
13th IFIP WG 2.13 International Conference, OSS 2017
Buenos Aires, Argentina, May 22–23, 2017
Proceedings

Open Source
Systems: Towards
Robust Practices

Federico Balaguer
Roberto Di Cosmo
Alejandra Garrido

Fabio Kon
Gregorio Robles

Stefano Zacchiroli (Eds.)

IFIP AICT 496

IFIP Advances in Information

and Communication Technology 496

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board

TC 1 – Foundations of Computer Science

Jacques Sakarovitch, Télécom ParisTech, France

TC 2 – Software: Theory and Practice

Michael Goedicke, University of Duisburg-Essen, Germany

TC 3 – Education

Arthur Tatnall, Victoria University, Melbourne, Australia

TC 5 – Information Technology Applications

Erich J. Neuhold, University of Vienna, Austria

TC 6 – Communication Systems

Aiko Pras, University of Twente, Enschede, The Netherlands

TC 7 – System Modeling and Optimization

Fredi Tröltzsch, TU Berlin, Germany

TC 8 – Information Systems

Jan Pries-Heje, Roskilde University, Denmark

TC 9 – ICT and Society

Diane Whitehouse, The Castlegate Consultancy, Malton, UK

TC 10 – Computer Systems Technology

Ricardo Reis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

TC 11 – Security and Privacy Protection in Information Processing Systems

Steven Furnell, Plymouth University, UK

TC 12 – Artificial Intelligence

Ulrich Furbach, University of Koblenz-Landau, Germany

TC 13 – Human-Computer Interaction

Marco Winckler, University Paul Sabatier, Toulouse, France

TC 14 – Entertainment Computing

Matthias Rauterberg, Eindhoven University of Technology, The Netherlands

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World

Computer Congress held in Paris the previous year. A federation for societies working

in information processing, IFIP’s aim is two-fold: to support information processing in

the countries of its members and to encourage technology transfer to developing na-

tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims

at achieving a worldwide professional and socially responsible development and

application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It

operates through a number of technical committees and working groups, which organize

events and publications. IFIP’s events range from large international open conferences

to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and

contributed papers are presented. Contributed papers are rigorously refereed and the

rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers

may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-

ing group and attendance is generally smaller and occasionally by invitation only. Their

purpose is to create an atmosphere conducive to innovation and development. Referee-

ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World

Computer Congress and at open conferences are published as conference proceedings,

while the results of the working conferences are often published as collections of se-

lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative

Members, Members at Large, and Associate Members. The type of organization that

can apply for membership is a wide variety and includes national or international so-

cieties of individual computer scientists/ICT professionals, associations or federations

of such societies, government institutions/government related organizations, national or

international research institutes or consortia, universities, academies of sciences, com-

panies, national or international associations or federations of companies.

More information about this series at http://www.springer.com/series/6102

http://www.springer.com/series/6102

Federico Balaguer • Roberto Di Cosmo
Alejandra Garrido • Fabio Kon
Gregorio Robles • Stefano Zacchiroli (Eds.)

Open Source Systems:
Towards Robust Practices

13th IFIP WG 2.13 International Conference, OSS 2017

Buenos Aires, Argentina, May 22–23, 2017
Proceedings

Editors
Federico Balaguer
National University of La Plata
La Plata
Argentina

Roberto Di Cosmo
Inria and Paris Diderot University
Paris
France

Alejandra Garrido
National University of La Plata
La Plata
Argentina

Fabio Kon
University of São Paulo
São Paulo
Brazil

Gregorio Robles
Universidad Rey Juan Carlos
Madrid
Spain

Stefano Zacchiroli
Paris Diderot University and Inria
Paris
France

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-319-57734-0 ISBN 978-3-319-57735-7 (eBook)
DOI 10.1007/978-3-319-57735-7

Library of Congress Control Number: 2017938159

© The Editor(s) (if applicable) and The Author(s) 2017. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,

unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are

believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://creativecommons.org/licenses/by/4.0/

General Chair’s Message

Free and open source software (FOSS) has gone through a series of phases, from a

little-noticed movement, to early industry adoption in the lower levels of the software

stack, to inroads in the vertical application market, to merely table stakes in modern

software development: In recent years, disruptive applications in the trendy segment of

machine learning are natively born as open source. There is no doubt that in just over

20 years FOSS has radically changed the way software is designed, developed,

evolved, distributed, marketed, and sold.

One could be tempted to say that since FOSS is now mainstream across all layers of

software development, with even its most fierce former opponents turning into fervent

adopters, it has reached its maturity phase and there is no longer a need for a spe-

cialized forum dedicated to studying it, like the one OSS has being providing for over a

decade.

Nothing could be further from the truth: With the huge number of newcomers that

now embrace FOSS without having contributed to its evolution, and knowing very

little of its values and inner workings, it is now more essential than ever to study,

understand, and explain fundamental issues related to the business models, organiza-

tional structures, decision-making processes, quality metrics, and the evolution of the

free and open source software ecosystems in general.

This effort involves a variety of scientific disciplines, ranging from core computer

science, to social sciences and economics, and this work must be performed in close

connection with the developer communities that are reshaping our software world

daily.

We were, therefore, delighted to see this 13th International Conference on Open

Source Systems, OSS 2017, continuing to provide an international forum where a

diverse community of professionals from academia, industry, and the public sector, as

well as developer communities, come together to share research findings and practical

experiences, which form the necessary basis for developing a corpus of good practices

that are needed now more than ever.

Organizing a conference always requires dedication and commitment from a

motivated core group of people, who deserve the sincere gratitude of all our com-

munity. The program chairs, Gregorio Robles and Fabio Kon, spent considerable

energy organizing the review process and setting up the conference program. The

proceedings, which are for the first time available as Open Access thanks to a generous

donation from the IRILL research initiative on free software, have been carefully edited

by Stefano Zacchiroli; we do hope that all future conferences will follow this path.

Bjorn Lundell, Paulo Meirelles, Diomidis Spinellis, and Megan Squire did a great job

of promoting the conference, and Martin Michlmayr took care of the contact with the

communities. Imed Hammouda and Greg Madey chaired the Doctoral Consortium, and

Alessandra Garrido and Federico Balaguer were great local chairs. Tony Wasserman

provided a precious link with IFIP. Cedric Thomas, OW2’s CEO, immediately

accepted the invitation to come and share his precious experience in an inspiring

invited talk.

Finally, special thanks go to Sebastian Uchitel, the general chair of ICSE 2017, with

whom I had the pleasure to work in close connection for more than a year in order to

make the organization of the conference possible in Argentina: We were enchanted to

have brought OSS 2017 and its community to “mi Buenos Aires querido.”

March 2017 Roberto Di Cosmo

VI General Chair’s Message

Program Chairs’ Message

It is a great pleasure to welcome you to the proceedings of the 13th International

Conference on Open Source Systems (OSS 2017). The range of papers published in

Open Source Systems: Towards Robust Practices is a valuable addition to the existing

body of knowledge in the field. Contributions cover a range of topics related to free,

libre, and open source software (FLOSS), including: licensing, strategies, and practices;

case studies; projects, communication, and participation; tools; project management,

development, and evaluation.

The OSS 2017 conference represents a long-standing international forum for

researchers and practitioners involved in a range of organizations and projects, to

present and discuss insights, experiences, and results in the field of FLOSS. The

maturity of research in our field is also reflected in the range and number of excellent

contributions received.

We are very pleased to have received 32 contributions (28 full and four short paper

submissions) for the technical program, from which we included 16 full papers and

three short papers (representing an acceptance rate of 57% for full papers). Every paper

received at least three reviews by members of the Program Committee, and was

carefully discussed by Program Committee members until a consensus was reached.

Based on the reviews for each paper, one of the two program chairs initiated an online

discussion among the reviewers in order to reach consensus. The two program chairs

facilitated this process for the different papers. All decisions were based on the quality

of the papers, which considered the reviews and the outcome of the discussions. We did

not have a minimum or maximum number of papers as a target. Five of the 16 papers

were conditionally accepted, subject to the authors addressing the reviewers’ comments

and suggestions.

The program also included a keynote (by Cedric Thomas), a Posters and Tool

Demonstration session, and a doctoral consortium with five PhD students presenting

their progress to the community.

We want to give special thanks to all the people who allowed us to present such an

outstanding program, and we would especially like to mention: the Program Committee

members and additional reviewers; the community and publicity chairs; the session

chairs; all the authors who submitted their papers to OSS 2017; the general chair

(Roberto Di Cosmo), the Doctoral Consortium chairs (Imed Hammouda and Greg

Madey), and the local organizers (Alejandra Garrido and Federico Balaguer). We are

also grateful to a number of other people without whom this conference would not have

happened, and with respect to preparing the proceedings we would like to specifically

mention Stefano Zacchiroli for his support.

March 2017 Fabio Kon

Gregorio Robles

Organization

Organizing Committee

General Chair

Roberto Di Cosmo Inria and Paris Diderot University, France

Program Chairs

Fabio Kon University of São Paulo, Brazil

Gregorio Robles Universidad Rey Juan Carlos, Spain

Local Organizing Chairs

Alejandra Garrido LIFIA, Universidad Nacional de La Plata/CONICET,

Argentina

Federico Balaguer LIFIA, Universidad Nacional de La Plata, Argentina

Proceedings Chair

Stefano Zacchiroli Paris Diderot University and Inria, France

Community Chair

Martin Michlmayr HPE

Publicity Chairs

Latin America

Paulo Meirelles UnB, Brazil

North America

Megan Squire Elon University, USA

North Europe

Bjorn Lundell HIS, Sweden

South Europe

Diomidis D. Spinellis AUEB, Greece

Advisory Committee

Tony Wasserman Carnegie Mellon University, USA

Imed Hammouda Chalmers and University of Gothenburg, Sweden

Fulvio Frati Università degli Studi di Milano, Italy

Program Committee

Chintan Amrit University of Twente, The Netherlands

Alexandre Bergel University of Chile, Chile

Cornelia Boldyreff University of East London, UK

Jordi Cabot ICREA – UOC (Internet Interdisciplinary Institute),

Spain

Andrea Capiluppi Brunel University, UK

Kevin Crowston Syracuse University, USA

Jean Dalle Pierre et Marie Curie University, France

Stéfane Fermigier Nuxeo, France

Juan Galeotti University of Buenos Aires, Argentina

Jesus Gonzalez-Barahona Universidad Rey Juan Carlos, Spain

Imed Hammouda Chalmers and University of Gothenburg, Sweden

Ahmed Hassan Queen’s University, Canada

Akinori Ihara Nara Institute of Science and Technology, Japan

Netta Iivari University of Oulu, Finland

Terhi Kilamo Tampere University of Technology, Finland

Stefan Koch Bogazici University, Turkey

Fabio Kon University of São Paulo, Brazil

Filippo Lanubile University of Bari, Italy

Luigi Lavazza Università degli Studi dell’Insubria, Italy

Walid Maalej University of Hamburg, Germany

Tommi Mikkonen Tampere University of Technology, Finland

Sandro Morasca Università degli Studi dell’Insubria, Italy

John Noll Lero – the Irish Software Engineering Research Centre,

Ireland

Dirk Riehle Friedrich Alexander University of Erlangen-Nürnberg,

Germany

Gregorio Robles Universidad Rey Juan Carlos, Spain

Barbara Russo Free University of Bolzano/Bozen, Italy

Walt Scacchi University of California, Irvine, USA

Diomidis Spinellis Athens University of Economics and Business, Greece

Ioannis Stamelos Aristotle University of Thessaloniki, Greece

Igor Steinmacher Universidade Tecnológica Federal do Paraná, Brazil

Klaas Stol Lero, Ireland

Davide Taibi University of Bolzano-Bozen, Italy

Guilherme Travassos COPPE/UFRJ, Brazil

Anthony Wasserman Carnegie Mellon University Silicon Valley, USA

Jens Weber University of Victoria, Canada

X Organization

Sponsors

With the Support of

and

Organization XI

Contents

Projects, Communication, and Participation

Considering the Use of Walled Gardens for FLOSS Project Communication . . . 3

Megan Squire

Investigating Relationships Between FLOSS Foundations and FLOSS

Projects . 14

Juho Lindman and Imed Hammouda

Designing for Participation: Three Models for Developer Involvement

in Hybrid OSS Projects . 23

Hanna Mäenpää, Terhi Kilamo, Tommi Mikkonen, and Tomi Männistö

Principled Evaluation of Strengths and Weaknesses in FLOSS

Communities: A Systematic Mixed Methods Maturity Model Approach 34

Sandro Andrade and Filipe Saraiva

Posters and Tools

Measuring Perceived Trust in Open Source Software Communities 49

Mahbubul Syeed, Juho Lindman, and Imed Hammouda

The Open Source Officer Role – Experiences . 55

Carl-Eric Mols, Krzysztof Wnuk, and Johan Linåker

Digging into the Eclipse Marketplace . 60

Jacob Krüger, Niklas Corr, Ivonne Schröter, and Thomas Leich

Licensing, Strategies, and Practices

How are Developers Treating License Inconsistency Issues?

A Case Study on License Inconsistency Evolution in FOSS Projects 69

Yuhao Wu, Yuki Manabe, Daniel M. German, and Katsuro Inoue

Addressing Lock-in, Interoperability, and Long-Term Maintenance

Challenges Through Open Source: How Can Companies Strategically

Use Open Source?. 80

Björn Lundell, Jonas Gamalielsson, Stefan Tengblad,

Bahram Hooshyar Yousefi, Thomas Fischer, Gert Johansson,

Bengt Rodung, Anders Mattsson, Johan Oppmark, Tomas Gustavsson,

Jonas Feist, Stefan Landemoo, and Erik Lönroth

http://dx.doi.org/10.1007/978-3-319-57735-7_1
http://dx.doi.org/10.1007/978-3-319-57735-7_2
http://dx.doi.org/10.1007/978-3-319-57735-7_2
http://dx.doi.org/10.1007/978-3-319-57735-7_3
http://dx.doi.org/10.1007/978-3-319-57735-7_3
http://dx.doi.org/10.1007/978-3-319-57735-7_4
http://dx.doi.org/10.1007/978-3-319-57735-7_4
http://dx.doi.org/10.1007/978-3-319-57735-7_5
http://dx.doi.org/10.1007/978-3-319-57735-7_6
http://dx.doi.org/10.1007/978-3-319-57735-7_7
http://dx.doi.org/10.1007/978-3-319-57735-7_8
http://dx.doi.org/10.1007/978-3-319-57735-7_8
http://dx.doi.org/10.1007/978-3-319-57735-7_9
http://dx.doi.org/10.1007/978-3-319-57735-7_9
http://dx.doi.org/10.1007/978-3-319-57735-7_9

Understanding the Effects of Practices on KDE Ecosystem Health 89

Simone da Silva Amorim, John D. McGregor,

Eduardo Santana de Almeida, and Christina von Flach Garcia Chavez

Challenges in Validating FLOSS Configuration. 101

Markus Raab and Gergö Barany

Case Studies

Progression and Forecast of a Curated Web-of-Trust:

A Study on the Debian Project’s Cryptographic Keyring 117

Gunnar Wolf and Víctor González Quiroga

Understanding When to Adopt a Library: A Case Study on ASF Projects . . . 128

Akinori Ihara, Daiki Fujibayashi, Hirohiko Suwa,

Raula Gaikovina Kula, and Kenichi Matsumoto

Adoption of Academic Tools in Open Source Communities:

The Debian Case Study . 139

Pietro Abate and Roberto Di Cosmo

Assessing Code Authorship: The Case of the Linux Kernel 151

Guilherme Avelino, Leonardo Passos, Andre Hora,

and Marco Tulio Valente

Project Management, Development and Evaluation

Release Early, Release Often and Release on Time.

An Empirical Case Study of Release Management 167

Jose Teixeira

Technical Lag in Software Compilations: Measuring How Outdated

a Software Deployment Is . 182

Jesus M. Gonzalez-Barahona, Paul Sherwood, Gregorio Robles,

and Daniel Izquierdo

OSSpal: Finding and Evaluating Open Source Software 193

Anthony I. Wasserman, Xianzheng Guo, Blake McMillian, Kai Qian,

Ming-Yu Wei, and Qian Xu

Longitudinal Analysis of the Run-up to a Decision to Break-up (Fork)

in a Community . 204

Amirhosein “Emerson” Azarbakht and Carlos Jensen

Author Index . 219

XIV Contents

http://dx.doi.org/10.1007/978-3-319-57735-7_10
http://dx.doi.org/10.1007/978-3-319-57735-7_11
http://dx.doi.org/10.1007/978-3-319-57735-7_12
http://dx.doi.org/10.1007/978-3-319-57735-7_12
http://dx.doi.org/10.1007/978-3-319-57735-7_13
http://dx.doi.org/10.1007/978-3-319-57735-7_14
http://dx.doi.org/10.1007/978-3-319-57735-7_14
http://dx.doi.org/10.1007/978-3-319-57735-7_15
http://dx.doi.org/10.1007/978-3-319-57735-7_16
http://dx.doi.org/10.1007/978-3-319-57735-7_16
http://dx.doi.org/10.1007/978-3-319-57735-7_17
http://dx.doi.org/10.1007/978-3-319-57735-7_17
http://dx.doi.org/10.1007/978-3-319-57735-7_18
http://dx.doi.org/10.1007/978-3-319-57735-7_19
http://dx.doi.org/10.1007/978-3-319-57735-7_19

Projects, Communication, and

Participation

Considering the Use of Walled Gardens for FLOSS

Project Communication

Megan Squire
(✉)

Elon University, Elon, NC, USA

msquire@elon.edu

Abstract. At its core, free, libre, and open source software (FLOSS) is defined

by its adherence to a set of licenses that give various freedoms to the users of the

software, for example the ability to use the software, to read or modify its source

code, and to distribute the software to others. In addition, many FLOSS projects

and developers also champion other values related to “freedom” and “openness”,

such as transparency, for example in communication and decision-making, or

community-orientedness, for example in broadening access, collaboration, and

participation. This paper explores how one increasingly common software devel‐

opment practice - communicating inside non-archived, third-party “walled

gardens” - puts these FLOSS values into conflict. If communities choose to use

non-archived walled gardens for communication, they may be prioritizing one

type of openness (broad participation) over another (transparency). We use 18

FLOSS projects as a sample to describe how walled gardens are currently being

used for intra-project communication, as well as to determine whether or not these

projects provide archives of these communications. Findings will be useful to the

FLOSS community as a whole as it seeks to understand the evolution and impact

of its communication choices.

Keywords: Open source · Free software · Communication · Email · Mailing list ·

IRC · Stack overflow · Slack · Apache · Wordpress · Teams · Chat

1 Introduction

A common denominator between all free, libre, and open source software (FLOSS)

projects is that they provide users with a software license that allows the user some level

of freedom to read, modify, or distribute the software source code. Echoing these free‐

doms, FLOSS software is also produced in such a way as to foster openness and collab‐

oration. For example, transparency in decision-making and welcoming participation are

key values that are common to many FLOSS projects. These values have been called

“open from day one” [1], or a “bazaar” style of organization [2], and have been attributed

to the “success of open source” [3]. More recently the so-called “open source way” [4]

is described as “a way of thinking about how people collaborate within a community to

achieve common goals and interests” when applied to non-software contexts.

One software development practice that has traditionally been cited in the literature

to preserve this openness is using publicly archived mailing lists for decision-making

© The Author(s) 2017

F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 3–13, 2017.

DOI: 10.1007/978-3-319-57735-7_1

and important project-related communication [5]. Mailing list archives preserve a

transparent record of decision-making that can serve as an institutional memory and

can help get new users up to speed quickly. Mailing lists also offer a technological

openness, in other words a non-corporate-controlled, non-proprietary software system,

ideally available under a FLOSS license. However, more recently, the FLOSS

community has begun to ponder an additional perspective on openness: one that is

defined by inclusivity and diversity of participation. [6–8] An industry publication

recently bemoaned that older communication systems used in FLOSS (specifically IRC)

are “complicated and unfriendly” and “the barrier to entry was a formidable challenge

for the first time user” [9].

In this paper, we attempt to describe how one increasingly popular software devel‐

opment practice puts these openness values – openness through transparency and

licensing, and openness through inclusivity – into conflict. Specifically, communicating

in “walled gardens”, or non-open and corporate-controlled systems such as Slack or

Stack Overflow, and not keeping archives of this communication puts the FLOSS

goal of transparency into conflict with the goals of ease-of-use, inclusivity, and diversity

of participation.

The remainder of this paper is organized as follows: first, we provide an overview

of communication technologies used in FLOSS projects, and then we describe how a

collection of 18 FLOSS projects currently relies on walled gardens for communication.

For this, we use publicly available descriptions of existing FLOSS projects or reposi‐

tories that are known to use walled gardens. By becoming aware of the size and scope

of the practice of using walled gardens to communicate, the FLOSS community at large

can choose how to react, including whether to embrace the practice, conduct additional

research, take preventative measures, provide alternatives, or ignore the practice.

2 Communication Technology Used in FLOSS Projects

In keeping with the nature of FLOSS work as community-owned and community-driven,

each individual software team makes the decisions about which communication tech‐

nologies to use, and when to adopt or reject a new technology. Each team has its own

requirements and makes its own determination of the positive and negative aspects of

each communication choice. Here we describe two main types of technology, asyn‐

chronous and synchronous technologies, and how different FLOSS communities have

used each one. For each category, we describe the alternatives in terms of the various

“openness” values described previously: openness via transparency, openness via

licensing and non-corporate control, and openness via inclusivity and ease-of-use.

2.1 Asynchronous Communication

Traditionally, many FLOSS communities have communicated using mailing lists. Some

communities, such as the Apache project ecosystem, still require the use of mailing lists

to conduct project business [10, 11]. There are several reasons for this preference. First,

email is an asynchronous communication medium. Asynchronous communication

4 M. Squire

allows for messages that can be sent and read at different times. (Other examples of

asynchronous communication include paper mail, email, bulletin board systems, and

Web sites.) Asynchronous communication works especially well for FLOSS teams that

may be geographically distributed, since messages can be sent and read at the conven‐

ience of both parties.

Another feature of email mailing lists that is helpful to FLOSS development is the

ease of creating browsable, searchable mailing list archives. Feller and Fitzgerald write,

“Archived discussions, which represent ‘self-documentation’ of projects, are critical in

OSS development.”[5] Archives preserve a record of decisions and can help bring new

contributors up to speed.

Finally, and significantly for many projects, generic email and mailing lists are

standards-based, in that anyone can develop email software, and sending and receiving

email requires no particular relationship or agreements with any single corporation.

Email protocols and software are not owned or controlled by any one entity, corporate

or otherwise. Generic email or mailing list systems can be contrasted with propri‐

etary, but still asynchronous, systems such as the Google Groups web-based Usenet

interface [12], or Stack Overflow, a web-based Question and Answer site increasingly

used by many FLOSS projects to handle many kinds of technical support [13]. Collo‐

quially, these closed, corporate-controlled systems are called walled gardens.

2.2 Synchronous Communication

Some FLOSS teams also elect to use synchronous communication technologies, such

as chat or instant messaging, in which the users are communicating back and forth in

real time. For example, FLOSS teams may conduct developer meetings using Internet

Relay Chat (IRC) [14, 15]. Real-time chat systems, such as IRC (but also recently

including new entrants into this space such as Rocketchat, Mattermost, Discord, or

Slack), are also used to share ideas informally, to get immediate technical help, and to

build camaraderie in the community [1]. Because of the ephemeral nature of chat,

communities may not approach it with the same expectation of being a long-term archive

as they would expect from an email mailing list. Still, some communities and IRC

channels are archived, usually through the use of special archiving bots. One impressive

example of chat archiving is the Ubuntu IRC log collection, which is available at http://

irclogs.ubuntu.com. These archives cover discussions happening on nearly 300 different

Ubuntu-related chat channels, starting in 2004.

As with email and asynchronous discussion systems, synchronous systems differ in

whether they are a product of a single corporation, or whether they are a FLOSS-licensed

or open protocol. For example, IRC is an application layer Internet protocol, and as such

anyone can run a server or develop a client for it. In contrast, Slack (https://slack.com),

is a synchronous chat system developed and operated by a corporation, and its rules

about costs, archiving policies, data sharing, number of participants, and so on, are

determined by the corporation alone. Slack has a single client, and a Terms of Service

(ToS) that restrict its use. Slack is not FLOSS licensed. We therefore include corporate-

controlled, non-FLOSS licensed synchronous messaging services such as Slack in our

definition of walled gardens.

Considering the Use of Walled Gardens 5

http://irclogs.ubuntu.com
http://irclogs.ubuntu.com
https://slack.com

2.3 How FLOSS Values Conflict When Communicating in Walled Gardens

In 2015, FLOSS developer Drew Devault wrote a blog post entitled “Please don’t use

Slack for FOSS projects” which argued that Slack is a walled garden, and any trend

toward adopting it should be curtailed in favor of continuing with IRC which he says is

“designed to be open”. [16] The comments section of this post illustrates the conflict

between the value of open design on one hand, and the value of openness through ease-

of-use and inclusivity on the other hand. In those 187 comments, the value of “openness”

is invoked for both arguments. Similarly, the Wordpress project, in rationalizing their

move to Slack for developer and user chat [17] gives six reasons for the move, and the

first three of those have to do with the user interface: “Open for everyone, Friendly user

interface, Easy asynchronous conversation”. With their invocation of “open for

everyone” they are certainly referring to usability and not licensing, since Slack is not

open source [18]. Interestingly, they also laud the ability of Slack to function in an

“asynchronous” way, specifically contrasting it with IRC and Skype (which they call

“real-time”). For this paper, we will continue to refer to Slack as a synchronous tech‐

nology.

A related values conflict is whether FLOSS projects using walled gardens are being

“open” (in the sense of transparent) if they do not provide archives of their communi‐

cations. Should FLOSS projects need to provide archives of their communications, and

do certain communication technologies make archiving easier or harder? In general, the

asynchronous communication technologies like web pages and mailing lists are stored

as files, and as such, will be easier to archive. FLOSS email mailing lists are usually

archived both by the projects themselves, and archives for many projects are also avail‐

able for search/browsing/downloading via third-party web sites such as MarkMail

(http://markmail.org) and Gmane (http://gmane.org). Even though IRC is a synchronous

communication medium, since it was invented in 1988, it has had many years to develop

logging and archiving features, including a diverse set of archive bots. Text-based IRC

logs are publicly available for many large projects including Ubuntu, OpenStack,

Puppet, Perl6, many Apache Software Foundation projects, and so on. Projects using

third-party synchronous walled gardens like Slack have the technical capability to

produce text logs, but as we will discuss in the next section, do not typically do so.

In the next section we begin to describe the increasing use of walled gardens by 18

popular FLOSS projects, including whether or not the communications are archived,

and what the community’s rationale is for using the walled garden.

3 Data on Walled Garden Usage in FLOSS Projects

The tables below show examples of FLOSS projects that have announced that they are

using walled gardens as a primary communication channel. These tables focus on Slack

as a walled garden since prior work already addressed the use of Stack Overflow for

developer support [13], and because – as Sect. 4 will show – Stack Overflow’s “garden

walls” are substantially lower and more porous than the walls surrounding Slack.

In the tables, URLs containing references to the evidence are provided in the

Appendix as [A1], [A2], and so on. Table 1 contains information for a general collection

6 M. Squire

http://markmail.org
http://gmane.org

of FLOSS projects that rely on walled gardens for communication, and Table 2 contains

information for only Apache Software Foundation (ASF) projects. We moved ASF

projects into their own table so that they could be compared to each other, since they

are all subject to the same rules about decision-making on mailing lists [10, 11].

Table 1. FLOSS projects using walled gardens for all or part of their communication

Community Use of walled garden Status of archives

Wordpress (all) Moved from IRC to Slack. “Slack

communication is used for

contributing to the WordPress

project, be it code, design,

documentation, etc” [A1]

No consistent Slack archive.

Occasional links to archives are

posted (e.g. [A2]), but Slack login is

required. The archives are not

downloadable or searchable. IRC

logs used to be available, but now

only one channel is logged [A3]

Drupal (UX) Uses Slack for “daily talk and weekly

meetings” [A4]. Main site Drupal.org

is still evaluating going to Slack in a

two-year old thread still getting

active comments [A5]

No Slack archive [A6]

Ghost Users/devs “split between IRC and

our forums” consolidated at Slack.

Weekly meetings in Slack [A7]

Meeting summaries are available on

[A8], but full logs require a Slack

login

Socket.io “Join our Slack server to discuss the

project in realtime. Talk to the core

devs and the Socket.IO community”

[A9] [A10]

No Slack archive

Elementary OS “we switched over to Slack from

IRC/Google+ at … in the early

summer. It’s been a massive

improvement.” [A11] No links to join

Slack on public web site [A12]. Uses

Stack Exchange for “common

questions” [A13] [A14] [A15]

No Slack archive. No local Stack

Exchange archive

MidoNet “We recently saw some other

communities moving [IRC] over to

Slack, and decided to make the jump

ourselves” [A16]

Uses Slackarchive.io for archives.

[A17]

Reactiflux/

React.js

Moved from Slack to Discord after

getting too big and Slack refused new

invites. [A18] Still has Freenode IRC

channel. Stack Overflow

recommended for questions [A19]

No Discord archive. No local Stack

Exchange archive

Bitcoin-core Most discussion happens on IRC.

Mentions Slack in passing [A20]

Uses Slackarchive.io for archives.

[A21]

Considering the Use of Walled Gardens 7

Table 2. Apache Software Foundation projects using walled gardens for all or part of their

communication

Community Use of walled garden Status of archives

Apache Cordova Users can “Join the discussion on Slack” [A22],

which “is a replacement for IRC, but not a

replacement for decisions and voting, that still

needs to be on the list”[A23]

No Slack archive

Apache Groovy “The Slack channel is not endorsed by the

Apache Software Foundation, It’s run by

Groovy enthusiasts in the community for casual

conversations and Q&A. Official discussions

must happen on the mailing lists only” [A24]

No Slack archive

Apache Hbase Mailing lists still exist but “Our IRC channel

seems to have been deprecated in favor of the

above Slack channel” [A25] The Slack channel

is only mentioned in Sect. 110.3 [A26] and 143.2

[A27] of the Reference Guide

No Slack archive

Apache Iota “The user mailing lists … is the place where

users of Apache iota ask questions and seek for

help or advice…. Furthermore, there is the

[apache-iota] tag on Stack Overflow if you’d like

to help iota users there…. You are very welcome

to subscribe to all the mailing lists. In addition

to the user list, there is also an iota Slack channel

that you can join to talk to other users and

contributors” [A28]

No Slack archive

Apache Kudu Slack is where “developers and users hang out

to answer questions and chat” [A29]

No Slack archive

Apache Mesos and

Aurora

Developers and users hang out in … Slack [A30]

[A31] “Note that even if we move to Slack, we

will make sure people can still connect using

IRC clients and that the chat history is publicly

available (per ASF guidelines)” [A32]

Mesos and Aurora both use

Slackarchive.io for archives [A33]

Apache Spark “For usage questions and help (e.g. how to use

this Spark API), it is recommended you use the

Stack Overflow tag apache-spark as it is an

active forum for Spark users’ questions and

answers” [A34]

No local Stack Overflow archive

Apache Spot “Getting started” link on Apache Spot project

page [A35] links to Github [A36] which states

“If you find a bug, have question or something

to discuss please contact us:

–Create an Issue….

–Go to our Slack channel”

No Slack archive

Apache Thrift Slack not officially mentioned on product pages,

but team created and channel mentioned in one

email thread [A37]

Uses Slackarchive.io for archives [A38]

The last column in each table shows whether the community is providing archives

of the communication that happens in the walled garden. To determine whether archives

were available, we performed the following procedure. First we searched for archives

via the public web site for the project, and if those were not available, we searched for

archives via Google, using the following queries:

8 M. Squire

• [community name/project name] slack

• [community name/project name] chat

• [community name/project name] archive

• [community name/project name] logs

• [community name/project name] slackarchive.io

With a few exceptions, most of the projects that did have an archive put the link to

it in an obvious place, so the archives were easy to find.

These tables show that the majority of projects which are using walled gardens are

not creating archives of these communications. In the next section we discuss some

options for communities that do want to create archives.

4 Archiving Walled Gardens

If a community does decide to move to walled garden for communication, there are some

strategies it can take to combat the potential for a corresponding loss of transparency.

Creating archives of the communications – as would have been available with a mailing

list or IRC channels – is one obvious and familiar solution. We will first discuss the

options for creating archives of Slack, and then we will briefly address Stack Exchange/

Stack Overflow archiving.

4.1 Archiving Slack

There are a few different options for archiving Slack conversations, each of which have

different positive and negative aspects. First, as we noted in Tables 1 and 2, there are

third-party services, such as Slackarchive.io (http://slackarchive.io), which can create

and host Slack archives. Slackarchive.io lists many open source projects on its “who is

using” list, including Bitcoin-core, Midonet, Apache Mesos, and Apache Thrift. The

archives are searchable and browsable by date, but the archives are not easily down‐

loadable. There are no Terms of Service posted on the Slackarchive.io site, nor is there

a robots.txt file. The archives themselves are displayed in a JavaScript-driven responsive

web interface, making downloads inconvenient and non-trivial to automate.

Another option for creating archives for Slack is to connect it to IRC via the Slack

bridge [19] or via a third party tool (e.g. Sameroom, available at http://sameroom.io),

and once the chat is on IRC, the archives can be created there using an IRC archive bot.

Depending on the client, IRC may or may not be able to understand advanced features

of Slack, including direct messages, code formatting features, and document attach‐

ments. Users who choose to use IRC will not see these aspects of the Slack experience,

nor will an IRC bot be able to archive them.

Third, community managers can take the approach of Wordpress and simply point

people to the in-Slack archive, for example [A2]. The downsides of that approach are:

• Viewers of the archive must be signed in members of the channel.

• The archives are only browsable on a day-to-day basis (a “pick a date” widget is also

available).

Considering the Use of Walled Gardens 9

http://slackarchive.io
http://sameroom.io

• By default, the archives are not searchable or downloadable by a non-administrative

user.

• Some communities with a lot of messages in the archive have reported seeing errors

reading, “Your team has more than 10,000 messages in its archive, so although there

are older messages than are shown below, you can’t see them. Find out more about

upgrading your team” [20].

4.2 Archiving Stack Exchange

The options for creating local archives of Stack Overflow and Stack Exchange sites are

determined by a Creative Commons BY-SA 3.0 license [21] that allows reuse of Stack

Exchange network data (for example questions, answers, and the like) as long as attri‐

bution rules are followed [22]. The site also periodically provides a CC-licensed Data

Dump [23] with private identifying user data removed. Despite these generous terms, it

does not appear that many FLOSS projects relying on Stack Overflow for developer or

user support are creating their own archives of this data, nor are they providing context

to Stack Overflow questions or answers from within their own ecosystems. Rather, the

communities that are using Slack as a question-and-answer facility are simply pointing

users to the relevant Stack Overflow tag or corresponding Stack Exchange subdomain.

5 Conclusion

This paper presents data on how 18 FLOSS projects (including 10 Apache Software

Foundation (ASF) projects) use walled gardens to communicate with and between users

and developers. We define walled gardens in terms of their ownership or control by a

single corporation, as well as by their lack of FLOSS licensing to users. Examples of

walled gardens include synchronous communication services like Slack, and asynchro‐

nous communication sites like Stack Overflow.

We posit that when walled gardens are chosen for communication, the community

has decided to subjugate the FLOSS value of openness via transparent, non-corporate,

FLOSS-licensed communication for a different - and equally compelling - definition of

openness, namely an openness of easy participation and diverse contribution. One way

that these competing values can both “win” is for the project to provide avenues for

increased transparency after the walled garden is chosen, specifically by providing easy-

to-find, publicly available, downloadable archives of the communication that happens

inside the walled garden. This step would effectively open a “gate” into the walled garden

and reassert the value of transparency once again.

Unfortunately, our data shows that only a handful of projects have made any attempt

toward transparency by opening such a gate. This resistance to creating transparent

archives of communication also persists in communities such as ASF that explicitly

encourage archives and transparency in project communication.

By questioning the use of walled gardens for communication and evaluating their

effects on multiple types of “openness”, we hope to begin a dialogue within the FLOSS

community about how to preserve and extend its unique values.

10 M. Squire

Appendix

Below are the URLs referenced in Tables 1 and 2 as [A1], [A2], and so on.

A1. http://make.wordpress.com/chat

A2. https://make.wordpress.org/polyglots/2015/04/16/chat-notes-https-wordpress-

slack-com-archives-core/

A3. https://irclogs.wordpress.org/

A4. http://www.drupalux.org/tools-and-resources

A5. https://www.drupal.org/node/2490332

A6. https://www.drupal.org/node/2798167

A7. https://blog.ghost.org/ghost-slack/

A8. https://dev.ghost.org/public-dev-meeting-4th-october/

A9. http://socket.io/slack/

A10. http://rauchg.com/slackin/

A11. https://news.ycombinator.com/item?id=8286291

A12. https://www.reddit.com/r/elementaryos/comments/25t7cg/

where_to_talk_to_the_developers/

A13. https://elementary.io/support

A14. https://elementary.io/get-involved

A15. https://elementaryos.stackexchange.com/

A16. https://blog.midonet.org/irc-chat-moved-slack/

A17. http://midonet.slackarchive.io/

A18. https://facebook.github.io/react/blog/2015/10/19/reactiflux-is-moving-to-

discord.html

A19. https://facebook.github.io/react/community/support.html

A20. https://bitcoincore.org/en/contribute/

A21. http://bitcoincore.slackarchive.io/

A22. https://cordova.apache.org/contribute/

A23. http://markmail.org/message/o6ltqszgeqykcuku

A24. http://groovy-lang.org/community.html

A25. https://issues.apache.org/jira/browse/HBASE-16413

A26. https://hbase.apache.org/book.html#getting.involved

A27. https://hbase.apache.org/book.html#trouble.resources

A28. https://iota.incubator.apache.org/contribute.html

A29. https://kudu.apache.org/community.html

A30. http://mesos.apache.org/community/

A31. http://aurora.apache.org/community

A32. https://lists.apache.org/thread.html/

a1c53250a94d96e3f4038a76f93db01c3cc4d649df861f762373ac0f@

%3Cdev.mesos.apache.org%3E

A33. http://mesos.slackarchive.io/

A34. http://spark.apache.org/community.html

A35. http://spot.incubator.apache.org/

Considering the Use of Walled Gardens 11

http://make.wordpress.com/chat
https://make.wordpress.org/polyglots/2015/04/16/chat-notes-https-wordpress-slack-com-archives-core/
https://make.wordpress.org/polyglots/2015/04/16/chat-notes-https-wordpress-slack-com-archives-core/
https://irclogs.wordpress.org/
http://www.drupalux.org/tools-and-resources
https://www.drupal.org/node/2490332
https://www.drupal.org/node/2798167
https://blog.ghost.org/ghost-slack/
https://dev.ghost.org/public-dev-meeting-4th-october/
http://socket.io/slack/
http://rauchg.com/slackin/
https://news.ycombinator.com/item?id=8286291
https://www.reddit.com/r/elementaryos/comments/25t7cg/where_to_talk_to_the_developers/
https://www.reddit.com/r/elementaryos/comments/25t7cg/where_to_talk_to_the_developers/
https://elementary.io/support
https://elementary.io/get-involved
https://elementaryos.stackexchange.com/
https://blog.midonet.org/irc-chat-moved-slack/
http://midonet.slackarchive.io/
https://facebook.github.io/react/blog/2015/10/19/reactiflux-is-moving-to-discord.html
https://facebook.github.io/react/blog/2015/10/19/reactiflux-is-moving-to-discord.html
https://facebook.github.io/react/community/support.html
https://bitcoincore.org/en/contribute/
http://bitcoincore.slackarchive.io/
https://cordova.apache.org/contribute/
http://markmail.org/message/o6ltqszgeqykcuku
http://groovy-lang.org/community.html
https://issues.apache.org/jira/browse/HBASE-16413
https://hbase.apache.org/book.html#getting.involved
https://hbase.apache.org/book.html#trouble.resources
https://iota.incubator.apache.org/contribute.html
https://kudu.apache.org/community.html
http://mesos.apache.org/community/
http://aurora.apache.org/community
https://lists.apache.org/thread.html/a1c53250a94d96e3f4038a76f93db01c3cc4d649df861f762373ac0f%40%253Cdev.mesos.apache.org%253E
https://lists.apache.org/thread.html/a1c53250a94d96e3f4038a76f93db01c3cc4d649df861f762373ac0f%40%253Cdev.mesos.apache.org%253E
https://lists.apache.org/thread.html/a1c53250a94d96e3f4038a76f93db01c3cc4d649df861f762373ac0f%40%253Cdev.mesos.apache.org%253E
http://mesos.slackarchive.io/
http://spark.apache.org/community.html
http://spot.incubator.apache.org/

A36. https://github.com/Open-Network-Insight/open-network-insight/tree/

spot#contributing-to-apache-spot

A37. https://www.mail-archive.com/dev@thrift.apache.org/msg32757.html

A38. http://thrift.slackarchive.io/general/

References

1. Fogel, K.: Producing Open Source: How to Run a Successful Free Software Project. O’Reilly

and Associates, Sebastopol (2005). http://producingoss.com

2. Raymond, E.: The Cathedral & the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary. O’Reilly & Associates, Sebastopol (2001)

3. Weber, S.: The Success of Open Source. Harvard University Press, Cambridge (2004)

4. Red Hat Community Architecture Team: The Open Source Way (2009). https://

opensourceway.org/book

5. Feller, J., Fitzgerald, B.: Understanding Open Source Software Development. O’Reilly &

Associates, Sebastopol (2002)

6. Daniel, S., Agarwal, R., Stewart, K.J.: The effects of diversity in global, distributed collectives:

a study of open source project success. Inf. Syst. Res. 24(2), 312–333 (2013)

7. Kuechler, V., Gilbertson, C., Jensen, C.: Gender differences in early free and open source

software joining process. In: Hammouda, I., Lundell, B., Mikkonen, T., Scacchi, W. (eds.)

