋃
a::A(snda+ ; ins a)

Secondly, we define the followingsync operator:

sync = (cons × cons)
sync˘ = (cons˘ × cons˘)
∪

⋃
a,b∈A(((del a)˘; snda− ˘ × (del b)˘; sndb− ˘)

∪ ((del a)˘; snda− ˘ × cons˘; sndb− ; sndb− ˘)
∪ (cons˘; snda− ; snda− ˘ × (del b)˘; sndb− ˘))

∪
⋃

a,b∈A(((ins a)˘; snda+ ˘ × (ins b)˘; sndb+ ˘)
∪ ((ins a)˘; snda+ ˘ × isList; sndb+ ˘)
∪ (isList; sndb+ ˘ × (ins b)˘; sndb+ ˘))

In the definition ofzip, we replace every singular occurence ofcons with cons, and every(cons × cons) with
sync. The definition ofsync˘ looks very complicated but we will shortly see its use in thederivation. Basically
every produce correspond to one case we want to deal with: when both the lists are cons lists, or when one or
both of them has a tagged value at the head.

After the substitution, all the branches can be derived by algebraic reasoning. The rules we need are listed in
Figure 10. Only rules forassocl are listed. Free identifiers are universally quantified. Therules forassocr can
be obtained by pre-composingassocr to both sides and useasscor; assocl = id. To derive the first branch for
insertion, for example, we reason:

zip

⊇ {fixed-point}

sync˘; trans; (id × zip); cons

⊇ {sincesync˘ ⊇ ((ins a)˘; snda+ ˘
×(ins b)˘; sndb+ ˘) for all a, b}

((ins a)˘ × (ins b)˘); (snda+ ˘ × sndb+ ˘);
trans; (id × zip); cons

⊇ {claim: (snda+ ˘ × sndb+ ˘); trans = (snd(a,b)+)˘}

((ins a)˘ × (ins b)˘); (snd(a,b)+)˘; (id × zip); cons

= {since(f × g); sndf a = snda; g for total f}

((ins a)˘ × (ins b)˘); zip; (snd(a,b)+)˘; cons

⊇ {sincecons ⊇ snd(a,b)+ ; ins (a, b)}

((ins a)˘ × (ins b)˘);
zip; (snd(a,b)+)˘; snd(a,b)+ ; ins (a, b)

= {sincesndx˘; sndx = id}

((ins a)˘ × (ins b)˘); zip; ins (a, b)

We get the first branch. The claim thattrans˘; (snda+ ×sndb+) = snd(a,b)+ can be verified by the rules in Figure
10. In a similar fashion, all the branches can be derived dynamically.

The situation withcatx is similar: (cons × cons) is interpreted assync, and from which we can derive other
branches needed to deal with tagged values. The good thing isthat the particular choicecatx make is inferred
from the algebraic rules.

The algebraic rules can be applied both forwards and backwards, which seem to cause problems for automatic
transformation. Luckily, it is possible to integrate theserules in anInv interpreter. The details are given in [18].

(f × g); fst(g b) = fstb; f , if g is total

(f × g); snd(f a) = snda; g, if f is total

swap; snda = fsta
snda˘; eq nil = (λ [] → a)

assocl; (fstb × id) = (id × sndb)

assocl; (snda × id) = (snda ∪ snda)

assocl; snd(a,b)2 = snda2 ; (sndb2 ∪ sndb)

Figure 10. Algebraic rules. Here(λ [] → a) is a function mapping only empty list toa. The2 may denote
either a()+ or a()− or nothing.

5. Bidirectionalisation Embedding

We are now ready to show how tree transformations in HaXML canbe embedded into the bidirectional
transformation languageInv. We call the type of source documentsS and that of viewsV. They are both
embedded in the type for trees but we nevertheless distinguish them for clarity. The trick is that every HaXML
construct is embedded as anInv expression denoting, in the injective semantics, a function of typeS → (S× [V])
that takes a source and produces a pair consisting of a copy ofthe given source together with the view.

The function is apparently injective because the source is kept in the output. Its inverse, of type(S×[V]) → S,
maps the original source and its corresponding views back tothe source. In the extended semantics, however,
when given the original source and aneditedview, theInv expression magically produces an updated source
consistent with the transform.