OSS 2012. IAICT, vol. 378, pp. 78–93. Springer, Heidelberg (2012). doi:

10.1007/978-3-642-33442-9_6

8. Vasilescu, B., Posnett, D., Ray, B., van den Brand, M.G., Serebrenik, A., Devanbu, P., Filkov,

V.: Gender and tenure diversity in GitHub teams. In: Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing Systems, pp. 3789–3798 (2015)

9. Williams, O.: Slack is quietly, unintentionally killing IRC. The Next Web (2015). http://

thenextweb.com/insider/2015/03/24/slack-is-quietly-unintentionally-killing-irc/

10. Apache Software Foundation (nd) Decision Making. https://community.apache.org/

committers/decisionMaking.html

11. Apache Software Foundation (nd) Mailing Lists. http://apache.org/foundation/

mailinglists.html

12. Braga, M.: Google, a Search Company, Has Made its Internet Archive Impossible to Search.

Motherboard (2015). http://motherboard.vice.com/read/google-a-search-company-has-

made-its-internet-archive-impossible-to-search. (Feb 13)

13. Squire, M.: Should we move to Stack Overflow? Measuring the utility of social media for

developer support. In: Proceedings of the 37th International Conference on Software

Engineering (ICSE 2015), vol. 2. pp. 219–228. IEEE Press (2015)

14. Shihab, E., Jiang, Z.M., Hassan, A.E.: On the use of Internet Relay Chat (IRC) meetings by

developers of the GNOME GTK+ project. In: Proceedings of the 2009 Mining Software

Repositories, pp 107–110 (2009)

15. Shihab, E., Jiang, Z.M., Hassan, A.E.: Studying the use of developer IRC meetings in open

source projects. In: Proceedings of Software Maintenance (ICSM 2009), pp 147–156 (2009)

16. Devault, D.: Please don’t use Slack for FOSS projects (2015). https://drewdevault.com/

2015/11/01/Please-stop-using-slack.html. Accessed 1 Nov 2015

17. Make Wordpress, Chat (nd) https://make.wordpress.org/chat/

18. Baker, J.: 4 open source alternatives to Slack. Opensource.com (2016). https://

opensource.com/alternatives/slack

12 M. Squire

https://github.com/Open-Network-Insight/open-network-insight/tree/spot#contributing-to-apache-spot
https://github.com/Open-Network-Insight/open-network-insight/tree/spot#contributing-to-apache-spot
https://www.mail-archive.com/dev%40thrift.apache.org/msg32757.html
http://thrift.slackarchive.io/general/
http://producingoss.com
https://opensourceway.org/book
https://opensourceway.org/book
http://dx.doi.org/10.1007/978-3-642-33442-9_6
http://thenextweb.com/insider/2015/03/24/slack-is-quietly-unintentionally-killing-irc/
http://thenextweb.com/insider/2015/03/24/slack-is-quietly-unintentionally-killing-irc/
https://community.apache.org/committers/decisionMaking.html
https://community.apache.org/committers/decisionMaking.html
http://apache.org/foundation/mailinglists.html
http://apache.org/foundation/mailinglists.html
http://motherboard.vice.com/read/google-a-search-company-has-made-its-internet-archive-impossible-to-search
http://motherboard.vice.com/read/google-a-search-company-has-made-its-internet-archive-impossible-to-search
https://drewdevault.com/2015/11/01/Please-stop-using-slack.html
https://drewdevault.com/2015/11/01/Please-stop-using-slack.html
https://make.wordpress.org/chat/
https://opensource.com/alternatives/slack
https://opensource.com/alternatives/slack

19. Slack Help Center (nd) Connect to Slack over IRC and XMPP. https://get.slack.help/hc/en-

us/articles/201727913-Connect-to-Slack-over-IRC-and-XMPP

20. FreeCodeCamp: So Yeah We Tried Slack… and We Deeply Regretted It (2015). https://

medium.freecodecamp.com/so-yeah-we-tried-slack-and-we-deeply-regretted-

it-391bcc714c81, Accessed 21 June 2015

21. Creative Commons. Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) License. https://

creativecommons.org/licenses/by-sa/3.0/

22. Stack Exchange Terms of Service. http://stackexchange.com/legal/terms-of-service

23. Stack Exchange, Inc.: Stack Exchange Data Dump (2016). https://archive.org/details/

stackexchange. Accessed Dec 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license

and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

Considering the Use of Walled Gardens 13

https://get.slack.help/hc/en-us/articles/201727913-Connect-to-Slack-over-IRC-and-XMPP
https://get.slack.help/hc/en-us/articles/201727913-Connect-to-Slack-over-IRC-and-XMPP
https://medium.freecodecamp.com/so-yeah-we-tried-slack-and-we-deeply-regretted-it-391bcc714c81
https://medium.freecodecamp.com/so-yeah-we-tried-slack-and-we-deeply-regretted-it-391bcc714c81
https://medium.freecodecamp.com/so-yeah-we-tried-slack-and-we-deeply-regretted-it-391bcc714c81
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
http://stackexchange.com/legal/terms-of-service
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
http://creativecommons.org/licenses/by/4.0/

Investigating Relationships Between FLOSS Foundations

and FLOSS Projects

Juho Lindman
1
 and Imed Hammouda

2(✉)

1 Applied IT, University of Gothenburg, Gothenburg, Sweden

juho.lindman@ait.gu.se
2 Department of Computer Science and Engineering, Chalmers and University of Gothenburg,

Gothenburg, Sweden

hammouda@chalmers.se

Abstract. Foundations function as vital institutional support infrastructures for

many of the most successful open source projects, but the role of these support

entities remains an understudied phenomenon in FLOSS research. Drawing on

Open Hub (formerly known as Ohloh) data, this paper empirically investigates

the different ways these entities support projects and interact with different

projects and with each other.

Keywords: Open source · Open source foundations

1 Introduction

Continuing Free/Libre Open Source Software’s (FLOSS) success is based on the evolu‐

tion of FLOSS projects and contributors [1–5], but there is a research gap concerning

the entities1 that support FLOSS, such as foundations [6]. These entities support indi‐

vidual FLOSS projects in different ways, but the dynamics they are engaged in remains

an understudied phenomenon. In addition, the cooperation of these entities and between

developers poses several questions for further study.

We address these gaps in our empirical investigation of how these entities support

and interact based on Open Hub data. In detail, our research question: How FLOSS

entities support FLOSS projects? Our findings reveal traces of a complex interplay in

this ecosystem when describing this dynamic.

The paper is organized as follows: Section 2 gives background on earlier related

research. Section 3 presents the methodological details of data collection and analysis.

Findings are then reported and discussed in Sect. 4, followed by Sect. 5, Discussion.

Finally, future research directions and concluding remarks are presented in Sect. 6.

1
In this work we call these “support entities” noting that in many cases “foundation” would also

be applicable. However, we note that (1) not all of these entities are foundations and (2) even

if they were, there are subtle differences regarding their legal and tax status in different juris‐

dictions. Thus, we limit these legal considerations outside the scope of this study and call these

support entities.

© The Author(s) 2017

F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 14–22, 2017.

DOI: 10.1007/978-3-319-57735-7_2

2 Background

FLOSS foundations support their community projects in different ways. We explore

FLOSS support entities (“Foundations,” “Organizations”) and their relationships to the

projects they are affiliated with. Riehle [6] demonstrates how FLOSS support entities

manage and ensure the long-term survival of their projects.

These entities are linked to projects and help by providing financial support and legal

assurance. This makes the FLOSS projects a bit less dependent on the volunteer efforts.

In addition, FLOSS support entities have other responsibilities related to the hosting and

management of the FLOSS projects. Responsibilities include (i) organizing community

projects (ii) marketing, (iii) managing intellectual property (IP) rights and (iv) setting

strategic directions. Support entities may also provide means to protect community-

generated content using IP legislation [6].

In this paper, we investigate empirically the FLOSS environment, the role of the

supporting entities and the relationships between support entities.

3 Methodology

This study was conducted by using Theoretical Saturation Grounded Theory

approach which is a form of a qualitative data collection and data analysis methodology.

According to [7], theoretical saturation is associated with theoretical sampling for

grounded theory. A grounded theory is a scientific research approach used by the

researchers for the collection and analysis of qualitative data. The main purpose of

choosing this research approach is to develop a theory (or) a model through a continuous

comparative analysis of qualitative data collected by theoretical sampling process. This

flexible research approach is required to collect huge volume of data because, data

collection will be done simultaneously along with the data analysis process. A theory

(or) a model can be formulated from the collected data. This research approach is also

used to assess any sort of patterns (or) variations out of an investigated research area.

The selection of cases during this research process will most likely produce the most

relevant data that will evaluate emerging theories. However, each new case might offer

a slightly different outcome. The researcher will be having a continued sampling of data

and he/she will analyze the data until no new data emerges. The end point of theoretical

saturation indicates that, the approach has reached a point where no new data were

identified and it shows the researcher that the enough data were collected for data anal‐

ysis purposes.

3.1 Data Collection

The Open Hub data repository (formerly known as Ohloh) is used as a primary data

source for this study. This source holds key information about the support organizations

concerning their sectors, development focuses, licensing policies, membership types

and structure. The data repository also holds other information, such as projects and a

committer’s list, which can be used to determine the relationships between support

Investigating Relationships Between FLOSS Foundations 15

entities and projects. Open Hub can be accessed using their API keys [8]. We use this

repository to identify the relationship a support entity can have with another entity and

a support entity’s portfolio projects. We used Open Hub data from all FLOSS support

entities that host at least one project.

Support entity websites are another main source of data. These websites hold key

information about support and services, incubation processes, project governance, main‐

tenance, project development practices, IP management, license agreement policies,

hosting services and so on. This information is used to map out how the entities provide

support for projects.

3.2 Data Analyses

We used a Java program to parse the API data from the XML data format to plain text

and stored it in a database. We collected data from 88 FLOSS support entities (“Organ‐

izations”). We have set a criterion to analyze our sampling cases (i.e. data) that we

collected from the support entities. Our criterion for data analysis is that, if we go through

20 sampling cases without no new data/findings, then it is our saturation point.

In the generated database, we identified whether entities with unique organization

IDs have (1) connections with projects affiliated with other entities and (2) whether an

organization’s affiliated developers contribute to the projects of other entities. We also

noted when developers contributed to some other projects (e.g., to their own projects).

These different scenarios are described in Fig. 1 below.

FLOSS Organization 1 FLOSS Organization 2

Portfolio Projects of

FLOSS Organization 1

Portfolio Projects of

FLOSS Organization 2

Affiliated Committers of

FLOSS Organization 1

Affiliated Committers of

FLOSS Organization 2

hosts hosts

Internal

Commit

Internal

Commit

External

Commit

Fig. 1. The relationships between different FLOSS organizations.

We then used a manual approach to search for the appropriate information through

relevant online sources—such as foundation websites and forums—to describe the

identified the relationships between the FLOSS organizations. We investigated each

relationship between any two support entities within the FLOSS relationship network.

16 J. Lindman and I. Hammouda

Finally, we qualitatively analyzed the identified details of the relationships and

grouped them.

4 Findings

We defined a FLOSS support entity taxonomy (Fig. 2) that describes some of support

entities’ characteristics. We then outlined the data of the different characteristics available.

FLOSS

Organization

Sustainability

Factors

Donors/Revenue

Generators (69)

Partners

(30)

Structure

Board of

Directors (59)

Advisory

Board (10)

Membership

Policy

No Membership

(2)
Free Membership

(7)

Paid Membership

(4)

Business

Type

Profit

(34)

Non Profit

(51)

Education

(1)

Government

(2)

Development

Focus

SW oriented

(70)

Service

oriented (14)

Science

oriented (4)

Licensing

Policy

Free

(80)

Commercial or

Proprietary (1)

Fig. 2. FLOSS support entity taxonomy.

Investigating Relationships Between FLOSS Foundations 17

A Profit (or) Commercial FLOSS support entity generates revenue via sales of

products, services and solutions. They collaborate with different corporations and tech‐

nical partners. Nonprofit foundations are primarily sustained through volunteer dona‐

tions. They collaborate with external companies, educational institutions and other

stakeholders to get funds to support the projects. Most of these organizations are also

primarily governed by the Board of Directors (BOD). Government FLOSS mostly

consists of science-related projects. The funding for such projects comes mainly from

public sources. Education FLOSS comprises primarily educational institutions. These

support entities mainly focus on providing education to the general public and are

sustained through donations from public sources and student fees.

Organizations list different development focuses. Options include S/W orientated,

service orientated and science orientated. Most service-orientated support entities

were of the profit type, while science-orientated support entities were often government

based and educational.

FLOSS entities may support projects that use either free software license projects

or commercial or proprietary software license projects. A free software license allows

the user of a piece of software the extensive rights to modify and redistribute that soft‐

ware. A commercial or proprietary software license is produced for sale or to serve

commercial purposes.

FLOSS support entities evolve through different kinds of donors and revenue

generators and partners, such as volunteers, corporations, open-source organizations,

software products, government agencies, educational institutes and investors.

FLOSS organizations are governed by two different governance modes: the (BOD)

and the Advisory Board (AB). The BOD has the decision-making authority and

responsibility for governing the support entity. BOD committee roles may include

Founder, Investor and Director. In contrast, the AB does not have the decision-making

authority, and they are only responsible for assisting or giving advice within the

organization. AB committee members can have roles like Senior Manager, Execu‐

tive, Volunteer and so on.

FLOSS organizations have different types of membership schemes. The no

membership (NM) type does not have any members within the support entity. The free

membership (FM) type allows any members to join without any membership fee. The

paid membership (PM) type allows only the paid members to take part.

5 Discussion

To answer our research question (How FLOSS entities support FLOSS projects?), we

explored how entities support FLOSS projects. We grouped our findings (described in

detail in Table 1 below): services, incubation process, project governance, project main‐

tenance, IP, project acceptance and hosting services. Table 1 summarizes the key support

mechanisms.

18 J. Lindman and I. Hammouda

Table 1. How foundations support FLOSS projects.

Support Explanations

Services FLOSS support entities can provide legal, financial and consulting services to

their projects. Support entities can provide tools and offer advice on how to raise

funds. Support entities can also provide essential support on how to protect the

IP and financial contributions, and it can limit the legal exposure of an individual

contributor in portfolio projects; for example, ASF and Gentoo

Incubation process Support entities have different guidelines on how a portfolio project can be

created. Many support entities require an incubation process. Created projects

enter the incubation process. Some of the processes are mandatory quality control

mechanisms. In some FLOSS organizations, incubation processes are used to

create new versions of the existing projects and not for creating new projects.

Some FLOSS projects start with pre-existing code before they go through the

incubation process. These incubation processes are useful for new projects in

learning community norms and processes. Projects in incubation will be

monitored by the nominated mentors

There are some variations:

• The incubation process is only used to create the new versions of an existing

project and not for creating entirely new projects; for example, the Wikimedia

Foundation

• Individuals are responsible for the creation of projects. However, under the

Eclipse Foundation, a project can be started/created with some pre-existing code

• A project can be started/created by anyone with the necessary skills

Project governance Support entities may assign a project management committee (PMC) consisting

of people to govern or manage projects and subprojects. Support entity mentors

usually work with PMC to help in the evolution of the project; for example, ASF

and Tryton

Project maintenance Project data are maintained either by a PMC or by projects; for example, ASF

Intellectual Property (IP) FLOSS support entities’ IP management enables the participation of software

developers from different organizations to develop software. Tried-and-true

practices exist to support software IP management and to foster a growing

community. FLOSS organizations protect the developer’s contribution to

portfolio projects when the developer signs a Contributor License Agreement

(CLA). The CLA is specially designed to protect the developer’s contribution.

Organizations usually do not protect the hosted projects managed by third parties

with the CLA; for example, Outercurve Foundation, Eclipse and Gentoo

• A project might receive organization IP clearance for contributions and third-

party libraries

• IP management enables and encourages the participation of organization

software developers to develop software collaboratively in a FLOSS community

• When a CLA is signed by the developers, the entity protects the contributions

on its portfolio projects; for example, Twitter and 52 NIFGOSS

• However, third parties managing the hosted projects within the entity are not

protected by the CLA

Project acceptance Projects need to be championed by a sponsor (i.e., if the sponsor is the foundation

board); for example, Outercurve Foundation

Hosting services Organizations provide project hosting services and tools to promote FLOSS

development; for example, OSGeo and Genivi Alliance

• The support entity hosts projects and a wide variety of other mailing lists for

projects, committees and special interest groups

Investigating Relationships Between FLOSS Foundations 19

Table 1 shows that FLOSS organizations like ASF, Gentoo and SpringSource

provide various support and services to portfolio projects. Organization incubation

processes are used in ASF, Wikimedia Foundation, Eclipse Foundation and the MirOS

project. Foundations such as ASF and Tryton assigns a PMC to govern their projects.

Some foundations, such as KDE, have limited hierarchical structures. Some support

entities like the Outercurve Foundation, Eclipse and Gentoo and own IP rights to protect

their portfolio projects while restricting their contributors.

Based on our qualitative analyses, we list the identified reasons that describe why

the support entities interact. Two FLOSS support entities can have a relationship because

of the following key reasons: plugins, sponsorship, tie-ups, packages, reliance, key

persons and hosting (see Table 2 for more detailed descriptions).

Table 2. The relationship between two support entities.

Plugins/Add-ons A FLOSS support entity may provide or produce plugins/add-ons to other

FLOSS support entity projects and their produces; for example, the Xfce

desktop provides add-on to Mozilla’s Thunderbird application

Sponsorship A FLOSS support entity may provide funding or sponsorship their

contributors to other FLOSS support entities and portfolio projects; for

example, Twitter provides financial funding and contributes to the Apache

Software Foundation. Yahoo also provides financial funding to the

OpenStack Foundation

Tie-up FLOSS project software might have a tie-up with other FLOSS

organizations’ software. The Xfce and KDE desktops have tie-ups with

Debian operating system

Packages A FLOSS support entity may provide packages for other FLOSS products

and services. For an example, Homebrew provides the packages for KDE

desktop applications to install on OS X. Homebrew also provides packages

to Mozilla’s add-ons on OS X

Reliance A FLOSS support entity might be using other FLOSS organization software,

services, infrastructure, tools or products for its own business operations and

services; for example, Sony Mobile and Yahoo are using the OpenStack

platform infrastructure for their business purposes

Key person A key person—such as the founder, lead developer, maintainer or manager

—from one FLOSS support entity might be employed by other FLOSS

foundations. Both FLOSS entities might have a single person as a common

manager to manage FLOSS projects; that is, a single person acts as a manager

for both organizations’ projects. For example, Tarent solutions Gmbh and

the MirOS project have a single person managing their projects and the same

person is the founder of the MirOS project and is employed by Tarent

Solutions Gmbh

Hosting A FLOSS support organization might host and distribute other FLOSS

organizations’ products and services; for example, BlackBerry hosts and

distributes Adobe apps on BlackBerry World to BlackBerry mobiles. A

FLOSS organization may provide generic modules and functions to work

with other FLOSS organizations’ software implementations; for example,

SaltStack is providing generic modules and functions to work with the

Apache Software Foundation implementation

20 J. Lindman and I. Hammouda

From the collected API data, we explored the relationship between two FLOSS

organizations. We could not find any projects hosted under or claimed by multiple

organizations as a portfolio project. We also explored whether there are relationships

among different FLOSS support entities.

Based on the collected data, different FLOSS organizations have relationships when

affiliated developers from one FLOSS organization contributes to other FLOSS entities’

portfolio projects. As this study mainly focuses on the support entities, we did not

consider the individual project information in-depth that could give more insight

regarding specific projects and their committers.

6 Conclusions and Future Avenues for Research

This research study investigated FLOSS support entities, their role in FLOSS projects

and the relationships among them within the FLOSS ecosystem. Based on our findings,

we claim that our proposed methodology could identify the key attributes and values of

a FLOSS support entity through a developed taxonomy and the FLOSS organizations

key roles in FLOSS projects.

This research opens several new areas for further research. There are interesting

research opportunities related to verifying and measuring the impacts of developer

contribution and entities. Our methodology focuses on chosen parts of the interplay

between the support entities, so we expect future studies to shed more light on their

important and understudied role in supporting and governing FLOSS.

Acknowledgements. The authors would like to thank Bharat Kumar Mendu and Joshua Smith

Soundararajan for their contribution to this research.

References

1. Godfrey, M., Tu, M.: Growth, evolution, and structural change in open source software. In:

Proceedings of the 4th International Workshop on Principles of Software Evolution, pp.

103–106. ACM Press (2001)

2. Robles, G., Amor, J.J., Gonzalez Barahona, J.M., Herraiz, I.: Evolution and growth in large

libre software projects. In: Proceedings of the Eighth International Workshop on Principles of

Software Evolution (IWPSE 2005), pp. 165–174. IEEE Computer Society (2005)

3. Roy, C.K., Cordy, J.R.: Evaluating the evolution of small scale open source software systems.

In: Proceedings of the 15th International Conference on Computing, Research in Computing

Science (2006). Special issue on CIC

4. Succi, G., Paulson, J., Eberlein, A.: Preliminary results from an empirical study on the growth

of open source and commercial software products. In: EDSER3 Workshop, pp. 14–15 (2001)

5. Aksulu, A., Wade, M.: A comprehensive review and synthesis of open source research. J.

Assoc. Inf. Syst. 11(1), 576–656 (2010)

Investigating Relationships Between FLOSS Foundations 21

6. Riehle, D.: The economic case for open source foundations. Computer 43(1), 86–90 (2010)

7. Glaser, B., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative

Research. Transaction Publishers (2009)

8. Gallardo Valencia, R.-E., Tantikul, P., Sim, S.-E.: Searching for Reputable Source Code on

the Web. http://www.drsusansim.org/papers/group2010-gallardo.pdf

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license

and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

22 J. Lindman and I. Hammouda

http://www.drsusansim.org/papers/group2010-gallardo.pdf
http://creativecommons.org/licenses/by/4.0/

Designing for Participation:

Three Models for Developer Involvement

in Hybrid OSS Projects

Hanna Mäenpää1(B), Terhi Kilamo2, Tommi Mikkonen1, and Tomi Männistö1

1 University of Helsinki, Helsinki, Finland
{hanna.maenpaa,tomi.mannisto}@cs.helsinki.fi, tommi.mikkonen@tut.fi

2 Tampere University of Technology, Tampere, Finland
terhi.kilamo@tut.fi

Abstract. This paper reports governance practices of three profit ori-
ented companies that develop OSS software with the help of their respec-
tive open development communities. We explore how the companies allow
development contributions from external stakeholders, and what knowl-
edge they let out of their internal software development activities. The
results lay ground for further research on how to organize openness of
the software development process in hybrid setups where the needs of
different stakeholders are partly competing - yet complementary.

Keywords: Open source · Hybrid open source · Community
management

1 Introduction

Open Source Software (OSS) projects are based on peer-production, self- organi-
zation of individuals, and consensus-based decision making [1]. They offer equal
opportunities for both long-term members and newcomers in contributing to the
development of the software product [2]. In the OSS environment, interactions
and development decisions can take place in the absence of market-based or man-
agerial models [1]. Still, active communities that are independent of commercial
influence are rare. When companies engage with OSS communities, their corpo-
rate direction must be aligned to that of the community’s peer production-based
approach [3]. In this hybrid environment, the Bazaar truly meets the Cathedral
[4], and the forces that drive the collaboration are partly defined by both.

Hybrid OSS collaborations can form around various kinds of software prod-
ucts [5], emerging organically when companies become interested in existing
OSS projects or when the projects are initiated by companies themselves by
releasing software source code out with an OSS-compliant license. This can be
done with the aim of attracting external contributors, increasing the innovative
capability of the company or by attracting a niche market that could later be
expanded [3,6]. Engagement with OSS communities can be a means for strength-
ening brand awareness [3]. The strategy can be especially important for small

c© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 23–33, 2017.
DOI: 10.1007/978-3-319-57735-7 3

24 H. Mäenpää et al.

and medium sized companies, helping to diversify their product offerings, taken
that the companies have sufficient resources and technological competencies for
building effective and reciprocal collaborations [7]. As Hybrid OSS communi-
ties consist of a mix of companies and independent developers with varying
motivations [8], finding a mutually beneficial collaboration model poses various
challenges.

Several calls exist for further research on management practises in the hybrid
OSS arena (De Noni et al., 2013) [9]. Lin̊aker et al. (2015) pinpointed the gov-
ernance structures in open environments and the openness of the software prod-
uct development process as interesting topics for future endeavors [10]. Hussan
et al. (2016) invite research on practical implementations of the software devel-
opment process to complement the current work in the academic landscape
[11]. To address these calls, we investigate how three profit-oriented companies
develop OSS-based products with their respective open source software develop-
ment communities. We compare how they allow external contributors to access
their development process and what knowledge they let out of the priorities and
decisions that shape the future of the software. With this, we hope to provide
new understanding on how the hybrid OSS development model can be formed
and managed at the practical level and which factors can be used as design
elements when organizing the community’s collaboration model.

The rest of the paper is structured as follows. Section 2 describes typical
characteristics of hybrid OSS communities, shedding light on the different styles
of governance that companies can employ towards their communities. Section 3
presents our research approach for studying the collaboration practices of the
case companies that are introduced in Sect. 4. Section 5 presents our findings,
whereas Sects. 6 and 7 discuss and conclude the work.

2 Previous Work

Governance of OSS projects involves the means that are in place to steer the
efforts of an autonomously working developer community [12]. The governance
structure of a community should support collaboration in between the stakehold-
ers, to enable efficient work coordination, and to create an environment where
motivation of participants is fostered so that the community can operate in a
sustainable manner [12]. It is not straightforward to create a productive and
happy community - its boundaries and affordances must be consciously designed
and managed [3]. This can take form in different governance configurations that
can be mandated from a governing organization or emerge and evolve slowly as
a result of a collective learning process [9].

While in community-driven projects decision-making power is distributed
among the community’s members, in hybrid set-ups a strong leader for the devel-
opment project can emerge in the form of a non- or for-profit organization. This
host can act as a sponsor, providing for the infrastructure needed for developing
the software [8]. This role allows the host to control the community’s activities
to an extent [6]. Here, the host entity can define on what premises stakeholders

Designing for Participation 25

can hold various positions, as well as what privileges and responsibilities these
roles bring [6]. Implementing these decisions requires careful consideration of the
versatile motivations of the contributors: if the community’s members feel their
values are being compromised or that their opinions are not being heard, their
motivation can deteriorate [13,14]. Distributing knowledge and decision-making
power aptly can help to achieve a symbiotic state where the community sees
the company as an active co-developer of the software, rather than a “parasitic”
business owner that outsources its selected tasks to the crowd [15].

2.1 Policies and Practices

The governance model of a community can vary from free-form and spontaneous
to institutionalized, well defined and hierarchical [16]. While the history of an
OSS project is reflected in the ways the community functions, fundamentals
of how the community can form and evolve are largely defined by the license
of the software source code [6]. A fully open licensing strategy increases the
project’s ability to attract new developers [6], increasing the attractiveness of
the software product in the eyes of its potential users [17]. However, if the open
development community is strong, this strategy may risk the host’s influence
on the software product [6,13], possibly creating an unclear legal relationship
between the company and its contributors [18]. This risk can be managed by
keeping selected software assets proprietary to the company, creating a “gate”
for the external developers [13]. This allows the company to limit the open
community’s possibilities to modify and re-use the software and also to choose
in which aspects of the development process it wants the open community to
participate in [13].

In autonomous OSS projects, a set of freely accessible online tools are used to
coordinate work, discuss its goals and deliver contributions [6,19]. These socio-
technical systems constitute ‘boundary objects’ of the community, helping its
members to create personalized views on the status quo of the project. Princi-
ples according to which contributors should engage them can be implicitly known
and embedded in the functionality the software platforms provide. Also, written
guidelines and contributor agreements are used to establish how the commu-
nity should work and what culture it should be built upon. When the devel-
opment tools and related communications are openly accessible, the processes
of requirements engineering, quality assurance and release management become
transparent to the public. This, on its part, allows the external stakeholders to
understand and practically influence the decisions that shape the software prod-
uct. In this context, describing means for practical boundary-setting comprises
the main contribution of this paper.

26 H. Mäenpää et al.

3 Research Approach

Case studies investigate phenomena in their natural context [20] and aim to
generate case-grounded theory that can be extended, confirmed, or challenged
through replication in future studies [20]. For this aim, we describe a mixed-
method case study of practices that three for-profit companies use in building
commercial OSS software in collaboration with their respective, hybrid developer
communities. With this, we aim at answering the following research questions:

– RQ1: How can a software process be organized to allow a hybrid OSS collab-
oration model?

– RQ2: What factors can be used to affect openness of the collaboration model?

West and O’Mahony (2008), emphasize the role of accessibility of tasks and
transparency of knowledge as important building blocks of the participation
architecture in OSS communities [6]. Inspired by this, a research instrument of
nine questions (See Table 1) was composed. First five questions (A–E) address
accessibility, whereas the four additional questions (F–I) address what knowledge
host companies let out of their internal development process.

Answers to these questions were sought by exploring of freely available online
documentation, such as the project’s wiki pages. Validity of the findings was eval-
uated by interviewing an employee of each case company, using the nine question
research instrument as a basis for semi-structured interviews. Each answer was
coded with a three-step scale from 0 to 2 where number zero represented that the
matter is unconditionally closed from the open community. Number one was set to
describe that the topic was open to the community to a limited degree. Number
two was set to represent that the matter is fully open to the development com-
munity to know about or act upon independently. This triangulation of sources
and viewpoints, is hoped to increase validity and fitness of the study design for
replication in different environments [20].

4 Case Companies

This study focuses on the collaboration practices of three profit-oriented com-
panies that base their businesses on products created in close collaboration with
OSS communities. We describe how the companies have arranged their software
development processes to allow receiving contributions from external stakehold-
ers. The first case company, Qt Company Ltd., acts as a single vendor for the Qt
software, a framework that can be used to develop applications for desktop com-
puters, embedded systems and mobile devices. The Qt project was established in
1991 and was first incorporated by its original developers in 1993. After several
commercial acquisitions, the current set-up emerged in 2014. Qt is distributed
as free1 commercial versions. While the source code of Qt is open for anybody
to view, the commercial license grants full rights to develop and disseminate

1 GPL, LGPLv3.

Designing for Participation 27

proprietary Qt applications. The company offers support and complementary
software assets for its paying customers. Size of the community that develops
the Qt framework is approximately 400 persons while the number of application
developers ramps up to approximately a million.

The second case company, Vaadin Ltd. produces an application development
framework that can be used to build interactive web applications that run on most
operating systems and browsers. The software (Later: Vaadin) is offered with the
Apache 2.0 license. Itwas initially developed as an add-on for an existingOSSprod-
uct in 2002 from which an independent release was made in 2006. The development
project has since been hosted by a company that offers online training, consultancy
and sub-contracting of application projects. Development of Vaadin is dominated
by the host company, and an application developer ecosystemof approximately 150
000 individuals exists. This is complemented by a developer community which has
produced approximately 600 add-ons for the software.

Our third case is the Linux-based operating system Sailfish OS for mobile
devices. Its history originates from a software that was released from Nokia as
open source in 2011. The current host of Sailfish OS is Jolla Ltd., a startup that
sells both proof of concept mobile devices and distributor licenses for the OS.
The technical architecture of Sailfish OS is layered and parts of the software,
including user interface libraries, are proprietary to the host company. The rest
of the layers entail work from several OSS communities, such as Qt and the
independent, community-driven project Mer. The Mer software alone comprises
of packages that are using various FOSS licenses such as GPL, LGPL, BSD, and
MIT. The company uses several crowdsourcing tactics for acquiring feedback
about the quality of Sailfish OS. Even with only three projects, the cases reveal
the versatility of possible governance configurations.

5 Findings

The Qt, SailfishOS and Vaadin open source communities were found to share sig-
nificant similarities. For all, a central company acted as a host for the project,
sponsored development platforms and participated in development tasks. All
hosts advocated for dissemination of the software and arranged community-
building activities. In all cases, the host company controlled contents, scope and
timing of the software releases. All shared the practice of coupling an exter-
nal, peer production driven development community with a company internal
development process that was exposed to outsiders to a limited degree. Differ-
ences were found in which tasks external contributors can participate in and
which parts of the development process was transparent for outsiders. Table 1
and Fig. 1 summarize these differences.

5.1 Access to Development Tasks

Host companies welcomed code contributions from the open community to vary-
ing degrees. In the Qt project, any person could access the workflow coordination

28 H. Mäenpää et al.

Table 1. Questions used for evaluating the collaboration models. 0 = The aspect is
closed/hidden from the open community. 1 = Open to the community to a limited
degree. 2 = The aspect is completely open to the community to know about or act
upon.

Qt Vaadin Sailfish

A Who can contribute to software code? 2 2 1

B Who can test code contributions? 2 2 1

C Who can accept code contributions? 2 0 1

D Who can verify defect reports? 2 1 1

E Who can impact prioritization of work requests 2 2 1

F Who knows about the integration process of code contributions? 2 2 1

G Who knows what is on the product roadmap? 1 1 0

H Who knows timing and content of releases? 1 1 0

I Who knows priorities of work issues? 2 0 0

Fig. 1. Comparison of the three models.

tool2 and assign oneself for a task. Also the tool that supported the code review
process3 was freely accessible. An approval from two humans was required for
accepting a code contribution. Typically the code reviewers were, but were not
required to be dedicated maintainers of the software. Partial automation of the
testing process facilitated the work of code reviewers.

Vaadin Ltd. presented a more restrictive approach. The work flow coordina-
tion tool4 was accessible for all, yet the company required code authors to write
extensive test cases for their submissions. From there, the code was reviewed by
dedicated employees of the host company. This arrangement limited community-
drivenness of the development process considerably.

Jolla Ltd. did not offer access to work flow coordination tools of the complete
Sailfish OS software. Instead it directed contributors to the Mer project’s issue

2 Jira.
3 Gerrit.
4 Git issues.

Designing for Participation 29

management tool5. From there, developers themselves needed to identify which
part of the software’s architecture their improvement considered, which required
the developers to be moderately knowledgeable in terms of the software architec-
ture before being able to contribute. A significant part of the development process
was kept private by the host company, which did not let out knowledge about the
status of the code integration process. To yield input from non-technical users, the
company deployed a question and answer forum where users of the software could
report and triage defects related to the user experience of the software, yet without
any guarantees on the uptake or their work.

5.2 Influencing Development Priorities

As Qt and Vaadin received most of their requirements from users of their soft-
ware, their internal development efforts were directed towards fulfilling the needs
of their paying customers. In the Qt project, the openly accessible, detailed work-
flow management system6 made development priorities clearly distinguishable.
Development of Vaadin was largely carried out under the terms of the host com-
pany, however input for feature-level priorities were sought from the community
by voting on a pre-selected set of features. In the Sailfish project, the devel-
opment was driven by technical debts that become inherited from the software
architecture’s reliance on the external, independent OSS projects. The situa-
tion was largely focused on ensuring that the lower levels of architecture would
support decisions made for the proprietary user interface layer.

5.3 Becoming an Actionable Developer

Practices on who can accept code contributions varied in between the projects.
In the Qt project, both the core developer- and maintainer teams consisted of
stakeholders of many organizational affiliations. These roles could be achieved
through gaining individual merit and were open for anyone to pursue. In the case
of Vaadin, the role was considered to be open for the community members, yet
in practice the strict requirements for contributions made it very hard to enter
the role. In the case of Jolla, the MerOS -community was genuinely community
driven, welcoming many types of contributions from outsiders. However, the Mer
consisted only a fraction of the Sailfish OS, and the host company’s software
developers occupied the many of the key positions in the community.

6 Discussion and Implications

The various hybrid OSS collaboration models assumed by the companies reflect
the mission of the company and its business models. While origins of the project
plays a role in how a hybrid community’s governance model is built [21], licensing,

5 Bugzilla.
6 Jira.

30 H. Mäenpää et al.

technical architecture and development tools provide a framework in which the
participation architecture of a community can be built [6]. Based on our study,
we can provide some implications for the factors that can be used to affect the
ways in which a host company can manage its boundaries in terms of accepting
contributions from open communities.

The participation of external stakeholders can be restricted by licensing [6]
or by regulating access to the source code by keeping selected software assets
proprietary to the company [13]. Employing a distributed repository strategy
proved effective in limiting the possibility of less knowledgeable hobbyists to take
up development tasks. Opportunities for becoming a developer can be limited to
a specific group of people by requiring a certain level of personal merit and initial
or complementary contributions. At an extreme, contributors may be subject to
a personal selection by members of the community or even by the host company
before becoming an actionable developer.

An important design factor is what tasks a certain role withholds and who are
allowed to perform them. Prioritization of tasks can at be the sole responsibility
of the host company, or of a selected group of people such as maintainers who
have gained their position through personal merit. At an extreme, prioritization
can be open to anybody who can access the socio-technical systems or it can be
acquired from unrelated, non-technical users by establishing e.g. online customer
communities. In all cases, the host company can always define which input from
the community it will use in its internal processes.

Community-drivenness requires a critical mass of external contributors [22].
This requirement can be eased by partial automation of the development process
such as requirements prioritization or quality assurance. Even though testing
and integration processes are supported with automation, it can be required
that the final decisions are made in consensus by humans. Limiting this set of
people provides a means for adjusting community drivenness of these processes.
In this context, strength of the initiation rite for acquiring a certain role could
be an interesting topic for future research.

Considering the level of openness: While the Qt company clearly pushed
openness to the extreme, its community was found to be the most mature of the
three we studied. While Qt started as a community-created project – although
arguably with business reasons to do so – the company-created Vaadin project
migrated to the open development model only after the it had gained a com-
petitive edge. Sailfish, the newest entrant to the OSS market, was found to be
very restricted when dealing with contributions that come from outside of the
company. Vaadin represented the middle ground, although they put even more
weight on the developers’ views regarding direction of development and matu-
rity of the product. In align with Schaarsmidt et al. [21], we find that these
company-created projects seemed to maintain more control when compared to
their community-driven counterparts.

Designing for Participation 31

Limitations. This study dealt with three OSS development communities that
were selected to be as different as possible in terms of both age and purpose of
their software products. Therefore, the generalizability of the results is limited
and further research on projects that are both more similar in nature and of a
larger scale is required. The question of representativeness limits the possibilities
to generalize the study results. However, this limitation neither invalidates the
findings nor prevents future studies from replicating the approach to evaluate
whether they apply fully or partially in other types of hybrid OSS communities.

7 Conclusions

In this paper, we have investigated how hybrid OSS communities can be built
to acquire contributors from company -external individuals. These communities,
relying on open source software but mixing commercial and volunteer-based
activities in their operations, have become an important way to create software
systems for various contexts.

Based on the findings, it is clear that companies that use the hybrid OSS
development model can act in different ways, leveraging either closed or open
practices to support their business interests. A trend in the cases we have studied,
it seems as the community matures, the level of openness increases, fostering
community-driven peer production. However, the number of companies in the
study is far too low to propose conclusive results.

The role of the open development community and the principles according
to which individuals can meaningfully participate in the development are essen-
tial design factors of the hybrid OSS development model. How these should be
defined and managed requires careful consideration on how much knowledge and
influence should be released to the open development community, how different
roles and privileges can be gained and how autonomously the community should
be allowed to steer the development of the software product.

References

1. Benkler, Y.: Coase’s penguin, or linux, the nature of the firm. http://arxiv.org/abs
/cs/0109077

2. Riehle, D., Ellenberger, J., Menahem, T., Mikhailovski, B., Natchetoi, Y., Naveh,
B., Odenwald, T.: Open collaboration within corporations using software forges.
IEEE Softw. 26(2), 52–58 (2009)

3. Dahlander, L., Magnusson, M.: How do firms make use of open source communities?
Long Range Plan. 41(6), 629–649 (2008)

4. Raymond, E.: The cathedral and the bazaar. Knowl. Technol. Policy 12(3), 23–49
(1999)

5. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of
the 13th International Software Product Line Conference, pp. 111–119. Carnegie
Mellon University (2009)

6. West, J., O’Mahony, S.: The role of participation architecture in growing sponsored
open source communities. Ind. Innov. 15(2), 145–168 (2008)

http://arxiv.org/abs/cs/0109077
http://arxiv.org/abs/cs/0109077

32 H. Mäenpää et al.

7. Colombo, M.G., Piva, E., Rossi-Lamastra, C.: Open innovation and within-industry
diversification in small and medium enterprises: The case of open source software
firms. Res. Policy 43(5), 891–902 (2014). open Innovation: New Insights and Evi-
dence, http://www.sciencedirect.com/science/article/pii/S0048733313001601

8. Gonzalez-Barahona, J.M.,Robles,G.:Trends in free, libre, open source software com-
munities: from volunteers to companies. Inform. Technol. 55(5), 173–180 (2013)

9. De Noni, I., Ganzaroli, A., Orsi, L.: The evolution of oss governance: a dimensional
comparative analysis. Scand. J. Manag. 29(3), 247–263 (2013)

10. Lin̊aker, J., Regnell, B., Munir, H.: Requirements engineering in open innovation: a
research agenda. In: Proceedings of the 2015 International Conference on Software
and System Process, pp. 208–212. ACM (2015)

11. Munir, H., Wnuk, K., Runeson, P.: Open innovation in software engineering: a
systematic mapping study. Empirical Softw. Eng. 21(2), 684–723 (2016)

12. Markus, M.L.: The governance of free/open source software projects: monolithic,
multidimensional, or configurational? J. Manage. Gov. 11(2), 151–163 (2007).
http://dx.doi.org/10.1007/s10997-007-9021-x

13. Shah, S.K.: Motivation, governance, and the viability of hybrid forms in open
source software development. Manage. Sci. 52(7), 1000–1014 (2006)

14. O‘Mahony, S.: The governance of open source initiatives: what does it mean to be
community managed? J. Manage. Gov. 11(2), 139–150 (2007)

15. Dahlander, L., Wallin, M.W.: A man on the inside: Unlocking communities as
complementary assets. Res. Policy 35(8), pp. 1243–1259 (2006). special issue
commemorating the 20th Anniversary of David Teece’s article, “Profiting from
Innovation”, in Research Policy. http://www.sciencedirect.com/science/article/pii/
S0048733306001387

16. de Laat, P.B.: Governance of open source software: state of the art. J. Manag. Gov.
11(2), 165–177 (2007). http://dx.doi.org/10.1007/s10997-007-9022-9

17. Toral, S.L., Mart́ınez-Torres, M.R., Barrero, F.J.: Virtual communities as a
resource for the development of oss projects: the case of linux ports to embed-
ded processors. Behav. Inform. Technol. 28(5), 405–419 (2009)

18. Wolfson, S.M., Lease, M.: Look before you leap: Legal pitfalls of crowdsourcing.
Proc. Am. Soc. Inform. Sci. Technol. 48(1), 1–10 (2011)

19. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source
software development: apache and mozilla. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 113, 309–346 (2002)

20. Yin, R.K.: Case Study Research: Design and Methods. Sage publications, Thou-
sand Oaks (2014)

21. Schaarschmidt, M., Walsh, G., von Kortzfleisch, H.F.O.: How do firms influence
open source software communities? a framework and empirical analysis of different
governance modes. Inf. Organ. 25(2), 99–114 (2015)

22. Dahlander, L.: Penguin in a new suit: a tale of how de novo entrants emerged
to harness free and open source software communities. Ind. Corp. Change 16(5),
913–943 (2007)

http://www.sciencedirect.com/science/article/pii/S0048733313001601
http://dx.doi.org/10.1007/s10997-007-9021-x
http://www.sciencedirect.com/science/article/pii/S0048733306001387
http://www.sciencedirect.com/science/article/pii/S0048733306001387
http://dx.doi.org/10.1007/s10997-007-9022-9

Designing for Participation 33

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Principled Evaluation of Strengths

and Weaknesses in FLOSS Communities:

A Systematic Mixed Methods Maturity

Model Approach

Sandro Andrade1(B) and Filipe Saraiva2

1 GSORT Distributed Systems Group, Federal Institute of Education, Science,
and Technology of Bahia (IFBA), Salvador, Bahia, Brazil

sandroandrade@ifba.edu.br
2 Institute of Exact and Natural Sciences,

Federal University of Pará (UFPA), Belém, Pará, Brazil
saraiva@ufpa.br

Abstract. Context: Free and Open Source Software usually results from
intricate socio-technical dynamics operating in a diverse and geograph-
ically dispersed community. Understanding the fundamental underpin-
nings of healthy and thriving communities is of paramount importance to
evaluate existing efforts and identify improvement opportunities. Objec-

tive: This paper presents a novel reference model for evaluating the
maturity of FLOSS communities by mixing quantitative and qualita-
tive methods. Method: We build upon established guidelines for Design
Science research in order to devise a well-informed and expressive matu-
rity model, describing how those methods and procedures were used in
the design and development of such a model. Results: We present the
model structure and functions, as well as instructions on how to instan-
tiate it as evaluations of FLOSS communities. The use of the proposed
maturity model is demonstrated in four FLOSS communities. Conclu-

sion: Whilst instantiating the model may be burdensome if aiming at
sketchy evaluations, results indicate our model effectively captures the
maturity regardless aspects such as community size and lifetime.

Keywords: FLOSS communities evaluation · Discourse communities ·
Maturity models · Design science research · Mixed methods research

1 Introduction

Free/Libre Open Source Software (FLOSS) has been recognized, over the past
years, as a promising socio-technical approach to deliver high quality technology
in spite of being usually developed by a diverse, often decentralized, and geo-
graphically distributed community [7,37]. Understanding the social dynamics,
work practices, methods, and tools adopted by such communities has been of
interest not only to the canonical software industry but also to researchers from

c© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 34–46, 2017.
DOI: 10.1007/978-3-319-57735-7 4

Principled Evaluation of Strengths and Weaknesses in FLOSS Communities 35

distinct fields [12], such as Management Science [20], Information Systems [10],
Economics [6], and Social Sciences [17], just to mention a few.