The embedding is presented in Section 5.1, 5.2, and 5.3. A pair of forward/backward transformations has to
satisfy a set of healthiness constraints. This is given in Section 5.4.

5.1 Embedding Basic Filters

The embedding from HaXML constructs toInv is denoted byd e. The filternone always pair the input with
an empty list. It is therefore simply embedded asdupNil. The filterkeep, on the other hand, always produces a
singleton list of the input:

dnonee = dupNil
dkeepe = dup; (id × wrap)

wherewrap = dupNil; cons, wrapping an item into a singleton list. Other “singleton” filters — those returning
either an empty list or a singleton list, are also defined in terms ofdup, dupNil, andwrap:

delme = isNode; dup; (id × wrap)∪
isStr; dupNil

dtxte = isNode; dupNil ∪
isStr; dup; (id × wrap)

whereisNode = node˘; node. The filterelm returns a singleton list only if the input is a node, whiletxt returns
a singleton list only if the input is a string. In both casesdup is used to copy the input.

The filtertag is slightly more complicated because we need to check the value of the tag:

dtag se = node˘; (strEq s × id); node; dup; (id × wrap)∪
node˘; (strNEq s × id); node; dup; (id × wrap)∪
isStr; dupNil

wherestrEq s andstrNEq s check whether the given string equals or not equalss. They are defined by:

strEq s = dupStr s; δ˘
strNEq s = dupStr s; neq; (dupStr s)˘

The filterchildren usesdup to copy the list of children, after decomposing the input using node˘. The input
is reconstructed usingnode again.

dchildrene = node˘; (id × dup); assocl; (node × id)∪
isStr; dupNil

We will defer the discussion about another important filtermkElem to the next section, after we talk about
sequential composition.

5.2 Embedding Sequential Composition

Assume that we have two embedded filtersdf e :: A → (A × [B]) anddge :: B → (B × [C]). How should we
produce their embedded composition of typeA → (A × [C])? TheInv expressiondf e; (id × mapdge) applies
df e to the input anddge to every result ofdf e, resulting in(A × [(B × [C])]). We now need to get rid of the
intermediate values of typeB, and concatenate the nestedCs into a single list. However, there is no information-
losing constructs inInv.

Let us first try to concatenate all theCs together. The functionpull :: [(B× [C])] → ([(B× [C])]× [C]) below,
usingconcatx, collects all theCs a single list, while keeping the input[(B × [C])].

pull = unzip; (id × concatx); assocl; (zip × id)

The next step is to notice thatdge˘ has type(B × [C]) → B. If we applymap dge˘ to the list[(B × [C])], we get
a list of Bs. Finally, we can eliminate theBs usingdf e˘ :: (A × [B]) → A. Composition of filters is therefore
defined by:

df ;̂ ge = df e . dge
f . g = f ; (id × map g; pull; (map g˘ × id));

assocl; (f ˘ × id)

We isolate the definition of. because we will use it again later. The seemingly inefficientapplications ofdf e˘
anddge˘ is only in the specification. This is essential the same trick used by [4] to embed Turing machines into
reversible Turing machines, where the embedded Turing machine is ran backwards to eliminate the intermediate
result. The situation is merely made more complicated by thefact that filters return a list of results.

What made the effort worth, however, is that the sameInv expression also specifies how to perform the
backward updating. Consider the compositionchildren ;̂ children, given the inputt = N a [N b [c, d],N e [f, g]].
In the forward run, the output is the original input paired with the list of grandchildren:(t, [c, d, f, g]). Assume
the user inserts a new item[c, d, h+, f, g]. Now let us tracechildren ;̂ children backwards.

According to the definition, we first apply(dchildrene×id); assocr; (map dchildrene×id) to (t, [c, d, h+, f, g]),
yielding:

(t, ([(N b [c, d], [c, d]), (N e [f, g], [f, g])],
[c, d, h+, f, g]))

So far we are simply reproducing the intermediate values that were generated in the forward run. Then we apply
pull˘ to the second component of the pair. The list of lists[[c, d], [f, g]] is compared against[c, d, h+, f, g] in
concatx˘, resulting in[[c, d], [h+, f, g]]. While performingmap dchildrene˘, the pair(N e [f, g], [h+, f, g]]) is
unified intoN e [h+, f, g], due to the use ofdup in children. The updated source isN a [N b [c, d],N e [h+, f, g]].