Healthy and thriving FLOSS communities rely on effective communication
[22], powerful socio-technical infrastructure [30], and refined hacker culture [23]
to manage decentralization issues, attenuate contribution barriers, and deliv-
ery quality software in a timely way to a usually vast userbase. Capturing such
refined socio-technical practices in systematic models for evaluating FLOSS com-
munities enables a more rigorous and well-informed basis to compare distinct
FLOSS efforts, reveal improvement opportunities for a given FLOSS commu-
nity, and support researchers in figuring out the characteristics of the FLOSS
community they are investigating. Nowadays, such evaluations are hampered by
the lack of expressive and systematic maturity models particularly designed to
take into account the subtleties of FLOSS development culture.

The scarcity of such maturity models hinders the thorough realization of
many activities. First, when undertaking empirical observations of FLOSS com-
munities, researchers may want to insulate confounding factors by ensuring that
observed communities have similar maturity. Second, although some incipient
FLOSS projects with low maturity may be seen as promising opportunities,
FLOSS investors usually prefer to sponsor seasoned communities, where risks
are lower and ROI is more likely. Third, it usually takes some time to young
community managers start understanding what makes a thriving FLOSS com-
munity. Knowing beforehand the many facets that FLOSS community maturity
encompasses, how to measure them, and possible improvement opportunities is
quite useful to shorten the time required to reach enhanced maturity.

Existing software development maturity models, while effective in capturing
general process areas and key practices, are usually inapt or limited in coping
with and assessing idiosyncrasies commonly found in FLOSS projects [32,36].
Most of the available methods for evaluating FLOSS communities entail the use
of quantitative approaches usually expressed as metrics for aspects such as com-
munity activeness, size, diversity, and performance [9,11,21,27,28,31]. Whilst
useful to investigate how community performance has been evolving over time,
metrics by themselves provide no guidance regarding improvement opportunities
and may be tricky to be applied across different FLOSS communities.

The work presented in this paper has been driven by two major long-term
research questions: (RQ1) to which extent refined socio-technical practices of
thriving FLOSS communities can be captured as a maturity model? and (RQ2)
is such a maturity model of any help when investigating the achievements of dif-
ferent FLOSS communities or identifying opportunities for enhanced maturity?
We believe existing approaches are still ineffectual in addressing the particulari-
ties of FLOSS development, rigorously supporting the replication of evaluations,
and providing a well-informed artifact for revealing improvement opportunities.

This paper presents a novel maturity model for the systematic evaluation
of FLOSS communities, particularly designed to capture those – sometimes
ingenious – socio-technical activities that induce healthiness, long-term sustain-
ability, and quality of delivered technologies. The model is slightly influenced

36 S. Andrade and F. Saraiva

by CMMI [34] and its structure encompasses nine maturity domains (named
improvement areas). Each improvement area, in its turn, brings together a set
of socio-technical activities (named disciplines) expected to be found in thriving
communities. The realization degree of a discipline is evaluated by its correspond-
ing (quantitative or qualitative) metric. Finally, our model specifies six distinct
maturity levels and which disciplines are required by each level. A FLOSS com-
munity is said to be on a given maturity level when it exhibits all level’s disci-
plines, each one with a metric value that satisfies a particular condition (named
acceptance criteria) for such a discipline in that particular maturity level.

The process of instantiating the maturity model as a new FLOSS commu-
nity evaluation is described and, afterwards, demonstrated for four communities
(KDE Plasma, Apache HTTP, Poppler, and Inkscape) with different sizes and
lifetimes. Results show that the model is able to identify maturity in spite of
such differences and that the adopted mixed methods (quantitative/qualitative)
approach helps mitigating issues presented by existing evaluation techniques.

The remainder of this paper is organized as follows. Section 2 details the
Design Science and mixed methods approaches that guided this research.
Section 3 explains the notion of maturity of FLOSS communities, the problem
of evaluating such communities, and the requirements for the proposed maturity
model. Section 4 discusses related work, while Sect. 5 explains the design (struc-
ture and functions) of our model. In Sect. 6, we demonstrate how our maturity
model was used to evaluate four distinct FLOSS communities. In Sect. 7, we dis-
cuss the strengths and weaknesses of our proposal and present venues for future
research. Finally, Sect. 8 draws the concluding remarks.

2 Method

This work was carried out in accordance with the research framework presented
by Johannesson and Perjons in [16] and supported by the guidelines for mixed
methods research introduced by Creswell in [8].

Johannesson&Perjons’ (JP) framework aims at creating an artifact and pro-
ducing knowledge about how such an artifact helps sorting out a problem that
recurrently appears in a given intended practice. Their framework defines five
main activities (with associated input and output) and provides guidelines for
carrying out such activities, selecting suitable research strategies, and relating
the research to an existing knowledge base. The five activities are: explicate prob-
lem (described, for this work, in Sect. 3), define requirements (also in Sect. 3),
design and develop artifact (Sect. 5), demonstrate artifact (Sect. 6), and evaluate
artifact (not addressed in this paper and subject of future work).

The structure of the maturity model we propose herein entails a set of quan-
titative and qualitative metrics which evaluate different aspects of a given com-
munity. Therefore, using our model to create a new evaluation of a particular
community can be seen as conducting a mixed methods research, where both
quantitative and qualitative data collection and analysis techniques are simulta-
neously applied. We build on the guidelines provided by Creswell in [8] in order
to define how the proposed model should be used to evaluate a community.

Principled Evaluation of Strengths and Weaknesses in FLOSS Communities 37

3 Problem and Requirements

In consonance with the JP framework, we carried out the explicate problem activ-
ity by undertaking two sub-activities: define precisely and position and justify.

Define precisely. Before defining the problem of assessing FLOSS communities
maturity, it is crucial to explain what we mean by maturity in this work and its
impact on community’s healthiness. By maturity we mean the degree of accom-
plishment a FLOSS community exhibits in reaching the goals of delivering high
quality technology and becoming an ecosystem which supports socio-technical
advances for all of its constituent actors. We elaborate this concept of maturity
around three major underpinnings: (i) userbase management; (ii) long-term sus-
tainability; and (iii) inner/outer communication.

Userbase management encloses all practices which ease the delivery of high
quality technology to an ever increasing userbase. This includes, for instance,
quality assurance, software localization, and the availability of user-friendly
installers or binary packages. Long-term sustainability refers to those practices
which try to keep the community’s health in spite of disturbances in the underly-
ing socio-technical infrastructure, such as contributors leaving the project, dis-
ruptive strategical changes, or internal conflicts. Finally, inner/outer commu-
nication includes all practices which enable the effective communication inside
the community and between the community and other ecosystem actors. Such
maturity underpinnings represent overarching views of maturity and are further
detailed as a set of disciplines that make up the model we propose herein.

With that view of maturity in mind, the problem addressed in this work
can be defined: how should one proceed to assess the maturity degree of a given
FLOSS community? How to make such evaluations more systematic and replica-
ble across different researchers? How to identify improvement opportunities in a
given FLOSS community to enhance its maturity degree?

Position and justify. We believe that assessing FLOSS communities matu-
rity is a significant and challenging problem of general interest. It may appear
in quite diverse practices. For example, knowing about a community matu-
rity is an important decision-making information for a FLOSS investor select-
ing a community to support. Community managers may benefit from such a
maturity model by carrying out self-assessments and identifying improvement
opportunities. Social sciences researchers doing ethnographic studies may want
to deliberately choose a mature community or an incipient one depending on
their research goals. FLOSS educators may select communities with estab-
lished mentoring programs (and, therefore, with increased maturity) to push
their students into initial contributions. End users or companies may want to
assess maturity to decide about the adoption of competing FLOSS solutions.
Software Engineering researchers may undertake maturity assessment as an
early exploratory/descriptive study and then, afterwards, decide about future
research.

38 S. Andrade and F. Saraiva

The define requirements activity was carried out by undertaking the two sub-
activities proposed in JP framework: outline artifact and elicit requirements.

Outline artifact. The artifact proposed herein is a model which captures pre-
scriptive knowledge about how to create new community evaluations.

Elicit requirements. On the basis of the aforementioned drawbacks of existing
approaches, we defined the following requirements for the proposed maturity
model: (R1) model generality : the model must be effective in evaluating the
maturity of FLOSS communities regardless their size and lifetime; (R2) model
expressiveness: the model must encompass socio-technical activities particularly
relevant to FLOSS; (R3) model predictability : the model must support, as much
as possible, systematic and replicable evaluations.

4 Related Work

In [25], authors studied 40 successful and 40 unsuccessful FLOSS projects from
SourceForge and analyzed their respective maturities by verifying the (lack of)
adoption of some important processes/tools like mailing lists, version control sys-
tems, documentation, and more. The successful projects exhibited the adoption
and continuous use of such processes, as opposed to those unsuccessful projects.

The work presented in [21] performs a study on maturity models for FLOSS
communities in order to decide whether a software can be used for commercial
solutions. In such a work, they assume there is a correlation between the maturity
level of a FLOSS community and the products (software systems) delivered by
this community: if the community has a high maturity level then the software
created by them will exhibit a high maturity as well. Their approach is heavily
based on CMMI [34], using the same levels and descriptions.

Sony Mobile has been developing studies on FLOSS maturity models for a
similar context. Their model, described in [3], defines five levels of maturity for
adoption of open source technologies: from “accidental” and “repetitive” – when
FLOSS use is driven by individual initiatives, through “directed” – when FLOSS
adoption has gained support from executive management, to “collaborate” and
“prevail” – when a full-fledged FLOSS culture is already in place. This model
initially supported the decision of Sony Mobile about the use of Android OS in
their smart-phone products. Later, they have extended such model into a general
tool for evaluation of FLOSS projects.

In [28], the authors propose an assessment model for FLOSS development
processes named Open Source Maturity Model. Such a model resembles CMMI
in many aspects and it is aimed to be used by both companies and FLOSS
communities. In their work, a given FLOSS can be classified in one of three levels
and the classification process is carried out by analyzing whether some elements
of the management and development process are used by the community. For
instance, they verify whether the community yields product documentation, the
popularity of the software, contributions from companies, and more.

Principled Evaluation of Strengths and Weaknesses in FLOSS Communities 39

The QualOSS model, described in [32], evaluates qualitative aspects of soft-
ware products and their communities in order to verify software quality and
maintainability. In [15], a qualitative model based on metrics extracted from
source code repositories, mailing lists, and issues tracking tools is proposed.
QSOS (Qualification and Selection of Open Source Software) [2] is a maturity
assessment methodology that aims to compare and select FLOSS projects to
be used by companies. QSOS evaluations are carried out in four steps. In the
“define” step, users must define different elements to be evaluated (e.g. features,
license, and community). The “evaluate” step assigns scores to each one of such
elements. In the “qualify” step, users apply filters/weights to scores in order to
verify whether a project is good enough to be adopted. Finally, the “select” step
verifies whether the software fulfill the needs defined by the user.

In spite of such a variety of models already available, we believe that some
capabilities, not tackled by previous work, are important enough to justify the
need for a new model. First, most of existing models provide no systematic instru-
ments for measuring activities performance and, therefore, are highly dependent
of a skilled evaluator to succeed. Second, social aspects are usually not addressed
(except in People-CMM). Third, such models usually evaluate very specific sub-
jects, such as product’s quality or benefits of FLOSS adoption, being helpful only
for those particular goals. Finally, mixing qualitative and quantitative metrics
to improve model’s accuracy is rarely adopted in existing work.

5 The Maturity Model

The sub-activities defined in JP framework for the design and develop artifact
activity are: imagine and brainstorm, assess and select, sketch and build, and
justify and reflect.

Table 1. Maturity model’s improvement areas and corresponding categories

Acronym Improvement Area (IA) Category

CA Community activeness Inner/outer communication

FM Financial management Long-term sustainability

OG Open governance Inner/outer communication

QA Process and product quality assurance Userbase management

PR Public relations Inner/outer communication

SI Social infrastructure Long-Term Sustainability

SM Strategic management Long-term sustainability

UR User reachability Userbase management

Imagine and brainstorm. In this work, the maturity model requirements and
the activities it encompasses were elicited by using the participant observation

40 S. Andrade and F. Saraiva

[33] method. The authors of this paper have been contributing to communities
such as Qt [35], KDE [18], and Mageia [24] for nearly ten years, working on activ-
ities that span coding, promotion, artwork, finances, community management,
and strategic management. In order to elicit the socio-technical activities cap-
tured in our model, we carried out a brainstorm which resulted in an extensive
enumeration of practices we think highly impacts community maturity.

Assess and select. After having a list of prospective socio-technical activi-
ties, we ranked each activity regarding its impact on community maturity and
its likelihood of being generically carried out in any FLOSS community (global
practice). We systematically discarded those ones with minor impact on matu-
rity or those whose adoption makes sense only in particular scenarios. Whilst
brainstorming is obviously amenable to research bias, we consider that the rank-
discard operation alleviates some threats and makes it acceptable for this paper’s
purposes. The adoption of more rigorous techniques for selecting those socio-
technical activities are subject of future work.

Sketch and build. We carried out this sub-activity in many iterations, where
the model constructs, structure, and functions were incrementally refined as we
gained knowledge about the proposed artifact. The model is slightly influenced
by CMMI (in particular, by CMMI-Dev [34] and People-CMM [4] models), since
it also defines levels of maturity and expected disciplines for each level. The
following paragraphs explain the final model’s structure and behavior, as well as
the decisions we took in order to fulfill the requirements mentioned in Sect. 3.

The proposed maturity model is defined as a tuple MM = 〈C, IA,D,L〉;
where C = {userbase management, long-term sustainability, inner/outer com-
munication} is a set of categories representing the three maturity underpinning
presented in Sect. 3, IA is a set of improvement areas, D is a set of disciplines,
and L is a set of levels of increasingly maturity. An improvement area iai ∈ IA is
defined as a tuple iai = 〈a, n, c〉; where a is the improvement area’s acronym, n

is the improvement area’s name, and c ∈ C is the improvement area’s associated
category. Table 1 presents the categories and improvement areas of our model.

A discipline di ∈ D is defined as a tuple di = 〈a, n, t, µ, pv, ia〉; where a is
the discipline’s acronym, n is the discipline’s name, t ∈ {T–technical, S–social,
S/T–socio-technical} is the discipline’s type, µ is the discipline’s metric, pv is
the discipline’s preferable value, and ia is the discipline’s associated improvement
area. Each metric di.µ is defined in a quantitative (QT) or qualitative (QL) way.
A preferable value di.pv specify whether maturity increases with greater (↑) or
smaller (↓) values, for quantitative metrics, or with which specific values (e.g.
Yes/No), for qualitative metrics. Table 2 presents the model’s disciplines.

Finally, a level li ∈ L is defined as a tuple li = 〈n,CP 〉; where n is the
level’s name and CP is the level’s set of compliance points. A compliance point
cpij ∈ li.CP , in its turn, is defined as a tuple 〈rd, ac(rd.µ)〉; where rd ∈ D

is the compliance point’s requested discipline and ac(rd.µ) is a corresponding
predicate named acceptance criteria that, when evaluated as true, denotes that

Principled Evaluation of Strengths and Weaknesses in FLOSS Communities 41

Table 2. Some maturity model’s disciplines for each improvement area (IA)

IA Acronym Discipline Type Metric (µAcronym) Type

QA QA1 Static code analysis T % codebase analyzed QT (↑)

QA2 Code review T % codebase reviewed QT (↑)

QA3 Continuous integration T % codebase under CI QT (↑)

QA4 Documentation policy T Qualitative evidence QL (Yes)

QA5 Release schedule T Qualitative evidence QL (Yes)

CA CA1 Mailing list activity S/T Norm. threads/month QT (↑)

CA2 Mailing list resp. Rate S/T % threads answered QT (↑)

CA3 Bug fixing T % bugs fixed/month QT (↑)

CA4 Activity diversity S/T Norm. pony factor QT (↑)

OG OG1 Public repository T Qualitative evidence QL (Yes)

OG2 Public roadmap T Qualitative evidence QL (Yes)

OG3 Open release process T Qualitative evidence QL (Yes)

OG4 Open QA process T Qualitative evidence QL (Yes)

UR UR1 Localized content T Qualitative evidence QL (Yes)

UR2 Binary packages T Qualitative evidence QL (Yes)

UR3 Cross-Platf. support T Qualitative evidence QL (Yes)

PR PR1 Website S Completeness degree QT (↑)

PR2 Release announces S Qualitative evidence QL (Yes)

SI SI1 Regular sprints S/T #sprints/year QT (↑)

SI2 Newcomers program S/T Qualitative evidence QL (Yes)

FM FM1 NGO/Foundation S Qualitative evidence QL (Yes)

FM2 Sponsorship strategy S/T Qualitative evidence QL (Yes)

SM SM1 Board of directors S/T Qualitative evidence QL (Yes)

SM2 Advisory board S/T Qualitative evidence QL (Yes)

the discipline rd is carried out with a maturity degree that is good enough for
the level li. The model’s levels and disciplines are presented in Table 3.

The maturity of a given FLOSS community FC is defined as the name of
the maximum level lm that has all its compliance points satisfied in FC:

M(FC) = lm.n; where m = max
i:li∈L∧∀cp∈li.CP :cp.ac(cp.rd.µ)

i

Justify and reflect. In order to cope with the subtleties of our definition of
maturity and leverage the fulfillment of requirement R2 (model expressiveness),
we adopted a mixed methods approach where all quantitative and qualitative
data collection/analysis steps are carried out simultaneously. A last analysis
step converges the partial results and come up with an ultimate outcome. In
our model, this is implemented by a set of acceptance criteria defined for each
level. We address requirement R1 (model generality) by ensuring all metrics use

42 S. Andrade and F. Saraiva

Table 3. Maturity model’s Levels with required disciplines and acceptance criteria

Level Disciplines Acceptance criteria

1 (operational) CA[1–3] µCA1 ≥ 0.1 ∧ µCA2 ≥ 0.5 ∧ µCA3 ≥ 0.1

2 (proactive) QA2, OG1 µQA2 ≥ 0.1 ∧ µOG1 = Y es

PR[1–2] µPR1 ≥ 2 ∧ µPR2 = Y es

3 (established) QA[2, 4, 5] µQA2 ≥ 0.5 ∧ µQA4 = Y es ∧ µQA5 = Y es

CA[1–4] µCA1 ≥ 0.5 ∧ µCA2 ≥ 0.8 ∧ µCA3 ≥ 0.6 ∧ µCA4 ≥ 0.05

UR[1–2], PR[1–2] µUR1 = µUR2 = µPR2 = Y es ∧ µPR1 ≥ 3

4 (managed) QA[1–3], SI2 µQA1 ≥ 0.8 ∧ µQA2 ≥ 0.75 ∧ µQA3 ≥ 0.5 ∧ µSI2 = Y es

OG[2], UR[3] µOG2 = µUR3 = Y es

5 (sustainable) OG[3–4], SM[1–2] µOG3 = µOG4 = µSM1 = µSM2 = Y es

FM[1–2] µFM1 = µFM2 = Y es

normalized values, insulating the effect of community size/lifetime. For example,
the normalized Pony Factor is defined as the canonical Pony Factor [26] divided
by the total number of core developers. Most of metrics presented in Table 2
are straightforward and may be evaluated by mining data sources such as ver-
sion control systems, mail archives, code review platforms, and bug tracking
systems. The metric completeness degree assigns an integer value in [0, 5] to the
community’s website, depending on how many information is made available.

6 Artifact Demonstration

As mentioned in Sect. 2, in this work we evaluated the proposed maturity model
by demonstration. JP framework defines two sub-activities for the demonstrate
artifact activity: choose or design cases and apply artifact.

Choose or design cases. We chose four representative FLOSS communities to
demonstrate to use of the proposed maturity model: KDE Plasma [19], Apache
HTTP [1], Poppler [29], and Inkscape [14]. Such communities were selected
because they exhibit different characteristics regarding size and lifetime, which
makes it possible a more thorough investigation on how successful our model is
in addressing requirement R1 (model generality).

Apply artifact. All quantitative metrics defined for our maturity model’s dis-
ciplines have been evaluated, in the aforementioned FLOSS communities, manu-
ally, by using tools such as git stats [13] or by scripts developed as part of this
work. We collected evidence for the qualitative metrics by observing documents
such as project’s website, wiki pages, and mailing list archives. Table 4 presents
the evaluations of some maturity model’s metrics.

Principled Evaluation of Strengths and Weaknesses in FLOSS Communities 43

Table 4. Some metric values for the four FLOSS communities evaluated

Metric KDE plasma Apache HTTP Poppler Inkscape

µQA1 0.82 0.00 0.00 0.87

µQA2 0.93 0.96 0.12 0.77

µQA3 1.00 1.00 1.00 0.52

µCA4 0.19 0.16 0.83 0.21

µOG3 Yes Yes Yes No

µOG4 Yes No Yes No

µPR1 3 5 2 5

µSI1 2 1 0 1

µFM1 Yes (KDE e.V.) Yes (ASF) No Yes (Inkscape)

µFM3 No Yes No Yes

7 Discussion and Future Work

The maturity evaluation data presented in Table 4 allows one to classify the
investigated FLOSS communities in the following maturity levels: KDE Plasma
(4: managed), Apache HTTP (3: established), Poppler (2: proactive), and
Inkscape (4: managed). In spite of having nice politics for code review (µQA2 =
0.96) and continuous integration (µQA3 = 1.00), Apache HTTP fails in reaching
higher maturity mostly because of the lack of static code analysis (µQA1 = 0.00)
– important to reduce bugs density. Poppler got a low maturity level because of
the lack of quality assurance practices such as code review, documentation policy,
and release schedule – probably a consequence of its small size (biggest normal-
ized Pony Factor: µCA4 = 0.83). Finally, KDE Plasma and Inkscape fail in having
increased maturity because of the lack of sponsorship strategy (µFM3 = No) and
open release and QA processes (µOG3 = µOG4 = No), respectively.

At this point, some important considerations can be drawn about the matu-
rity model’s limitations when evaluating FLOSS communities and threats to the
validity of the demonstration presented herein. First, the model’s acceptance cri-
teria have been defined to assign different fulfillment degrees of disciplines into
increasingly levels of maturity. Obviously, different acceptance criteria may lead
to different results and are subject of further investigation. Second, the lack of
more systematic information about how to carry out the qualitative evaluations
may also imply in different results when replicating evaluations. Third, excep-
tional scenarios such as lack of community activeness because of heavy codebase
stabilization (and, therefore, high maturity) are not currently addressed.

As for future work, a number of improvement venues may be identified. Cre-
ating new evaluations may be burdensome, specially for seasoned communities
with a lot of data to be analyzed. We plan to provide better support by creating
a new tool or extending initiatives like Bitergia’s Grimoire Lab [5]. Advanced
empirical studies are also planned, aimed at providing fundamental knowledge

44 S. Andrade and F. Saraiva

for enhancing the capture of socio-technical activities, refining the acceptance
criteria, and evaluating maturity model quality attributes.

8 Conclusion

This paper presented a systematic mixed methods approach for evaluating the
maturity of FLOSS communities. The novelty of our approach is the definition
of a maturity model which captures socio-technical practices endemic to FLOSS
ecosystems and mixes quantitative and qualitative metrics to systematically sup-
port the assessment of maturity and identification of improvement opportuni-
ties. We described the model structure and behavior, and demonstrated how
to use the proposed artifact to evaluate four FLOSS communities with distinct
characteristics. We believe this work advances the field of open source research
by providing a generic artifact which enables the systematic capture of refined
FLOSS-related socio-technical activities and supports researchers in carrying out
replicable FLOSS communities evaluation experiments.

References

1. Apache Foundation: The Apache HTTP Server Project (2017). http://httpd.
apache.org

2. Atos: Qualification and Selection of Open Source software (QSOS) (2013). http://
backend.qsos.org/download/qsos-2.0 en.pdf

3. Bergman, O.: Report from the SCALARE project - sony mobile’s involvement
in open source. Technical report 1, Sony Mobile (2014). http://scalare.org/
sony-mobiles-involvement-in-open-source/

4. Curtis, B., Hefley, W.E., Miller, S.: People Capability Maturity Model (P-CMM),
version 2.0, second edition. Technical report CMU/SEI-2009-TR-003, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2010). http://
cmmiinstitute.com/resources/people-capability-maturity-model-p-cmm

5. Bitergia: Grimoire Lab - OpenSource Development Analytics toolkit (2017).
http://grimoirelab.github.io/

6. Bitzer, J., Schröder, P.: The economics of open source software development. Else-
vier (2006). https://books.google.com.br/books?id=obex6Fkrc18C

7. Capiluppi, A., Lago, P., Morisio, M.: Characteristics of open source projects. In:
7th European Conference on Software Maintenance and Reengineering (CSMR
2003), 26–28, 2003, Benevento, Italy, Proceedings, p. 317. IEEE Computer Society
(2003). http://dx.doi.org/10.1109/CSMR.2003.1192440

8. Creswell, J.W.: Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches, 4th edn. SAGE Publications Inc., Thousand Oaks (2013)

9. Crowston, K., Howison, J.: Assessing the health of open source communities. IEEE
Comput. 39(5), 89–91 (2006). http://dx.doi.org/10.1109/MC.2006.152

10. Fitzgerald, B.: The transformation of open source software. MIS Q. 30(3), 587–598
(2006). http://misq.org/the-transformation-of-open-source-software.html

11. Franco-Bedoya, O.: Open source software ecosystems: towards a modelling
framework. In: Damiani, E., Frati, F., Riehle, D., Wasserman, A.I. (eds.)
OSS 2015. IAICT, vol. 451, pp. 171–179. Springer, Cham (2015). doi:10.1007/
978-3-319-17837-0 16

http://httpd.apache.org
http://httpd.apache.org
http://backend.qsos.org/download/qsos-2.0_en.pdf
http://backend.qsos.org/download/qsos-2.0_en.pdf
http://scalare.org/sony-mobiles-involvement-in-open-source/
http://scalare.org/sony-mobiles-involvement-in-open-source/
http://cmmiinstitute.com/resources/people-capability-maturity-model-p-cmm
http://cmmiinstitute.com/resources/people-capability-maturity-model-p-cmm
http://grimoirelab.github.io/
https://books.google.com.br/books?id=obex6Fkrc18C
http://dx.doi.org/10.1109/CSMR.2003.1192440
http://dx.doi.org/10.1109/MC.2006.152
http://misq.org/the-transformation-of-open-source-software.html
http://dx.doi.org/10.1007/978-3-319-17837-0_16
http://dx.doi.org/10.1007/978-3-319-17837-0_16

Principled Evaluation of Strengths and Weaknesses in FLOSS Communities 45

12. Gacek, C., Arief, B.: The many meanings of open source. IEEE Softw. 21(1), 34–40
(2004). http://dx.doi.org/10.1109/MS.2004.1259206

13. Gieniusz, T.: GitStats is a git repository statistics generator (2017). https://github.
com/tomgi/git stats

14. Inkscape Community: Inkscape - Draw Freely (2017). http://inkscape.org
15. Izquierdo-Cortazar, D., González-Barahona, J.M., Dueñas, S., Robles, G.: Towards

automated quality models for software development communities: the QualOSS
and FLOSSMetrics case. In: e Abreu, F.B., Faria, J.P., Machado, R.J. (eds.) Qual-
ity of Information and Communications Technology, 7th International Conference
on the Quality of Information and Communications Technology (QUATIC 2010),
Porto, Portugal, 29 September - 2 October, 2010, Proceedings, pp. 364–369. IEEE
Computer Society (2010). http://dx.doi.org/10.1109/QUATIC.2010.66

16. Johannesson, P., Perjons, E.: An Introduction to Design Science. Springer, Heidel-
berg (2014). http://dx.doi.org/10.1007/978-3-319-10632-8

17. Karanović, J.: Free software and the politics of sharing. In: Digital Anthropology,
p. 185 (2013)

18. KDE Community: KDE - Experience Freedom! (2017). http://www.kde.org
19. KDE Community: Plasma Desktop (2017). http://plasma-desktop.org
20. von Krogh, G., von Hippel, E.: The promise of research on open source software.

Manage. Sci. 52(7), 975–983 (2006). http://dx.doi.org/10.1287/mnsc.1060.0560
21. Kuwata, Y., Takeda, K., Miura, H.: A study on maturity model of open source

software community to estimate the quality of products. In: Jedrzejowicz, P., Jain,
L.C., Howlett, R.J., Czarnowski, I. (eds.) 18th International Conference in Knowl-
edge Based and Intelligent Information and Engineering Systems (KES 2014), Gdy-
nia, Poland, 15–17, Procedia Computer Science, vol. 35, pp. 1711–1717. Elsevier
(2014). http://dx.doi.org/10.1016/j.procs.2014.08.264

22. Lanubile, F., Ebert, C., Prikladnicki, R., Vizcáıno, A.: Collaboration tools for
global software engineering. IEEE Softw. 27(2), 52–55 (2010). http://dx.doi.org/
10.1109/MS.2010.39

23. Lin, Y.: Hacker culture and the FLOSS innovation. IJOSSP 4(3), 26–37 (2012).
http://dx.doi.org/10.4018/ijossp.2012070103

24. Mageia Community: Home of the Mageia project (2017). http://www.mageia.org
25. Michlmayr, M.: Software process maturity and the success of free software projects.

In: Software Engineering: Evolution and Emerging Technologies, pp. 3–14. IOS
Press (2005). http://www.booksonline.iospress.nl/Content/View.aspx?piid=1139

26. Nalley, D.: The tragedy of open source (2017). http://opensource.cioreview.com/
cxoinsight/the-tragedy-of-open-source-nid-23375-cid-92.html

27. Ortega, F., González-Barahona, J.M.: Quantitative analysis of the wikipedia com-
munity of users. In: Désilets, A., Biddle, R. (eds.) Proceedings of the 2007 Inter-
national Symposium on Wikis, Montreal, Quebec, Canada, 21–25 October 2007,
pp. 75–86. ACM (2007). http://doi.acm.org/10.1145/1296951.1296960

28. Petrinja, E., Nambakam, R., Sillitti, A.: Introducing the opensource maturity
model. In: Proceedings of the 2009 ICSE Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development (FLOSS 2009), pp.
37–41 (2009). http://dx.doi.org/10.1109/FLOSS.2009.5071358

29. Poppler Community: Poppler (2017). https://poppler.freedesktop.org
30. Scacchi, W.: Socio-technical interaction networks in free/open source software

development processes. In: Acuña, S.T., Juristo, N. (eds.) Software Process Mod-
eling, pp. 1–27. Springer, Heidelberg (2005)

http://dx.doi.org/10.1109/MS.2004.1259206
https://github.com/tomgi/git_stats
https://github.com/tomgi/git_stats
http://inkscape.org
http://dx.doi.org/10.1109/QUATIC.2010.66
http://dx.doi.org/10.1007/978-3-319-10632-8
http://www.kde.org
http://plasma-desktop.org
http://dx.doi.org/10.1287/mnsc.1060.0560
http://dx.doi.org/10.1016/j.procs.2014.08.264
http://dx.doi.org/10.1109/MS.2010.39
http://dx.doi.org/10.1109/MS.2010.39
http://dx.doi.org/10.4018/ijossp.2012070103
http://www.mageia.org
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1139
http://opensource.cioreview.com/cxoinsight/the-tragedy-of-open-source-nid-23375-cid-92.html
http://opensource.cioreview.com/cxoinsight/the-tragedy-of-open-source-nid-23375-cid-92.html
http://doi.acm.org/10.1145/1296951.1296960
http://dx.doi.org/10.1109/FLOSS.2009.5071358
https://poppler.freedesktop.org

46 S. Andrade and F. Saraiva

31. Sigfridsson, A., Sheehan, A.: On qualitative methodologies and dispersed commu-
nities: reflections on the process of investigating an open source community. Inf.
Softw. Technol. 53(9), 981–993 (2011). http://dx.doi.org/10.1016/j.infsof.2011.01.
012

32. Soto, M., Ciolkowski, M.: The QualOSS open source assessment model measuring
the performance of open source communities. In: Proceedings of the Third Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM),
15–16, 2009, Lake Buena Vista, Florida, USA, pp. 498–501. ACM/IEEE Computer
Society (2009). http://doi.acm.org/10.1145/1671248.1671316

33. Spradley, J.P.: Participant Observation. Waveland Press, Long Grove (2016)
34. CMMI Product Team: CMMI for development, v1.3. Technical report

CMU/SEI-2010-TR-033, Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA (2010). http://resources.sei.cmu.edu/library/asset-view.cfm?
AssetID=9661

35. The Qt Company: Qt—cross-platform software development for embedded & desk-
top (2017). http://www.qt.io

36. von Wangenheim, C.G., Hauck, J.C.R., von Wangenheim, A.: Enhancing open
source software in alignment with CMMI-DEV. IEEE Softw. 26(2), 59–67 (2009).
http://dx.doi.org/10.1109/MS.2009.34

37. Wilson, T.D.: Understanding Open Source Software Development. Addison-
wesley, London, xi, p. 211 (2002). ISBN 0-201-73496-6. http://informationr.net/
ir/reviews/revs046.html. Review of: Jodeph feller & Brian Fitzgerald

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://dx.doi.org/10.1016/j.infsof.2011.01.012
http://dx.doi.org/10.1016/j.infsof.2011.01.012
http://doi.acm.org/10.1145/1671248.1671316
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661
http://www.qt.io
http://dx.doi.org/10.1109/MS.2009.34
http://informationr.net/ir/reviews/revs046.html
http://informationr.net/ir/reviews/revs046.html
http://creativecommons.org/licenses/by/4.0/

Posters and Tools

Measuring Perceived Trust in Open Source

Software Communities

Mahbubul Syeed1, Juho Lindman2, and Imed Hammouda3(B)

1 American International University-Bangladesh, Dhaka, Bangladesh
mahbubul.syeed@aiub.edu

2 Chalmers and University of Gothenburg, Gothenburg, Sweden
juho.lindman@ait.gu.se

3 University of Gothenburg, Gothenburg, Sweden
imed.hammouda@cse.gu.se

Abstract. We investigate the different aspects of measuring trust in
Open Source Software (OSS) communities. In the theoretical part we
review seminal works related to trust in OSS development. This investi-
gation provides background to our empirical part where we measure trust
in a community (in terms of kudo). Our efforts provide further avenues to
develop trust-based measurement tools. These are helpful for academics
and practitioners interesting in quantifiable traits of OSS trust.

1 Introduction

Trust can be perceived as the relationship between people where one person
is taking a risk to accept other persons’ action [1]. Such trust is one of the
fundamental traits of a successful collaborative development environment, e.g.,
OSS projects [3–6].

Trust is directly linked to securing a functioning development community,
community governance and on-going group work [3,4]. A community with such
attributes can attract new developers to join and contribute in the project [4].
Therefore, the sustainability of an OSS project much depends on trust-related
questions [2].

Alongside, third party organizations often try to ensure the quality and re-
usability of an OSS component before adoption. Such verification is strongly
coupled with the trust rating of the developers who developed those modules
[9–11]. Therefore, assessing trust among the developers is a seminal question
in OSS research. Recent study in [5] infer trust among developers based on
their contributions. Others measured developers’ contributions in Man-Month
to investigate trust among them [7].

This study address the following two issues related to trust: first, we inves-
tigate the relationship between developers’ contribution in OSS projects and
their trust rating in the community, which is formulated as follows, RQ1: How

likely a trust rating of a developer changes when contributing to OSS projects?

Second, we investigate how community status affects members endorsing each

c© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 49–54, 2017.
DOI: 10.1007/978-3-319-57735-7 5

50 M. Syeed et al.

others’ contribution. Status difference may arise due to: (a) different trust levels
in the community, and (b) homophilic elements [8], e.g., same project, coun-
try, location, programming language and same community status. Therefore we
investigate the following, RQ2: How likely developers with different community

status will endorse each others’ contribution?

2 Methodology

2.1 Data Collection and Presentation

Our data is from OpenHub [12] which records the evaluation information (pop-
ularly known as kudo) sent or received by the developers over time. Developers
are ranked according to their kudo scores, known as kudo ranks. Data is collected
using the offered open APIs, which returns results in XML. Relevant information
is then extracted and stored in database for further analysis.

Developer Account information. This study extracts 563,427 registered
developer account information [13] that includes the following: developers
account id, name, post count, and kudo rank. Kudo rank (a number between
1 and 10) defines ranking of the member based on certain criteria, e.g., kudo
received from other members and history of contributions in OSS projects [9].

Project information. This study extracted 662,439 OSS project data which
holds the following information: project id, name, and total user.

Contributor information. A contributor dataset holds project specific con-
tributions made by each developer. A total of 844,012 contribution records were
collected, each of which holds, project specific contributor’s id and name, per-
sonal account id and name, project id in which contribution is made, time of first
and last commit, total number of commits and the man month (i.e., the number
of months for which a contributor made at least one commit). In the context
of OpenHub Man Month represents the accumulated contributions made by a
developer in OSS projects.

Kudo sent and received history. Following information related to kudo sent
and received by a member for a given period of time is collected: sender or
receiver account id and name, receiver or sender account id and name, project id
and name, contributors id, name and date when the kudo was sent or received. A
total of 46,926 kudo received records and 57,458 kudo sent records are collected.

Kudo sent and received history data is then combined to generate a uniform
dataset that has the following data items: Sender account id and account name,
receiver account id and name, project id and name to which the kudo was sent,
contributor id and name, and the date when kudo was sent.

2.2 Data Analysis

RQ1: To determine the extent to which a developer is trusted against his contri-
butions in OSS projects, following approach is adopted. First, contributors (or

Measuring Perceived Trust 51

Table 1. Developers count on first commit date

First commit date No of developers committed

2012-03-26 40

2012-07-05 39

2012-05-10 36

developers) are grouped based on the first commit date. Then the three dates in
which maximum number of developers count found are taken for further analysis,
as shown in Table 1.

Then, the contributions (Sect. 2.1) and the kudo rank (Sect. 2.1) of every
developer under each of the three dates are measured. This measurement is
done from the first commit date till the last. In this study, the man month

(Sect. 2.1) is used to measure developer contributions. Alongside, Kudo rank is
used to represent the trust value of a developer. Additionally, following logical
assumptions are made: (a) each of the developers starts with a kudo rank 1
at their first commit date, and (b) change in this kudo rank or trust rating is
associated with the amount of contributions made by that developer over a given
period of time.

RQ2: Next we examine how often developers of different community status
endorse each others contributions. For this, developers are clustered according
to their kudo ranks. Example clusters are, kudo rank (9 and 10), (7 and 8),
(5 and 6), (3 and 4) and (1 and 2). Then, the log of kudo sent and received
(Sect. 2.1) among developers in different clusters is recorded. This will offer a
holistic view on the exchange of kudo among developers of different trust values.

Second, exchange of kudo is examined from two perspectives, namely, send-
ing/receiving kudo (a) directly to developers’ personal account and (b) in the
contributors’ project specific account in which the developer has contributed.
This will portray a deeper understanding on how developers of different trust
value recognize each others’ contributions.

Third, kudo exchange log was generated based on developers who worked in
the same project, distinct project, and both. This will provide insight whether
working on the same projects stimulate higher kudo exchange.

3 Result and Synthesis

RQ1: How likely that a trust rating of a developer changes when con-

tributing to the OSS projects?

The underlying assumption of this research question is that a developer should
start with a kudo rank 1 (or trust rating 1) at the first committing date. And
this kudo rank keeps changing along with his contributions in projects over time.

As per the reported results it is observed that 78% to 100% developers
who have kudo rank 9 contributed to projects for more than 24 man-months.

52 M. Syeed et al.

Whereas, 54% to 79% developers at kudo rank 8 contributed more than 24
man-months. Likewise, the man-months contribution goes down along with low
kudo ranks. For instance, none of the developers at kudo rank 5 has contribu-
tion record of more than 24 man-months. To summarize our findings, developers
trust rating in the community is associated with the contributions they made
in the projects over time and the amount of contributions has an impact on the
trust value they attain at a given point of time.

RQ2: How likely that developers with different community status will

endorse each others’ contribution?

We aim to identify the dynamics between the community status of the developers
and endorsing each others’ contributions. In order to do so, this study analyzed
the collected data from three different perspectives as presented in Sect. 2.2. First
perspective is to study the kudo exchange pattern among the developers who
belong to different kudo rank clusters. Reported results show that almost all the
kudos are sent to the developers who belong to the kudo rank between 7 and 10.
For instance, developers having kudo ranks between 9 and 10 sent almost all of
their kudos to the developer having kudo rank between 7 and 10. This pattern
holds for all other kudo rank clusters as well.

This outcome leads to several observations: First, developers living at higher
kudo ranks are often the ones who commit the most significant contributions
to the projects, hence, the majority of kudos are attributed to them as a token
of appreciation. Second, these group of developers are the ones who are trusted
by all the community members irrespective of their ranking in the community.
Third, developers residing at lower kudo ranks (e.g., ranking between 1 and 6)
rarely receive kudos for their contributions.

Investigation on the second perspective reveals that developers with higher
kudo ranking or trust rating most often receive their kudos directly to their
personal account. In a very few occasions, kudos are attributed to their project
specific accounts. For instance, about 83% to 93% of the kudos received by devel-
opers having rank between 7 and 10 are attributed to their personal accounts.
This highlights how high ranked developers are often appreciated irrespective
of the projects they have contributed to. However, Low kudo ranked (e.g., rank
between 1 and 5) developers are not investigated due to lack of sample data.

Finally, the study on one of the homophilic factors, e.g. the effect of work-
ing on same or different projects, on exchanging kudo rank reveals inconclusive
results. For instance, developers who work on the same and distinct projects at
the same time, share kudo more frequently than developers working in either
distinct or same projects. Therefore, this study does not conclusively support
the earlier research on homophilic factors [8] which claims that such factors have
positive impact on endorsing each others contributions.

Acknowledgments. The authors would like to thank Ally Tahir Bitebo for his con-
tribution to this research.

Measuring Perceived Trust 53

References

1. Golbeck, J.: Analyzing the social web, Chap. 6, p. 76. ISBN-13: 978–0124055315
2. Sirkkala, P., Hammouda, I., Aaltonen, T.: From proprietary to open source: Build-

ing a network of trust. In: Proceedings of Second International Workshop on Build-
ing Sustainable Open Source Communities (OSCOMM 2010), pp. 26–30 (2010)

3. Stewart, K.J., Gosain, S.: The impact of ideology on effectiveness in open source
software development teams. MIS Q. 30(2), 291–314 (2006)

4. Lane, M.S., Vyver, G., Basnet, P., Howard, S.: Inter-preventative insights into
interpersonal trust and effectiveness of virtual communities of open source software
(OSS) developers (2004)

5. de Laat, P.B.: How can contributors to open-source communities be trusted? On
the assumption, inference, and substitution of trust. Ethics Inf. Technol. 12(4),
327–341 (2010)

6. Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J.: Social coding in GitHub: trans-
parency and collaboration in an open software repository, pp. 1277–1286 (2012)

7. Arafat, O., Riehle, D.: The commit size distribution of open source software, pp.
1–8 (2009)

8. Hu, D., Zhao, J.L., Cheng, J.: Reputation management in an open source developer
social network: an empirical study on determinants of positive evaluations. Decis.
Support Syst. 53(3), 526–533 (2012)

9. Gallardo-Valencia, R.E., Tantikul, P., Elliott Sim, S.: Searching for reputable
source code on the web. In: Proceedings of the 16th ACM international confer-
ence on Supporting group work, pp. 183–186 (2010)

10. Orsila, H., Geldenhuys, J., Ruokonen, A., Hammouda, I.: Trust issues in open
source software development. In: Proceedings of the Warm Up Workshop for
ACM/IEEE ICSE, pp. 9–12 (2010)

11. Gysin, F.S., Kuhn, A.: A trustability metric for code search based on developer
karma. In: Proceedings of 2010 ICSE Workshop on Search-Driven Development:
Users, Infrastructure, Tools and Evaluation, pp. 41–44 (2010)

12. OpenHub data repository. http://www.openhub.net/
13. OpenHub API documentation. https://github.com/blackducksw/ohloh api

http://www.openhub.net/
https://github.com/blackducksw/ohloh_api

54 M. Syeed et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

The Open Source Officer Role – Experiences

Carl-Eric Mols1, Krzysztof Wnuk2(✉)
, and Johan Linåker3

1 Sony Mobile, Lund, Sweden

Carl-eric.mols@sonymobile.com
2 Blekinge Institute of Technology, Karlskrona, Sweden

krzysztof.wnuk@bth.se
3 Lund University, Lund, Sweden

johan.linaker@cs.lth.se

Abstract. This papers describe the Open Source Officer role and the experiences

from introducing this role in several companies. We outline the role description,

main responsibilities, and interfaces to other roles and organizations. We inves‐

tigated the role in several organization and bring interesting discrepancies and

overlaps of how companies operate with OSS.