Through the example, two points are worth noticing. Firstly, to update through sequentially composed filters,
we (at least in the specification level) regenerate the original intermediate values, and use them to generate
update intermediate values. Backward updating for composition is defined similarly in [16, 9] by hand. The
updating behaviour in our embedding, on the other hand, follow naturally from the definition of composition
and its extended semantics, although the situation is complicated by the fact that filters return a list of results.

Secondly,concatx˘ made a biased choice of joining the newly added item to the right. However, it is not
always the preferred choice. Considerchildren ;̂ txt a and inputt′ = N r [a, a], output (t′, [a, a]), and edited
output (t′, [a, a+, a]). In the backward run,concatx˘ would produce the intermediate result[[a], [a+, a]] and
attempt to match it with the old result oftxta. However, the singleton filtertxt a never returns a list with two
elements.

When the second component in the sequential composition is asingleton filter, we shall switch toconcatw
which, in the situation above, would produce[[a], [a]+, [a]]. In the implementation we can distinguish between
singleton and non-singleton filters, and perform a dynamic check to choose the preferred version of concatena-
tion.

5.3 Embedding Other Filter Combinators

The embedding ofmkElem s fs makes use ofconcatx and reverse application in a way similar to sequential
composition. The auxiliary functionappF applies all the filters in turn, beforeconcatx concatenate their results.
We then use(appF fs)˘ to consume the un-concatenated list of lists.

dmkElem s fse = appF fs; (id × concatx); assocl; ((appF fs)˘ × dupStr s);
swap; node; wrap

where appF [] = dupNil
appF (f : fs) = dup; (df e × appF fs); trans; (dup˘ × cons)

The filterchip can be defined in a number of ways. The following definition makes use of.: we applyf to
every result of node deconstructornode˘, and use the auxiliary functioncap to place the result under the original
root.

dchip f e = (node˘ . df e); cap∪
isStr; dup; (id × wrap)

where cap = (node˘ × id); assocr; (δ × id); trans; (node × node; wrap)

The embedding off ||| g usescatx to concatenate the results off andg. We also make use ofdf e˘ to consume
the garbage output ofcatx. The filtercat, on the other hand, is

df ||| ge = df e; (dge × id); assocr; (id × swap; catx); assocl; (df e˘ × id)
dcat [f]e = f
dcat (f : fs)e = f ||| cat fs

The with and without combinators are defined using the. operator used in the definition of sequential
composition. The auxiliary definitionsdom andnotdom checks whether the input is in the domain ofg.

df with ge = df e . dom dge
where dom g = g; (dupNil˘; dupNil ∪

(id × cons˘; cons); dupfst; (g˘ × wrap))
df without ge = df e . notdom dge

where notdom g = g; ((id × cons˘; cons); dupNil ∪
dupNil˘; dupNil; dupfst; (id × wrap))

wheredupfst duplicates the first component of the input and is defined bydupfst = (dup × id); assocr; (id ×
swap); assocl.

Finally, ?〉 :〉 is defined using union:

dp?〉 f :〉ge = dom dpe; df e ∪ notdom dpe; dge
where dom p = p; (id × cons˘; cons); p˘

notdom p = p; dupNil˘; dupNil; p˘

norm [] = []
norm (a+ : x) = norm a : norm x
norm (a− : x) = normx
norm (a : x) = norm a : norm x
norm (a, b) = (norm a, norm b)
norm (N a x) = N (norm a) (norm x)
norm (a+) = norm a
norm (a−) = norm a
norm (∗a) = a
norm a = a

Figure 11. Definition of norm.

5.4 Get and Put

For a transformationx, we define the GET and PUT functions to be:

getx s = snd ([|[dxe]]| s)
putx s v′ = norm ([|[dxe˘]]| (s, v′))

wheresnd (s, v) = v, and the functionnorm removes the tags in the tree and produces a normal form, defined in
the obvious way in Figure 11. We start with a source document and usesgetx to produce an initial view. After
each editing action,putx is called (with a cached copy of the source) to produce an updated source. We then
call getx to produce a new view.