Keywords: Open source governance · Inner-source · Maturity models

1 Introduction

Several companies have discovered and utilized the extensive benefits that Open Source

Software (OSS) brings to their product development activities and processes. As any

OSS adoption is an organizational change and often a cultural shift, there is a need for

supporting role that ensures these transformations are smooth and directed towards

achieving higher maturity models in operating with OSS [1].

In this paper, we present the Open Source Officer Role and discuss the experiences

from establishing this role in three organizations. We outline the most important chal‐

lenges that the role installation brings and outline the research agenda for further research

activities.

2 The Open Source Officer Role Description

The Open Source Officer (OSO) role at Sony Mobile is a response for the need to support

governance, organizational development and education activities that increase Sony

Mobile’s ability in OSS-based development and business. The role connects the manage‐

ment, legal/IPR and software organizations around the open source operations, see

Fig. 1. It provides an important communication point for these three organizations,

ensures that the processes and activities are synchronized and the potential questions

are timely resolved. The OSO interfaces with executive management and participates

in the daily work of the Open Source Board which scope and responsibilities can be set

for a single business organization or the entire corporate. The OSO officer reports

© The Author(s) 2017

F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 55–59, 2017.

DOI: 10.1007/978-3-319-57735-7_6

directly to the Head of Open Source Software and interfaces with software developers,

architects, managers and lawyers working directly in the same organization and also

roles responsible for the IPR questions. At the same time, it can happen that OSO works

directly with corporate legal organizations on matters that are impacting several business

units, e.g. license committee or inner-source governance organizations.

Fig. 1. The Open Source Officer role and the other roles that it interfaces in the organization.

The sourcing organization plays an important role here as it is responsible for nego‐

tiating contracts with component suppliers for the non-OSS components and for hard‐

ware components that come with software that can be proprietary and/or OSS. The

sourcing organization has the task to secure that suppliers are fulfilling the obligation

of the OSS licenses (are OSS compliant) in the delivered software. It also can support

the search and selection of the best sourcing strategy (with the OSS as the priority) given

the set of functional and quality requirements that a given component should deliver.

Scope of operations and main working areas include:

Governance and support systems - The Open Source Officer is a part of Open Source

Operations and in charge for governance and support, including processes etc.

Education - the officer identifies the education needs in an organization as well as

ensures that needed education is provided to the organization.

Developer Engagement - The OSO leads and mentors the software organizations in

the engagement in OSS projects (maturing and taking on their responsibilities). The

organizations take the formal responsibility for the OSS engagement activities.

Business Models - although having no direct responsibility, the OSO should engage

in business strategy development discussions to influence, support, and advice busi‐

ness entities to enable a full advantage of using OSS in generating and sustain business.

Leadership and Culture - The OSO can support and advice in the creation of organi‐

zation and leadership culture that is suitable for ensuring extensive benefits from OSS.

The actual task of creating an organization is the top management responsibility.

56 C.-E. Mols et al.

Key Competences include:

Strong leadership skills are required as a central part of the role is to develop and

manage governance and support systems as well as the education program required to

advance in the open source maturity.

Communication skills - strong written and verbal English skills are required as the role

involves communication with local and global organizations – including company

external organizations, e.g. purchasing a training course from an external company.

Functional and technical skills - good change management skills are required as the

role supports the changes in the mindset of individuals, support required transforma‐

tion of organizational structures as well as influence the culture of the organization.

Good understanding of OSO that is reaching beyond the basic copyright issues or OSS

compliance, business and market logic implications as well. Good understanding on

the fundamentals of software engineering.

Technology knowledge - the OSO need to be a very good generalist and understand

the technological aspects of software as well as other aspects. This is particularly

important for OSOs not originating from software organizations.

Key Responsibilities include:

Engage actively in the Open Source Board operations - the Open Source Board is the

governing function for Open Source within the company or a business unit. The two

main tasks for the board involve: (1) Maintaining the corporate policies set by the

executive management regarding OSS operations and ensuring that the documentation

is up to date, and (2) Vetting and approving contribution proposals and ensuring that

both business needs and IPR are taken into consideration.

Ensure that Open Source related processes and trainings are provided - that includes

ensuring that the processes are defined, documented and implemented in relevant

organizations and that the training is provided.

Act as an interpreter between engineers and lawyers - ensure that OSS related ques‐

tions gets timely answered and that engineers and developers are proactive and positive

about using OSS components without unnecessary license related fears.

Act as the company’s external interface in Open Source related questions - especially

for the questions related acquisitions and compliance of the released products.

Act as an internal management consultant - that reacts to any request for help or

support about the OSS operations or knowledge.

Authorities - the OSO has a deciding voice as one of the members of the Open Source

Board and can propose changes to OSS related directives and processes.

3 Experiences from Three Software-Intensive Organizations

Company A is the develops software-intensive products for global market in a matured

market where several strong vendors established their position. The company joined the

OSS ecosystem in 2007 and within three years dropped all other platforms and based

all the product on this OSS platform. The company is currently on level 4 in of OSS

maturity [1]. The scope and responsibility of the OSO role is described in Fig. 1 and in

The Open Source Officer Role – Experiences 57

Sect. 2. One important remark is that the OSO in this case does not take the responsibility

for compliance or running OSS-related software projects.

Company B is a direct competitor to company A and apart from software-intensive

embedded systems the company is also active in several other business units that produce

home electronics, automotive, chemical and heavy industry. Our analysis is based on

an interview with the OSO from the same business unit as company A. The main differ‐

ence at company B is that OSO is also responsible for a group of about 80 developers

that maintain the critical components based on OSS code that are reused in several

business units. The OSO is a project manager for these activities. Another difference is

that the OSO acts as an authority regarding legal and IPR questions and have no dedi‐

cated OSS-knowledgeable lawyer to closely collaborate with.

Company C manufactures trucks, buses and engines for heavy transport applications

for a global market and experienced an increased dependence on software and is

currently transforming into a software-intensive product development organization. The

OSO role differs in two aspects: (1) the OSO is also a project manager that is responsible

for running OSS-based software projects (not the core part like at company B) and (2)

the OSO needs to have the required technical knowledge about software and its archi‐

tecture to support the transformation to a software-intensive company.

Related Work. Kemp [3] suggests the introduction of an OSS Compliance Officer

(OSSCO) with the responsibility of developing and implementing the OSS governance

mechanisms, agree on an internal OSS strategy (e.g., expressing where and why to use

OSS) and oversee that it is followed, mainly from the possible IP leakage and compliance

issues. Much of the responsibilities of an inner-source champion [2] align with the role

of an OSSCO as proposed by Kemp [3] and with the OSO role.

4 Conclusion and Future Work

In this experience report we have described the role of an Open Source Officer (OSO).

The OSO role offers a central authority and champion that can help an organization to

both introduce and mature in their use of OSS. The presented role description is based

on knowledge and experience gained from Sony Mobile and confronted with interviews

at two other large organizations that use OSS in their products. Future work will further

investigate how the role description may fluctuate in organizations with differing char‐

acteristics, but also how the surrounding organizational structure of the OSO can be

defined, e.g., in regards to OSS governance board.

Acknowledgements. This work was funded by the ITEA2 project 12018 SCALARE, and by

the IKNOWDM project [grant number 20150033] from the Knowledge Foundation in Sweden.

58 C.-E. Mols et al.

References

1. Mols, C.E.: The open source maturity model. http://scalare.org/rag/open-source-maturity-

model

2. Stol, K.J., Avgeriou, P., Barbar, M.A., Lucas, Y., Fitzgerald, B.: Key factors for adopting inner

source. Trans. Softw. Eng. Methodol. 23(2), 18 (2014)
3. Kemp, R.: Open source software (OSS) governance in the organisation. Comput. Law Secur.

Rev. 26(3), 309–316 (2010)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license

and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

The Open Source Officer Role – Experiences 59

http://scalare.org/rag/open-source-maturity-model
http://scalare.org/rag/open-source-maturity-model
http://creativecommons.org/licenses/by/4.0/

Digging into the Eclipse Marketplace

Jacob Krüger1,2(B), Niklas Corr1, Ivonne Schröter2,3, and Thomas Leich1,3

1 Harz University of Applied Sciences, Wernigerode, Germany
{jkrueger,tleich}@hs-harz.de

2 Otto-von-Guericke University, Magdeburg, Germany
ivonne.schroeter@ovgu.de

3 METOP Gmbh, Magdeburg, Germany

Abstract. Eclipse is an integrated development environment that can
be extended with plug-ins. Thanks to Eclipse’s success, a diverse com-
munity has been established with members coming from industry, open-
source projects, and others, and a marketplace with more than 1.700
different plug-ins developed. Hence, the question arises how this market-
place is composed: Who contributes plug-ins? Which plug-ins are success-
ful? Are there common characteristics or trends? To answer these ques-
tions, extensive investigations are necessary. In this paper, we present
(i) an initial approach for corresponding analyses and (ii) preliminary
results. Overall, we aim to pave the way for further research address-
ing, for example, motivations to participate in, or the evolution of, open
marketplaces.

Keywords: Eclipse IDE · Eclipse Marketplace · Open source · Empir-
ical study

1 Introduction

Open-source systems gained momentum in software engineering mainly because
of free use, accessibility, and fast innovation speed [16,17,20,21]. As a result,
many companies use such systems as basis for their own products [6], where-
fore commercial and open-source software are more and more used concurrently
[1,2,10,17]. A good example for this co-existence is the de facto standard
Eclipse1 [6,7,19].

Eclipse became the dominant integrated development environment (IDE)
for Java used by developers from industry, universities, and open-source com-
munities [5–7,9,19,23]. To support Eclipse and plug-in developers, the Eclipse
Foundation implemented platforms to manage projects [5,16]. These platforms
are support measures and drive the evolution of the community. As a result, the
amount of plug-ins is steadily increasing from 1.385 in 2007 [23] to 1.762 at the
beginning of 2017. In the context of this paper, the marketplace, in which these
plug-ins are provided, will be the area of analysis.

1 http://www.eclipse.org/, 02.01.2017.

c© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 60–65, 2017.
DOI: 10.1007/978-3-319-57735-7 7

http://www.eclipse.org/

Digging into the Eclipse Marketplace 61

While the Eclipse marketplace brings together diverse communities it has
rarely been analyzed. However, such an analysis can help researchers to under-
stand what motivates developers with different backgrounds (e.g., open-source
and industry) to participate and collaborate. Furthermore, the findings can sup-
port to scope plug-ins and initiate cooperation. In this paper, we describe a pre-
liminary analysis of the Eclipse marketplace and corresponding results. Overall,
we aim to provide a glance on open marketplaces and initiate more detailed
research.

2 Research Method

Different approaches can be used to analyze the Eclipse marketplace, for
instance, empirical studies based on interviews or questionnaires. However, to
scope further research, we propose to mine and assess data available in the mar-
ketplace, providing a starting point based on the users’ perspective. To this
point, we address two research questions within this article:

RQ-1 Which topics are addressed by successful plug-ins? Plug-ins and
topics that accumulate more attention (i.e., more downloads) indicate
practical acceptance. This analysis can help to select suitable plug-
ins or to scope further development, for instance to improve existing
approaches.

RQ-2 Who contributes to these plug-ins? Based on the previous question,
we investigate who develops these plug-ins. This can help to identify lead-
ing developers and communities for specific topics, potentially indicating
collaborations and new research directions.

We automatically crawled the marketplace and manually analyzed the data. For
this, we limited our analysis to the 100 most downloaded plug-ins until October
2016, covering approximately 80.3% of all downloads until then. We remark, that
our methodology in this article is preliminary and shall only provide a starting
point for further research.

3 Preliminary Results

In Fig. 1, we illustrate the topics we identified within our sample and their cat-
egorized owners. Furthermore, we show the distribution of downloads for each
topic, and especially for open-source communities.

RQ-1: Which topics are addressed by successful plug-ins? Developers often use
several and synonymous terms to describe their plug-ins, hampering an auto-
mated categorization. Thus, we manually assessed the purpose of the 100
most downloaded plug-ins and derived 10 initial categories: Revision control,
IDE extension (integrating programming languages or frameworks), code

analysis, build tool, user interface, database, editor, optimization (of
Eclipse), documentation, and server. As we show in Fig. 1, revision control and

62 J. Krüger et al.

Fig. 1. Categorized projects of the 100 most downloaded plug-ins in the Eclipse mar-
ketplace.

IDE extensions accumulate most downloads. However, we also see that there is
a difference in the number of available plug-ins for these two categories.

Only 8 plug-ins address revision control but are responsible for over a quar-
ter of all downloads. This might be explained with a small set of established
approaches, similar to the situation for user interfaces. Still, this result can be
distorted, for instance because communities may require identical tooling, forcing
participants to use a specific system even if they prefer another one.

In contrast, IDE extensions, similar to several remaining categories (e.g., code
analysis, or build tools), provide far more plug-ins (28) while accumulating fewer
downloads. A potential explanation is that these plug-ins often require adapta-
tions to specific programming languages and development processes. Hence, their
overall applicability is limited to specific communities and they compete with
other IDEs.

RQ-2: Who contributes to these plug-ins? To gain an impression of Eclipse’s com-
munity, we categorized the owners of plug-ins into four groups: open-source,
private, industrial, and university. As we see in Fig. 1, open-source commu-
nities are leading in revision control and build tools, accumulating most plug-ins
and downloads. Especially in revision control, which is used for distributed work
and collaboration, they seem to benefit from their diversity [5]. However, open-
source communities do not, or rarely, contribute to some other topics in our
sample.

In contrast, private and industrial owners provide plug-ins for almost all top-
ics. Private developers seem to dominate the development of user interfaces,
optimization, and server integration, which facilitate using Eclipse. However,
such plug-ins provide less utility besides comfort than, for example, customized
build tools or revision control. For this reason, industrial and open-source

Digging into the Eclipse Marketplace 63

communities might be less interested in developing these. We support this argu-
ment due to the fact that industrial owners provide most plug-ins in IDE exten-
sions, databases, and documentation. These are essential aspects of software
development in companies. Finally, we remark that universities own only a sin-
gle plug-in in our sample, potential reasons being that they provide innovative
but immature projects.

4 Research Agenda

The results presented in this work are preliminary and further analysis on how
such marketplaces are composed are necessary. More detailed investigations may
help to understand, why communities do or do not provide plug-ins and what
motivates them. We emphasize that this requires extensive analyses and addi-
tional empirical studies. In future work, we aim to assess the following aspects:

How to assess the success of a plug-in? In this paper, we solely focused
on the number of overall downloads. This is a significant limitation and other
metrics are necessary to provide a more detailed view. For instance, to consider
the marketplace’s evolution, a plug-in’s downloads in recent periods, integration
into Eclipse packages, or the number of its developers are interesting.

Are there common characteristics of successful plug-ins? Different com-
munities successfully participate in the Eclipse marketplace. Hence, success
may depend on the topic and also certain characteristics, for example, used
licenses [13,17,18], necessity to pay, or maturity. For community managers and
developers such information are important to design and provide their software.

How do users select plug-ins? The previous two questions may indicate,
and can be validated by investigating how, users select plug-ins. Besides these
points, the users’ selection also depends on their experiences and background.
The results can help to understand how new techniques emerge and establish.

Why and how are plug-ins developed? An important question in the context
of open-source software is the motivation of developers. In particular, it is inter-
esting who initiates plug-ins for which reason, who contributes to these, or which
connections exist. The corresponding results may provide insights into motiva-
tions to collaborate and participate in communities and open marketplaces.

5 Related Work

Several authors investigate the evolution of Eclipse or its plug-ins, focusing, for
instance, on their architecture or API usage [3,4,14,22]. Further works investi-
gate the laws of software evolution [12] in open-source systems [8,11]. In contrast
to the systems themselves, our scope is how a potential marketplace for these
evolves and is composed. Still, both approaches are complementary and can be
combined, for instance to assess how a plug-ins evolution affects its popularity
and status. Finally, Murphy et al. [15] empirically evaluate how developers use
the Eclipse IDE. It seems interesting to utilize this approach to also assess how
plug-ins are used.

64 J. Krüger et al.

6 Conclusions

Eclipse is one of the most prominent and widely used Java IDEs. Due to its
success, a large and diverse community of plug-in developers established. They
provide their plug-ins at the Eclipse marketplace, allowing other users to use
them.

In this paper, we proposed to analyze the Eclipse marketplace. The prelimi-
nary results show that some topics, such as revision control or IDE extensions,
are often demanded by users and that different owners participate. Finally, we
described further research directions to deepen the understanding of open mar-
ketplaces and their communities.

Acknowledgments. This research is supported by DFG grant LE 3382/2-1 and Volk-
swagen Financial Services AG. We thank Heike Fischbach for commenting on drafts of
this paper.

References

1. Bonaccorsi, A., Rossi, C.: Why open source software can succeed. Res. Policy 32(7),
1243–1258 (2003). doi:10.1016/S0048-7333(03)00051-9

2. Bonaccorsi, A., Rossi, C.: Comparing motivations of individual programmers and
firms to take part in the open source movement: from community to business.
Know. Technol. Policy 18(4), 40–64 (2006). doi:10.1007/s12130-006-1003-9

3. Businge, J.: Co-evolution of the Eclipse SDK framework and its third-party plug-
ins. In: European Conference on Software Maintenance and Reengineering, CSMR,
pp. 427–430. IEEE (2013). doi:10.1109/CSMR.2013.64

4. Businge, J., Serebrenik, A., van den Brand, M.: An empirical study of the evolution
of Eclipse third-party plug-ins. In: Joint Workshop on Software Evolution and
International Workshop on Principles of Software Evolution, IWPSE-EVOL, pp.
63–72. ACM (2010).doi:10.1145/1862372.1862389

5. des Riviêres, J., Wiegand, J.: Eclipse: a platform for integrating development tools.
IBM Syst. J. 43(2), 371–383 (2004). doi:10.1147/sj.432.0371

6. Ebert, C.: Open source software in industry. IEEE Softw. 25(3), 52–53 (2008).
doi:10.1109/MS.2008.67

7. Geer, D.: Eclipse becomes the dominant java IDE. Computer 38(7), 16–18 (2005).
doi:10.1109/MC.2005.228

8. Godfrey, M.W., Tu, Q.: Evolution in open source software: a case study. In: Inter-
national Conference on Software Maintenance, ICSM, pp. 131–142. IEEE (2000).
doi:10.1109/ICSM.2000.883030

9. Goth, G.: Beware the March of this IDE: Eclipse is overshadowing other tool
technologies. IEEE Softw. 22(4), 108–111 (2005). doi:10.1109/MS.2005.96

10. Hars, A., Ou, S.: Working for free? Motivations for participating in open-source
projects. In: Hawaii International Conference on System Sciences, HICCS, pp. 1–9.
IEEE (2001). doi:10.1109/hicss.2001.927045

11. Koch, S.: Software evolution in open source projects - a large-scale investigation.
J. Softw. Maint. Evol. 19(6), 361–382 (2007). doi:10.1002/smr.348

12. Lehman, M.M., Ramil, J.F.: Rules and tools for software evolution planning and
management. Ann. Softw. Eng. 11(1), 15–44 (2001). doi:10.1023/A:1012535017876

http://dx.doi.org/10.1016/S0048-7333(03)00051-9
http://dx.doi.org/10.1007/s12130-006-1003-9
http://dx.doi.org/10.1109/CSMR.2013.64
http://dx.doi.org/10.1145/1862372.1862389
http://dx.doi.org/10.1147/sj.432.0371
http://dx.doi.org/10.1109/MS.2008.67
http://dx.doi.org/10.1109/MC.2005.228
http://dx.doi.org/10.1109/ICSM.2000.883030
http://dx.doi.org/10.1109/MS.2005.96
http://dx.doi.org/10.1109/hicss.2001.927045
http://dx.doi.org/10.1002/smr.348
http://dx.doi.org/10.1023/A: 1012535017876

Digging into the Eclipse Marketplace 65

13. Manabe, Y., German, D.M., Inoue, K.: Analyzing the relationship between the
license of packages and their files in free and open source software. In: Corral, L.,
Sillitti, A., Succi, G., Vlasenko, J., Wasserman, A.I. (eds.) OSS 2014. IAICT, vol.
427, pp. 51–60. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55128-4 6

14. Mens, T., Fernández-Ramil, J., Degrandsart, S.: The evolution of Eclipse. In: Inter-
national Conference on Software Maintenance, ICSM, pp. 386–395. IEEE (2008).
doi:10.1109/ICSM.2008.4658087

15. Murphy, G.C., Kersten, M., Findlater, L.: How are java software developers using
the elipse IDE? IEEE Softw. 23(4), 76–83 (2006). doi:10.1109/MS.2006.105

16. Parreiras, F.S., Gröner, G., Schwabe, D., de Freitas Silva, F.: Towards a market-
place of open source software data. In: Hawaii International Conference on System
Sciences, HICSS, pp. 3651–3660. IEEE (2015). doi:10.1109/HICSS.2015.439

17. Ramanathan, L., Iyer, S.K.: A qualitative study on the adoption of open source
software in information technology outsourcing organizations. In: Damiani, E.,
Frati, F., Riehle, D., Wasserman, A.I. (eds.) OSS 2015. IAICT, vol. 451, pp. 103–
113. Springer, Cham (2015). doi:10.1007/978-3-319-17837-0 10

18. Ruffin, M., Ebert, C.: Using open source software in product development: a primer.
IEEE Softw. 21(1), 82–86 (2004). doi:10.1109/MS.2004.1259227

19. Vaughan-Nichols, S.J.: The battle over the universal java IDE. Computer 36(4),
21–23 (2003). doi:10.1109/MC.2003.1193223

20. von Hippel, E.: Innovation by user communities: learning from open-source soft-
ware. Sloan Manage. Rev. 42(4), 82–86 (2001)

21. Watson, R.T., Boudreau, M.-C., York, P.T., Greiner, M.E., Wynn Jr., D.: The
business of open source. Commun. ACM 51(4), 41–46 (2008). doi:10.1145/1330311.
1330321

22. Wermelinger, M., Yu, Y.: Analyzing the evolution of Eclipse plugins. In: Interna-
tional Working Conference on Mining Software Repositories, MSR, pp. 133–136.
ACM (2008). doi:10.1145/1370750.1370783

23. Yang, Z., Jiang, M.: Using Eclipse as a tool-integration platform for software devel-
opment. IEEE Softw. 24(2), 87–89 (2007). doi:10.1109/MS.2007.58

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://dx.doi.org/10.1007/978-3-642-55128-4_6
http://dx.doi.org/10.1109/ICSM.2008.4658087
http://dx.doi.org/10.1109/MS.2006.105
http://dx.doi.org/10.1109/HICSS.2015.439
http://dx.doi.org/10.1007/978-3-319-17837-0_10
http://dx.doi.org/10.1109/MS.2004.1259227
http://dx.doi.org/10.1109/MC.2003.1193223
http://dx.doi.org/10.1145/1330311.1330321
http://dx.doi.org/10.1145/1330311.1330321
http://dx.doi.org/10.1145/1370750.1370783
http://dx.doi.org/10.1109/MS.2007.58
http://creativecommons.org/licenses/by/4.0/

Licensing, Strategies, and Practices

How are Developers Treating License

Inconsistency Issues? A Case Study on License

Inconsistency Evolution in FOSS Projects

Yuhao Wu1(B), Yuki Manabe2, Daniel M. German3, and Katsuro Inoue1

1 Graduate School of Information Science and Technology,
Osaka University, Osaka, Japan

{wuyuhao,inoue}@ist.osaka-u.ac.jp
2 Faculty of Advanced Science and Technology,

Kumamoto University, Kumamoto, Japan
y-manabe@cs.kumamoto-u.ac.jp

3 Department of Computer Science, University of Victoria, Victoria, Canada
dmg@uvic.ca

Abstract. A license inconsistency is the presence of two or more source
files that evolved from the same original file containing different licenses.
In our previous study, we have shown that license inconsistencies do
exist in open source projects and may lead to potential license viola-
tion problems. In this study, we try to find out whether the issues of
license inconsistencies are properly solved by analyzing two versions of
a FOSS distribution—Debian—and investigate the evolution patterns of
license inconsistencies. Findings are: license inconsistencies occur mostly
because the original copyright owner updated the license while the
reusers were still using the old version of the source files with the old
license; most license inconsistencies would disappear when the reusers
synchronize their project from the upstream, while some would exist
permanently if reusers decide not to synchronize anymore. Legally sus-
picious cases have not been found yet in those Debian distributions.

Keywords: Software license · Code clone · License inconsistency

1 Introduction

Free and open source software (FOSS) is software that can be freely used,
changed, and shared (in modified or unmodified form) by anyone. FOSS should
always be distributed under certain open source software licenses, otherwise
they cannot be reused by others. The license of a source file usually resides in
its header comment.

Many studies in software engineering have been done on software license.
Some approaches for software license identification have been proposed [3,6,8].
Vendome et al. investigated the reasons on when and why developers adopt and
change licenses by conducting a survey with the relevant developers [10].

c© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 69–79, 2017.
DOI: 10.1007/978-3-319-57735-7 8

70 Y. Wu et al.

We have developed a method to detect license inconsistencies in large-scale
FOSS projects [11]. A license inconsistency is defined as two or more source
files that evolved from the same original file containing different licenses. For
example, file A and file B have the same program code, but the header of A

includes GPL-2.0 and B includes Apache-2.01. We have applied our detection
method to Debian 7.52, one of the Linux distributions, and discovered different
reasons that caused license inconsistencies and determined whether they are
potentially illegal or not.

Although this work has provided us clues that some license inconsistencies
indicate potential legal issues, this one-time analysis is not enough to understand
how developers are dealing with the issues: whether developers are putting their
efforts on eliminating license inconsistencies or they simply ignore the issues. The
investigation of the evolution of license inconsistencies can help us understand
whether the legal issues of license inconsistency discovered in the previous work
are handled by developers. Therefore, we conducted this research and try to
answer the following questions:

– RQ1. What are the evolution patterns of license inconsistencies and the

underlying reasons? Analyzing the evolution patterns of license inconsisten-
cies might gives us insight on the reasons that caused them to appear and
disappear. The findings are: license inconsistencies appear, persist and disap-
pear due to different reasons. They appear mostly because the original author
updates the license while the reusers still use the old version of the files; they
persist mostly because the downstream project is not synchronized with the
upstream project yet; and they disappear when the downstream project is
synchronized with the upstream project.

– RQ2. Is the issue of license inconsistencies properly handled by developers?

The findings are: license inconsistencies are mainly caused by distribution
latency, and they will disappear when the developers synchronize their projects
from the upstream projects. They persist because the reusers are still using
an old version of the files and do not perform the synchronization. We do not
consider this as a legal issue.

In order to address these questions, we apply our license inconsistency detec-
tion method to Debian 8.2 (which was the newest version when we started this
study) in addition to Debian 7.5, and investigate the evolution of license incon-
sistencies between theses two versions.

The rest of this paper is organized as follows: Sect. 2 introduces the method-
ology we employ to address our research questions. Section 3 describes the result
we got from our analysis. A discussion of this result is given in Sect. 4. Section 5
introduces the related work. Finally, we conclude our paper in Sect. 6.

1 Note that pairs of no license and any license, and different license versions are
reported as license inconsistency.

2 https://www.debian.org/.

https://www.debian.org/

How are Developers Treating License Inconsistency Issues? 71

2 Methodology

In this section we describe how we design our study.

2.1 Obtain License Inconsistency Groups for Debian 7.5

and Debian 8.2

A license inconsistency group is a group of multiple files that have same code
contents but with different licenses. As introduced in our previous paper [11],
we use the following steps to reveal license inconsistency groups:

1. Create groups of file clones: For all the source files in the target projects,
we apply CCFinder [7] to extract the normalized token sequences of each
file. The normalized token sequences is a token sequence of the source code,
removing comments and whitespaces and changing all user-defined identifiers
to a special token. Note that, although CCFinder itself is a clone detection
tool, we do not utilize the full functionality of CCFinder and we only use it
to generate the normalized token sequences of source files. By computing and
categorizing the hash value of these token sequences, we then create a group
for files that have the same normalized token sequences. We call them license

inconsistency groups, or group for short in the rest of this paper. Each group
contains at least two different files; i.e., a unique file is not contained in any
group.

2. Identify licenses for files in each group: For each group of file clones,
Ninka [3] is used to identify the license(s) of each file. Ninka identifies the
license sentences in the comment parts of each file, and compares those with
its license database. It can identify more than 110 different OSS licenses and
their different versions with 93% accuracy. Meanwhile, it will report “NONE”
if the file has no license and “UNKNOWN” if the license sentence of the file
does not match the database. The result is a list of licenses for each file group.

3. Report groups that contain a license inconsistency and calculate

the inconsistency metrics: We compare the license list of each file group.
File groups are reported to have license inconsistencies unless all the licenses
on the list are exactly the same. The result is a list of file groups that contain
one or more types of license inconsistencies.

We apply these steps to Debian 7.5 and 8.2 respectively and obtain the file
groups that contain license inconsistencies.

2.2 Compare the Difference of Groups

All the files in one group have the same token sequences, from which we calculate
the hash value as the id for that group. We then compare the id of the groups
in each version and get the set of groups that exist: (a) only in Debian 7.5; (b)
only in Debian 8.2; (c) in both versions.

The result of this step would be three sets of file groups.

72 Y. Wu et al.

Table 1. Number of packages and files in Debian 7.5 and 8.2.

Number of packages Debian 7.5 Debian 8.2

Source packages 17,160 20,577

Total files 6,136,637 13,124,700

.c files 472,861 767,006

.cpp files 224,267 335,269

.java files 365,213 477,154

Table 2. License inconsistency groups between two versions on Debian.

Number of groups Debian 7.5 Debian 8.2

Intersectiona 4062 4062

Relative complementb 2701 2947

Total 6763 7009
aGroups that exist in both versions
bGroups that exist in either version only

2.3 Investigate the Groups Manually

The groups that only exist in Debian 7.5 imply that they are eliminated from
the new version; those that only exist in Debian 8.2 imply that new license
inconsistency cases appears in this new version; those that exist in both versions
indicate that they remain during these two versions. We manually examine the
different groups and present the results in the next section.

3 Results

The number of packages and files in Debian 7.5 and 8.2 are shown in Table 1.
We only consider .c, .cpp and .java files which are the supported types of
our detection method. The detection result of license inconsistency groups in
Debian 7.5 and 8.2 is shown in Table 2. In this table, intersection means that
both two versions of Debian contain that group of license inconsistency; relative
complement means only that version of Debian contain that group of license
inconsistency. Thus there are 4062 groups of license inconsistencies detected in
both versions; 2701 groups only in Debian 7.5; and 2947 groups only in Debian
8.2. By examining the groups that are only in Debian 7.5 we can find out how
and why license inconsistencies disappeared in Debian 8.2; while examining the
groups that are only in Debian 8.2 we can understand how and why license
inconsistencies appeared. The intersection part indicates that these groups of
license inconsistencies persisted in Debian 8.2.

How are Developers Treating License Inconsistency Issues? 73

make

Debian 7.5 Debian 8.2

GPL-2.0 GPL-3.0

… 3.81 3.82 4.0 …

2006.4.1 2010.7.28 2013.10.9

remake … 3.81 3.82 …

2009.1.10 2015.4.6

kbuild … r2543 r2695 …

2011.8.17 2013.7.26

50.90.510262.40.4102

License upgraded here
Reuse

Fig. 1. A case of license inconsistency evolution which involves project make, remake
and kbuild.

3.1 Why Do License Inconsistencies Appear?

There are several reasons that license inconsistencies appear. The key point is
that there are multiple copies of the same source file with different licenses in
the same distribution. We describe the general reasons that license inconsistency
appears, thus the examples given in this section are not limited to those that
appear in Debian 8.2. We categorize them into three types according to the
reason that caused the copy of files.

– Internal copy-and-paste of source files but their licenses are differ-

ent. If copies of the same file exist in one project (we call these internal copies),
they should also exist in the final distribution (e.g. Debian 7.5). Thus a case of
license inconsistency will be reported by our method if they contain different
licenses.

For example, in a project named FreeMedForms, some source files in a
plugins directory are under BSD3 license. These files are copied to other
directories with their licenses changed to GPL-3.0+.

This type of license inconsistency could exist for just a short time, if the
difference of license was due to mistakes and was later on fixed by developers.
On the other hand, if developers decided to distribute these source files under
different licenses, it would exist permanently.

– Different versions of the same project are included in the same dis-

tribution. Similar to the previous reason, if different versions of the same

74 Y. Wu et al.

project which causes license inconsistencies are included in the final distribu-
tion, those license inconsistencies will be reported by our method.
For example, there is a project named groovy which contains files that had no
license in version 1.7.2, and were then added a Apache-2.0 license in version
1.8.6. Both of these two versions of this project are included in Debian 7.5,
thus this license inconsistency is reported.

– Upstream and downstream projects both exist in the same distri-

bution. In this research, if project B reuses source files from project A by
copy-and-paste, we call project B the downstream project and project A the
upstream project. While the previous two reasons are about the same project,
this reason involves multiple projects. Files from the upstream project are
reused in the downstream project, and the license of these files were changed
either by the original author or the reuser. If both of these projects are included
in the same distribution, the license inconsistency will be reported by our
method.

An example is shown in Fig. 1. As we can see from this graph, several source
files in remake and kbuild project were originally from the make project, where
license upgrade occurred in year 2010. Debian 7.5 includes older versions of
make and remake, where the license was still GPL-2.0, while the newer version
of kbuild contains the GPL-3.0 license. Thus license inconsistency is reported
for this case.

EasyMock

Debian 7.5 Debian 8.2

MIT Apache-2.0

… 2.4 2.5.1 3.2 …

2009.12.17 2013.7.11

Mockito … 1.9.0 1.9.5 …

2011.12.17 2012.6.4

50.90.510262.40.4102

License changed here

Reuse

…

2007.11.17

Developers decide to

never depend on the

upstream project.

Fig. 2. A case of license inconsistency evolution which involves project EasyMock and
Mockito.

How are Developers Treating License Inconsistency Issues? 75

3.2 Why Do License Inconsistencies Persist?

License inconsistencies usually exist in several continuous versions of a distribu-
tion. Some of them disappear soon, some exist for a long time, while some even
persist forever. From the result in this research, we can summarize them into
two reasons.

– Source files are not yet synchronized, but license inconsistencies will

eventually disappear when they are. This type of license inconsistencies
occurred because the downstream project has not yet been synchronized with
the upstream project where the license of source files were changed. However,
since the developers of the downstream projects are still synchronizing the
project from the upstream regularly, this type of license inconsistencies will
be eliminated eventually.

For example, in the case of the project JSON-lib and jenkins-json

described earlier, although license inconsistencies appeared in Debian 7.5
(where jenkins-json still uses source files under Apache-2.0/MIT dual
license), they disappeared in Debian 8.2, where developers of jenkins-json

project synchronized from the upstream project and the license all become
Apache-2.0 only. Though this case of license inconsistency disappeared in
Debian 8.2, we consider it as a typical example to explain why license incon-
sistencies would exist for only a period of time and disappear when the source
files are synchronized.

– Downstream project no longer synchronizes from upstream, and

license inconsistencies will likely exist permanently. In this case, devel-
opers of downstream project chose to no longer synchronize from the upstream
project, thus the license inconsistencies are likely to exist forever, unless the
synchronization resumes.

As shown in Fig. 2, among the results we found a project named Mockito

which copy-and-owned several source files from a project named EasyMock.
The license of these files in the upstream project were changed from MIT to
Apache-2.0 in year 2009, however the Mockito project still uses the original
MIT license. Besides, Mockito project made some changes to the source code
of these files by their own, and never again synchronized from EasyMock. After
checking the history of these files in Mockito project, we found that one of
the commit in year 2007 contains the following commit message: “umbilical

cord between mockito package and easymock package is cut!”, which implies
that they will never synchronize from the upstream project. Thus this case
of license inconsistency is likely to exist permanently, unless Mockito project
decides to synchronize from EasyMock again.

3.3 Why Do License Inconsistencies Disappear?

We observed several cases where license inconsistencies disappeared from Debian
8.2. The reasons are summarize as follows.

76 Y. Wu et al.

– Downstream project synchronized from upstream project. When the
downstream project synchronized from the upstream project, the license of
the source files becomes the same, thus the license inconsistencies disappear.

Again, from Fig. 1 we can see that Debian 8.2 updated all these three
projects to a newer version where all of their licenses are upgraded to GPL-3.0,
thus this license inconsistency disappears.

The case of project JSON-lib and jenkins-json discussed earlier also
applies here.

– The source code that contained the license inconsistency was

removed or changed—thus no longer identical. In this research since
we only inspect identical files, only files that contain the same token sequences
are considered that they are from the same origin. If the source code of a file
changed dramatically which made their token sequences different from the cor-
responding files, or if the relevant source file was removed in the new version,
then the license inconsistencies will no longer be reported by our method.

For example, there is a file in project icu which is under IBM copyrights in
both versions of Debian. This file was reused in project openjdk-7 but with
a GPL-2.0 license in Debian 7.5. Thus this case of license inconsistency was
reported in Debian 7.5. However, the source code of the file in openjdk-7

was changed in Debian 8.2 while the license remained the same. Our method
no longer not consider them as file clones since they have different token
sequences, thus the license inconsistency disappears in the newer version of
Debian.

4 Discussion

4.1 Revisiting the Research Questions

The answer to our research questions are as follows:

RQ1: What are the evolution patterns of license inconsistencies and the under-

lying reasons?

– Appear. (i) Internal copy-and-paste of source files in a project but their
licenses are different; (ii) Different versions of the same project are included
in the same distribution; (iii) Upstream and downstream projects both exist
in the same distribution.

– Persist. (i) Source files are not yet synchronized, but license inconsistencies
will eventually disappear when they are; (ii) Downstream project no longer
synchronize from upstream, and license inconsistencies are likely to persist
permanently.

– Disappear. (i) Downstream project synchronized from upstream project; (ii)
Source code which contained license inconsistency was removed or changed and
we consider them as different files.

RQ2: Is the issue of license inconsistency properly handled by developers? The
evolution of license inconsistencies in Debian shows that, they are mainly caused

How are Developers Treating License Inconsistency Issues? 77

by distribution latency and will be eliminated when the downstream projects get
synchronized. We found license inconsistencies appear mostly because the origi-
nal author modified the license while the reusers were still using the old version
of the file; they disappear because the files are synchronized with the upstream
projects; and they persist if the downstream projects were not synchronized.

4.2 Effectiveness of This Approach

This approach is effective to analyze how developers are addressing the issues of
license inconsistency in a certain software ecosystem. As shown in the results, we
could use this method to reveal how license inconsistency groups evolved over
time. By analyzing different groups we could have a basic idea on how developers
are treating license inconsistency issues. For example, by analyzing the license
inconsistency groups that only exists in the old version, we could learn why
license inconsistencies disappeared in the newer version and what efforts did the
developers put to eliminate them.

We could apply this same approach to other software systems to study how
different communities are dealing with license inconsistency issues.

4.3 Threats to Validity

Internal Validity. We use the same methodology as our previous study to
detect license inconsistency cases, which relies on the token sequence generation
from CCFinder and the license identification from Ninka. For file clone detection,
we use normalized token sequences as the metric to decide clones. If source
files are modified a lot (e.g. add/remove several statements), they might not be
recognized as clones. We could use approaches that detect similar source files to
mitigate this problem. Regarding license identification, Ninka is state-of-the-art
license identification tool which has an accuracy of 93% [3]. As shown in Sect. 3,
our manual analysis also proves its high accuracy and precision.

External Validity. This study focuses on the license inconsistency issues in
Debian. The results and analysis may not be generated to other software systems.
And we plan to study other software systems in the future.

5 Related Work

Many studies in software engineering have been done on software license. Some
approaches for software license identification have been proposed [3,6,8]. Using
these approaches, some researches analyzed software licenses in open source
projects and revealed some license issues. Di Penta et al. provided an automatic
method to track changes occurring in the licensing terms of a system and did an
exploratory study on license evolution in six open source systems and explained
the impact of such evolution on the projects [2]. German et al. proposed a
method to understand licensing compatibility issues in software packages [4].

78 Y. Wu et al.

They mainly focused on the compatibility between license declared in packages
and those in source files. In another research, they analyzed license inconsis-
tencies of code siblings (a code clone that evolves in a different system than
the code from which it originates) between Linux, FreeBSD and OpenBSD, but
they did not explain the reasons underlying these inconsistencies [5]. Alspaugh
et al. proposed an approach for calculating conflicts between licenses in terms
of their conditions [1]. Vendome et al. performed a large empirical study of Java
applications and found that changing license is a common event and a lack of
traceability between when and why the license of a system changes [9]. In their
following research [10], they investigated the reasons on when and why develop-
ers adopt and change licenses during evolution of FOSS Java projects on GitHub
by conducting a survey with the relevant developers. They concluded that devel-
opers consider licensing as an important task in software development.

In our previous research [11], we proposed a method to detect license inconsis-
tencies in large-scale FOSS projects. We then applied this method to Debian 7.5
and examined the results manually and discovered various reasons that caused
these license inconsistencies, among which some were legally suspicious and
deserved further investigation. As far as we know, no research has been done
to investigate the evolution of license inconsistencies.

6 Conclusions

In this research we have applied our license inconsistency detection method to
both Debian 7.5 and Debian 8.2. By comparing the results of these two ver-
sions of Debian, we identified three evolution patterns of license inconsistencies.
With a manual analysis of the license inconsistency cases we discovered various
reasons that caused the evolution. Although license inconsistencies are detected
in both versions of Debian, from our manual analysis we concluded that these
reported license inconsistencies are caused because the upstream project updated
the license while the downstream project has not been synchronized yet. These
findings suggest that in our target ecosystem, Debian, license inconsistencies are
caused by distribution latency and they will disappear when the downstream
projects get synchronized.

For future work, we would apply this approach to other software ecosystems
and see whether there are different patterns of license inconsistency evolution
and whether the license inconsistency issues are properly handled.

Acknowledgments. This work is supported by Japan Society for the Promotion of
Science, Grant-in-Aid for Scientific Research (S) “Collecting, Analyzing, and Evaluat-
ing Software Assets for Effective Reuse”(No.25220003) and Osaka University Program
for Promoting International Joint Research, “Software License Evolution Analysis”.

References

1. Alspaugh, T., Asuncion, H., Scacchi, W.: Intellectual property rights requirements
for heterogeneously-licensed systems. In: Proceedings of the 17th International
Requirements Engineering Conference (RE2009), pp. 24–33 (2009)

How are Developers Treating License Inconsistency Issues? 79

2. Di Penta, M., German, D.M., Guéhéneuc, Y.G., Antoniol, G.: An exploratory study
of the evolution of software licensing. In: Proceedings of the 32nd International
Conference on Software Engineering (ICSE2010), pp. 145–154 (2010)

3. German, D.M., Manabe, Y., Inoue, K.: A sentence-matching method for automatic
license identification of source code files. In: Proceedings of the 25th International
Conference on Automated Software Engineering (ASE2010), pp. 437–446 (2010)

4. German, D., Di Penta, M., Davies, J.: Understanding and auditing the licensing
of open source software distributions. In: Proceedings of the 18th International
Conference on Program Comprehension (ICPC2010), pp. 84–93 (2010)

5. German, D., Di Penta, M., Gueheneuc, Y.G., Antoniol, G.: Code siblings: technical
and legal implications of copying code between applications. In: Proceedings of the
6th Working Conference on Mining Software Repositories (MSR2009), pp. 81–90
(2009)

6. Gobeille, R.: The FOSSology project. In: Proceedings of the 5th Working Confer-
ence on Mining Software Repositories (MSR2008), pp. 47–50 (2008)

7. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: a multilinguistic token-based
code clone detection system for large scale source code. IEEE Trans. Softw. Eng.
28(7), 654–670 (2002)

8. Tuunanen, T., Koskinen, J., Kärkäkinen, T.: Automated software license analysis.
Autom. Softw. Eng. 16(3–4), 455–490 (2009)

9. Vendome, C., Linares-Vásquez, M., Bavota, G., Di Penta, M., Germán, D.M.,
Poshyvanyk, D.: License usage and changes: a large-scale study of java projects on
github. In: The 23rd IEEE International Conference on Program Comprehension,
ICPC 2015 (2015)

10. Vendome, C., Linares-Vásquez, M., Bavota, G., Di Penta, M., German, D.M.,
Poshyvanyk, D.: When and why developers adopt and change software licenses.
In: 2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 31–40. IEEE (2015)

11. Wu, Y., Manabe, Y., Kanda, T., German, D.M., Inoue, K.: Analysis of license
inconsistency in large collections of open source projects. Empirical Softw. Eng.
(accepted)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Addressing Lock-in, Interoperability, and Long-Term

Maintenance Challenges Through Open Source: How Can

Companies Strategically Use Open Source?

Björn Lundell1(✉), Jonas Gamalielsson1, Stefan Tengblad1, Bahram Hooshyar Yousefi1,
Thomas Fischer1, Gert Johansson2, Bengt Rodung3, Anders Mattsson4, Johan Oppmark5,

Tomas Gustavsson6, Jonas Feist7, Stefan Landemoo8, and Erik Lönroth9

1 University of Skövde, Skövde, Sweden
{bjorn.lundell,jonas.gamalielsson,stefan.tengblad,

bahram.hooshyar.yousefi,thomas.fischer}@his.se
2 Combitech AB, Linköping, Sweden
gert.johansson@combitech.se

3 Findwise AB, Gothenburg, Sweden
bengt.rodung@findwise.com
4 Husqvarna AB, Huskvarna, Sweden

anders.mattsson@husqvarnagroup.com
5 JAK, Skövde, Sweden

johan.oppmark@jak.se
6 PrimeKey Solutions AB, Solna, Sweden

tomas@primekey.se
7 RedBridge AB, Stockholm, Sweden

jfeist@redbridge.se
8 Saab AB, Linköping, Sweden

stefan.landemoo@saabgroup.com
9 Scania IT AB, Södertälje, Sweden
erik.lonroth@scania.se

Abstract. This industry paper reports on how strategic use of open source in
company contexts can provide effective support for addressing the fundamental
challenges of lock-in, interoperability, and longevity of software and associated
digital assets. The fundamental challenges and an overview of an ongoing collab‐
orative research project are presented. Through a conceptual model for open
source usage in company contexts we characterise how companies engage with
open source and elaborate on how the fundamental challenges can be effectively
addressed through open source usage in company contexts.

1 Introduction

Over the years, researchers have identified a number of different motivations for compa‐
nies and individuals to engage with open source [4, 21, 29]. Open Source Software (OSS)
is software made available under a software license which has been approved by the
Open Source Initiative [25] and with OSS the nature of development and competition

© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 80–88, 2017.
DOI: 10.1007/978-3-319-57735-7_9

in the software sector has significantly impacted on this sector [7]. This, in turn, has led
to increased opportunities for organisations basing their business on open source and in
2007 it was found that in the context of the Norwegian software industry “more than
30% of the companies get over 40% of their income from OSS related services or soft‐
ware” [11]. Further, open source goes beyond software and important aspects of open
source have influenced licensing in the hardware domain [12] and as a development
model for standardisation [19].

Open source constitutes an early exemplar of open innovation [20] and its strategic
use by companies is increasing [23]. Software maintained in open source projects is
external to specific company contexts. Therefore, to maintain control of R&D resources
it is critical for any company to participate and utilise effective work practices for
involvement in open source communities, something which calls for technical and stra‐
tegic considerations. Hence, companies must be prepared to counter and adapt their way
of working in order to stay competitive in an increasingly competitive market.

Building and organising communities around OSS projects involves a number of
challenges (e.g. [1, 3, 8]) and previous research shows “that effective governance and
work practices that are appreciated by community members is fundamental for long-
term sustainability” for open source projects [8]. A number of OSS projects are governed
by a foundation (e.g. the Eclipse Foundation, the Linux Foundation, and the Document
Foundation), which “are associations that serve to protect, not define, their respective
communities’ core technologies as well as the advancement of the commons through
technical, social, and educational services” [9]. Previous studies have analysed Eclipse-
projects and investigated how “software firms can apply different types of governance
approaches to open source software development projects” [27]. Further, several widely
adopted OSS projects are also governed in other ways and many companies seek guid‐
ance concerning how to establish effective strategies for governance and company
involvement in open source projects.

This industry paper makes three principle contributions. First, we elaborate on the
three fundamental challenges: lock-in, interoperability, and long-term maintenance of
software and associated digital assets. Second, we present an overview of an industrial
collaborative research project which aims to establish effective strategies for how
companies can (and should) strategically engage with open source projects in order to
successfully address the three fundamental challenges. Third, through an evolved
conceptual model and associated strategies for company involvement with open source
we illustrate how companies seek to strategically use and engage with open source
projects in different ways.

2 On Fundamental Challenges: Lock-in, Interoperability,

and Long-Term Maintenance

Over the years we have witnessed more widespread deployments of complex IT-systems
and associated increased demands for longevity of software [8, 19]. This causes organ‐
isations to vary concerning different types of lock-in and inability to provide long-term
maintenance of critical systems and digital assets [16, 19]. Further, OSS is often

Addressing Lock-in, Interoperability, and Long-Term Maintenance Challenges 81

deployed in a legacy situation where there is a lot of proprietary software and closed
file formats. This leads to the need for migrations between different file formats and
establishment of interoperable systems. Interoperability supports systems heterogeneity,
thereby increasing options for organisations [2, 10, 13].

Use of an open standard, especially when implemented in OSS, contributes to inter‐
operability in that it “ensures that data and systems can be interpreted independently of
the tool which generated it” [17]. This is relevant for scenarios in both commercial [18]
and public sector [19] organisations. The Swedish National Procurement Services has
published a list of open standards, which all can be referenced as mandatory require‐
ments in public procurement [24]. An open standard is a standard which conforms to
the definition presented in the European Interoperability Framework (EIF) version 1.0
[24] and such standards can be implemented and distributed under different licenses for
proprietary software and under all OSI-approved licenses for OSS.

To allow for competition and stimulate innovation the Framework agreements estab‐
lished by the Swedish National Procurement Services [24] require that only open stand‐
ards can be referenced as mandatory requirements in public procurement. A recent study
commissioned by the Swedish Competition Authority found that many IT-projects in
the Swedish public sector refer to closed standards which cannot be implemented in
open source software, and the Director General for the Swedish Competition Authority
states in the foreword to the report from the study that “From a competition perspective
it is often problematic when public sector organisations conduct IT procurement and
express requirements for closed standards” [19]. Further, the study shows that there is
a widespread practice to refer to standards, trademarks, and proprietary software and
IT-solutions which only specific manufacturers and suppliers can provide [19].

Many companies and organisations need to preserve their systems and associated
digital assets for more than 30 years [22], and in some industrial sectors (e.g. avionics)
even more than 70 years [3, 26]. In such usage scenarios “there will be problems if the
commercial vendor of adopted proprietary software leaves the market” with increased
risks for long-term availability of both software and digital assets [22].

Open source projects with healthy ecosystems can be an appropriate way to address
risks related to lock-in and long-term maintenance of commodity software [15]. Further,
use of open standards reduces the risk to an organisation of being technologically locked-
in since they increase control by supporting migration, thereby reducing an organisa‐
tion’s reliance on a single product or supplier [6, 10, 13, 16, 28]. Further, previous
research claims that support for interoperability should not require compatibility with
existing software systems (since it tends to favour specific providers of those systems),
but rather promote “interoperability with software from multiple vendors”, something
which can be achieved through use of OSS and open standards [10]. Despite such
recommendations, recent results from a study commissioned by the Swedish Competi‐
tion Authority show that many Swedish governmental organisations undertake projects
for development and procurement of IT-systems which inhibit competition and use of
open source solutions since there are mandatory requirements for compatibility with
specific proprietary technology and closed standards that (perhaps) unintentionally
inhibit interoperability and create a number of very problematic lock-in effects.

82 B. Lundell et al.

There is limited prior research concerning effective strategies for how companies
can successfully address the three challenges through use and involvement in open
source software projects. The ongoing collaborative research project LIM-IT is one
notable exception which aims to advance the existing body of knowledge concerning
effective strategies for company involvement with open source in order to successfully
address these challenges.

3 Addressing Fundamental Challenges Through Open Source:

An Overview of the LIM-IT Project

The overarching goal of the LIM-IT project is to develop, use, and scrutinise effective
work practices and strategies for development, procurement, and organisational imple‐
mentation of software systems in a number of complex application domains, where such
software systems with associated digital assets (provided in a number of different open
and closed standards and file formats) typically involve several open source projects as
well as proprietary software, often depending on many different legacy systems. To
address this goal, practitioners and researchers are committed to investigate the
following core question: “How can companies develop and utilise effective work prac‐

tices for achieving long-term strategic benefits from participation in open collaborative

projects?”

To successfully address the core question there is a need to thoroughly understand
motivations and expectations from all relevant (private and public sector) stakeholder
groups, which inherently encompass a complex web of interdependencies (with a variety
of different, sometimes conflicting, motivations and goals) between different stake‐
holders involved in, and affected by, a coopetative marketplace, i.e. a marketplace with
competition on top of (open) collaboration.

Researchers from different research specialisations (including open source, software
engineering, organisational science, and intellectual property rights) address the funda‐
mental challenges from multi-disciplinary perspectives in collaboration with practi‐
tioners in a number of innovative organisations. Partner organisations include (small
and large) companies from the primary software sector that all have extensive experience
from development and use of (proprietary and open source) software, as well as software
intensive organisations from the secondary software sector, representing businesses in
different domains such automotive, avionics, finance, and outdoor power products. The
primary software sector companies are all service providers with many years of expe‐
rience from providing services and delivering open source solutions to the private- and
public sector. Several of these are international and have also been contracted in frame‐
work agreements by the Swedish National Procurement Services at Kammarkollegiet
(a governmental authority) for delivering open source solutions to the Swedish public
sector organisations in public procurement. Amongst the companies in the software
intensive secondary sector, several are recognised as globally leading enterprises in their
respective fields.

The research project seeks to investigate how the fundamental challenges lock-in,
interoperability, and long-term maintenance of software and associated digital assets

Addressing Lock-in, Interoperability, and Long-Term Maintenance Challenges 83

can be successfully addressed in different usage context. Investigation involves system‐
atic scrutiny, through use of an action-case study approach [5], of a number of usage
contexts which are of relevance for partner organisations.

4 Strategic Use of Open Source in Different Company Contexts

When companies succeed in establishing long-term symbiotic relationships with
external open source communities and projects, such relationships can significantly
strengthen the company’s own missions in addition to strengthen involved open source
communities which govern development in open source projects that may be of strategic
importance for the own company.

In Fig. 1 we present a conceptual model for how companies can exploit, and engage
with, open source based on previous and ongoing research. The model, which initially
was presented in the context of product lines [14], has evolved through collaborative
research with representatives for partner organisations involved in the LIM-IT project.
Arrows (labelled 1, 2, 3, 4a, 4b, and 5 in Fig. 1) represent principle strategies (strategies
1, 2, 3, 4a, 4b, and 5 in Table 1) for how companies can exploit, and engage with, open
source in order to seek long-term benefit for their own organisation in different usage
contexts. It should be noted that our research has in particular evolved strategy 4a
compared to the initial model [14].

Fig. 1. Leveraging Open Source opportunities

Through conduct of research in the LIM-IT project, we have for all these strategies
identified a number of specific instances for how companies exploit and are engaged
with open source in different usage contexts in the primary and secondary software
sector. By drawing from the identified instances in which partner companies exploit and
engage with open source, we present some illustrative examples of the identified
instances in order to characterise all principle strategies which have been evolved in

84 B. Lundell et al.

collaboration with partner companies. The presented strategies and illustrative examples
show how companies utilise (and can utilise) open source software for long-term stra‐
tegic benefits.

Table 1. Principle strategies for how a company can engage with open source projects

Strategy 1 Adopt open development practices within closed company contexts. This has
been referred to as inner source development [15]

Strategy 2 Use open source software tools in a company’s own development process
Strategy 3 Use open source software components in the IT- and software productsa which

are deployed to customers and other usage contexts outside the own company
context

Strategy 4 Contribute to existing open source projects and open up proprietary software
products and release those as new open source projects:
(4a) Contribute to existing open source projects and to existing open source
products (that have been released from those open source projects)
(4b) Open up software products that were initially developed as proprietary
software in the own closed company context and release those products as new
open source projects

Strategy 5 Establish symbiotic relationships between development projects in the closed
company context and strategically important open source projects maintained and
governed outside the company’s own context. Such mutually beneficial
relationships are strategically important for strengthening a company’s business
and technical development. Further, such relationships are also beneficial for open
source projects

aStable releases from open source projects that are deployed for use in different contexts are often referred to as software
products

All five principle ways for use and engagement with open source projects can be
identified amongst the partner organisations in the LIM-IT research project. All compa‐
nies have, to some extent, adopted open source work-practices into their own develop‐
ment process (strategy 1), and all use a variety of different open source software in their
own company context (strategy 2). For example, several companies use the Eclipse-
based modelling tool Papyrus in development projects undertaken in their own company
context, and companies in the primary software sector also provide services and training
related to specific open source tools. Further, companies also internally use the open
source licensed ROS (Robotic Operating System) for simulations in their own devel‐
opment processes and there are also experiences from use of many other open source
licensed solutions, such as Apache Solr, Elastic, PostgreSQL, and MongoDB.

Companies use various open source implementations in their own software and
hardware offerings (strategy 3). For example, open source implementations of the
LWM2 M protocol is adopted for wireless communication with machines for use in
different product offerings and several companies include several open source software
components in solutions provided to customers. Several companies use a combination
of proprietary and open source software, and organisations have experience from distri‐
bution of solutions under different terms (including open source software, SaaS, and a
combination of proprietary and open source software).

Addressing Lock-in, Interoperability, and Long-Term Maintenance Challenges 85

Amongst partner organisations there are experience from releasing proprietary soft‐
ware as open source software (strategy 4b) and also from providing contributions to
established open source projects (strategy 4a), such as Apache Solr, SignServer, and
EJBCA.

Organisations seek to establish a long-term symbiotic relationship between different
interests in open and closed contexts which is beneficial for both companies and open
source projects (strategy 5). Such relationships can be effective means for influencing
the formation of long-term goals and thereby support strategic collaborations. For
example, organisations in the LIM-IT project has experience from involvement in open
source industrial working groups, such as Eclipse and the Papyrus Industry Consortium.
Further, amongst partners there are also experiences from initiation of and engagement
with independent open source projects (e.g. SignServer and EJBCA) which include all
relevant roles.

It should be noted that a combination of the above strategies may be utilised for
utilising opportunities with open source in a specific company context. Besides strategic
and technical benefits from utilising the five strategies for engaging with open source
there are also other potential benefits. For example, from a perspective of personnel
policy, a company engaged with open source may be perceived as a much more attractive
employer, which may significantly ease recruitment of new staff.

5 Conclusion

This paper has elaborated on how companies can strategically use open source for
addressing lock-in, interoperability, and long-term maintenance of software and asso‐
ciated digital assets. Through a conceptual model for how companies can use and
leverage from open source we have presented an overview of a collaborative research
project which aims to establish effective strategies for how companies can use and stra‐
tegically engage with open source projects in different ways. In so doing, we have illus‐
trated how organisations, through adoption of different strategies, currently use and are
involved with open source projects in order to achieve long-term strategic benefits for
their own organisation.

Through systematic research investigations of how companies can successfully
address the fundamental challenges lock-in, interoperability, and long-term maintenance
of software and associated digital assets in different usage contexts we seek to advance
practically useful recommendations for use and engagement with open source projects,
whilst also contributing to advancing the existing body of knowledge in the field.

Acknowledgements. This research has been financially supported by the Swedish Knowledge
Foundation (KK-stiftelsen) and participating partner organisations in the LIM-IT project. The
authors are grateful for the stimulating collaboration and support from colleagues and partner
organisations.

86 B. Lundell et al.

References

1. Ågerfalk, P.J., Fitzgerald, B.: Outsourcing to an unknown workforce: exploring opensourcing
as a global sourcing strategy. MIS Q. 32(2), 385–409 (2008)

2. Bird, G.B.: The business benefit of standards. StandardsView 6(2), 76–80 (1998)
3. Blondelle, G., Arberet, P., Rossignol, A., Lundell, B., Labezin, C., Berrendonner, R., Gaufillet,

P., Faudou, R., Langlois, B., Maisonobe, L., Moro, P., Rodriguez, J., Puerta Pena, J.-M.,
Bonnafous, E., Mueller, R.: Polarsys: towards long-term availability of engineering tools for
embedded systems. In: ERTS 2012, 8 p. (2012)

4. Bonaccorsi, A., Rossi, C.: Comparing motivations of individual programmers and firms to
take part in the open source movement: from community to business. Knowl. Technol. Policy
18(4), 40–64 (2006)

5. Braa, K., Vidgen, R.: Interpretation, intervention, and reduction in the organizational
laboratory: a framework for in-context information system research. Account. Manag. Inf.
Technol. 9, 25–47 (1999)

6. EU: Communication from the commission to the european parliament, the council, the
european economic and social committee and the committee of the regions, Against lock-in:
building open ICT systems by making better use of standards in public procurement,
COM(2013) 455 final, European Commission, Brussels, 25 June 2013

7. Fitzgerald, B.: The transformation of Open Source software. MIS Q. 30(4), 587–598 (2006)
8. Gamalielsson, J., Lundell, B.: Sustainability of Open Source software communities beyond a

fork: how and why has the LibreOffice project evolved? J. Syst. Softw. 89, 128–145 (2014)
9. Germonprez, M., Allen, J.P., Warner, B., Hill, J., McClements, G.: Open Source communities

of competitors. Interactions 20(6), 54–59 (2013)
10. Ghosh, R.A.: Open standards and interoperability report: an economic basis for open

standards, FLOSSPOLS, Deliverable D4, 12 December, Maastricht (2005).
www.flosspols.org

11. Hauge, Ø., Sørensen, C.-F., Conradi, R.: Adoption of Open Source in the software industry.
In: Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G. (eds.) OSS 2008. IFIPAICT,
vol. 275, pp. 211–221. Springer, Heidelberg (2008)

12. Katz, A.: Towards a functional licence for open hardware. Int. Free Open Source Softw. Law
Rev. 4(1), 41–62 (2012)

13. Krechmer, K.: The meaning of open standards. In: Proceedings of the 38th Hawaii
International Conference on System Sciences, 10 p. IEEE Computer Society, Los Alamitos
(2005)

14. van der Linden, F.: Applying Open Source software principles in product lines. Upgrade
10(2), 32–40 (2009). http://www.cepis.org/upgrade/files/issue%20III-2009-vanderlinden.pdf

15. van der Linden, F., Lundell, B., Marttiin, P.: Commodification of industrial software: a case
for Open Source. IEEE Softw. 26(4), 77–83 (2009)

16. Lundell, B.: e-Governance in public sector ICT-procurement: what is shaping practice in
Sweden? Eur. J. ePract. 12(6) (2011). https://joinup.ec.europa.eu/sites/default/files/76/a7/05/
ePractice%20Journal-%20Vol.%2012-March_April%202011.pdf

17. Lundell, B.: Why do we need open standards? In: Orviska, M., Jakobs, K. (eds.) Proceedings
of the 17th EURAS Annual Standardisation Conference ‘Standards and Innovation’. The
EURAS Board Series, Aachen, pp. 227–240 (2012). ISBN: 978-3-86130-337-4

18. Lundell, B., Gamalielsson, J., Mattsson, A.: Exploring tool support for long-term maintenance
of digital assets: a case study. In: Fomin, V., Jakobs, K. (eds.) Proceedings of the 16th EURAS
Annual Standardization Conference, European Academy of Standardisation, The EURAS
Board, pp. 207–217 (2011)

Addressing Lock-in, Interoperability, and Long-Term Maintenance Challenges 87

http://www.flosspols.org
http://www.cepis.org/upgrade/files/issue%20III-2009-vanderlinden.pdf
https://joinup.ec.europa.eu/sites/default/files/76/a7/05/ePractice%20Journal-%20Vol.%2012-March_April%202011.pdf
https://joinup.ec.europa.eu/sites/default/files/76/a7/05/ePractice%20Journal-%20Vol.%2012-March_April%202011.pdf

19. Lundell, B., Gamalielsson, J., Tengblad, S.: IT-standarder, inlåsning och konkurrens: En
analys av policy och praktik inom svensk förvaltning, Uppdragsforskningsrapport 2016:2,
Konkurrensverket (2016). http://www.konkurrensverket.se/nyheter/problem-med-slutna-
standarder-vid-it-upphandlingar/ (in Swedish, with an English Executive Summary). ISSN:
1652-8089

20. Lundell, B., van der Linden, F.: Open Source software as open innovation: experiences from
the medical domain. In: Eriksson Lundström, J.S.Z., et al. (eds.) Managing Open Innovation
Technologies, pp. 3–16. Springer, Berlin (2013)

21. Lundell, B., Lings, B., Lindqvist, E.: Open Source in Swedish companies: where are we? Inf.
Syst. J. 20(6), 519–535 (2010)

22. Lundell, B., Lings, B., Syberfeldt, A.: Practitioner perceptions of Open Source software in
the embedded systems area. J. Syst. Softw. 84(9), 1540–1549 (2011)

23. Northbridge: 2016 the future of open source, North Bridge (2016). http://www.slideshare.net/
blackducksoftware/2016-future-of-open-source-survey-results

24. NPS: Open IT-standards, National Procurement Services (Kammarkollegiet), 7 March, Dnr
96-38-2014 (2016). http://www.avropa.se/globalassets/open-it-standards.pdf

25. OSI: Open Source Initiative (2017). https://opensource.org/
26. Robert, S.: On-board software development - The open-source way, IST/ARTEMIS

workshop, Helsinki, 22 November 2006
27. Schaarschmidt, M., Walsh, G., von Kortzfleisch, H.F.O.: How do firms influence Open Source

software communities? A framework and empirical analysis of different governance modes.
Inf. Organ. 25(2), 99–114 (2015)

28. UK: Open standards principles: for software interoperability, data and document formats in
government IT specifications. Cabinet Office, UK, 1 November 2012

29. Wichmann, T.: FLOSS Final Report – Part 2, Free/Libre Open Source Software: Survey and
Study Firms’ Open Source Activities: Motivations and Policy Implications, Burleson
Research GmbH, July, Berlin (2002)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

88 B. Lundell et al.

http://www.konkurrensverket.se/nyheter/problem-med-slutna-standarder-vid-it-upphandlingar/
http://www.konkurrensverket.se/nyheter/problem-med-slutna-standarder-vid-it-upphandlingar/
http://www.slideshare.net/blackducksoftware/2016-future-of-open-source-survey-results
http://www.slideshare.net/blackducksoftware/2016-future-of-open-source-survey-results
http://www.avropa.se/globalassets/open-it-standards.pdf
https://opensource.org/
http://creativecommons.org/licenses/by/4.0/

Understanding the Effects of Practices

on KDE Ecosystem Health

Simone da Silva Amorim1(B), John D. McGregor2,
Eduardo Santana de Almeida3, and Christina von Flach Garcia Chavez3

1 Federal Institute of Education, Science and Technology of Bahia,
Salvador, Bahia, Brazil

simone.amorim@ifba.edu.br
2 Clemson University, Clemson, SC, USA

johnmc@cs.clemson.edu
3 Federal University of Bahia, Salvador, Bahia, Brazil

esa@dcc.ufba.br, flach@ufba.br

Abstract. Open source software ecosystems have adjusted and evolved
a set of practices over the years to support the delivery of sustainable
software. However, few studies have investigated the impacts of such
practices on the health of these ecosystems. In this paper, we present
the results of an ethnographic-based study conducted during the Latin-
American KDE users and contributors meeting (LaKademy 2015) with
the goal of collecting practices used within the KDE ecosystem and
understanding how they affect ecosystem health. The analysis was based
on softgoal interdependency graphs adapted to represent practices and
relate them to non-functional requirements and goals. Our results pro-
vide a preliminary insight to understand how KDE ecosystem community
interacts, which working practices have been adopted and how they affect
ecosystem health.

Keywords: Open source software ecosystems · Ethnographic studies ·

Software practices · Software ecosystem health

1 Introduction

The software ecosystem (SECO) strategy has been used with great success for
several years [1,2]. This strategy has facilitated the emergence of communities
surrounding hardware and software computing platforms, such as the Apple
iOS community, and certain configurable products, such as the Eclipse Rich
Client Platform. Each organization joining a SECO is looking to fill a role in
the community that will foster its business objectives. The community members
leverage the work of other members to grow bigger products faster than they
could have on their own.

Within a SECO, one or more platform providers work to attract product
developers to use the provider’s platform as the foundation for products. The
platform organization shares some degree of control over their platform, provides

c© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 89–100, 2017.
DOI: 10.1007/978-3-319-57735-7 10

90 S.d.S. Amorim et al.

tools that make product development easier on their platform, and provides
access to information about the current structure and future changes to the
platform. The dominant organization in the ecosystem, usually the platform
owner, heavily influences the culture of the ecosystem.

The health of a SECO stands for the growing and continuity of the soft-

ware ecosystem remaining variable and productive over time [11]. The assessment
of SECO health can be performed with respect to different aspects, including
robustness, productivity, and niche creation [11]. Some studies present quanti-
tative assessment on SECO health [13].

Practices can be useful to understand a SECO and assess its health. For
instance, the practice “review all code before accepting into the release” may
impact several quality indicators and contribute to increasing productivity while
avoiding rework. However, to our knowledge, there is no qualitative study that
focuses on software practices and their relation to SECO health.

In this paper, we present the results of an ethnographic-based study con-
ducted with the purpose of investigating the practices used by a SECO from
three perspectives [5] – business, social, and technical – and their impact on
SECO health. The selected research method, ethnography, has been used to
study software practices in different contexts [16,17]. The object of our study
was KDE1, an open source SECO that gathers a set of platforms and products
for Linux distributions. During the Latin-American KDE users and contributors
meeting (LaKademy 2015), we collected day-to-day practices and analyzed them
to understand their impact on SECO health. Softgoal interdependency graphs
(SIG) [7] extended with practices, support the analysis of KDE practices and
their influence on health aspects of SECO such as productivity and robustness.

The remainder of the paper is organized as follows: Sect. 2 presents back-
ground on SECO. Section 3 introduces SIG-P, our customized SIG [7]. Section 4
presents the context and design of our study. Section 5 presents the collected
KDE practices and a preliminary analysis of their relation to KDE health.
Section 6 presents findings, contributions and limitations of our work. Section 7
presents related work. Finally, Sect. 8 provides a brief description of future work
and some concluding remarks.

2 Background

The concept of software ecosystem health was introduced by Iansiti and Levien as
the growing and continuity of the SECO remaining variable and productive over

time [11]. They argued that the performance of an organization also depends
on its interactions with the whole ecosystem – not only on the relationship
with competitors and stakeholders and on the organizational potential. Iansiti
and Levien drew an analogy with biological ecosystems, and argued that SECO
health should be assessed based on three aspects: robustness, productivity, and
niche creation [11].

1 https://www.kde.org/.

https://www.kde.org/

Understanding the Effects of Practices in the KDE Ecosystem Health 91

Robustness refers to the ability of the ecosystem to survive radical changes
and problems resulting from these changes. The ecosystems should face and over-
come all inevitable difficulties inherent in the evolutionary process. Productivity
is related to the way in which the work is accomplished with the least waste
of time and effort. The ecosystem should add value through innovation, man-
agement of resources and cost control. Lastly, niche creation represents SECO
features that encourage and support diversity among the different species in the
ecosystem. The ecosystem should provide the structure for creating new features
over time, increasing the diversity among SECO members’ products [11].

Campbell [5] introduces three views to classify the features of a SECO:
technical, business and social. The Technical View presents the architecture
and approaches to implementing software. The Business View captures business
strategies at play in the ecosystem. In some cases, organizations will be in direct
competition and making decisions on release dates and licensing in response to
the actions of others within the ecosystem. The Social View captures relation-
ships among humans: developers, users, managers and other participants.

SECO health should not be evaluated only by considering metrics. Practices
also aid in understanding a project and its evolution with greater fidelity. They
provide clear goals and forms to assess a good working performance to achieve
a successful end [12]. For example, the practice “Provide continuous integra-

tion tools to check code every day and report errors” will impact several quality
indicators as well as contribute to increasing productivity while avoiding rework.

3 The NFR Framework with Practices

The NFR framework [6,7] provides a systematic approach for defining and repre-
senting non-functional requirements (NFR) for software products. A set of goals
represent NFR, design decisions and claims to support or not other goals. Goals
are decomposed into subgoals and related with AND/OR relationships [7].

The term softgoal introduces the concept of satisficing [7]. Softgoals may
contribute to some degree (positively (+, ++) or negatively (−, −−), fully
or partially), in satisfying other softgoals. A Softgoal Interdependency Graph
(SIG) models NFR and their interdependencies to achieve a softgoal (or desired
quality). Design decisions are represented by operationalization softgoals. SIG
diagrams provide a visual representation for SIG [7].

3.1 SIG with Practices (SIG-P)

SIG with Practices (SIG-P), our customized SIG, models SECO practices and
their influence on SECO non-functional requirements. In SIG-P, each practice is
modeled as a satisficing technique [7] and the degree of its influence on SECO
health is documented.

Aspects of SECO health such as robustness, productivity, and niche cre-
ation [11] are modeled as softgoals. Each softgoal can be decomposed and refined

92 S.d.S. Amorim et al.

Fig. 1. SIG-P for business view

into mandatory and optional subgoals/NFR that influence directly the achieve-
ment of such aspects of SECO health. Practices are connected by interdepen-
dency links to NFR to indicate that they contribute to reach softgoals. Social,
business and technical views [5] are presented in SIG-P diagrams.

SIG-P diagrams can be used to enhance general understanding about a SECO
and its health. They provide a graphical representation for practices, their inter-
dependencies and impacts on NFR and SECO aspects. Moreover, evaluators
can build SIG-P models to reason and provide qualitative assessment on SECO
health and use SIG-P diagrams to support discussions about correlations and
trade offs among softgoals. Figure 1 presents an example of a SIG-P diagram.
Details about this example are presented and discussed in Sect. 6.

3.2 SIG-P Construction

The construction of a SIG-P graph for an specific SECO view [5] starts with
one or more ecosystem health aspects [11] and a set of practices used by some
target SECO. A catalogue of documented NFR, such as the one provided in [7]
is strongly recommended.

We defined three steps to guide the bottom-up construction of a SIG-P for
each SECO view. Given a set of practices of a target SECO, a catalogue of
NFR and SECO softgoals: (1) For each practice, identify a subset of NFR and
consider its influence on each NFR; (2) For each identified NFR, analyze its
influence on softgoals, considering ambiguities, trade offs and priorities; and (3)
For each identified NFR, evaluate the impact (positive or negative) of NFR on
softgoals.

These steps can be refined with many iterations considering the reasoning
about NFR and their different alternatives. The SIG-P diagram from Fig. 1 illus-
trates a SIG-P for a business view.

Understanding the Effects of Practices in the KDE Ecosystem Health 93

4 Methodology

The KDE ecosystem2 is an international community that provides a Free Open
Source desktop environment for many Linux distributions. The KDE ecosys-
tem has several initiatives to promote their projects around world. In Brazil,
a branch of the global organization gathers a team of KDE supporters. The
Brazilian group promotes LaKademy (Latin American Akademy), an annual
event at which KDE users and contributors meet in person to exchange ideas
about projects and discuss the future of KDE. At this event, attendees partici-
pate in a set of activities such as lectures, hackathon sessions, and meetings on
specific topics.

Hackathons are events that produce working software in a limited period
of time. They consist of strenuous and uninterrupted intervals of coding, and
are very useful as social and educational events [14]. Komssi et al. stated that
hackathons’ participants can also learn new practices, technologies, and atti-
tudes, which can be used in everyday work [14]. During KDE events, hackathons
provide informal ways to meet new people and learn new technologies.

4.1 Research Method

In this study, research techniques commonly used in ethnographic studies were
adopted to support the researcher in understanding the practices and commu-
nication strategies KDE uses to work collaboratively. Most of the work in the
context of open source SECOs, including KDE, is performed by distributed
teams and contributors. Therefore, LaKademy provided an appropriate setting
for conducting an ethnographically-inspired [9,18], short term study about KDE.
The researcher could observe and participate in LaKademy through in-person
meetings and activities.

To address practical challenges faced when conducting ethnographic stud-
ies [16], we joined the KDE community to gain better access to the setting of
the practices and the use of a common vocabulary. We also conducted our investi-
gation without unnecessary formality, explaining our research, who we were and
what we were doing, and trying not to interfere with the activities of LaKademy.
Verbal consent was captured on audio recordings at the beginning of sessions.
Furthermore, we were rigorous in data collection and analysis to avoid bias.

The first days of Lakademy hackathons are used to disseminate KDE prac-
tices and knowledge about the ecosystem. Then developers follow a plan to work
hard and deliver planned features. Therefore even knowing that developers are
not working in their natural setting, we assume that many practices can be
transferred to everyday work of participants.

2 http://www.kde.org/.

http://www.kde.org/

94 S.d.S. Amorim et al.

4.2 Data Collection and Analysis Procedures

On-site immersion and data collection took place at LaKademy 20153 event held
in Salvador, from 3rd to 6th June, 2015. The event had 15 participants including
students, professionals and KDE collaborators. During 4 days, we conducted
semi-structured interviews, listened to lectures, analyzed KDE documents, and
observed interactions of community members, mainly during hackathon sessions.
Observations were documented in the form of field notes and audio records.

Interviews. Interviews were semi-structured, with 24 open-ended questions
intended to understand the daily practices used in KDE ecosystem. Interviews
were audio-recorded and later transcribed. We had interview sessions with 4
KDE members that have contributed actively to KDE for 6 years or more – three
of them were members of KDE e.V. [3], a group that represents the KDE Com-
munity with respect to legal and financial issues. One of the interviewed KDE
members is part of the KDE Board responsible for business management. We
assumed that these people were heavily engaged and up to date regarding most
of KDE decisions and practices. They also provided relevant information about
the KDE community, contribution areas, financial issues and future plans. The
questionnaire can be found at http://homes.dcc.ufba.br/∼ssamorim/lakademy/.

Hackathons. During LaKademy 2015, the researcher joined two hackathon ses-
sions for removing bugs from two KDE applications: Cantor, a mathematical
application, and the Plasma Network Manager. These sessions provided a good
opportunity to observe developers with different levels of experience performing
tasks with their own style and ask questions about reasons behind their actions.
Some practices, not identified during interviews, were collected during hackathon
sessions.

Document Analysis. The researcher also gathered references to online KDE
documents. The community maintains a rich website that describes various
aspects of KDE ecosystem. We had access to international and Brazilian web-
sites and their documents. Thus, we could explore in detail the dynamics of
interactions of the entire KDE ecosystem.

5 Results and Analysis

5.1 Practices in KDE

We collected 68 practices used in KDE SECO. Although a practice could be
associated to more than one SECO view (social, business, or technical), we linked
it to a single view for which the practice seemed to be most influential. The
collection of 68 practices was validated by two interviewees. Five practices (B14,
T3, T21, T27, and T35) were not validated. We also asked the two interviewees
to choose five important practices for each view.

3 https://br.kde.org/lakademy-2015.

http://homes.dcc.ufba.br/~ssamorim/lakademy/
https://br.kde.org/lakademy-2015

Understanding the Effects of Practices in the KDE Ecosystem Health 95

Table 1 presents 10 Social Practices, related to working together in the com-
munity, selected by two interviewees. Accordingly, Table 2 presents 10 Business
Practices, related to aspects of management, strategic planning, and innova-
tion, and organized activities such as marketing, making decisions, and so on.
Finally, Table 3 presents 10 Technical Practices (out of 40 practices), related to
product development (core and applications), technologies used, code rules, and
others. Other practices are available at http://homes.dcc.ufba.br/∼ssamorim/
lakademy/.

Table 1. Social Practices

Id Most important Social Practices Id Other Social Practices

S7 Conduct a general annual face to face
meeting to discuss community issues

S12 Promote happy hours and dinners to
facilitate social integration during
events

S1 Create confidence in a member based
on his work history. Based on this,
provide different levels of
responsibilities

S2 Require that at least two persons
nominate a member to be promoted up
the levels of responsibilities

S4 Promote networking in the work
market

S3 Conduct annual meetings among
translators by projects

S8 Perform elections to assign
responsibility levels for new members

S5 Promote social relationships with
members in other countries

S11 Use tools to support communication in
the group such as: mailing lists, forums,
IRCs, wikis, and blogs

S6 Create opportunities to practice another
human language such as English

Table 2. Business Practices

Id Most important Business Practices Id Other Business Practices

B5 Provide a nonprofit corporation to
manage legal and financial issues

B6 Divide activities into working groups
responsible for areas such as marketing,
infrastructure, design, community to keep the
group healthy

B8 Attract companies that will invest
money to support the ecosystem

B1 Provide flexibility in translation schedule and
negotiate deadlines

B11 Define a schedule of releases that
will affect the work of the entire
community

B2 Reach an agreement in the community on
how to answer questions that are not
addressed in tutorials or guidelines

B16 Assign a lead maintainer for each
project for making technical
decisions

B4 Provide lectures to teach how to translate and
how to become a contributor

B3 Make decisions based on
discussions in the mailing list

B7 Make technical decisions independently
within each project

http://homes.dcc.ufba.br/~ssamorim/lakademy/
http://homes.dcc.ufba.br/~ssamorim/lakademy/

96 S.d.S. Amorim et al.

Table 3. Technical Practices

Id Most important Technical Practices Id Other Technical Practices

T1 Each person chooses the work they
desire to perform among available
tasks in the ecosystem, e.g., file to
translate, code to develop,
applications to test, and so on

T11 Provide tools for code optimization,
static analysis of code, code review, and
test automation

T2 Review all code before accepting into
the release.

T15 Provide a manifest which project must
follow to be considered part of the
ecosystem

T10 Provide a freeze period to stabilize
the translation of a version before the
launch of that version

T16 Require that all infrastructure must be
under the control of the ecosystem and
be based on technologies created by the
ecosystem

T13 Provide continuous integration tools
to check code every day and report
errors

T25 Keep backward compatibility for a long
time (around 6 years)

T23 Develop code to be extensible. The
use of plug-ins and compilation is
separated between the core and
applications

T19 Use scripts to do an initial code review
and catch errors

5.2 Analysis

We resorted to SIG-P diagrams to understand and analyze the effects of identified
practices on KDE health. SIG-P diagrams were built, one for each SECO view,
by following steps described previously (Sect. 3).

SIG-P diagram for KDE business view (Fig. 1, introduced in Sect. 3) sup-
ports the analysis of KDE business practices. For instance, practice B5 (Pro-

vide a nonprofit corporation to manage legal and financial issues) may influence
Sustainability that, in turn, provides a positive influence on Niche Creation.

Fig. 2. SIG-P for Social View

Understanding the Effects of Practices in the KDE Ecosystem Health 97

Fig. 3. SIG-P for Technical View

Fig. 2 presents a SIG-P diagram for KDE social view that is used to reason
about KDE social practices. For instance, Practices S7 (Conduct a general annual

face to face meeting to discuss community issues) and S8 (Perform elections to

assign responsibility levels for new members) affect Controllability4 that, in
turn, provides a positive influence on Robustness and Productivity

Fig. 3 presents a SIG-P diagram for KDE technical view. For instance, Prac-
tice T16 (Require that all infrastructure must be under the control of the ecosys-

tem and be based on the technologies created by the ecosystem) may influence
Reliability that, in turn, provides a positive influence on Robustness and
Productivity. At http://homes.dcc.ufba.br/∼ssamorim/lakademy/ other SIG-
P diagrams are available.

6 Discussion

6.1 Findings

This study allowed us to uncover implicit features of SECO practices and reveal
the context in which they were immersed: (a) Many practices are not docu-
mented or standardized; (b) There is a great amount of tacit knowledge sharing
during hackathon sessions – this highlights the importance of meeting people
face-to-face to strengthen the community; and (c) Practices do have influence
on KDE ecosystem health, which can be exploited later to support decision-
taking processes.

6.2 Contributions

SECO participants can use the knowledge base of practices and related effects in
situations such as: (a) SECO adoption, whenever an organization wants to adopt

4 Controllability can be defined as a quality of ecosystems interested in keeping stable
and pursuing sustainable development [15].

http://homes.dcc.ufba.br/~ssamorim/lakademy/

98 S.d.S. Amorim et al.

some ecosystem platform, the NFR with practices can be used to evaluate risks;
(b) Getting involved, whenever an individual or team wants to contribute with an
open source ecosystem, documented practices and their effects on SECO health
can improve the learning curve; and (c) Partnership establishment, in scenarios
of feasibility analysis, the NFR with practices can provide useful information to
judge the feasibility of partnerships.

Researchers can use our results as input to new evaluation models and quality
models for SECOs, and inspiration for performing additional qualitative studies
on SECO health. So far additional studies and data are necessary to analyze
which practices are more influential or the degree of their influence on SECO
health. A deeper understanding on SECO practices will help us to further investi-
gate factors that may contribute to balancing the trade-offs necessary for SECO
health.

6.3 Limitations

The contributions of this study should be balanced against some limitations
relating to the timing of the study, observer bias, and observed subject bias.
Classical ethnographic studies are performed over a long period of time [10].
However, LaKademy provides a rare opportunity to meet people face-to-face in
an ecosystem that carries out many online activities.

Additionally, there are limitations regarding practices not captured, vari-
ability of SIG-P configurations, and validation of the results. SIG-P models are
supposed to support understanding and analysis of SECO practices with respect
to their influence on NFR and different health aspects (robustness, productivity,
and niche creation) of KDE. In this paper, we only show one combination for
SIG-P, but many other combinations are possible including negative impacts.
Moreover, we worked to avoid bias taking a rigorous approach to data collection
and analysis. Nevertheless, we should perform more combination of practices
and NFR and validate the results to produce a more comprehensive analysis.

7 Related Work

To our knowledge, there is no qualitative study in the context of SECO health
that focuses on software practices. In this section, we outline related work that
addresses ethnography and practices.

Sharp et al. [17] presented an ethnographic study to identify XP practices,
conducted in a small company that developed web-based intelligent advertise-
ments. Their findings included 5 characterizing themes within XP practice. The
identified practices indicated that, in the XP culture, individuals and teams are
respected, take responsibilities, and act to maintain the quality of working life.
This work helped us in the identification of XP practices used by KDE.

Evangelista [8] in his PhD thesis investigated the Free Software Movement
(FSM), with the overall goal of studying the relation between free software and
topics such as culture, power, labor and ideology. To understand the FSM in the

Understanding the Effects of Practices in the KDE Ecosystem Health 99

Brazilian context, he conducted an ethnographic study during the 9th Interna-
tional Free Software Forum (FISL)5. His study reported several practices used
in open source ecosystems. Furthermore, it inspired us to apply ethnography in
our work, and provided guidance on observing and understanding practices used
by KDE.