Let relation composition be defined byR; S = {(a, c) | ∃b · (a, b) ∈ R ∧ (b, c) ∈ S}, untagged a partial
function maps the input to itself if it does not contain tags,anddom R = {(a, a) | ∃b · (a, b) ∈ R}, the operator
taking the domain of a relation. An important result in [18] is that the following properties hold:

untagged; [|[x]]|; [|[x˘]]|; norm = untagged; dom [|[x]]|

[|[x˘]]|; norm; [|[x]]|; [|[x˘]]|; norm ⊆ [|[x˘]]|; norm

Further more, the inclusion in the second property becomes an equality for a certain class ofInv expressions.
From the two properties above, the GET-PUT-GET and PUT-GET-PUT laws follow immediately.

5.5 Examples

Back to the examplef = mkElem m [children ;̂ tag a, children]. For brevity, leta = N a [], b = N b []. Also let
a1 = N a [c], b1 = N b [c] to be distinguished froma andb. Let t = N r [N b [],N a []] be the input. Calling
getf t yields the pair(t, [N m [a, b, a]]).

Now assume that the user deletesb in the viewN m [a, b, a] and we perform aputf . Firstly,df e˘ (t, [N m [a, b−, a]])
results inN r [b−, a]. It is correctly inferred thatb in the original tree shall be deleted. Thenorm function then
actually removes the taggedb, and the updated source isN r [a].

Applying df e˘ to (t, [N m [a, b1
+, b, a]]) yieldsN r [b1

+, b, a]. The newly insertedb1, by the biased choice of
concatx, is assumed to be the result ofchildren. It is also the same if we inserta1 instead —df e˘ (t, [N m [a, a1

+, b, a]])
yieldsN r [a1

+, b, a]. The nextgetf thus results inN m [a1, a, a1, b, a] as the new view.
If the user inserta1 to the head of the list, on the other hand, the newly inserteda1 has to be the result of

children ;̂ tag a. Indeed,df e˘ (t, [N m [a1
+, a, b, a]]) yieldsN r [b, a1

+, a] becausea1 shall be inserted in front of
a. Furthermore, elements inserted before the firsta in the view must have ana label too, otherwise it could not
have been the result oftag a.

If we want to allow the user to insert arbitrary elements, we need to use a different embedding oftag a

whose forward semantics is the same, but allows anything to go through in the backward direction. The
actual implementation ofInv allows us to add more primitives. Since compound filter combinators preserve

bidirectionality, one just need to be sure that the new primitives satisfy the healthiness conditions. This can be
seen as adding extra annotations to the transformation to alter the default behaviour.

For a bigger example, recall the transformation in Figure 7.The use oftr = mkElem tr in mkRow specifies
that an entire row must be added at once to the table, because anewly added element undertable must be a
result ofmkElem tr with three sub-filters. There are more than one way to build the same table. For example,
one can scan through the address book and replace everyperson with tr, the fields withtd, by foldXml tabling

wheretabling is defined by:

tabling = tag person?〉 replaceTag tr :〉
(tag name?〉 repalceTag td :〉
(tag email?〉 repalceTag td :〉
(tag tel?〉 repalceTag td :〉
keep)))

However, this transformation does not enforce enough structure on the input. From the transformation we cannot
infer how the source is supposed to look like. Its reverse, therefore, does not yield meaningful results.

6. Related Work

View-updating: to correctly reflect the modification on the view back to the database [3, 6, 8, 19, 1], is an old
problem in the database community. In recent years, however, the need to synchronise data related by some
transform starts to be recognised by researchers from different fields. In tools for aspect-oriented programming
it is helpful to have multiple views of the same program [14].In editors such as [22, 21] the user edits a
view computed from the source by a transformation. Recent research on code clone [10] argues that a certain
proportion of code in a software resembles each other. We maydevelop software maintenance tools to keep
the resembling pieces of code updated when one of them is altered. We are also developing file browsers using
similar technique. It is argued in [15] that suchcoupled transformationproblems are widespread and diverse.