8 Conclusions and Future Work

SECOs have achieved success and attracted the attention of researchers. How-
ever, little is known about SECO practices and reasons for their success. In this
paper, we presented an ethnographic-based study conducted during LaKademy
2015 to collect practices of the KDE ecosystem and understand how they affect
ecosystem health. These practices were linked to non-functional requirements to
provide a preliminary support to SECO health assessment.

This work provides a set of practices and a SIG-P catalogue of the analyses
of the impact of practices on SECO health. These results are important steps
for our ongoing research proposal of an assessment method for SECO health
based on practices [4]. Our results can also support researchers in understanding
operational aspects of open source SECOs.

Acknowledgments. We are thankful to Lakademy 2015 organizers and participants.
John McGregor is partially funded by the NSF grant #ACI-1343033.

References

1. Success, Android’s: by the Numbers. Information Week (2012). http://www.
informationweek.com/mobile/mobile-devices/androids-success-by-the-numbers/
d/d-id/1103058

2. Global Hadoop Market - industry analysis, size, share, growth, trends and forecast
2012–2018. Transparency Market Research - White Paper (2013). http://www.
transparencymarketresearch.com/hadoop-market.html

3. Pintscher, L. (ed.): Years of KDE: Past, Present and Future (2016). http://20years.
kde.org/book/20yearsofKDE.pdf

4. Amorim, S.S., Almeida, E.S., McGregor, J.D., Chavez, C.v.F.G.: Towards an evalu-
ation method for software ecosystem practices. In: Proceeding of the 10th European
Conference on Software Architecture Workshops, ECSAW 2016 (2016)

5. Campbell, P.R.J., Ahmed, F.: A three-dimensional view of software ecosystems. In:
Proceeding of the Fourth European Conference on Software Architecture, ECSA
2010, pp. 81–84, August 2010

6. Chung, L., Mylopoulos, J., Nixon, B.: Representing and using nonfunctional
requirements: a process-oriented approach. IEEE Trans. Softw. Eng. 18, 483–497
(1992)

7. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. International Series in Software Engineering. Kluwer Acad-
emic Publishers, Boston (1999)

5 http://softwarelivre.org/fisl17.

http://www.informationweek.com/mobile/mobile-devices/androids-success-by-the-numbers/d/d-id/1103058
http://www.informationweek.com/mobile/mobile-devices/androids-success-by-the-numbers/d/d-id/1103058
http://www.informationweek.com/mobile/mobile-devices/androids-success-by-the-numbers/d/d-id/1103058
http://www.transparencymarketresearch.com/hadoop-market.html
http://www.transparencymarketresearch.com/hadoop-market.html
http://20years.kde.org/book/20yearsofKDE.pdf
http://20years.kde.org/book/20yearsofKDE.pdf
http://softwarelivre.org/fisl17

100 S.d.S. Amorim et al.

8. Evangelista, R.: Traidores do Movimento: poĺıtica, cultura, ideologia e trabalho no
Software Livre. Ph.D. thesis, University of Campinas, in Portuguese (2010)

9. Robinson, H., Segal, J., Sharp, H.: Ethnographically-informed empirical studies of
software practice. Inf. Softw. Technol. 49, 540–551 (2007)

10. Hammersley, M., Atkinson, P.: Ethnography: Principles in Practice. Routledge
(2007)

11. Iansiti, M., Levien, R.: Keystones and dominators: Framing operating and technol-
ogy strategy in a business ecosystem. Harvard Business School (03-061), November
2002

12. Jacobson, I., Ng, P.W., Spence, I.: Enough of processes - lets do practices. J. Object
Technol. 6(6), 41–66 (2007)

13. Jansen, S.: Measuring the health of open source software ecosystems: beyond the
scope of project health. Inf. Softw. Technol. 56, 1508–1519 (2014). Special Issue
on Software Ecosystems

14. Komssi, M., Pichlis, D., Raatikainen, M., Kindström, K., Järvinen, J.: What are
hackathons for? IEEE Softw. 32, 60–67 (2015)

15. Mens, T., Claes, M., Grosjean, P.: ECOS: Ecological Studies of Open
Source Software Ecosystems (2014). http://pdfs.semanticscholar.org/55d9/
b45fbab62fbcb7ec09ef4495103361880419.pdf

16. Passos, C., Cruzes, D.S., Dyb̊a, T., Mendonça-Neto, M.: Challenges of applying
ethnography to study software practices. In: Proceeding of the ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM),
pp. 9–18, September 2012

17. Sharp, H., Robinson, H.: An ethnographic study of XP practice. Empirical Softw.
Eng. 9, 353–375 (2004)

18. Sharp, H., Dittrich, Y., de Souza, C.R.B.: The role of ethnographic studies in
empirical software engineering. IEEE Trans. Softw. Eng. 42(8), 786–804 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://pdfs.semanticscholar.org/55d9/b45fbab62fbcb7ec09ef4495103361880419.pdf
http://pdfs.semanticscholar.org/55d9/b45fbab62fbcb7ec09ef4495103361880419.pdf
http://creativecommons.org/licenses/by/4.0/

Challenges in Validating FLOSS Configuration

Markus Raab1(B) and Gergö Barany2

1 Institute of Computer Languages, Vienna University of Technology,
Vienna, Austria

markus.raab@complang.tuwien.ac.at
2 Inria, Paris, France

gergo.barany@inria.fr

Abstract. Developers invest much effort into validating configuration
during startup of free/libre and open source software (FLOSS) appli-
cations. Nevertheless, hardly any tools exist to validate configuration
files to detect misconfigurations earlier. This paper aims at understand-
ing the challenges to provide better tools for configuration validation.
We use mixed methodology: (1) We analyzed 2,683 run-time configura-
tion accesses in the source-code of 16 applications comprising 50 million
lines of code. (2) We conducted a questionnaire survey with 162 FLOSS
contributors completing the survey. We report our experiences about
building up a FLOSS community that tackles the issues by unifying con-
figuration validation with an external configuration access specification.

We discovered that information necessary for validation is often miss-
ing in the applications and FLOSS developers dislike dependencies on
external packages for such validations.

1 Introduction

Configuration settings influence the behavior of software and are used ubiqui-
tously today. Configuration access is done by the part of applications concerned
with fetching configuration settings from configuration files, environment vari-
ables, etc. at run-time. Configuration validation detects configuration settings
which do not fulfill the user’s expectations, for example, setting a web browser’s
proxy to a server that is not reachable in the currently connected network.

While configuration access seems to be straightforward, system administra-
tors experience many surprises on a daily basis. In the systems community the
issue is well-known as misconfiguration [1,30,36,37]. Misconfigurations cause
large-scale outages of Internet services [19]. Yin et al. [37] claim that “a majority
of misconfigurations (70.0%–85.5%) are due to mistakes in setting configuration”.

Xu et al. argue that often configuration access code and not system admin-
istrators are to blame [35]. Often (38.1%–53.7%) misconfiguration is caused by
illegal settings which clearly violate syntactic or semantic rules [37]. Thus most

Gergö Barany—This work was performed while the author was at CEA LIST Soft-
ware Reliability Laboratory, France, and supported by the French National Research
Agency (ANR), project AnaStaSec, ANR-14-CE28-0014.

c© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 101–114, 2017.
DOI: 10.1007/978-3-319-57735-7 11

102 M. Raab and G. Barany

errors could be caught with a consistency checker executed before configuration
changes. Nevertheless, only in 7.2% to 15.5% cases do error messages pinpoint
the error [37]. Free/libre and open source software (FLOSS) applications often
do not validate their settings before startup or even later [34]. System adminis-
trators have to find their own ad-hoc ways [3,4,13,31,39].

Other factors also influence configuration settings. We will call validation that
considers more than the settings of a single application global validation. Faulty
global validation causes issues in 46.3%–61.9% of cases [37]. For example, when a
web browser is started in a different network, previously working proxy settings
will fail to work. Our holistic approach rejects misconfigurations early on.

These issues lead to our research question: Why do we lack tools for global
validation, and how can we help developers provide them?

Our contributions are as follows:

– We showed that getenv is omnipresent and popular (Sect. 3).
– We unveiled challenges related to current configuration systems (Sect. 4).
– We implemented a tool implementing the unearthed requirements (Sect. 5).
– The tool is available as free software at https://www.libelektra.org.

2 Methodology

Our methodological foundation builds on theory building from cases [10,11].
In the present paper we will use two different methodologies embedded in a
framework: source-code analysis and a questionnaire.

2.1 Source-Code Analysis

We study getenv, which is an application programming interface (API) to access
environment variables. We chose it because it is the only widely standardized con-
figuration access API (included in C, C++, and POSIX standards) and available
in many programming languages. In earlier work [26], we showed that getenv is
used at run-time ubiquitously. getenv is often combined with other techniques,
for example, overriding configuration file settings. Furthermore, environment
variables are not part of configuration settings dialogues, i.e., they are usually
not validated before reaching the application.

We carefully selected 16 applications across different domains. We included
large applications with a thriving community but also others for diversity. We
used the versions of the applications as included in Debian 8 (Jessie) as shown
later in Table 1. Wedownloaded package sources fromhttp://snapshot.debian.org.
To determine the code size we used Cloc 1.60 [7].

We manually counted all getenv occurrences for the version specified in
Table 1. Then we categorized the resulting 2,683 code snippets around getenv.
We looked if getenv occurrences depend on some other configuration. Such situ-
ations occur when configuration settings interact; for example, fallback chains of
configuration access points depend on each other. Such fallback chains are hints

https://www.libelektra.org
http://snapshot.debian.org

Challenges in Validating FLOSS Configuration 103

to global configuration access, which we wanted to find. As our last experiment,
we searched for places where global validation would be useful, and investigated
how helpful the documentation of the getenv parameters is.

Threats to Validity: For evaluating usefulness (as only done in the last exper-
iment), by nature, subjectivity is involved. In particular, it is possible that we
overlooked dependences. We will report the numbers we found but we consider
the experiment as exploratory and not as something that could be repeated with
the same numbers as outcome. The individual examples, however, are insightful.

2.2 Questionnaire

We carefully prepared a questionnaire with FLOSS developers in mind. Then we
conducted pilot surveys with developers, colleagues and experts for surveys. In
the iterations we improved the questions and made the layout more appealing.

In order to reach the target group, we posted requests to fill out the survey
in the respective FLOSS communication channels. To obtain a higher quality,
we awarded non-anonymous answers with small donations to FLOSS-related
projects. We used the non-anonymous answers to cross-check statistics.

We asked some personal questions about age, education, occupation, and
FLOSS participation to have the important characteristics of our participants.

We used Limesurvey version 2.50+ for conducting the survey. We will report
the percentages relative to the number of persons (n) who answered a particular
question. We report means and standard deviations (s) of samples for n ≥ 95.
We used the Kolmogorov-Smirnov test [15] for smaller samples.

Threats to Validity: For the validity of our survey it is important that only
FLOSS contributors participate. The donation might have persuaded some par-
ticipants to fill out parts of the survey even though they had no particular
experience. Thus we explicitly asked about contributions to specific projects.

The survey reflects the beliefs of participants. Thus we used other methods
to distill facts about the applications. Because opinions help to understand goals
and reasons, the survey is an important part of the overall study. It should be
considered as supplement to the source-code analysis.

Demographics: The front page of the survey was shown to 672 persons, 286 gave
at least one answer, 162 completed the questionnaire, and 116 persons entered their
email addresses. The age of the population (n = 220) has a mean of 32 years
(s = 9). The degrees in the population (n = 244) are: master (38%), bachelor
(25%), student (18%), no degree (13%), or PhD (6%). As their occupation, 56%
of the persons selected software developer, 21% system administrator, and 16%
researcher (multiple choice question, n = 287). Participants reported work on
up to five different FLOSS projects. For the first project, they estimated their par-
ticipation with a mean of 5.3 years (s = 5, n = 180). 60% of them reported a
second FLOSS project, 36% a third, 17% a fourth, and 9% a fifth.

Raw data and questions are available at https://rawdata.libelektra.org.

https://rawdata.libelektra.org

104 M. Raab and G. Barany

3 Configuration Access

Before we start exploring our research question, we need to validate that our
evaluated configuration accesses are indeed relevant and popular. In this section
we investigate which configuration access methods FLOSS developers use.

3.1 Which Methods for Configuration Access are Popular?

Finding 1a: We observed that getenv is omnipresent with 2,683 occurrences.
The source code of the applications we analyzed has 4,650 textual getenv occur-
rences. 2,683 of them were actual getenv invocations, 1,967 were occurrences in
comments, ChangeLog, build system, or similar. (See Table 1 for details.)

Finding 1b: Three kinds of configuration access are equally popular: Command-
line arguments, environment variables, and configuration files. Developers are
highly satisfied with them. Others are used less, and are more frustrating to use.

Command-line arguments (92%, n = 222), environment variables (e.g., via
getenv) (79%, n = 218), and configuration files (74%, n = 218) are the most
popular ways to access configuration. Other systems, such as X/Q/GSettings,
KConfig, dconf, plist, or Windows Registry, were used less (≤ 13%, n ≥ 185).

Participants rarely found it (very) frustrating to work with the popular sys-
tems: getenv (10%, n = 198), configuration files (6%, n = 190), and command-
line options (4%, n = 210). Less-used systems frustrated more (≥ 14%, n ≥ 27).

3.2 What Is the Purpose of getenv?

Finding 1c: Like other configuration accesses, getenv is used to access config-
uration settings (57%). Sometimes it bypasses main configuration access.

Of the 2,683 getenv invocations, 1,531, i.e., 57%, relate to run-time configu-
ration settings and not debugging, build-system, or similar. Other investigations
in this paper discuss these 1,531 getenv occurrences. (See Table 1 for details.)

We found occurrences where getenv obviously bypasses main configuration
access, for example, to configure the location of configuration files.

Also in the survey we asked about the purpose of getenv (n = 177). The
reasons to use it vary: in a multiple choice question 55% say they would use it
for debugging/testing, 45% would use getenv to bypass the main configuration
access, and 20% would use getenv if configuration were unlikely to be changed.

Finding 1d: In many cases getenv parameters are shared between applications.
In the source code we investigated which parameters were passed to getenv.
We found that 716 parameters were shareable parameters such as PATH. In the
survey 53% say they use getenv for configuration integration (n = 177).

Finding 1e: Parameters of getenv are often undocumented.
The function parameter passed to getenv invocations tells us which configura-
tion setting is accessed. In an Internet search using the application’s and getenv

Challenges in Validating FLOSS Configuration 105

parameter’s name with https://startpage.com, we found documentation for only
283 of the non-shared getenv parameters but not for the 387 others.

The FLOSS projects deal with the missing documentation of getenv parame-
ters in different ways. Most projects simply claim their getenv usage as internal,
saying the environment should not be used for configuration by end users, even
if there is no other way of achieving some goal. Often we miss a specification
describing which parameters are available.

In other projects, the developers invest effort to create lists of available para-
meters. For example, in LibreOffice developers try to find getenv occurrences
automatically with grep, which fails with getenv aliases1.

Discussion: The getenv API has some severe limitations and is sometimes a
second-class citizen. One limitation is that return values of getenv invocations
cannot be updated by other processes. For example, getenv("http proxy")

within a running process will still return the old proxy, even if the user changed
it elsewhere. Another limitation is that they do not support persistent changes
by applications. Configuration files, however, are not easily shareable.

Implication: There is currently no satisfactory solution in FLOSS for global,
shareable configuration settings. getenv supports all characteristics of configura-
tion access and can be used to investigate challenges in configuration validation.

4 Configuration Validation

Having established which configuration accesses are popular (including, but not
limited to, getenv), we will investigate challenges of configuration validation.

4.1 Which Are the Concerns Regarding Global Validation?

Finding 2a: Developers have concerns about adding dependencies for global val-
idation (84%) and reducing configuration (30%) but desire good defaults (80%).

Many persons (30%, n = 150) think that the number of configuration settings
should not be reduced. But 43% said it should be reduced to prevent errors.

We got mixed answers (n = 177) to the question “Which effort do you
think is worthwhile for providing better configuration experience?” Most persons
(80%) agree that proper defaults are important. Most methods exceed the effort
considered tolerable by the majority of participants: Only getenv would be
used by the majority (53%). System APIs would be used by 44%. Fewer (30%)
would use other OS-specific methods, such as reading /proc. Only 21% of the
participants would use dedicated libraries, 19% would parse other’s applications
configuration files, and 16% would use external APIs that add new dependencies.

Discussion: To avoid dependencies, FLOSS developers currently expect users
to configure their applications to be consistent with the global configuration.

1 https://bugs.documentfoundation.org/show bug.cgi?id=37338.

https://startpage.com
https://bugs.documentfoundation.org/show_bug.cgi?id=37338

106 M. Raab and G. Barany

Implication: The results indicate demand for dependency injection to have
global validation without direct dependencies.

4.2 Which Challenges Prevent Us from Supporting Validation?

Finding 2b: Present configuration validation is encoded in a way unusable for
external validation or introspection tools.

In none of the 16 applications was the validation code kept separately, e.g.,
in a library. Instead it was scattered around like other cross-cutting concerns.

Finding 2c: Developers are unable to support global validation, even if the prob-
lem is well-known and they put effort into it. We found out that information
essential to check or fix constraints is not available within the applications.

In Table 1 we present the list of applications we analyzed. The column counted
getenv lists our manual count of all getenv invocations. The column config getenv
shows getenv occurrences used for configuration as described in Finding 1c.
The column depend getenv presents manually counted getenv occurrences that
depend on, or are used by, other configuration code. The last column lines per
getenv shows how often manually counted getenv occurs in code.

Table 1. Manual count and classification of getenv occurrences.

Application Version 1k lines
of code

Counted
getenv

Config
getenv

Depend
getenv

Lines per getenv

0ad 0.0.17 474 55 45 43 8,617

Akonadi 1.13.0 37 13 8 6 2,863

Chromium 45.0.2454 18,032 770 387 281 23,418

Curl 7.38.0 249 53 26 25 4,705

Eclipse 3.8.1 3,312 40 33 23 82,793

Evolution 3.12.9 673 23 13 5 29,252

Firefox 38.3.0esr 12,395 788 376 271 15,730

GCC 4.9.2 6,851 377 218 143 18,172

Gimp 2.8.14 902 56 27 21 16,102

Inkscape 0.48.5 480 19 16 13 25,255

Ipe 7.1.4 116 21 19 14 5,529

LibreOffice 4.3.3 5,482 284 207 143 19,304

Lynx 2.8.9dev1 192 89 79 66 2,157

Man 2.7.0.2 142 62 52 42 2,293

Smplayer 14.9.0∼ds0 76 1 1 1 76,170

Wget 1.16 143 32 24 18 4,456

Total 49,556 2,683 1,531 1,115 18,470

Median 477 54 30 24

Challenges in Validating FLOSS Configuration 107

Most of these places (1,115, i.e., 73%) were dependent on some other configu-
ration. We found 204 places where some kind of configuration dependencies were
forgotten. In 58 cases we found several hints, e.g., fallback chains with missing
cases or complaints on the Internet about the not considered dependency.

We give a real-life example from the Eclipse source of how easily dependencies
are forgotten. The missing dependencies lead to missing validation, which leads
to frustrating user experience. If Eclipse wants to instantiate an internal web
browser, some users get an error saying that MOZILLA FIVE HOME is not set.
On GitHub alone, issues mentioning the variable were reported 71 times. The
underlying issue usually is that the software package webkitgtk is missing2. The
developers even considered the dependency (installation paths) for RPM-based
systems by parsing gre.conf. But for other users on non-RPM-based systems
the fallback is to query MOZILLA FIVE HOME which leads to the misleading error.
In Eclipse the workarounds (including parsing gre.conf) needed 213 lines of
code. Furthermore, most of the 9006 code snippets we found on GitHub referring
to the variable are small wrappers trying to set MOZILLA FIVE HOME correctly.

Discussion: While the package managers easily answer where the missing files
are located, within the application there is no reasonable way to find out. We
found similar issues concerning network, firewall, hardware settings, etc.

Implication: Applications have a need to access global configuration settings.

5 Experience Report on Supporting Global Validation

Elektra is a library that aims at providing unified access to configuration settings
as key/value pairs. It integrates a specification language for global validation.
Here we will discuss how Elektra fulfills the requirements unearthed by the study
before describing the challenges to adoption that Elektra faced in the past. We
summarize requirements derived from the findings of Sects. 3 and 4.

5.1 Unify Configuration

Requirement 1a−c: Developers use different mechanisms for configuration
accesses interchangeably or to bypass limitations of others. To avoid the need
for bypasses, Elektra bootstraps itself at startup, making it possible for configu-
ration settings to describe the configuration access, for example, which configu-
ration files should be used. To allow administrators to use all popular techniques,
Elektra reads from different sources such as configuration files, system settings,
and environment variables. Elektra integrates many different configuration file
formats such as INI, XML, etc., and it supports notifications to always keep
application’s configuration settings in sync with the persistent configuration set-
tings.

Requirement 1d: FLOSS developers demand a way to share configuration set-
tings. We implemented a layer similar to a virtual file system, which enables

2 https://groups.google.com/forum/#!topic/xmind/5SjPTy0MmEo.

https://groups.google.com/forum/#!topic/xmind/5SjPTy0MmEo

108 M. Raab and G. Barany

applications and system administrators to mount configuration files [29]. This
technique facilitates applications to access configuration settings of any other
application. Using links and transformations [22] one can even configure appli-
cations to use other settings without any support from the application itself.

Requirement 1e: There should be a way to document configuration settings.
Elektra introduces specifications for configuration settings [24]. These specifica-
tions should also include documentation. But even if they do not, users at least
know which configuration settings exist, and which values are valid for them.

5.2 Validate Configuration

Requirement 2a: Dependencies exclusively needed for configuration settings
should be avoided. Elektra introduces plugins that enable a system-level depen-
dency injection. Developers specify validations in specifications, without the need
for their application to depend on additional external libraries. In plugins exe-
cuted on configuration access, the settings get validated or default settings get
calculated. Elektra only uses the C standard library and no other external depen-
dencies [20]. Nevertheless, even the dependency on Elektra itself can be avoided.
Elektra supports intercepting of library calls such as getenv [26,27]. Using this
technique, applications think they use environment variables, while in reality
they query Elektra.

Requirement 2b: Configuration settings and validations should be open to intro-
spection. Similarly to getenv, Elektra provides an API, but it aims to overcome
the limitations of previous abstractions and interfaces. Elektra allows many con-
figuration files to be integrated with a uniform key/value API. Even the spec-
ifications of accesses, dependencies, and validations are accessible via the same
API. Thus system administrators and applications can use the API to introspect
configuration settings. Elektra relies on file system permissions to restrict access
to configuration files.

Requirement 2c: Global validation should be supported. Elektra supports global
validation through a range of different checker plugins. These plugins do not
only check data for consistency but also check if configuration settings conflict
with reality. For example, one plugin checks for presence of files or directories,
while another plugin checks if a host name can be resolved. Checks are executed
whenever Elektra’s API is used for writing. This way also all administrator tools
sitting on top of Elektra reject invalid configuration settings. Elektra also allows
to integrate system information such as hardware settings via plugins.

5.3 Community Building

The Elektra Initiative is a community that started with the straightforward idea
to have a single API for configuration access. Other projects watched how it
progressed, but adoptions occurred rarely. Due to various grave issues in the
first versions, the API needed several redesigns. Obviously, API changes are

Challenges in Validating FLOSS Configuration 109

not very popular and Elektra lost most of its users at this time. Despite many
marketing efforts to change the situation, it was predominantly companies and
not FLOSS software that used Elektra. This slow adoption was unfortunate but
an opportunity to continue making changes. Unfortunately, the changes were
not done wisely, instead we introduced mostly unnecessary features. Here the
Elektra Initiative had its low and turning-point.

Then the goals shifted towards a more technical solution: We avoid marketing
campaigns to persuade everyone to use the API with arguments like “it will give
benefits once everyone migrates”. Instead it should offer immediate advantages
previous APIs did not have. This meant Elektra went into a highly competitive
market facing the difficulty of being better than any other configuration library.
As a distinctive feature, we started to aim for global validation but without giving
up compatibility to current configuration files. We avoid an API that forces our
ideology, like our favourite configuration file format or validation, onto users.

These changes made the core more complicated, which led to a recruiting
problem. The documentation was for a long time only a master thesis [20], which
was a very unsatisfactory situation. The next efforts were to make the project
community-friendly again. We started to improve quality by regression tests,
fixing reports of code analysis tools, and adding code comments and assertions.
Then we started overhauling documentation, writing tutorials, and created a
website. Last but not least, we started releasing every two months with fixes
and new features in every release. These changes led to more than a dozen
contributors, Elektra being packaged for many distributions, and acceptance of
a paper on Elektra in “The Journal of Open Source Software” [23].

6 Community Feedback and Future Work

The survey validated Elektra’s goals: Many agreed (80%, n = 153) that a solu-
tion must be lightweight and efficient; and that a configuration library must be
available anywhere and anytime (84%, n = 153). Many persons (70%, n = 150)
consider it important that the community is supportive. Even more persons want
bugs to be fixed promptly (88%, n = 150). Because 76% persons find it important
that applications directly ship documentation (n = 157), external specifications
should have documentation. Nearly everyone (96%, n = 173) agrees that config-
uration integration, such as global validation, would at least moderately improve
user experience. Thus we will continue research in this area.

A participant said: “Must be extensible/adaptable. If it is, users can take
care of many of the above aspects themselves”. We agree and continue to pio-
neer modularity. For example, many persons found readability of configurations
important (65%, n = 152) but could not agree which formats are readable.

Another person wrote: “It must offer a compelling reason to switch from e.g.
gsettings. For example a killer feature that others don’t have, etc. Otherwise, the
status quo wins.” Elektra’s “killer feature” can be global validation.

From our experience with Elektra, it was also clear that we need to put much
more effort into API stability. Thus we avoid breaking changes to the API. We
are about to provide easy-to-use high-level APIs for different use cases.

110 M. Raab and G. Barany

The 1.0 release of Elektra is still pending: (1) The specification language
for validation/transformation/dependency injection is not completely defined.
(2) The configuration parsers have limitations, e.g., they do not always preserve
comments or order. (3) Elektra puts some unnecessary limitations on the plugins.

7 Related Work

Many other configuration libraries have validation capabilities, for example,
Apache Commons Configuration. Unlike Elektra they do not have external speci-
fications. Instead they require developers to hardcode them into the applications.

Other papers describe the technical details of Elektra [20,23,29]. In particu-
lar frontend code generation avoids errors in configuration access [21,28]. Other
work describes Elektra’s specification language [22,24] and how applications par-
ticipate without code modifications [25,26].

Crowston et al. [6] created a survey of empirical research for FLOSS. Michl-
mayr et al. [16] investigated quality issues of FLOSS using interviews. We were
able to confirm that documentation often is lacking. Barcomb et al. [2] used a
questionnaire to investigate how developers acquire FLOSS skills.

PCheck [34] validates configuration files early. Unlike Elektra, it is not free
software and does not support application-specific checks or plugins. Some
work was done to automatically resolve misconfiguration [1,30,33,38]. These
approaches aim at solving already manifested issues, Elektra aims at resolving
them earlier. Xu et al. [36] surveyed further possibilities.

Nosál et al. [17,18] investigated similar abstractions but with a focus on
language mapping. Denisov [8] collected requirements for configuration libraries.

Berger et al. [5] and Villela et al. [32] created a questionnaire that asks about
variability modeling. Our survey focused on a different target group.

8 Conclusions

In this paper we examined challenges in configuration access and presented a
solution. We addressed the research question: Why do we lack tools for global
validation and how can we help developers provide them? The answer is that
validations are encoded in the software in a way (1) unusable by external tools,
and (2) incapable of using global knowledge of the system. The answer is backed
up by both a questionnaire and a source analysis.

To overcome developers’ configuration issues, we need to externalize configu-
ration access specifications and use a unified configuration library. The empirical
data backs up that this is possible and wanted. It is possible, because currently
different configuration accesses are used interchangeably. It is wanted, because
users stated that different forms of configuration access sources should be able
to override each other.

Based on our survey we might have to rethink how to reduce the number
of configuration settings because many developers do not agree with complete

Challenges in Validating FLOSS Configuration 111

removal of less-used settings. The survey also showed that external dependen-
cies in configuration access code are a contradictory topic: Developers want good
defaults, but do not want to pay for them with dependencies. Elektra’s way of
implementing dependency injection and globally calculating default settings ful-
fills both goals. Because of the externalization of configuration access specifica-
tions, users can even introspect the (default) settings that applications receive.

Finally, we described FLOSS community efforts to improve on the issues.
The results show that a dependency injection at the system level is feasible and
practical. It has the potential to be accepted by developers if they perceive global
integration and validation as “killer feature”. The current status of the FLOSS
project can be tracked at https://www.libelektra.org.

Acknowledgments. We thank the anonymous reviewers, Tianyin Xu, Franz
Puntigam, Stefan Winter, Milan Nosál, and Harald Geyer for detailed reviews of this
paper. Additionally, many thanks to all the people contributing to Elektra.

References

1. Attariyan, M., Flinn, J.: Automating configuration troubleshooting with dynamic
information flow analysis. In: Proceedings of the 9th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI 2010, pp. 1–11. USENIX Asso-
ciation, Berkeley (2010)

2. Barcomb, A., Grottke, M., Stauffert, J.-P., Riehle, D., Jahn, S.: How develop-
ers acquire FLOSS skills. In: Damiani, E., Frati, F., Riehle, D., Wasserman, A.I.
(eds.) OSS 2015. IAICT, vol. 451, pp. 23–32. Springer, Cham (2015). doi:10.1007/
978-3-319-17837-0 3

3. Barrett, R., Chen, Y.Y.M., Maglio, P.P.: System administrators are users, too:
designing workspaces for managing Internet-scale systems. In: CHI 2003 Extended
Abstracts on Human Factors in Computing Systems, pp. 1068–1069. ACM (2003)

4. Barrett, R., Kandogan, E., Maglio, P.P., Haber, E.M., Takayama, L.A., Prabaker,
M.: Field studies of computer system administrators: analysis of system manage-
ment tools and practices. In: Proceedings of the 2004 ACM Conference on Com-
puter Supported Cooperative Work, pp. 388–395. ACM (2004)

5. Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K.,
Wa֒sowski, A.: A survey of variability modeling in industrial practice. In: Proceed-
ings of the Seventh International Workshop on Variability Modelling of Software-
intensive Systems, VaMoS 2013, pp. 7:1–7:8. ACM, New York (2013). http://doi.
acm.org/10.1145/2430502.2430513

6. Crowston, K., Wei, K., Howison, J., Wiggins, A.: Free/libre open-source software
development: what we know and what we do not know. ACM Comput. Surv. 44(2),
7:1–7:35 (2008). http://dx.doi.org/10.1145/2089125.2089127

7. Danial, A.: Cloc-count lines of code (2017). https://github.com/AlDanial/cloc, Feb
2017

8. Denisov, V.S.: Functional requirements for a modern application configuration
framework. Int. J. Open Inf. Technol. 10, 6–10 (2015)

9. Di Cosmo, R., Zacchiroli, S., Trezentos, P.: Package upgrades in FOSS distribu-
tions: details and challenges. In: Proceedings of the 1st International Workshop on
Hot Topics in Software Upgrades, HotSWUp 2008, pp. 7:1–7:5. ACM, New York
(2008). http://dx.doi.org/10.1145/1490283.1490292

https://www.libelektra.org
http://dx.doi.org/10.1007/978-3-319-17837-0_3
http://dx.doi.org/10.1007/978-3-319-17837-0_3
http://doi.acm.org/10.1145/2430502.2430513
http://doi.acm.org/10.1145/2430502.2430513
http://dx.doi.org/10.1145/2089125.2089127
https://github.com/AlDanial/cloc
http://dx.doi.org/10.1145/1490283.1490292

112 M. Raab and G. Barany

10. Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting empirical meth-
ods for software engineering research. In: Shull, F., Singer, J., Sjøberg, D. (eds.)
Guide to Advanced Empirical Software Engineering, pp. 285–311. Springer, Lon-
don (2008)

11. Eisenhardt, K.M., Graebner, M.E.: Theory building from cases: opportunities and
challenges. Acad. Manage. J. 50(1), 25–32 (2007)

12. Ghosh, R.A., Glott, R., Krieger, B., Robles, G.: Free/libre and open source soft-
ware: Survey and study. University of Maastricht, The Netherlands, International
Institute of Infonomics (2002)

13. Haber, E.M., Bailey, J.: Design guidelines for system administration tools devel-
oped through ethnographic field studies. In: Proceedings of the 2007 Symposium
on Computer Human Interaction for the Management of Information Technol-
ogy, CHIMIT 2007. ACM, New York (2007). http://dx.doi.org/10.1145/1234772.
1234774

14. Hammouda, I., Harsu, M.: Documenting maintenance tasks using maintenance
patterns. In: Eighth European Conference on Software Maintenance and Reengi-
neering, CSMR 2004, Proceedings, pp. 37–47, March 2004

15. Lilliefors, H.W.: On the Kolmogorov-Smirnov test for normality with mean
and variance unknown. J. Am. Stat. Assoc. 62(318), 399–402 (1967).
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1967.10482916

16. Michlmayr, M., Hunt, F., Probert, D.: Quality practices and problems in free
software projects. In: Proceedings of the First International Conference on Open
Source Systems, pp. 24–28 (2005)

17. Nosál, M., Porubän, J.: Supporting multiple configuration sources using abstrac-
tion. Open Comput. Sci. 2(3), 283–299 (2012)

18. Nosál, M., Porubän, J.: XML to annotations mapping definition with patterns.
Comput. Sci. Inf. Syst. 11(4), 1455–1477 (2014)

19. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do Internet services fail,
and what can be done about it? In: USENIX Symposium on Internet Technologies
and Systems, Seattle, WA, vol. 67 (2003)

20. Raab, M.: A modular approach to configuration storage. Master’s thesis, Vienna
University of Technology (2010)

21. Raab, M.: Global and thread-local activation of contextual program execution
environments. In: Proceedings of the IEEE 18th International Symposium on Real-
Time Distributed Computing Workshops (ISORCW/SEUS), pp. 34–41, April 2015

22. Raab, M.: Sharing software configuration via specified links and transformation
rules. In: Technical report from KPS 2015, vol. 18. Vienna University of Technology,
Complang Group (2015)

23. Raab, M.: Elektra: universal framework to access configuration parameters. J.
Open Source Softw. 1(8), 1–2 (2016). http://dx.doi.org/10.21105/joss.00044

24. Raab, M.: Improving system integration using a modular configuration specifica-
tion language. In: Companion Proceedings of the 15th International Conference
on Modularity, MODULARITY Companion 2016, pp. 152–157. ACM, New York
(2016). http://dx.doi.org/10.1145/2892664.2892691

25. Raab, M.: Persistent contextual values as inter-process layers. In: Proceedings of
the 1st International Workshop on Mobile Development, Mobile! 2016, pp. 9–16.
ACM, New York (2016). http://dx.doi.org/10.1145/3001854.3001855

26. Raab, Markus: Unanticipated context awareness for software configuration access
using the getenv API. In: Lee, Roger (ed.) Computer and Information Science.
SCI, vol. 656, pp. 41–57. Springer, Cham (2016). doi:10.1007/978-3-319-40171-3 4

http://dx.doi.org/10.1145/1234772.1234774
http://dx.doi.org/10.1145/1234772.1234774
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1967.10482916
http://dx.doi.org/10.21105/joss.00044
http://dx.doi.org/10.1145/2892664.2892691
http://dx.doi.org/10.1145/3001854.3001855
http://dx.doi.org/10.1007/978-3-319-40171-3_4

Challenges in Validating FLOSS Configuration 113

27. Raab, M., Barany, G.: Introducing context awareness in unmodified, context-
unaware software. In: 12th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE) (2017, to appear)

28. Raab, M., Puntigam, F.: Program execution environments as contextual values. In:
Proceedings of 6th International Workshop on Context-Oriented Programming, pp.
8:1–8:6. ACM, New York (2014). http://dx.doi.org/10.1145/2637066.2637074

29. Raab, M., Sabin, P.: Implementation of multiple key databases for shared config-
uration (2008). ftp://www.markus-raab.org/elektra.pdf, Accessed Feb 2014

30. Su, Y.Y., Attariyan, M., Flinn, J.: Autobash: improving configuration management
with operating system causality analysis. ACM SIGOPS Operating Syst. Rev.
41(6), 237–250 (2007)

31. Velasquez, N.F., Weisband, S., Durcikova, A.: Designing tools for system adminis-
trators: an empirical test of the integrated user satisfaction model. In: Proceedings
of the 22nd Conference on Large Installation System Administration Conference,
LISA 2008, pp. 1–8. USENIX Association, Berkeley (2008). http://dl.acm.org/
citation.cfm?id=1496684.1496685

32. Villela, K., Silva, A., Vale, T., de Almeida, E.S.: A survey on software variability
management approaches. In: Proceedings of the 18th International Software Prod-
uct Line Conference, SPLC 2014, vol. 1, pp. 147–156. ACM, New York (2014).
http://dx.doi.org/10.1145/2648511.2648527

33. Wang, H.J., Platt, J.C., Chen, Y., Zhang, R., Wang, Y.M.: Automatic misconfig-
uration troubleshooting with peerpressure. OSDI 4, 245–257 (2004)

34. Xu, T., Jin, X., Huang, P., Zhou, Y., Lu, S., Jin, L., Pasupathy, S.: Early detec-
tion of configuration errors to reduce failure damage. In: Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2016), Savannah, GA, USA, November 2016

35. Xu, T., Zhang, J., Huang, P., Zheng, J., Sheng, T., Yuan, D., Zhou, Y., Pasupathy,
S.: Do not blame users for misconfigurations. In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pp. 244–259. ACM (2013)

36. Xu, T., Zhou, Y.: Systems approaches to tackling configuration errors: a survey.
ACM Comput. Surv. 47(4), 70:1–70:41 (2015). http://dx.doi.org/10.1145/2791577

37. Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L.N., Pasupathy, S.: An
empirical study on configuration errors in commercial and open source systems. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples, SOSP 2011, pp. 159–172. ACM, New York (2011)

38. Zhang, S., Ernst, M.D.: Automated diagnosis of software configuration errors. In:
Proceedings of the 2013 International Conference on Software Engineering, ICSE
2013, pp. 312–321. IEEE Press, Piscataway (2013)

39. Zhang, S., Ernst, M.D.: Which configuration option should I change?. In: Proceed-
ings of the 36th International Conference on Software Engineering. pp. 152–163.
ICSE 2014, NY, USA (2014),. http://dx.doi.org/10.1145/2568225.2568251

http://dx.doi.org/10.1145/2637066.2637074
ftp://www.markus-raab.org/elektra.pdf
http://dl.acm.org/citation.cfm?id=1496684.1496685
http://dl.acm.org/citation.cfm?id=1496684.1496685
http://dx.doi.org/10.1145/2648511.2648527
http://dx.doi.org/10.1145/2791577
http://dx.doi.org/10.1145/2568225.2568251

114 M. Raab and G. Barany

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Case Studies

Progression and Forecast

of a Curated Web-of-Trust:

A Study on the Debian Project’s

Cryptographic Keyring

Gunnar Wolf1(B) and Vı́ctor González Quiroga2

1 Instituto de Investigaciones Económicas,
Universidad Nacional Autónoma de México, Mexico City, Mexico

gwolf@gwolf.org
2 Facultad de Ciencias, Universidad Nacional Autónoma de México,

Mexico City, Mexico

Abstract. The Debian project is one of the largest free software under-
takings worldwide. It is geographically distributed, and participation in
the project is done on a voluntary basis, without a single formal employee
or directly funded person. As we will explain, due to the nature of the
project, its authentication needs are very strict—User/password schemes
are way surpassed, and centralized trust management schemes such as
PKI are not compatible with its distributed and flat organization; fully
decentralized schemes such as the PGP Web of Trust are insuficient by
themselves. The Debian project has solved this need by using what we
termed a “curated Web of Trust”.

We will explain some lessons learned from a massive key migration
process that was triggered in 2014. We will present the social insight
we have found from examining the relationships expressed as signatures
in this curated Web of Trust, some recommendations on personal key-
signing policies, and a statistical study and forecast on aging, refreshment
and survival of project participants stemming from an analysis on their
key-handling.

Keywords: Trust management · Cryptography · Keyring · Survival ·

Aging · curated Web of Trust

1 Introduction

The Debian project is among the most veteran surviving free software projects;
having been founded in August 1993 by Ian Murdock [5], it has grown to be
one of the most popular Linux distributions by itself, as well as the technical
base for literally hundreds of others. It is the only distribution that produces
an integrated operating system capable of running on different operating system
kernels – Although an overwhelming majority of Debian users use Linux, it hs
been ported to the FreeBSD and GNU HURD kernels as well [15,16].

c© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 117–127, 2017.
DOI: 10.1007/978-3-319-57735-7 12

118 G. Wolf and V. González Quiroga

But besides all of its the technical characteristics, what makes Debian really
stand out as a project is its social composition: It is, since its inception, a completely
volunteer-driven, community-runproject,with very big geographic dispersion [13].

Since Debian’s early days, cryptographically strong identification was deemed
necessary to guarantee the security guarantees Debian’s users have; as the project
grew, a viable trust management strategy had to be envised as well; we call it
the curated Web-of-Trust model [20].

But cryptographic parameters that were deemed safe for long-term use in
the mid nineties are now considered to be unsafe. By 2014, the Debian project
underwent a large key migration to keep up with the security recommendations
for the following years [14]. We described the full reasoning for this migration
and an oveview of the process and its numeric impact in the project in [20].

The aforementioned migration prompted a study of the direct metrics of the
keyring’s health, such as those detailed by [19], as well as a more transdisciplinary
analysis of the keyring as a social network. Throughout this work, we will present
an overview of the trust aging that had started manifesting since around 2010,
as well as its forceful re-convergence, and a statistical analysis on key survival
expectations.

2 Trust Models in Public Key Cryptography

Besides encryption and signing, public key cryptography provides several mod-
els for identity assessment, called trust models. The most widespread model is
the Public Key Infrastructure (PKI) model, a hierarchical model based on pre-
determined roots of trust and strictly vertical relationships (certificates) from
Certification Authorities (CAs) to individuals. This model is mostly known for
being the basis for secure communication between Web browsers and servers
using the https protocol.

As we have presented [20], the Debian project, being geographically distrib-
uted and with no organizational hierarchy, bases its trust management upon the
Web of Trust (WoT) model, with an extra step we have termed curatorship.
The WoT model has been an integral part of OpenPGP since its inception [21].
For this model, there is no formal distinction between nodes in the trust net-
work: All nodes can both receive and generate certificates (or, as they are rather
called in the WoT model, signatures) to and from any other node, and trust is
established between any two nodes that need to assert it by following a trust

path that hopefully links them in the desired direction and within the defined
tolerable distance [19].

Beside the aforementioned work, several other works have studied the infor-
mation that can be gathered from the total keyring in the SKS keyserver net-
work1 [3]. The work we will present in this paper is restricted to a small subset

1 For a WoT model to be able to scale beyond a small number of participants, key

servers (systems that store and allow for retrieval of public key material) are needed.
The Synchronizing Key Server (SKS) network is the largest network of OpenPGP
key servers.

Progression and Forecast of a Curated Web-of-Trust 119

thereof—As of December 2016, the SKS network holds over 4 million keys, while
the active Debian keyrings hold only around 1500.

2.1 Cryptographic Strength

Public key cryptography works by finding related values (typically, very large
prime numbers). The relation between said numbers, thanks to mathematical
problems that are hard enough to solve to be unfeasible to be attacked by brute
force, translates to the strength of the value pair.

Said schemes’ strength is directly related to the size of the numbers they
build on. Back in the 1990s, when Internet connectivity boomed and they first
became widely used [21], key sizes of 384 through 1024 bits were deemed enough;
using longer keys demanded computing resources beyond what was practical at
the time.

Of course, computers become more powerful constantly; cryptographic prob-
lems that were practically unsolvable 10 or 20 years ago are now within the
reach of even small organizations [14, p. 11]. Cryptographic keys used for RSA
and DSA algorithms should now be at least 2048 bits, with 4096 becoming the
norm.

By 2009 (when the need to migrate to stronger keys was first widely discussed
within the Debian project) the amount of 1024-bit keys was close to 90% of the
total keyring; the upcoming need of migration was repeatedly discussed, and due
to the threat of an attack becoming feasible for a medium-sized organization [14,
pp. 30, 32], by July 2014 a hard cutoff line for expiring keys shorter than 2048
bits was set for January 2015, setting a six month period for key migration. We
published a analysis on that migration process [20], which prompted the present
work.

3 Trust Aging and Reestablishment

The work done for the described keyring migration, as well as the migration
process itself, presented a great opportunity to understand the key migration
as a social phenomenon as well, using the keyring as a way to measure social
cohesion and vitality.

We prepared graphic representations of the keyring at its various points in
time, in the hope to learn from it patterns about its growth and evolution that
can warn about future issues. For the trust-mapping graphs, we use directed
graphs, where each key is represented by a node and each signature by an edge
from the signer to the signee. For starters, we were interested in asserting whether
the characterstics observed on the whole OpenPGP WoT [19] repeated in the
subset of it represented by the Debian keyrings. Of course, said work was done
as a static analysis on the keyring back in 2011; back then, the whole OpenPGP
keyring stood at 2.7 million keys; at the time of this writing there are 4.5 million
keys, growing by 100 to 400 keys every day [17].

120 G. Wolf and V. González Quiroga

Fig. 1. Snapshots of the Debian keyring evolution at different points in time

Figure 1 presents seven snapshots of the main developers keyring, processed
by Graphviz using the neato layout program, which implements the spring min-
imal energy model [6]. Of course, at the scale they are presented, each individual
edge or node becomes irrelevant; there is too much density at the center, and
the outlying nodes and edges appear as just noise. However, the shape of the
strong set2 does lend itself to analysis.

Figures 1(a), (b) and (g) present a regular shape, approximately following
Ulrich’s observations, that the strong set of the WoT exhibits scale-freen. Quot-
ing [19, Sect. 4.3],

Connectivity-wise, scale-free graphs are said to be robust against random
removal of nodes, and vulnerable against the targeted removal of hubs (which
leads to partitioning). This is usually explained by the hubs being the nodes
that are primarily responsible for maintaining overall connectivity.

Ulrich notes that the WoT graph is similar to a scale-free one and exhibits a

hub structure, but is not scale-free in the strict sense.
Something happened, however, in the course of 2010 that led to the WoT

acquiring the shape shown in Fig. 1(c) by the end of the year – Instead of a seem-
ingly uniform blob, there is a distinct protuberance. This horn grew throughout
the following years, and by 2014, the keyring consisted of two roughly equivalent
blobs somewhat weakly linked together, as Figs. 1(d) and (e) show.

We find this protuberance to be the portrait of a social migration: The project
is often portrayed as unique among free software projects due to the close personal

2 The strong set is defined as the largest set of keys such that for any two keys in the
set, there is a path from one to the other [10].

Progression and Forecast of a Curated Web-of-Trust 121

ties among developers; its yearly developers’ conference, DebConf, has a very high
repeating attendance rate. However, given the project has lived for over 20 years, it
is understandable many of the original members have grown inactive and moved on
to other life endeavors; formal retirement is requested from developers, but many
people reduce their engagement gradually, and just never formally retire.

While the geographical dispersion makes it quite hard for some developers to
meet others and obtain new certificates, there is a tradition in Debian to announce
travels in a (private, developers-only) mailing list, and active developers often will
gladly meet people travelling to their region just for a key signature exchange.

Although the number of developers that by late 2010 had migrated to a
stronger key was still quite small, the call for key migration was initially answered
by those with most active key activity –hence, probably more conscious about
the importance of this migration. Of course, although it was not a targetted
removal, it was a socially self-selected one: Trust hubs were among the first to
migrate to stronger keys. And even though they attempted to re-build their
WoT relationships and cross-sign with other developers at gatherings such as
DebConf, the group of developers that –as explained in Sect. 3– had drifted
away from project activity didn’t reconnect with them.

While the migration to keys longer than 1024 bits took much longer than orig-
inally expected, the initial push was not bad: During 2010, it reached from practi-
caly zero to close to 10% of the keys– But many of those keys were hubs, people long
involved in the project, with many social bonds, and thus very central keys. When
those people migrated to newer keys, the signatures linking their long-known fel-
low developers to the project were usually not updated, and several old keys could
have even become islands, gradually losing connectivity to the strong set.

Given Debian’s longstanding practices, rather than isolated, many such keys
started drifting apart as a block, growing separated from the center of mass. This
explains why the migration started as a lump to later become two large, still some-
what strongly connected bodies, mostly stable over the years. Of course, as more
developers migrated to strong keys, by late 2014 the remaining group started losing
cohesion, and by December 2014 (before it was completely removed), it is barely
noticeable – All of its real hubs had migrated to the new center of mass, with many
previously connected keys becoming isolated, as Fig. 1(f) shows.

In order to prove this hypothesis, we generated again the same graphs, but
factoring in the trust aging : If individual signatures are colored by their age,
it is possible to visually identify if a significant portion of the group’s trust is
aging – That is, if social bonds as reflected by intra-key signatures are over a
given edge. The seven subfigures of Fig. 2 correspond with those of Fig. 1, but
with color-coded edges (according to the image caption).3

3 Some care should be taken interpreting the presented graphs. Particularly, cho-
sen colors are not equally strong and visible against white background; mid-range
(orange, yellow) signatures appear weaker than red or blue ones. Also, the drawing
algorithm overlays lines, and in high density areas, only the top ones prevail. Still,
we believe our observations to hold despite these caveats.

122 G. Wolf and V. González Quiroga

Fig. 2. Snapshots of the Debian keyring evolution at different points in time, showing
signature age: Blue, ≤1 year; green, between 1 and 2 years; yellow, between 2 and 3
years; orange, between 3 and 4 years; red, ≥4 years. Signature coloring is relative to
each of the snapshots: Blue edges in graph (a) represent signatures made throughout
2008. (Color figure online)

Surprisingly, even Fig. 2(b) shows a clear grouping of keys by signature age?
But this grouping does not appear a year earlier, in Fig. 2(a). This can, again,
be indicative that the first people to migrate to stronger keys, even before it
altered the overall shape of the WoT, migrated during 2009; by early 2010, they
might constitute te tight, new (blue) group still in the peripheria, that eventually
became the core of the newer blob.

4 Expectations on Key Survival

Following from the same data set, we started a further statistical analysis;
this section presents the preliminary results we gathered from applying survival
analysis techniques.

The general focus of survival analysis is on the modeling the time it takes
until a specific event occurs, in social sciences one often speaks of event his-

tory [18]. We have found interesting findings from studying how many people
keeps participating in the Debian project throughout the time, that is, to model
the time until departure from the Debian project. The main motivation comes
from the need to understand keyring population along time. Our sampled data
is defined by the PGP keys that make up the curated WoT from the Debian
Developers keyring [20].

The analyzed data is treated as a longitudinal study. We point out that
intervals are not of the same length in time: each data point is a tag in the

Progression and Forecast of a Curated Web-of-Trust 123

keyring’s Git history,4 and the period of analysis spans between July 2008 and
July 2016. During said period, 124 tags were recorded, averaging to 23.96 days
each, with a standard deviation of 27.95, with a maximum of 69 days and a
minimum of one day.

Given the way the keyring is structured, we used key the long key ID (the low-
est 64 bits of its fingerprint, in hexadecimal representation) as a unique identifier
for each key. For each tag and key we counted the number of signatures made
to that key by counting the number of non-zero entries in the corresponding key
column of an adjacency matrix at a specified tag.

We identified people’s participation in Debian using their PGP key activity
record (has the key stopped getting signatures?) and keyring membership (has
the key stopped being part of the keyring of interest?) which makes our data
is right-censored because no further information about keyring membership is
known afterwards; right censoring scheme constitutes data where all that is
known is that the individuals are still alive (the keys are still active) at a given
time, [8].

For this analysis, we must highlight a drawback from our failure definition: in
real life there’s no 1-to-1 correspondence of a key-person pair; key migrations –
regarding our current study logic– mean one key dies (leaves the keyring) and
another key enters as a completely independent individual. This will be refined
in further analysis.

We used the R programming language with its survival, flexsurv packges;
unless otherwise stated, significance level is assumed to be 5%.

Our first line of approach was first to show through the survival function
the proportion of remaining keys in the keyring along time, that is keyring
permanency. Then using the cumulated hazard function we get the expected
exits per key that remains in the keyring until the endtime (in perpetuity).
Finally, for the hazard rate function, we get the departure rate from the keyring.

For the non-parametric or observed curves we used the Kaplan-Meier product
limit estimator for the survival function, [7], the Nelson-Aalen moments estima-
tor for the cumulated hazard function [1], and the kernel density estimator for
the hazard rate function, [9].

A parametric estimation to see the mortality law fitting our data was made
using a Generalised Gamma distribution through maximum-likelihood estimation
[11]. The motivation for using the Gen. Gamma model is due to the closeness it has
to the observed hazard rate function obtained non-parametrically. Proper justifi-
cation for said model comes from the fact that it minimizes Akaike’s Information
Criterion when compared to the other models, making it a better model in terms
of information loss, [2], while also rejecting other models using a log-likelihood test
of –5790.042 at 3◦ of freedom, [12]. The estimated parameters found for our model

4 Version control systems handle the concept of tags in a repository: Specific points of
a project’s development that are in some way relevant or significant; many projects
use tags to mark their releases. This is the case of the Debian keyring maintainers’
repository: Tags mark each keyring version that was put in production. The team
attempts to put a new version in production roughly once a month.

124 G. Wolf and V. González Quiroga

were µ = 4.6808, σ = 0.1990, Q = 3.4078, with standard errors of 0.0134, 0.123,
0.2205 respectively.

In the non-parametric plot of Fig. 3, we observe downward steps when at
least one key stops getting signatures. The crosses represent the followup time
for censored observations (for which no further information is known and thus the
proportion of keys remains). This plot does reflect the fact that many keys were
dropped during the 1024-bits key removal, at tag 107 (January 2015). Observed
proportion of keys being above the theoretical model from tag 40 to tag 100
(around 4 years) suggests that after four years the keys wouldn’t be much likely
to leave; at least not until tag 95 where the probability of remaining afterwards
is less than the 50% chance of heads in a coin flip.

0 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0

Tags elapsed

P
ro

p
o

rt
io

n
 o

f
k
ey

s
in

 k
ey

ri
n

g

+

+

+++++++++++++++ ++

Fig. 3. Probability of key permanency. The black line follows observed (non-
parametric) data from the keyring, with crosses representing the followup time for
right-censored observations; the red line is the parametric estimation; dotted lines rep-
resent confidence bands. (Color figure online)

As we mentioned, due to the 1024-bit key migration, there is a clear skew that
introduces a sharp drop around 100 tags; work is underway, as will be outlined
in Sect. 5, to do a similar analysis based on personal identities instead of only
key IDs.

Figure 4 shows the key exits given one key in perpetual risk, that is, if it
is to remain in the keyring for all its time span. The increasing steps from the
non-parameric exits is natural being the cumulated sum per tag of the exits
over remaining keys ratios. The similarity from previous plot is expected since
cumulated hazard is a logarithmic transformation from survival function. We see
again that the observed plot lies below the theoretical model starting from tag
40 to 100 (about 4 years), quickly increasing afterwards more than expected. It
is not until near tag 100 that a key is expected to leave, but if for any reason it
didn’t or inmediatly enters again afterwards, it would be expected to leave again
shortly after 3 tags (about 2 months).

Progression and Forecast of a Curated Web-of-Trust 125

0 20 40 60 80 100 120

0.0

0.5

1.0

1.5

2.0

Tags elapsed

E
x
p
ec

te
d
 k

ey
 e

x
is

ts
 i

n
 p

er
p
et

u
it

y
+

+

+++++++++++++++ ++

Fig. 4. Cumulated hazard of key exits. The black line follows observed (non-
parametric) data from the keyring, with crosses representing the followup time for
right-censored observations; the red line is the parametric estimation; dotted lines rep-
resent confidence bands. (Color figure online)

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tags elapsed

K
ey

 d
ep

ar
tu

re
 r

at
e

Fig. 5. Hazard rate of key exits. The black line follows observed (non-parametric)
data from the keyring, the red line is the parametric estimation; dotted lines represent
confidence bands. (Color figure online)

Figure 5 shows the departure rate is analogous to amortality rate.The observed
behaviour suggest that coming of age there’s a sudden increase on the risk i.e. keys
“wear out” to their age around tag 90 (close to 6 years). Yet the parametric depar-
ture rate being under the non-parametric rate at the final tags shows the dramatic
effect from the 1024 removal. Another remarkably finding was that departure rate
in general doesn’t grow far from 0 giving empirical evidence to say that 5 out of
1000 keys will leave “any time now” (from the fact that hazard rate is the instan-
taneous probability of failure at a specified time) in a 8 year lapsus.

In general keys in the project will constantly remain for about 6 years, as long
as they went through 4 years, which in turn suggests further confirmatory analysis.
It is just after the six years where keys effectively don’t survive until the end.

5 Conclusions and Future Work

The Debian keyring is a very peculiar subset of the whole OpenPGP Web of Trust
analyzed in [19]. The work we present here provides data empirically supporting

126 G. Wolf and V. González Quiroga

the theoretical observations, particularly regarding the robustness of what he
defines as the LSCC (Largest Strongly Connected Component). The migration
away from 1024-bit keys provided an opportunity to follow the progression of
the connectivity in our WoT after several of its hubs were removed.

The preliminary results for this work have been shared with a group of Debian
developers. Historically, the usual practice for key signing has been to gener-
ate non-expiring signatures; people that have already cross-signed their keys
don’t have an incentive to refresh their trust. There is an ongoing discussion as
to whether this practice should change towards time-limited signatures, better
modeling ongoing social relationships, or to stick to current practice.

As mentioned in Sect. 4, the survival study has so far been done around
individual keys; work is underway so that a person’s activity can be properly
represented instead of following keys as separate individuals.

The resulting survival analysis can be used to generate cohort tables that fur-
ther explain the keyring population for demographics, [4]. The outlined method-
ology can also be extended by introducing covariates such as the number of sig-
natures received or network measures; this study was done only on the Debian

Developers keyring, it would be interesting to compare with the more loosely
connected Debian Maintainers keyring. We also want to further explain the
keyrings by stratification. The survival analysis showcases good health of the
Debian Developers keyring (which makes up the mass of Debian’s WoT).

Finally, the methodology followed for this study could be applied to other
free software projects, aiming to correlate with events and trends spanning a
wider population than Debian’s; the applicability of our work to other projects,
however, depends on having a proper data set to base the work off. We are
not aware of other projects having curated keyrings in a fashion that allows for
analysis of their evolution over time.

Acknowledgments. We wish to thank GPLHost for donating the computing
resources needed for this work.

References

1. Aalen, O.: Nonparametric inference for a family of counting processes. In: The
Annals of Statistics, pp. 701–726 (1978)

2. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom.
Control 19(6), 716–723 (1974). doi:10.1109/TAC.1974.1100705

3. Cederlöf, J.: Dissecting the leaf of trust (2004). http://wwwlysator.liu.se/∼jc/
wotsap/leafoftrust.html

4. Chiang, C.L.: Life table and its applications. In: Life Table and its Applications.
Robert E. Krieger Publishing (1984)

5. Fernández-Sanguino, J., et al.: A Brief History of Debian (1997–2015). https://
www.debian.org/doc/manuals/project-history/, Accessed 22 Dec 2016

6. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.
Process. Lett. 31(1), 7–15 (1989)

7. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations.
J. Am. Stat. Assoc. 53(282), 457–481 (1958)

http://dx.doi.org/10.1109/TAC.1974.1100705
http://wwwlysator.liu.se/~jc/wotsap/leafoftrust.html
http://wwwlysator.liu.se/~jc/wotsap/leafoftrust.html
https://www.debian.org/doc/manuals/project-history/
https://www.debian.org/doc/manuals/project-history/

Progression and Forecast of a Curated Web-of-Trust 127

8. Klein, J.P., Moeschberger, M.L.: Survival Analysis: Statistical Methods for Cen-
sored and Truncated Data. Springer, New York (2003). doi:10.1007/b97377

9. Muller, H.-G., Wang, J.-L.: Hazard rate estimation under random censoring with
varying kernels and bandwidths. In: Biometric, pp. 61–76 (1994). doi:10.2307/
2533197

10. Penning, H.P.: Analysis of the strong set in the PGP web of trust (2015). http://
pgp.cs.uu.nl/plot/

11. Prentice, R.L.: A log gamma model and its maximum likelihood estimation. Bio-
metrika 61(3), 539–544 (1974)

12. Prentice, R.L.: Discrimination among some parametric models. Biometrika 62(3),
607–614 (1975)

13. Robles, G., Dueñas, S., Gonzalez-Barahona, J.M.: Corporate involvement of libre
software: study of presence in Debian Code over time. In: Feller, J., Fitzgerald, B.,
Scacchi, W., Sillitti, A. (eds.) OSS 2007. ITIFIP, vol. 234, pp. 121–132. Springer,
Boston, MA (2007). doi:10.1007/978-0-387-72486-7 10

14. Smart, N.: ECRYPT II Yearly Report on Algorithms and Keysizes (2011–2012).
Technical report 7th Framework Programme, European Commission (2012). http://
www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf, Accessed 14 Jan 2016

15. SPI et al. Debian GNU/HURD (1997–2016). https://www.debian.org/ports/
kfreebsd-gnu/, Accessed 22 Dec 2016

16. SPI et al. Debian GNU/kFreeBSD (1997–2016). https://www.debian.org/ports/
kfreebsd-gnu/, Accessed 22 Dec 2016

17. Synchronizing Key Servers. SKS OpenPGP Keyserver statistics (2016). http://
pool.sks-keyservers.net:11371/pks/lookup?op=stats, Accessed 31 Dec 2016

18. Tutz, G., Schmid, M.: Modeling Discrete Time-to-Event Data. Springer series in
statistics. Springer, Cham (2016). doi:10.1007/978-3-319-28158-2

19. Ulrich, A., Holz, R., Hauck, P., Carle, G.: Investigating the OpenPGP web of
trust. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 489–507.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23822-2 27

20. Wolf, G., Gallegos-Garćı, G.: Strengthening a curated web of trust in a geograph-
ically distributed project. Cryptologia 41, 1–16 (2017). http://www.tandfonline.
com/doi/full/10.1080/01611194.2016.1238421

21. Zimmerman, P.R.: Why I Wrote PGP (1991). https://www.philzimmermann.com/
EN/essays/WhyIWrotePGP.html

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://dx.doi.org/10.1007/b97377
http://dx.doi.org/10.2307/2533197
http://dx.doi.org/10.2307/2533197
http://pgp.cs.uu.nl/plot/
http://pgp.cs.uu.nl/plot/
http://dx.doi.org/10.1007/978-0-387-72486-7_10
http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf
http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf
https://www.debian.org/ports/kfreebsd-gnu/
https://www.debian.org/ports/kfreebsd-gnu/
https://www.debian.org/ports/kfreebsd-gnu/
https://www.debian.org/ports/kfreebsd-gnu/
http://pool.sks-keyservers.net:11371/pks/lookup?op=stats
http://pool.sks-keyservers.net:11371/pks/lookup?op=stats
http://dx.doi.org/10.1007/978-3-319-28158-2
http://dx.doi.org/10.1007/978-3-642-23822-2_27
http://www.tandfonline.com/doi/full/10.1080/01611194.2016.1238421
http://www.tandfonline.com/doi/full/10.1080/01611194.2016.1238421
https://www.philzimmermann.com/EN/essays/WhyIWrotePGP.html
https://www.philzimmermann.com/EN/essays/WhyIWrotePGP.html
http://creativecommons.org/licenses/by/4.0/

Understanding When to Adopt a Library:

A Case Study on ASF Projects

Akinori Ihara1(B), Daiki Fujibayashi1, Hirohiko Suwa1,
Raula Gaikovina Kula2, and Kenichi Matsumoto1

1 Nara Institute of Science and Technology, Ikoma, Japan
{akinori-i,fujibayashi.daiki.eq3,h-suwa,matumoto}@is.naist.jp

2 Osaka University, Suita, Japan
raula-k@ist.osaka-u.ac.jp

Abstract. Software libraries are widely used by both industrial and
open source client projects. Ideally, a client user of a library should adopt
the latest version that the library project releases. However, sometimes
the latest version is not better than a previous version. This is because
the latest version may include additional developer effort to test and
integrate all changed features. In this study, our main goal is to better
understand the relationship between adoption of library versions and its
release cycle. Specifically, we conducted an empirical study of release
cycles for 23 libraries and how they were adopted by 415 Apache Soft-
ware Foundation (ASF) client projects. Our findings show that software
projects are quicker to update earlier rapid-release libraries compared
to library projects with a longer release cycle. Moreover, results suggest
that software projects are more likely to adopt the latest version of a
rapid-release library compared to libraries with a longer release cycles.

1 Introduction

A software library is a collection of reusable programs, used by both industrial
and open software client projects to help achieve shorter development cycles and
higher quality software [8]. Many of these libraries are open source software and
are readily available through online repositories such as the GitHub1 repository.
To incorporate bug fixes and new features, open source library projects often
release newer and improved versions of their libraries. Based on user feedback,
libraries evolve faster to reach the market, making it difficult for client projects
to keep up with the latest version.

Ideally, a client user of a library should adopt the latest version of that
library. Therefore, it is recommended that a client project should upgrade their
library version as soon as possible. However, the latest version is not always
better than previous versions [5,9], as adoption of the latest version may include
additional developer efforts to test and integrate changed features [7,10,13].
Developers of client projects may be especially wary of library projects that

1 https://github.com.

c© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 128–138, 2017.
DOI: 10.1007/978-3-319-57735-7 13

https://github.com

Understanding When to Adopt a Library 129

follow a rapid-release style of development, since such library projects are known
to delay bug fixes [12]. Recent studies investigated the dependency relationships
between evolving software systems and their libraries [5,6,15]. These tools makes
it possible for developers to clarify and visualize these dependencies and aim to
guide developers who are selecting possible candidate libraries for an upgrade.

In this study, our main goal is to better understand the relationship between
the adoption of library versions and the library release cycle. Specifically, we
conducted an empirical study of the release cycle of 23 libraries and how they
were adopted by 415 Apache Software Foundation (ASF) client projects. These
23 libraries were used by over 50 software projects of our target ASF client
projects. To guide our research, we address the following two research questions:

RQ1: Does the release cycle of a library project influence when it is

adopted by a client project?

Recent studies [7,10,13] have found that open source software often has many
issues soon after its release. Often these libraries are reactive in fixing issues
based on user feedback. In other words, these software may be harmful in the
early period after the release. Therefore, for RQ1, we would like to understand
the effect of client project adoption on shorter release cycles.

RQ2: Does the release cycle of a library project influence whether the

latest version is adopted by a client project?

Recent studies have shown that the newest version of a library is not always
adopted by many client projects. For example, client projects may decide not to
adopt the latest version to avoid untested bugs, especially if the library project
has a shorter release cycle. Therefore, for RQ2, we would like to understand the
effect of adopting the latest client project on shorter release cycles.

Our findings show that software projects are quicker to update earlier rapid-
release libraries compared to library projects with a longer release cycle. More-
over, results suggest that software projects are more likely to adopt the latest
version of a rapid-release library compared to libraries with a longer release
cycles.

2 Background and Definitions

2.1 Motivation

Related work such as Almering et al. [1], Goel et al. [3] and Yamada et al. [14] all
investigate when a software is ready to be used. These works use the Software
Reliability Growth Model (SRGM) of the software evolution process to grasp
the process of the convergence of defects discovered in software as the ‘growth
curve of the S-Shape (Sigmond curve)’. Similarly, Mileva et al. [9] evaluated a
library by its library usage by clients.

Building on this work, we conducted an exploratory investigation of when
developers adopted versions of a library. Figure 1 shows the release date (broken
lines) for the library log4j and the number of ASF projects (solid lines) which

130 A. Ihara et al.

Fig. 1. Adoption trends based on client usage (Color figure online)

have adopted the new library version in a time series. The figure shows users of
the popular log4j library, mined from 797 software projects. From this work, we
highlight two points: (1) library adoption is not organized, with no clear patterns
of migration and (2) in many cases the latest version is not always selected as
the default option. For instance, in Fig. 1 we can see ver.1.2.14 is still being
used by some client projects (red dotted circle), even though the latest version
is ver.1.2.17.

In this paper, we define the “release cycle” as the time until a new version
is released. As a cycle, usually a project will have a fixed release timing from
as quickly as 1 day to a span of across several years. Due to agile development
trends, we assume that the release cycles may become faster. For instance, the
Google Chrome project and the Mozilla Firefox project are working on rapid
release to develop a new version in 6 weeks [4]. A rapid-release cycle is beneficial
in that it can fix a bug and make a new component quickly. Sometimes, these
projects can be reactive in bug fixing, for example, projects can get feedback
from users soon after their release [8]. However, this rapid release style creates
an influx of releases, which is likely to further confuse users on when to adopt a
new version. Therefore, our motivation is to investigate when and how software
projects adopt a new library relative to their release.

2.2 Library Adoption and Release Timings

Figure 2 describes the evolution and adoption of a library during different release
cycles. We use this figure to explain how we measure the timing of adoption
relative to each release, including the relative definition of the latest release.
This example shows a project S and two libraries (A, B). Library A has released
versions A1 and A2, with A2 being the latest version. Similarly, Library B has
released versions B1, B2, B3 and B4, with B4 being the latest version.

This example also shows library adoption. Specifically, we see that project
version S3 imports the library A1, which is not the latest version at this point
in time. This is because at this time, A2 was available for selection. S3 also
imports library B3, which is the latest version at this time. However, we see that
in the near future B4 will be released.

Understanding When to Adopt a Library 131

Fig. 2. Release cycle and adoption period

3 Empirical Study

Adopting the latest versions has the added benefits of new features, but adapt-
ing the latest version may also risk having untested bugs or removed features.
Therefore, the goal of this study is to understand the impact of the release cycle
on the developers decision whether to wait for the next library release or quickly
adopt the latest version.

3.1 Data Preparation

Table 1 shows the top 23 of 4,815 libraries which the 415 software projects used.
In total, these 23 libraries were used by over 50 software projects. These libraries
were originally extracted from 415 projects of 797 ASF projects which are using
MAVEN dependency tool on July 21, 2016. To analyze the library adoption
and release timings, we extracted histories of library dependency information.
Our dataset comprises of JAVA programs managed by the MAVEN dependency
tool. MAVEN stores explicitly in meta information files (POM.xml). The meta
information contains the libraries’ names and the version number in which the
software is adopted. By tracking the history of the POM.xml in a version control
system, for any software, we can know when and which library version has been
adopted.

3.2 Clustering Libraries by Release Cycle

In order to evaluate the impact of the release cycle, the rank and grouping
of libraries based on their release cycles is needed. Hence, for each library, we

132 A. Ihara et al.

Table 1. Ranking of library users

Rank Library Num Rank Library Num

1 junit 305 16 easymock 67

2 commons-logging 167 17 jackson-mapper-asl 60

3 log4j 153 18 commons-cli 55

4 slf4j-api 145 19 jackson-core-asl 53

5 commons-lang 130 20 mail 53

6 commons-io 122 21 velocity 52

7 slf4j-log4j12 109 22 jcl-over-slf4j 52

8 servlet-api 99 23 mockito-all 52

9 commons-collections 98

10 commons-codec 96

11 commons-httpclient 83

12 guava 81

13 ant 73

14 xercesImpl 69

15 jetty-server 68 4815 axis2-transports 1

compute and assign a [2] variable importance score for each library. We then
use the Scott-Knott test [11] to group libraries into statistically distinct ranks
according to their release periods. The Scott-Knott test is a statistical multi-
comparison procedure based on cluster analysis. The Scott-Knott test sorts the
percentage of release periods for the different libraries. Then, it groups the factors
into two different ranks that are separated based on their mean values (i.e., the
mean value of the percentage of release periods for each library). If the two groups
are statistically distinct, then the Scott-Knott test runs recursively to further find
new groups, otherwise the factors are put in the same group. The final result of
the Scott-Knott test is a grouping of factors into statistically distinct ranks.

Table 2 shows the 6 categories (i.e., C1, ..., C6) in which each of the 23 studied
libraries were categorized. Based on these 6 groupings and the dataset, we are
now able to address the research questions in our results.

4 Results

RQ1: Does the release cycle of a library project influence when it is

adopted by a client project?

To answer RQ1, we use the clustered libraries groupings to compare release and
adoption times. As a result, we make the following observations:

Observation1—All top frequent libraries are not released in one year.

The boxplot in Fig. 3 shows the distribution of the periods between releases in

Understanding When to Adopt a Library 133

Fig. 3. The release cycle of each library by boxplot. The target libraries are sorted by
clustering (broken lines) from C1 to C6. The top figure shows the clustering number
and the median of the release cycle days.

Fig. 4. The boxplot shows the adoption time of each library. The target libraries are
sorted by clustering (broken lines) from C1 to C6. The top figure shows the clustering
number and the median of the adoption time [days].

each library. The libraries are sorted by the number of adopted software projects.
While some library projects (e.g., jetty-server, jackson-mapper-asl,
mockito-all) often release new versions in one year, other library projects (e.g.,
commons-cli, servlet.api, commons-logging) often release new versions after
more than one year. In particular, releases for the commons-cli project were
delayed for a consideration time.

Observation2—While older and established projects often release new

versions after more than one year, beginner projects often release new

versions in three months. Through our analysis, we found the different features
between quick-release projects and late-release projects. Table 2 shows theworking
period with GitHub for each library project. Traditional projects that have worked
for 10 years often release new versions after more than one year.

134 A. Ihara et al.

Table 2. Clustering by library release cycle and each library start of the release date

Library Date Library Date

Cluster 6 Cluster 1

commons-cli Nov. 6, 2002 log4j May. 1, 2002

Cluster 5 guava Sep. 15, 2009

servlet-api Sep. 25, 2001 commons-httpclient Aug. 31, 2001

Cluster 4 slf4j-api Mar. 8, 2006

commons-logging Aug. 13, 2002 slf4j-log4j12 Mar. 8, 2006

commons-collections Apr. 2, 2002 jcl-over-slf4j Mar. 8, 2006

Cluster 3 mockito-all Feb. 28, 2008

commons-codec Apr. 25, 2003 jackson-core-asl Jan. 14, 2009

commons-io Jul. 2, 2007 jackson-mapper-asl Jan. 14, 2009

Cluster 2 xercesImpl Mar. 29, 2009

mail Feb. 22, 2000

easymock Aug. 8, 2001

commons-lang Nov. 25, 2002

junit Dec. 3, 2000

xercesImpl Jan. 30, 2002

velocity Jul. 7, 2002

ant Jul. 19, 2000

Observation3—While software projects have adopted the quick-

release libraries soon after the release, they have not adopted the

late-release libraries as quickly. The boxplot in Fig. 4 shows the distribution
of the adopted periods for our target projects in each library. We found that
software projects have adopted the quick-release libraries (sixth group). In other
words, they often adopt new versions soon after their release. On the other hand,
software projects have adopted the late-release libraries (1st–2nd). This means
that they do not adopt new versions quickly after the release.

In the group of the quick-release cycle, the adopted time of the mockito-all
library is longer than the other libraries. To understand the reason, we analyzed
software projects which adopted the mockito-all library. As we can see in
Fig. 3, there are some outliers for mockito-all. Those are some versions which
took a long time to release a new version. In particularly, version 1.9.0 was
released approximately 1 year after releasing version 1.8.5. Also, version 1.10.0
was released approximately 2 years after releasing version 1.9.5. While waiting for
the version 1.10.0, many software projects started using the mockito-all library
just before releasing the version. In addition, although the Velocity library was
adopted in a comparatively quick-release project, most software projects adopted
the Velocity library a relatively long time after the release. The results show
that many projects still started adopting the Velocity library after the project

Understanding When to Adopt a Library 135

Fig. 5. Figure showing the adoption status rate of each library. The black bar means
the adoption rate of newest version. The gray bar means the adoption rate of previous
version. As showing by rate, the vertical axis means 100%

released the newest version on November 29th, 2010. Therefore, to answer RQ1,
we find that:
✓ ✏

Software projects are more quickly updated than rapid release libraries com-
pared to library projects with a longer release cycle.

✒ ✑

RQ2: Does the release cycle of a library project influence whether the

latest version is adopted by a client project?

To answer RQ2, we use the clustered libraries groupings to investigate
whether the latest version of a library was adopted. As a result, we make the
following observations:

Observation4—Software projects do not always adopt new library ver-

sions in their projects. Figure 5 shows the percentage of the newest or previ-
ous versions which software projects adopted from each library. The black and
gray bars show the newest adopted version and the previous version applied to
the software projects. We found 8%–85% of software projects adopted the new
library versions. The commons-cil library often adopted the newest version to
the software. On the other hand, the jetty-server library was often adopted
the previous version to the software.

Observation5—While the quick-release library often adopts the

newest version to the software, the late-release library often adopts the

previous version to the software. 85% of the commons-cli library changes
were applied to the newest version. This library project has released only 4 new
versions during our target period (16 years). This number of releases is fewer
than for the other library projects. Furthermore, one of the versions contained a
new feature and maintenance bug fixes. The other two versions contained dozens

136 A. Ihara et al.

of bug fixes. From this analysis, the project just maintained the initial a stable
version.

On the other hand, only 19% of the servlet.api library changes were applied
to the newest version although it is a late-release library. This library project
has released only 7 new versions during our target period. To understand this
strange result, we analyzed the history of applying the library. We found that
version 2.5 is the majority even if the project released newer versions.

92% of the jetty-server library changes were applied to the previous ver-
sion. This library project has released 267 new versions with most release inter-
vals ranging from 0 to 20 days during our target period. 267 new versions show a
clear contradiction to the commons-cli library and servlet-api library. Further-
more, we found that version 6.1.26 is the majority, even if the project released
newer versions. In sum, to answer RQ2, we find that:

✓ ✏
Software projects are more likely to adopt the latest version of a rapid-
release library compared to a library with a longer release cycles.

✒ ✑

5 Conclusions and Future Work

In this study, we revealed the relationship between the release cycle and the
time it takes to adopt a library. Our results suggests that the shorter the release
cycle, the shorter the time to be adopted, and that the rapid-release library
will be adopted faster even in the same release cycle. Also, for libraries with
majority versions, it is difficult to adopt the latest version. We find that it is
especially difficult to generalize the reason for adopting a previous version. We
think that the reasons are clarified by analysis of the released version. In detail,
we believe that reasons will be clarified by analyzing the number of bug fixes
and the number of added functions to the released version. These factors are
important when selecting a library although there are still many challenges in
finding other factors.

In this study, we considered the adoption situation only by the adoption
time and whether the version is the newest adoption or a previous adoption of
the OSS library. We confirmed that the version was adopted, but we did not
also consider the state after adoption. When downgrading a version, we think
that the reason should be extracted from the commit log. Further research is
needed to confirm this. Also, there are cases where users changed to a version
whose adoption was skipped or a library with the same function. Future work
will include how to analyze these cases and to clarify what influence what this
has on library selection.

Understanding When to Adopt a Library 137

Acknowledgments. This work was supported by the JSPS Program for Advancing
Strategic International Networks to Accelerate the Circulation of Talented Researchers:
Interdisciplinary Global Networks for Accelerating Theory and Practice in Software
Ecosystem and the Grant-in-Aid for Young Scientists (B) (No. 16K16037).

References

1. Almering, V., van Genuchten, M., Cloudt, G., Sonnemans, P.: Using software reli-
ability growth models in practice. IEEE Softw. 24(6), 82–88 (2007)

2. Breiman, L.: Machine Learning. Kluwer Academic Publishers, Hingham (2001)
3. Goel, A.L.: Software reliability models: assumptions, limitations, and applicability.

IEEE Trans. Softw. Eng. 11(12), 1411–1423 (1985)
4. Khomh, F., Dhaliwal, T., Zou, Y., Adams, B.: Do faster releases improve software

quality?: an empirical case study of mozilla firefox. In: Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories, pp. 179–188 (2012)

5. Kula, R.G., German, D., Ishio, T., Inoue, K.: Trusting a library: a study of the
latency to adopt the latest maven release. In: Proceedings of the 22nd IEEE Inter-
national Conference on Software Analysis, Evolution, and Reengineering, pp. 520–
524 (2015)

6. Kula, R.G., Roover, C.D., German, D., Ishio, T., Inoue, K.: Visualizing the evolu-
tion of systems and their library dependencies. In: Proceedings of the 2014 Second
IEEE Working Conference on Software Visualization, pp. 127–136 (2014)

7. Mäntylä, M.V., Adams, B., Khomh, F., Engström, E., Petersen, K.: On rapid
releases and software testing: a case study and a semi-systematic literature review.
Empirical Softw. Eng. 20(5), 1384–1425 (2015)

8. McCarey, F., Ó Cinnéide, M., Kushmerick, N.: Knowledge reuse for software reuse.
Web Intell. Agent Syst. 6(1), 59–81 (2008)

9. Mileva, Y.M., Dallmeier, V., Burger, M., Zeller, A.: Mining trends of library usage.
In: Proceedings of the Joint International and Annual ERCIM Workshops on Prin-
ciples of Software Evolution and Software Evolution Workshops (IWPSE-Evol), pp.
57–62 (2009)

10. Plate, H., E. Ponta, S.: Impact assessment for vulnerabilities in open-source soft-
ware libraries. In: Proceedings of the International Conference on Software Main-
tenance and Evolution (ICSME), pp. 411–420 (2015)

11. Scott, A.J., Knott, M.: A cluster analysis method for grouping means in the analysis
of variance, vol. 30. International Biometric Society (1974)

12. Tosin Daniel Oyetoyan, D.S.C., Thurmann-Nielsen, C.: A decision support system
to refactor class cycles. In: 2015 IEEE 31st International Conference on Software
Maintenance and Evolution (ICSME) (2015)

13. Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A.,
Poshyvanyk, D.: When and why your code starts to smell bad. In: Proceedings of
the 37th International Conference on Software Engineering (ICSE), pp. 403–414
(2015)

14. Yamada, S., Ohba, M., Osaki, S.: S-shaped reliability growth modeling for software
error detection. IEEE Trans. Reliab. 32(5), 475–484 (1983)

15. Yano, Y., Kula, R.G., Ishio, T., Inoue, K.: Verxcombo: an interactive data visual-
ization of popular library version combinations. In: Proceedings of the IEEE 23rd
International Conference on Program Comprehension, pp. 291–294 (2015)

138 A. Ihara et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Adoption of Academic Tools

in Open Source Communities:

The Debian Case Study

Pietro Abate1(B) and Roberto Di Cosmo2

1 IRILL and INRIA, Paris, France
pietro.abate@inria.fr

2 INRIA and University Paris Diderot, Paris, France
roberto@dicosmo.org

Abstract. Component repositories play a key role in the open software
ecosystem. Managing the evolution of these repositories is a challenging
task, and maintainers are confronted with a number of complex issues
that need automatic tools to be adressed properly.

In this paper, we present an overview of 10 years of research in this
field and the process leading to the adoption of our tools in a FOSS com-
munity. We focus on the Debian distribution and in particular we look
at the issues arising during the distribution lifecycle: ensuring buildabil-
ity of source packages, detecting packages that cannot be installed and
bootstrapping the distribution on a new architecture. We present three
tools, distcheck, buildcheck and botch, that we believe of general interest
for other open source component repositories.

The lesson we have learned during this journey may provide useful
guidance for researchers willing to see their tools broadly adopted by the
community.

1 Introduction

In the last two decades, component repositories have played an important role in
many areas, from software distributions to application development. All major
Free and Open Source Software (FOSS) distributions are organized around large
repositories of software components. Debian, one of the largest coordinated soft-
ware collections in history [12], contains in its development branch more than
44’000 binary packages1 generated from over 21’000 source packages; the Cen-
tral Maven repository has a collection of 100’000 Java libraries; the Drupal web
framework counts over 16’000 modules.

In Debian, components are developed independently by different communities
and assembled in the main repository, giving raise to a small world dependency
graph [15]. Apart from intrinsic coordination problems associated to this distrib-
uted development model, the number of dependencies in Debian distributions

Work partially performed at, and supported by IRILL http://www.irill.org.
1 Debian software components are called packages.

c© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 139–150, 2017.
DOI: 10.1007/978-3-319-57735-7 14

http://www.irill.org

140 P. Abate and R. Di Cosmo

poses new challenges for automation and quality assurance. During the last 10
years we have participated in the development and adoption of automatic tools
for testing, integration and tracking of all components and aspects of a reposi-
tory, in particular in the framework of the European project Mancoosi [1].

It is well known that achieving real world adoption of tools developed in
academia and proposed by researchers is a painful and difficult process that
only rarely succeeds [19]. After years of work, we managed to get almost all of
our tools adopted in the Debian project.

We participated in extensive work performed by a team that spent 10 years
of research in quality assurance, and package management, an area for which a
comprehensive short survey is available elsewhere [8]. During this time, we had
different collaborations with many other communities such as the Eclipse [16,17]
and the OCaml [2] with different degrees of success.

In this article, we sum up and share the lessons we have learned in collabora-
tion specifically with the Debian community, because of the direct involvement
of a few members of our team, and because of the open and community driven
bazaar-style development model. We truly believe that FOSS distribution and
software collections alike can benefit from our experience and researcher should
invest time and energy to work with developers in a proactive way and foster
integration of modern and automatic QA (quality assurance) tools.

The rest of the paper is organised as follows: After a brief introduction, we
present distcheck and buildcheck , the main tools developed by our team. Then
we will discuss two examples in which our tools play an important role. The first
one related to the distribution life cycle (from development to testing, to the
stable release). The second is a tool (botch) that is used to bootstrap Debian
for new hardware platforms. In the last part of the paper we summarize the
lessons we have learned in the last 10 years and provide insights for researches
and developer communities interested in embarking into a similar journey.

1.1 Packages in the Debian Distribution

Despite different terminologies, and a wide variety of concrete formats, software
repositories use similar metadata to identify the components, their versions and
their interdependencies. In general, packages have both dependencies, expressing
what must be satisfied in order to allow for installation of the package, and conflicts

that state which other packages must not be installed at the same time. As shown
in Fig. 1, while conflicts are simply given by a list of offending packages, dependen-
cies may be expressed using logical conjunction (written ‘,’) and disjunctions (‘|’).
Furthermore, packages mentioned in inter-package relations may be qualified by
constraints on package versions. Debian packages and come in two flavours: binary
packages contain the files to be installed on the end user machine, and source pack-
ages that contain all of files needed to build these binary packages. Debian package
meta-data describe a broad set of inter-package relationships: virtual-packages,
dependencies, multi-architecture annotations, and many more, allow the Debian
project to automatize tasks such as binary package recompilations, package life

Adoption of Academic Tools in Open Source Communities 141

Package: ant

Version: 1.9.7-2~bpo8+1

Installed-Size: 2197

Architecture: all

Depends: default-jre-headless | java5-runtime-headless | java6-runtime-headless

Recommends: ant-optional

Suggests: ant-doc, ant-gcj, default-jdk | java-compiler | java-sdk

Conflicts: libant1.6-java

Breaks: ant-doc (<= 1.6.5-1)

Description: Java based build tool like make

Fig. 1. Excerpt of Debian package metadata

cycle management among different releases, or bootstrapping the distribution on
new architectures.

1.2 The Installability Problem

Finding a way to satisfy all the dependencies of a given package only using the
components available in a repository, also known as the installability problem, is
the key task for all component based repositories: all package managers need to
tackle it, be it for Eclipse plugins, Drupal modules, or Debian packages.

And yet, it was not until 2006 that it was shown that this problem is NP-
complete for the Debian distribution [7], and later on for a broad range of com-
ponent repositories [4]. This result came as a kind of a surprise in the different
engineering communities, that were using on a daily basis ad-hoc tools which
were fast, but under closer scrutiny turned out to be incomplete [7].