In the context of data synchronisation, similar challenge was identified by [9] and coined the “bidirectional
updating” problem. In [9, 7], a semantic foundation and a programming language (the “lenses”) for bidirectional
transformations are given. They form the core of the data synchronisation system Harmony [20]. Another very
much related language was given by Meertens [16] to specify constraints in the design of user-interfaces. Due
to their intended applications, less efforts were put on describing either element-wise or structural dependency
inside the view.

The original motivation of our work was to build a theoretical foundation for presentation-oriented editors
supporting interactive development of XML documents [2, 22, 21]. Proxima [21] is a presentation-oriented
generic editor, to which one can “plug-in” their own editorsfor different types of documents and representations.
However, it requires explicit specification of both forwardand backward updating. Our goal is to specify only
the forward transform and derive the backward updating automatically. We choose to based our formalisation
of bidirectional updating on injective mapping. The extension to deal with duplication and structural changes
are thus easier to cope with.

We have also developed a domain-specific XML processing language, calledX. The language, basically a
point-free functional language closely related to the languages in [16] and [9], is currently used in our XML
editor [12] as the language to describe transformations with. In [12], the semantics ofX was given without the
use ofInv. In a preliminary work [11] in a non-refereed workshop, we drafted an implementation of bidirectional
HaXML. In both cases, however, the treatments with with duplication and alignment were not satisfactory. In
order to resolve the problem, we attempt to embed both HaXML and X into Inv. The embedding of HaXML is
recorded in this paper, while that forX is described in a paper in preparation [13].

7. Conclusions and Future Work

We have presented an embedding of HaXML intoInv. With the embedding, existing HaXML transformations
gain bidirectionality — the forward transform induces a backward transform which maps an edited view to an

updated source. This makes HaXML be a more powerful transformation language than it was first designed
for. As far as we are aware, this is the first attempt towards systematically bidirectionalising unidirectional
languages.

A question is: what can we say about the updated source? The backward transformation does not in general
always yield a result — some editing actions may be considered illegal. The PUT-GET-PUT property merely
guarantees that if the backward transformation yields any source at all, it is well-behaved in the sense that an
additionalget followed by aput results in the same source, therefore no repeated updating is necessary. Exactly
which source is returned is determined by the algebraic rules of theInv primitives.

Apart from that, we assume no external criteria on the updated source. In [16], Meertens proposed the
principle ofminimal change— that a source shall be chosen such that minimal change is made to the view. The
main difficulty is that the minimal change principle, in general, is not preserved by compound transformations.
In [21] it was also shown that a minimal change is not always what the user wants. It will be an interesting
challenge to develop a formalisation of bidirectional updating that maintains some external measurement on the
chosen source.

Ideally, given a forward transformation, we wish to get the backward transformation for free by the em-
bedding. As the examples show, however, transformations written without concern of backward updating in
mind tend to lack necessary information. The experience gained from this case study, however, may help us
in the development of a language designed for bidirectionalupdating. At present, we have anInv interpreter
implemented in Haskell, in which bothX [12, 13] and HaXML is embedded. The prototype is available from
the authors’ homepage. The HaXML embedding is in a relatively preliminary stage. The main difficulty of the
HaXML embedding is that filters return a list of results, and the length of the list is fixed for singleton filters.
From these experience we wish to learn what language design/features are suitable for bidirectionalisation.

Acknowledgments

The authors would like to thank the members of the PSD project— Yasushi Hayashi, Dongxi Liu, Keisuke
Nakano, and Shingo Nishioka, for stimulating discussions.Also thanks to Kento Emoto for testing and
debugging the HaXML embedding, and Kazutaka Matsuda for reviewing an earlier draft of this paper. Together
with Akimasa Morihata they worked on the languageX and efficiently implemented a prototype XML editor
showing that the whole idea is feasible.

References
[1] S. Abiteboul. On views and XML. InProceedings of the 18th ACM SIGPLAN-SIGACT-SIGART Symposium on

Principles of Database Systems, pages 1–9. ACM Press, 1999.

[2] Altova Co. Xmlspy.http://www.xmlspy.com/products ide.html.

[3] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Transactions on Database Systems,
6(4):557–575, December 1981.

[4] C. H. Bennett. Logical reversibility of computation.IBM Journal of Research and Development, 17(6):525–532,
1973.

[5] T. Bray, J. Paoli, C. M. Sperberg-Macqueen, and E. Maler.Extensible Markup Language (XML) 1.0 (Second
Edition), October 2000.http://www.w3.org/TR/REC-xml.

[6] U. Dayal and P. A. Bernstein. On the correct translation of update operations on relational views.ACM Transactions
on Database Systems, 7(3):381–416, September 1982.

[7] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Combinators for bi-directional tree
transformations: a linguistic approach to the view update problem. In The 32nd ACM SIGPLAN–SIGACT
Symposium on Principles of Programming Languages (POPL 2005), pages 233–246, Long Beach, California,
2005. ACM Press.

[8] G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consistent views.ACM Transactions on
Database Systems, 13(4):486–524, December 1988.

[9] M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt.A language for bi-directional tree transformations.
Technical Report, MS-CIS-03-08, University of Pennsylvania, August 2003.

[10] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. ARIES: refactoring support environment based on code clone
analysis. InThe 8th IASTED International Conference on Software Engineering and Applications(SEA 2004),
pages 222–229, Cambrdige, USA, November 9-11, 2004. ACTA Press.

[11] Z. Hu, K. Emoto, S.-C. Mu, and M. Takeichi. Bidirectionalizing tree tranformations. InWorkshop on New
Approaches to Software Construction (WNASC 2004), Komaba, Tokyo, Japan, September 13-14, 2004.

[12] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing structured documents based on
bidirectional transformations. InProceedings of ACM SIGPLAN 2004 Symposium on Partial Evaluation and
Program Manipulation, Verona, Italy, August 2004. ACM Press.

[13] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing structured documents based on
bidirectional transformations, 2006. Submitted toHigher-Order and Symbolic Computation.

[14] D. Janzen and K. de Volder. Programming with crosscutting effective views. InECOOP 2004 - Object-Oriented
Programming, 18th European Conference, number 3086 in Lecture Notes in Computer Science, pages 195–218.
Springer-Verlag, June 14-18, 2004.

[15] R. Lämmel. Coupled software transformations (extended abstract). InFirst International Workshop on Software
Evolution Transformations, 2004.

[16] L. Meertens. Designing constraint maintainers for user interaction.ftp://ftp.kestrel.edu/ pub/papers/meertens/dcm.ps

1998.

[17] S.-C. Mu, Z. Hu, and M. Takeichi. An injective language for reversible computation. InSeventh International
Conference on Mathematics of Program Construction, number 3125 in Lecture Notes in Computer Science. Springer-
Verlag, July 2004.

[18] S.-C. Mu, Z. Hu, and M. Takeichi. An algebraic approach to bi-directional updating. In W.-N. Chin, editor,The
Second Asian Symposium on Programming Language and Systems, number 3302 in Lecture Notes in Computer
Science, pages 2–20. Springer-Verlag, November 4-6, 2004.

[19] A. Ohori and K. Tajima. A polymorphic calculus for viewsand object sharing. InProceedings of the 13th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of DatabaseSystems, pages 255–266. ACM Press, 1994.

[20] B. C. Pierce, A. Schmitt, and M. B. Greenwald. Bringing harmony to optimism: an experiment in synchronizing
heterogeneous tree-structured data. Technical Report, MS-CIS-03-42, University of Pennsylvania, March 18, 2004.

[21] M. M. Schrage.Proxima - A presentation-oriented editor for structured documents. PhD thesis, Utrecht University,
The Netherlands, 2004.

[22] M. Takeichi, Z. Hu, K. Kakehi, Y. Hayashi, S.-C. Mu, and K. Nakano. TreeCalc:towards programmable structured
documents. InThe 20th Conference of Japan Society for Software Science and Technology, September 2003.

[23] M. Wallace and C. Runciman. Haskell and XML: generic combinators or type-based translation? . InProceedings
of the 1999 ACM SIGPLAN International Conference on Functional Programming, pages 148–159. ACM Press,
September 1999.