Luckily, real world instances proved to be tractable, and it was possible to
design and implement dependency solvers based on sound scientific basis, that
could significantly outperform all the pre-existing tools: Jerôme Vouillon’s early
prototypes, debcheck and rpmcheck, originally developed in 2006, paved the
way to modern dependency checking, and are nowadays at the core of the tools
we describe in the rest of this paper.

1.3 The Edos and Mancoosi Research Projects

Edos and Mancoosi [1] are two research projects funded by the European Com-
mission, that run respectively from 2004 to 2007 and from 2008 to 2011. They
focused on the new research problems posed by the maintenance of free software
distributions, and brought together industries and top research laboratories from
over 10 countries. Besides publishing research articles, these projects produced
several tools that significantly improved the state of the art, and that are now
part of the Dose3 library, which has outlived the research projects and became
over time a collection of all the algorithms and tools developed over more than
a decade. Unlike what seems to often happen in these research areas [19], most
of the tools that were developed have now been adopted, in particular in the
Debian distribution, even if with varying degrees of delay and effort.

142 P. Abate and R. Di Cosmo

2 Our Tools

The first two tools produced by this research effort that were adopted in the
Debian community are distcheck and buildcheck , which scan all the packages in
a Debian distribution to identify installability issues. Both tools were developed
to provide proof of concept prototypes to support our experiments but evolved,
with the help of the Debian community, to production ready tools.

2.1 Distcheck and Buildcheck

The distcheck tool is a command line tool, capable of verifying the installability
of all (or a selection of) components contained in a given repository. Internally,
distcheck is designed as a pipeline, as shown in Fig. 2. The front-end on the left
is a multiplexer parser that supports several formats for component metadata
(Debian Packages files, RPM’s synthesis or hdlist files, Eclipse OSGI metadata,
etc.). After metadata parsing, component inter-relationships are converted in a
data representation called CUDF (Common Upgradability Description Format),
an extensible format, with rigorous semantics [22], designed to describe instal-
lability scenarios coming from diverse environments without making assump-
tions on specific component models, version schemas, or dependency formalisms.
CUDF can be serialized as a compact plain text format, which makes it easy
for humans to read component metadata, and which facilitates interoperability
with other component managers that are not yet supported by distcheck .

The actual installability check work is performed by a specialized solver, that
uses the SAT encoding [18] and employs an ad hoc customized Davis-Putnam
SAT solver [9] by default instead of the many other standalone solvers now
available for dependency solving like [6,10,13,14,20]. Since all computations are
performed in-memory and some of the encoding work is shared between all pack-
ages, this solver performs significantly faster than a naive approach that would
construct a separate SAT encoding for the installability of each package, and
then run an off-the-shelf SAT solver on it. For instance, checking installability
of all packages of the Debian main repository of the unstable suite (for 53696
packages2) takes just 30 s on a commodity 64 bit CPU laptop.

Fig. 2. distcheck architecture

2 Snapshot of the Debian distribution 27/02/2017.

Adoption of Academic Tools in Open Source Communities 143

The final component of the pipeline takes the result from the solver and
presents it in a variety of human and machine readable formats to the final user.
An important feature of distcheck is its ability, in case a package is found not
installable, to produce a concise human-readable explanation that points to the
reasons of the issue in a machine-readable format.

The buildcheck tool follows the same pipeline philosophy of distcheck but it
is aimed at source packages. It takes a list of source and binary packages and
checks if the build dependencies of each source package can be satisfied with the
given binary list. buildcheck is based on the same algorithm of distcheck , but
because of different formats and metadata, packages are mangled behind the
scenes in an ad-hoc CUDF that can be feed to the solver. The output, as for
distcheck , is in YAML format and provides a human-readable explanation of the
issue.

Adoption. distcheck has been adopted in the Debian project thanks to sig-
nificant commitment on the side of the researchers. In particular, Ralf Treinen
and Fabio Mancinelli, on occasion of the 2006 edition of DebConf (the annual
meeting of the Debian project), worked on setting up a dedicated web page
for use by the Debian Quality Assurance team. That quality dashboard was
originally hosted on http://edos.debian.net and evolved over time, incorporat-
ing more tools developed later to detect outdated packages [3], and migrated
in 2014 to the official Debian Quality Assurance infrastructure, that is now at
qa.debian.org/dose/. Our tools are also part of their projects like rebootstrap and
bootstrap.debian.net.

3 Enhancing the Debian Distribution Build Process

The Debian life cycle and evolution process is organised around three reposito-
ries: stable, which contains the latest official release and does not evolve any more
(apart for security and critical updates); testing, a constantly evolving repository
to which packages are added under stringent qualification conditions, and that
will eventually be released as the new stable; and unstable, a repository in which
additions, removals and modifications are allowed under very liberal conditions.
A stringent set of requirements, which are formally defined, must be satisfied by
packages coming from unstable to be accepted in testing (also known as pack-
age migration), and the repository maintainers have responsibility for enforcing
them with the help of ad-hoc tools.

From their first release into the Debian repository, packages evolve over time
following a well defined process. When a new version of a source package S is
available, it is fist introduced in unstable (the only point of entry into the dis-
tribution), where the corresponding binary packages are gradually built. When
a binary package is rebuilt, it replaces the previous version (if any), and when
all binary packages associated to S are rebuilt, the old version of S is dropped.
Building binary packages can be a long process because of compilation errors and
broken dependencies. Moreover, because of the iterative nature of this process,

http://edos.debian.net
http://qa.debian.org/dose/
http://bootstrap.debian.net

144 P. Abate and R. Di Cosmo

it is sometimes possible to find in unstable several versions of the same source
package, and a mixture of binary packages coming from these different versions
of the same source.

In order to allow a smooth monitoring of the build process, to keep track of
old and new packages in unstable and to handle the transition of packages from
unstable to testing, Debian built a powerful internal infrastructure to automat-
ically build and migrate packages from one repository to another.

3.1 Buildd, sbuildd, Dose-Tools

The Debian autobuilder network is a management system that allows Debian
developers to easily add new source packages to the repository and compile all
associated binary package for all architectures currently supported by Debian.
This network is made up of several machines and uses a specific software package
called buildd whose main function is to automatically build all binary packages,
according to its metadata and multi-architecture annotations.

The build daemon, consists of a set of scripts (written in Perl and Python)
that have evolved to help porters with various tasks. Over time, these scripts
have become an integrated system that is able to keep Debian distributions
up-to-date nearly automatically. The build infrastructure is composed of three
main components, first wanna-build is a tool to collect and keep track of all
package metadata. The buildd is the multiplexer that selects which builder for
each architecture must be invoked for each package, and finally sbuild is the
actual builder to automatically recompile the package. buildcheck and distcheck

are integrated in different components of the Debian build daemon.
buildcheck is used in the wanna-build daemon to check if a all the build

dependencies of a given source package are available. This step allows one to
catch dependency problems before even allowing the package to enter the build
queue, hence saving considerable resources and space. buildcheck is fed with the
metadata of the current source package, and the metadata of all available pack-
ages in the archive at one moment in time. By using different options, buildcheck

is able to check, for each architecture, if the all dependencies are available and
if this is not the case, to provide a human readable explanation for the package
maintainer. This tool is also available to the package maintainer and it can be
run independently on a personal machine.

distcheck is used in sbuildd to provide better explanations to the package
maintainer in case of failure. Depending on the solver (by default aspcud [11]),
the dose3 explainer might report a dependency situation as satisfiable even if
the apt-get found it to be unsatisfiable. This is a consequence of the fact that
the default Debian resolver (apt-get) employs an algorithm that is, albeit very
fast, incomplete. Having a sound and complete dependency solver for Debian
helped developers in many occasions. The same solver is also available to the
final user via apt-get, where the user can choose to select an external solver
while installing a binary package on their machine. Before the introduction of
distcheck packages where tested for broken dependencies using apt, that because
of its nature, it was less adapted to this task.

Adoption of Academic Tools in Open Source Communities 145

Adoption. buildcheck and distcheck have also been adopted in the Debian
project thanks to significant commitment on the side of the researchers: in par-
ticular, after a common presentation with Ralf Treinen in DebConf 2008 [21],
Stefano Zacchiroli gave another presentation in DebConf 2009 that motivated
the swift integration of the Dose tools in wanna-build. This was highly facili-
tated by the fact that the Dose tools were already properly packaged for Debian,
after the work done by Ralf Treinen, and that they had started to be known in
the Debian community thanks to the regular participation of the researchers to
these events.

4 Bootstrapping Debian on a New Architecture

With new hardware architectures and custom co-processor extensions being
introduced to the market on a regular basis, porting Debian to a new archi-
tecture not only involves adapting the low-level software layer for a different
hardware, but also considering the inter-dependencies among different compo-
nents and how these can affect the compilation and packaging process. Binary
packages and source packages use meta-data to describe their relationships to
other components. Bootstrapping a distribution to a new architecture deals with
the problem of customizing the software (source packages) for a specific archi-
tecture and to instantiate a new set of binary packages that is consistent with
the constraints imposed by the new hardware.

Bootstrapping a distribution is the process by which software is compiled,
assembled into packages and installed on a new device/architecture without the
aid of any other pre-installed software.

The method routinely used in Debian consists in first, the creation (by cross
compilation) of a minimal build system, and later the creation of the final set
of binary packages on the new device (by native compilation). Cross compiling
a small subset of source packages is necessary because an initial minimal set of
binary packages must exist in order to compile a larger set of source packages
natively. Once a sufficient number of source packages is cross compiled (we call
the set of binary packages produced by them a minimal system) new source
packages can be compiled natively on the target system. The minimal system
is composed of a coherent set of binary packages that is able to boot on the
new hardware and to provide a minimal working OS. This minimal set of binary
packages contains at the very least an operating system, a user shell and a
compiler. This initial selection is generally provided by distribution architects.

4.1 Botch

Botch is a set of tools designed to help porters to refine and complete this
selection in a semi-automatic way and to build the rest of the distribution on top
of it [5]. Botch is based on the Dose3 library and re-uses many of its components.
The main contribution of botch is the ability of providing a compilation order
of source packages to gradually rebuild the entire archive. The goal is to break

146 P. Abate and R. Di Cosmo

compilation loops by pruning build dependencies according to special metadata
describing compilation stages. At each iteration/stage, new binary packages are
added to the repository that in turn will allow new source packages to be build.

The development of botch started with an academic collaboration with
Johannes Schauer, a student that participated in a Google Summer of Code
co-organised with Debian in 2012 [23]. Slowly, from prototype and thanks for
the personal investment of the main developer of botch, it evolved from an aca-
demic project into an industry-strength tool.

Adoption. Before botch, porting Debian to a new architecture was a long
manual process based on the intuition and personal experience. Because of the
complex dependency network and inherent recursive nature of the problem (in
order to compile a package we need to compile first all the source packages that
will generate its build dependencies), it was also particularly error prone.

Hence it came as no surprise to see that it was adopted pretty swiftly: it was
not just a matter of improving quality of a distribution, but of saving weeks of
hard work. Botch is now referenced in the Debian official page on bootstrapping
https://wiki.debian.org/DebianBootstrap and is used regularly.

5 The Technology Transfer Problem

The adoption path of the tools we have surveyed required significant effort and
lasted several years. To understand why this was the case, it is important to take
a step back and look at the basic principles governing both the FOSS community
and the research community.

5.1 Community vs. Academia

The evolution of Debian has imposed the adoption of many different automated
tools to handle the continually growing number of packages, developers and users.
Historically, all tools belonging today to the Debian infrastructure have evolved
independently, often in competition to each other. Because of the Debian gover-
nance model, where no central authority takes technical decisions, the adoption
of a specific tool has always been left to the so called do-ocracy : if you want a
particular tool to be used, you need to show its usefulness, integrate it in the
infrastructure yourself, and convince others to use it.

As a consequence, the development and acceptance of these tools has always
been quite slow because of the human factor and often not because of technical
objections: once a developer has spent significant time and energy getting his
own tool adopted, it is quite natural that they expect high returns in term of
their own image in the project. Hence he will not be particularly open to admit
that there is an interest in adopting new, more advanced technologies, and one
can observe in the debate surprising arguments, like “that’s surely a great tool,
but you need to rewrite it using programming language A for it to be accepted”,
where A is a programming language different from the one used in the new tool.

https://wiki.debian.org/DebianBootstrap

Adoption of Academic Tools in Open Source Communities 147

This attitude has often been one of the first reaction we encountered and often
the most difficult to overcome.

On the academic side, researchers face a publication pressure that seldom
allows them to invest the time required to gain enough traction within this
kind of communities. With these constraints, researchers often focus on one
community while simply do not have the time to engage others. On top of that,
to convince the infrastructure developers to see the “greater good” associated to
adapt and use proved and stable solutions spin-off from research projects, one
needs to actually produce a tool that is going to work in real-world situations,
and not just in the small test cases often used as validation test-beds for academic
publication.

Our approach over the year has been to adapt our way of doing research
to match the real-world, following “ante litteram” the path highlighted in [19].
Therefore we invested a considerable amount of time to create tools that were
able to work with real data, and at the same time use these data as empirical
support in our publications. This approach kept us motivated and at the same
time proved to be a good return of investment in the long run.

5.2 The Communication Gap

While approaching the Debian community, we faced issues that were sometimes
technical in nature, sometimes political, and sometimes even personal. Moreover,
after realizing the communication gap between our academic approach and the
FOSS communities, we had to learn to speak a new language, and engage the
community on their own ground. Researchers often focus exclusively on the
effectiveness and correctness on their approach, while forgetting the cost in terms
of integration time and learning curve.

The FOSS community is large and diverse. And while everybody has some
technical knowledge, adopting a lingo that is too complex to understand can
be counter productive. Hackers are more concerned about the results than the
mathematics behind a tool, they are concerned about the ease of use, more than
the expressive power of a new language. Providing something the community
can readily understand, use and modify, in terms of programming language used,
development tools, following de-facto standards, can greatly speed up the time
of adoption of a new solution.

In our experience, bridging the academia-community gap has been possi-
ble only by actively engaging with the community. This involved, on one side,
a significant effort to participate in online forums and live conferences: during
the years covered in this article, we presented our work in a major European
Developer conference (FOSDEM), and invited lead developers to work with us.
We greatly benefit from having few members of our research team personally
involved in the Community. While this is not always possible and largely depen-
dent on the personal motivation of each team member, having deep ties within
Debian helped us greatly to gain trust and respect. We also hosted hacking
sprints and provide support for several events. By meeting the community, we
tried to reduce this gap and to engage a fruitful and long-standing collaboration.

148 P. Abate and R. Di Cosmo

5.3 Community Driven Open Development

Our next step was to fully open up our development process and welcome dif-
ferent developers from different communities to contribute to our tools. We
started this by funding students interested in FOSS and interacting with other
researchers that are already active members of the community. The Dose3
library, which has consolidate most of our research work outcomes, has now
an active community of developers, it is packaged for all major FOSS distribu-
tions and is currently maintained by the first author. To gain acceptance with
the community we followed the unix philosophy, providing a lean and powerful
command line tool, and an easily parse-able output. We also provided docu-
mentation and examples for other languages such as python or perl to foster
interoperability and simplify the integration into existing frameworks. During
the years we attracted several students interested to work on the project. Two
of them developed important components of the library and one of the has now
become one of the main contributors.

Finally, we consider that our commitment to handle real-world case studies,
with direct applicability in the field, instead of the usual toy examples, proved
to be a real important element of success.

5.4 Lesson Learned

From our experience, we can draw the following recommendations for colleges
from academia that want to see their tools adopted.

Be proactive. Do not wait for the community to reach out to you for help. It
is your task to engage developers and publicize your work.

Communication. Attending conferences and learning how to frame our work
for a specific community is essential.

Engagement. Seeking collaboration, hosting events and participating to the
development process of a distribution is essential to build trust and ease
acceptance.

The extra mile. Provide tools and documentation accessible to a wide audience.
Make it easy for your tools to be integrated in the existing framework, do not
expect others to do it in your place.

Hiring interns, PhD students or post-docs that are interested in free software is
a great way of creating connections between the two worlds, and establishing
trust.

6 Conclusion

The take-away from this paper is that developing amazing and efficient tools
behind the high walls of academia is only the starting point, and much more is
needed to achieve impact in the real world.

Adoption of Academic Tools in Open Source Communities 149

Acknowledgements. The work described in this article has been performed over a
very long span of time, in collaboration with many researchers, that contributed in
different periods, and to varying degrees, to some or all of the tools that we mention.
Roberto Di Cosmo, Fabio Mancinelli, Ralf Treinen and Jerôme Vouillon were actively
involved in the EDOS project, with Fabio Mancinelli leaving after that period. In
the MANCOOSI project, that was set up and coordinated by Roberto Di Cosmo,
Ralf Treinen and Jerôme Vouillon were joined by Pietro Abate, Jaap Boender and
Stefano Zacchiroli.

References

1. The mancoosi project (2011). http://www.mancoosi.org
2. Abate, P., Cosmo, R.D., Gesbert, L., Fessant, F.L., Treinen, R., Zacchiroli, S.: Min-

ing component repositories for installability issues. In: 12th IEEE/ACM Working
Conference on Mining Software Repositories (MSR 2015), Florence, Italy, 16–17
May 2015, pp. 24–33 (2015)

3. Abate, P., Cosmo, R.D., Treinen, R., Zacchiroli, S.: Learning from the future of
component repositories. Sci. Comput. Program. 90, 93–115 (2014)

4. Abate, P., Di Cosmo, R., Treinen, R., Zacchiroli, S.: Dependency solving: a separate
concern in component evolution management. J. Syst. Softw. 85(10), 2228–2240
(2012)

5. Abate, P., Schauer, J.: Bootstrapping software distributions. In: Proceedings of
International Symposium of Component Based Software Engineering (CBSE)
(2013)

6. Argelich, J., Le Berre, D., Lynce, I., Marques-Silva, J., Rapicault, P.: Solving Linux
upgradeability problems using boolean optimization. In: LoCoCo: Logics for Com-
ponent Configuration, vol. 29 of EPTCS (2010)

7. Di Cosmo, R., Mancinelli, F., Boender, J., Vouillon, J., Durak, B., Leroy, X.,
Pinheiro, D., Trezentos, P., Morgado, M., Milo, T., Zur, T., Suarez, R., Lijour,
M., Treinen, R.: Report on formal mangement of software dependencies. Technical
report, EDOS (2006)

8. Cosmo, R., Treinen, R., Zacchiroli, S.: Formal aspects of free and open source
software components. In: Giachino, E., Hähnle, R., Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2012. LNCS, vol. 7866, pp. 216–239. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40615-7 8

9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24605-3 37

10. Galindo, J.A., Benavides, D., Segura, S.: Debian packages repositories as software
product line models. Towards automated analysis. In: Proceedings of the 1st Inter-
national Workshop on Automated Configuration and Tailoring of Applications.
CEUR-WS.org (2010)

11. Gebser, M., Kaminski, R., Schaub, T.: aspcud: a Linux package configuration tool
based on answer set programming. In: Drescher, C., Lynce, I., Treinen, R., (eds.)
Proceedings Logics for Component Configuration. LoCoCo (2011)

12. Gonzalez-Barahona, J., Robles, G., Michlmayr, M., Amor, J., German, D.: Macro-
level software evolution: a case study of a large software compilation. Empir. Softw.
Eng. 14(3), 262–285 (2009)

13. Janota, M.: Do sat solvers make good configurators? In: SPLC: Software Product
Lines Conference, vol. 2 (2008)

http://www.mancoosi.org
http://dx.doi.org/10.1007/978-3-642-40615-7_8
http://dx.doi.org/10.1007/978-3-540-24605-3_37

150 P. Abate and R. Di Cosmo

14. Jenson, G., Dietrich, J., Guesgen, H.W.: An empirical study of the component
dependency resolution search space. In: Grunske, L., Reussner, R., Plasil, F. (eds.)
CBSE 2010. LNCS, vol. 6092, pp. 182–199. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-13238-4 11

15. LaBelle, N., Wallingford, E.: Inter-package dependency networks in open-source
software. CoRR, cs.SE/0411096 (2004)

16. Le Berre, D., Parrain, A.: On SAT technologies for dependency management and
beyond. In: SPLC 2008: Software Product Lines Conference, vol. 2 (2008)

17. Le Berre, D., Rapicault, P.: Dependency management for the Eclipse ecosystem.
In: IWOCE 2009: International Workshop on Open Component Ecosystems. ACM
(2009)

18. Mancinelli, F., Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Leroy, X.,
Treinen, R.: Managing the complexity of large free and open source package-based
software distributions. In: ASE 2006: Automated Software Engineering. IEEE
(2006)

19. Marinescu, R.: Confessions of a worldly software miner. In: 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories, May 2015

20. Michel, C., Rueher, M.: Handling software upgradeability problems with MILP
solvers. In: LoCoCo 2010: Logics for Component Configuration, vol. 29 of EPTCS
(2010)

21. Treinen, R., Zacchiroli, S.: Solving package dependencies: from EDOS to Mancoosi.
In: DebConf 8: Proceedings of the 9th Conference of the Debian Project (2008)

22. Treinen, R., Zacchiroli, S.: Common upgradeability description format (CUDF)
2.0. Technical report 3, The Mancoosi Project, November 2009

23. Wookey, Abate, P.: Google summer of code on debian bootstrap (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://dx.doi.org/10.1007/978-3-642-13238-4_11
http://dx.doi.org/10.1007/978-3-642-13238-4_11
http://creativecommons.org/licenses/by/4.0/

Assessing Code Authorship:

The Case of the Linux Kernel

Guilherme Avelino1,2 , Leonardo Passos3 , Andre Hora1 ,
and Marco Tulio Valente1(B)

1 Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
{gaa,hora,mtov}@dcc.ufmg.br

2 Federal University of Piaui (UFPI), Teresina, Brazil
3 University of Waterloo, Waterloo, Canada

lpassos@gsd.uwaterloo.ca

Abstract. Code authorship is a key information in large-scale open-
source systems. Among others, it allows maintainers to assess division
of work and identify key collaborators. Interestingly, open-source com-
munities lack guidelines on how to manage authorship. This could be
mitigated by setting to build an empirical body of knowledge on how
authorship-related measures evolve in successful open-source communi-
ties. Towards that direction, we perform a case study on the Linux ker-
nel. Our results show that: (a) only a small portion of developers (26%)
makes significant contributions to the code base; (b) the distribution
of the number of files per author is highly skewed—a small group of
top-authors (3%) is responsible for hundreds of files, while most authors
(75%) are responsible for at most 11 files; (c) most authors (62%) have
a specialist profile; (d) authors with a high number of co-authorship
connections tend to collaborate with others with less connections.

Keywords: Code authorship · Linux kernel · Developer networks

1 Introduction

Collaborative work and modularization are key players in software development,
specially in the context of open-source systems [14,23,27]. In a collaborative setup
imposed by open-source development, code authorship allows developers to iden-
tify which project members to contact upon maintaining existing parts of the code
base. Additionally, authorship information allows maintainers to assess overall
division of work among project members (e.g., to seek better working balance)
and identify profiles within the team (e.g., specialists versus generalists).

Our notion of authorship is broader than the English definition of the word.
In the context of code, authorship relates to those who make significant changes
to a target file. This may include the original file creator, as well as those who
subsequently change it. Hence, different from authorship in books and scientific
papers, code authorship is inherently dynamic as a software evolves.

c© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 151–163, 2017.
DOI: 10.1007/978-3-319-57735-7 15

http://orcid.org/0000-0002-8203-0638
http://orcid.org/0000-0001-6591-993X
http://orcid.org/0000-0003-4900-1330
http://orcid.org/0000-0002-8180-7548

152 G. Avelino et al.

Problem Statement. Currently, open-source communities lack guidance on
how to organize and manage code authorship among its contributors.

Research Goal. We argue that the stated problem could be mitigated by setting
to build an empirical body of knowledge on how authorship-related measures
evolve in successful open-source communities. In that direction, we investigate
authorship in a large and long-lived system—the Linux kernel. Our goal is to
identify authorship parameters from the Linux kernel evolution history, as well
as interpret why they appear as such. We also check whether those parameters
apply to the subsystem level, allowing us to assess their generality across different
parts of the kernel. Our analysis accounts for 56 stable releases (v2.6.12–v4.7),
spanning a period of over 11 years of development (June, 2005–July, 2016).

Research Questions. When investigating the Linux kernel authorship history,
we follow three research questions:

RQ1: What is the distribution of the number of files per author?

Motivation: Answering such a question provides us with a measure of the work
overload and the concentration of knowledge within team members, as well as
how that evolves over time.

RQ2: How specialized is the work of Linux authors?

Motivation: Following the Linux kernel architectural decomposition, we seek to
understand the proportion of developers who have a narrower understanding of
the system (specialists), versus those with a broader knowledge (generalists).
Specialist developers author files in a single subsystem; generalists, in turn,
author files in different subsystems. Answering our research question seeks to
assess how effective the Linux kernel architectural decomposition is in foster-
ing specialized work, a benefit usually expected from a good modularization
design [3,30].

RQ3: What are the properties of the Linux co-authorship network?

Motivation: The authorship metric we use enables identifying multiple authors
per file, evidencing a co-authorship collaboration among developers [20]. Such
collaborations form a network—vertices denote authors and edges connect
authors sharing common authored files. This question seeks to identify collabo-
ration properties in the Linux kernel co-authorship network.

Contributions. From the investigation we conduct, we claim two major con-
tributions: (a) an in-depth investigation of authorship in a large, successful, and
long-lived open-source community, backed up by several authorship measures
when answering each of our research questions. The findings we report also
serve researchers, allowing them to contrast the authorship in the Linux kernel
with those of other communities; (b) the definition of several authorship-centric
concepts, such as authors and specialists/generalists, that others may use as a
common ground to study the social organization of software systems.

Assessing Code Authorship: The Case of the Linux Kernel 153

In Sect. 2, we provide a description of our study design. Section 3 details our
results. Sections 4 and 5 discuss threats to validity and related work, respectively.
Section 6 concludes the paper, also outlining future work.

2 Study Design

2.1 Author Identification

At the core of our study lies the ability to identify and quantify authorship at
the source code level. To identify file authors, as required by our three research
questions, we employ a normalized version of the degree-of-authorship (DOA)
metric [9,10]. The metric is originally defined in absolute terms:

DOAA(d, f) = 3.293 + 1.098 ∗ FA + 0.164 ∗ DL − 0.321 ∗ ln(1 + AC)

From the provided formula, the absolute degree of authorship of a developer d in
a file f depends on three factors: first authorship (FA), number of deliveries (DL),
and number of acceptances (AC). If d is the creator of f , FA is 1; otherwise it is
0; DL is the number of changes in f made by d; and AC is the number of changes
in f made by other developers. DOAA assumes that FA is by far the strongest
predictor of file authorship. Further changes by d (DL) also contributes positively
to his authorship, but with less importance. Finally, changes by other developers
(AC) contribute to decrease someone’s DOAA, but at a slower rate. The weights
we choose stem from an experiment with professional Java developers [9]. We
reuse such thresholds without further modification.

The normalized DOA (DOAN) is as given in [2]:

DOAN (d, f) = DOAA(d, f)/max ({DOAA(d′, f) | d′ ∈ changed(f)})

In the above equation, changed(f) denotes the set of developers who edited a
file f up to a snapshot of interest (e.g., release). This includes the developer
who creates f , as well as all those who later modify the file. DOAN ∈ [0..1]:
1 is granted to the developer(s) with the highest absolute DOA among those
changing f ; in other cases, DOAN is less than one.

Lastly, the set of authors of a file f is given by:

authors(f) = ∪{d | d ∈ changed(f)∧DOAN (d, f) > 0.75∧DOAA(d, f) ≥ 3.293}

The authors identification depends on specific thresholds—0.75 and 3.293.
Those stem from a calibration setup when applying DOAN to a large corpus of
open-source systems. For full details, we refer readers to [2].

2.2 Linux Kernel Architectural Decomposition

Investigating authorship at the subsystem level requires a reference architecture
of the Linux kernel. Structurally, the Linux kernel architectural decomposition
comprises seven major subsystems [8]: Arch (architecture dependent code), Core

154 G. Avelino et al.

Table 1. Linux subsystems size and authors proportion

Subsystem Files Authors proportion

Last release (v4.7) All releases

% Developers Authors Proportion Avg ± Std Dev

Driver 22,943 42% 10,771 2,604 24% 25.00 ± 0.80%

Arch 17,069 32% 3,613 1,145 32% 33.10 ± 1.28%

Misc 6,621 12% 644 78 12% 14.85 ± 2.69%

Core 3,840 7% 4,165 1,083 26% 25.77 ± 1.56%

Net 1,957 4% 2,161 269 13% 13.63 ± 0.90%

Fs 1,809 3% 1,777 175 10% 12.61 ± 1.95%

Firmware 151 0% – – – –

All 54,400 100% 13,436 3,459 26% 26.86 ± 0.83%

(scheduler, IPC, memory management, etc.), Driver (device drivers), Firmware

(firmware required by device drivers), Fs (file systems), Net (network stack
implementation), and Misc (miscellaneous files, including documentation, sam-
ples, scripts, etc.). To map files in each subsystem, we rely on mapping rules set
by G. Kroah-Hartman, one of the main Linux kernel developers.1 Table 1 shows
the number of files in each kernel subsystem as mapped by using the expert
rules.

2.3 Data Collection

We study 56 stable releases of the Linux kernel, obtained from linus/torvalds
GitHub repository. A stable release is any named tag snapshot whose identifier
does not have a −rc suffix. To define the authors set of a file f in a given release
r, we calculate DOAN from the first commit up to r. It happens, however, that
the Linux kernel history is not fully stored under Git, as explained by Linus
Torvalds in the first commit message.2 Therefore, we use git graft to join the
history of all releases prior to v2.6.12 (the first release recorded in Git) with
those already controlled by Git. After join, we increment the Linux kernel Git
history with 64,468 additional commits.

Given the entire development history, we check out each stable release at a
time, listing its files, and calculating their DOAN . In the latter case, we rely
on git log --no-merges to discard merge commits and retrieve all the changes
to a given file prior to the release under investigation. To compute the DOAN ,
we only consider the author of each commit, not its committer (Git repositories
store both) [6]. It is worth noting that prior to calculate DOAN , we map possible
aliases among developers, as well as eliminate unrelated source code files. As

1 https://github.com/gregkh/kernel-history/blob/master/scripts/stats.pl.
2 https://github.com/torvalds/linux/commit/1da177e4c3f41524e886b7f1b8a0c1fc73

21cac2.

https://github.com/gregkh/kernel-history/blob/master/scripts/stats.pl
https://github.com/torvalds/linux/commit/1da177e4c3f41524e886b7f1b8a0c1fc7321cac2
https://github.com/torvalds/linux/commit/1da177e4c3f41524e886b7f1b8a0c1fc7321cac2

Assessing Code Authorship: The Case of the Linux Kernel 155

example, the Firmware subsystem was removed because most of its files are
binary blobs. To perform these steps, we adopt the procedures described in [2].

Table 1 shows the proportion of authors in each Linux subsystem. In the last
release, Linux kernel has 13,436 developers, but only 3,459 (26%) are authors of
at least one file. Throughout the kernel development, the proportion of authors
is nearly constant (Std dev = ±0.83%). Thus, the heavy-load Linux kernel main-
tenance has been kept in the hands of less than a third of all developers.

Using custom-made scripts, we fully automate authorship identification, as
well as the collection of supporting data for the claims we make. Our infrastruc-
ture is publicly available on GitHub.3 We encourage others to use it as means
to independently replicate/validate our results.

3 Results

(RQ.1) Distribution of the Number of Files per Author

What is the distribution of the number of files per author?

The number of files per author is highly skewed. Figure 1 presents the boxplots of
files per author across the Linux kernel releases (adjusted for skewness—see [15]).
To simplify the visualization of the results, we present the boxplots at each two
releases. With exception of one release (v2.6.24), 50% of the authors responds to
at most three files (median); for 75% of the authors, the number of files ranges
from 11 to 16. Outliers follow from the skewed distribution. Still, the number of
authors with more than 100 files is always lower than 7% of the authors, ranging
from 7% in the first release to 3% in the last one. Similar behavior is observed at
the subsystem level. In the last release (v4.7), for instance, the number of files
per author up to the 75% percentile in Fs, Arch, and Driver closely resemble
one-another and the global distribution as a whole—all share the same median
(three). Core and Misc, however, have less variability than the other subsystems,
as well as lower median values (two and one, respectively).

Fig. 1. Distribution of the number of files per author in each release

3 https://github.com/gavelino/data oss17.

https://github.com/gavelino/data_oss17

156 G. Avelino et al.

It is interesting to note that file authorship follows a pyramid-like shape of
increasing authority; at the top, Linus Torvalds acts as a “dictator”, centralizing
authorship of most of the files (after all, he did create the kernel!). Bellow him
lies his hand-picked “lieutenants”, often chosen on the basis of merit. Such orga-
nization directly reflects the Linux kernel contribution dynamics, which is itself
a pyramid [4]. However, as the kernel evolves, we see that Torvalds is becom-
ing more “benevolent”. As Fig. 2 shows, the percentage of files authored by him
has reduced from 45% (first release) to 10% in v4.7. Currently, he spends more
time verifying and integrating patches than writing code [7]. Similar behavior is
observed downwards the authorship pyramid. The percentage of files in the hand
of the next top-9 Linux kernel authors (bars) is consistently decreasing. This
suggests that authorship is increasing at lower levels of the pyramid, becoming
more decentralized. This is indeed expected and to an extent required to allow
the Linux kernel evolves at the pace it does.

Fig. 2. Percentage of files authored by the top-10 authors over time. The line represents
Linus Torvalds (top-1) and the bars represent the accumulated number of files of the
next top-9 authors

We also apply the Gini coefficients [12] to analyze the distribution of the
number of files per author (Fig. 3). In all releases, the coefficient is high, con-
firming skewness. However, we notice a decreasing trend, ranging from 0.88 in
the first release to 0.78 (v4.7). Such a trend further strengthens our notion that
authorship in the Linux kernel is becoming less centralized.

Fig. 3. Gini coefficients. It ranges from 0 (perfect equality) to 1 (perfect inequality).

Assessing Code Authorship: The Case of the Linux Kernel 157

(RQ.2) Work Specialization

How specialized is the work of Linux authors?

To assess work specialization, we introduce two author profiles. We call authors
specialists if they author files in a single subsystem. Generalists, in turn, author
files in at least two subsystems. As Fig. 4 shows, the number of specialists domi-
nates the amount of generalists. In the Linux kernel (All), any given release has
at least 61% of specialist authors, with a maximum of 64%; at all times, 39% of
the authors are generalists. Moreover, the proportion of generalists and special-
ists appears to be fairly stable across the entire kernel (All) and its constituent
subsystems (except for Misc).

Fig. 4. Percentage of specialists and generalists

Looking at the work specialization in each subsystem also provides a means to
assess how much the Linux kernel architectural decomposition fosters specialized
work. The architectural decomposition plays a key role in fostering specialists
inside the Driver subsystem (more than 50% of specialists), but less so elsewhere.
The reason it occurs so extensively inside Driver follows from the plug-in inter-
face of the latter and its relative high independence to other subsystems [8,28].
In contrast, Core and Misc have the lowest percentage of specialized workers.
More than 75% of their authors own files in more than one subsystem. Specif-
ically, Core is the subsystem with the lowest percentage of specialized workers
(13%). This is also expected since Core developers tend to have expertise on
Linux’s central features, which allows them to also work on other subsystems.

158 G. Avelino et al.

(RQ.3) Co-authorship Properties

What are the properties of the Linux co-authorship network?

Many files in the Linux kernel result from the work of different authors. As such,
we set to investigate such collaboration by means of the properties of the Linux
kernel co-authorship network. We model the latter as follows: vertices stand for
Linux kernel authors; an edge connects two authors vi and vj if ∃f such that
{vi, vj} ⊆ authors(f). In other words, an edge represents a collaboration.

To answer our research question, we initially analyze the latest co-authorship
network, as given in release v4.7 (Table 2).4 The number of vertices (authors)
determines the size of a co-authorship network. The mean degree network, in
turn, inspects the number of co-authors that a given author connects to. In the
system level (All), the mean vertex degree is 3.64, i.e., on average, a Linux author
collaborates with 3.64 other authors. At the subsystem level, Driver forms the
largest network (2,604 authors, 75%), whereas Misc results in the smallest one
(78 authors, 2%). Arch has the highest mean degree (3.14 collaborators per
author); Misc has the lowest (0.79). Linus Torvalds has connections with 215
other authors. His collaborations spread over all subsystems and range from 92
collaborations in Driver to five in Misc. Excluded Torvalds, the top-2 and top-3
authors with more collaborators have 156 and 118 collaborators, respectively.

Table 2. Co-authorship network properties (release v4.7)

All Driver Arch Core Net Fs Misc

Number of vertices 3,459 2,604 1,145 1,083 269 175 78

Mean degree 3.64 2.74 3.14 1.67 2.57 2.59 0.79

Clustering coefficient 0.080 0.074 0.128 0.074 0.205 0.175 0.188

Assortativity coefficient −0.070 −0.115 −0.060 −0.072 −0.003 −0.146 −0.062

The third property, clustering coefficient, reveals the degree to which adjacent
vertices of a given vertex tend to be connected [31]. In a co-authorship network,
the coefficient gives the probability that two authors who have a co-author in
common are also co-authors themselves. A high coefficient indicates that the
vertices tend to form high density clusters. The clustering coefficient of the Linux
kernel is small (0.080). Nonetheless, Net, Misc, and Fs exhibit a higher tendency
to form density clusters (0.205, 0.188, and 0.175, respectively) in comparison to
other subsystems. The three subsystems are the smallest we analyze, a factor
that influences the development of collaboration clusters [1].

Last, but not least, we compute the assortativity coefficient, which correlates
the number of co-authors of an author (i.e., its vertex degree) with the number
of co-authors of the authors it is connected to [26]. Ranging from −1 to 1, the
coefficient shows whether authors with many co-authors tend to collaborate with

4 We use the R igraph (version 1.0.1) to calculate all measures.

Assessing Code Authorship: The Case of the Linux Kernel 159

other highly-connected authors (positive correlation). In v4.7, all subsystems
have negative assortativity coefficients, ranging from −0.134 in Fs to −0.029 in
Net subsystem. This result diverges from the one commonly observed in scientific
communities [25]. Essentially, this suggests that Linux kernel developers often
divide work among experts who help less expert ones. These experts (i.e., highly-
connected vertices), in turn, usually do not collaborate among themselves (i.e.,
the networks have negative assortative coefficients).

We identify in the co-authorship networks a relevant amount of solitary

authors—authors that do not have co-authorship with any other developer. In
total, 20% (699) of Linux kernel developers are solitary. Although there is a
high percentage of solitary authors, only 9% of them have more than three files.
Additionally, 66% of them work in the Driver subsystem. The latter is likely to
follow from the high proportion of specialists within that subsystem (see RQ.2).

Evolution of Co-authorship network properties. We set to investigate how
the co-authorship properties evolved to those in release v4.7. Figure 5 displays
the corresponding graphics. Although we can observe a small decrease in some
intermediate releases, by looking at the first and last releases, the mean degree
has little variation, ranging from 3.61 to 3.64. Clustering coefficient, in turn,
varies from 0.099 (first release) to 0.080 (v4.7). Since the mean degree does
not vary considerably, we interpret such decrease as an effect of the growth of
the number of authors (network vertices). The latter creates new opportunities
of collaboration, but these new connections do not increase the density of the
already existing clusters. A similar behavior is common in other networks, as
described by Albert and Barabási [1]. Finally, we observe a relevant variation
in the evolution of assortativity coefficients. Measurements range from −0.25 in
the first release to −0.07 in v4.7. Such a trend aligns with the decrease of the
percentage of files authored by Linus Torvalds and the other top authors (refer
to RQ.1). With less files, these authors are missing some of their connections
and becoming more similar (in terms of vertex degree) to their co-authors.

Fig. 5. Co-authorship network properties over time

160 G. Avelino et al.

4 Threats to Validity

Construct Validity. Our results depend on the accuracy of DOA calculations.
Currently, we compute DOA values using weights from the analysis of other
systems [9,10]. Although the authors of the absolute DOA claim their weights
are general, we cannot fully eliminate the threat that the choice of weights pose
to our results. Still, we have previously applied them when analyzing different
open-source systems, obtaining positive feedback from developers [2].

Internal Validity. We measure authorship considering only the commit history
of the official Linux kernel Git repository. Hence, we do not consider forks that
are not merged into the mainstream development. Although these changes might
be relevant to some (e.g., studies about integration activities [11]), they are not
relevant when measuring authorship of the official Linux kernel codebase. We
also consider that all commits have the same importance. As such, we do not
account for the granularity of changes (number of lines of code affected) nor
their semantics (e.g., bug fixes, new features, refactoring, etc.).

External Validity. The metrics we use can be applied to any software repos-
itory under a version control system. Still, our findings are very specific to the
Linux kernel development. Thus, we cannot assume that the findings about work-
load, specialization, and collaboration are general. Nonetheless, we pave the road
for further studies to validate our findings in the context of other systems.

5 Related Work

Code Authorship. McDonald and Ackerman propose the “Line 10 Rule”, one
of the first and most used heuristics for expertise recommendation [19]. The
heuristic considers that the last person who changes a file is most likely to be
“the” expert. Expertise Browser [24] and Emergent Expertise Locator [22] are
alternative implementations to the “Line 10 Rule”. The former uses the concept
of experience atoms (EA) to give the value for each developer’s activity and
takes into account the amount of EAs to quantify expertise. The latter refines
the Expertise Browser approach by considering the relationship between files
that change together. Fine-grained algorithms that assign expertise based on
the percentage of lines a developer has last touched are used by Girba et al. [13]
and by Rahman and Devanbu [29].

Social Network Analysis (SNA). Research in this area use information from
source code repositories to build a social network, adopting different strategies to
create the links between developers. Fernández et al. [18] apply SNA, linking devel-
opers that perform commits to the same module, to study their relationship and
collaboration patterns. Others rely on fine-grained relations, building networks
connecting developers that change the same file [5,16,21,32]. Joblin et al. [17] pro-
pose an even more fine-grained approach, connecting developers that change the
same function in a source code. They claim that file-based links result in dense

Assessing Code Authorship: The Case of the Linux Kernel 161

networks, which obscures important network properties. Our approach, although
centered on file-level information, does not produce dense networks, as authorship
requires that developers make significant contributions to a file.

6 Conclusion

In this paper, we extract and analyze authorship parameters from a successful
case: the Linux kernel. By mining over 11 years of the Linux kernel commit his-
tory, we investigate how authorship changes over time, deriving measures that
other communities mirroring the Linux kernel evolution could directly replicate.
Moreover, our study provides the grounds for further analyses—we define author-
ship concepts setting basic terminology and operationalization, in addition to
providing a dataset of a large case study that others may use as a comparison
baseline. As future work, we seek to validate our findings directly with Linux
kernel developers. Moreover, we plan to study authorship in other systems.

Acknowledgment. This study is supported by grants from FAPEMIG, CAPES,
CNPq, and UFPI.

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Modern
Phys. 74, 47–97 (2002)

2. Avelino, G., Passos, L., Hora, A.C., Valente, M.T.: A novel approach for estimat-
ing truck factors. In: 24th International Conference on Program Comprehension
(ICPC), pp. 1–10 (2016)

3. Baldwin, C.Y., Clark, K.B.: Design Rules: The Power of Modularity. MIT Press,
Cambridge (1999)

4. Bettenburg, N., Hassan, A.E., Adams, B., German, D.M.: Management of commu-
nity contributions. Empir. Softw. Eng. 20(1), 252–289 (2015)

5. Bird, C., Nagappan, N., Murphy, B., Gall, H., Devanbu, P.: Don’t touch my code!
In: 19th International Symposium on Foundations of Software Engineering (FSE),
pp. 4–14 (2011)

6. Chacon, S., Straub, B.: Pro Git. Expert’s voice in software development, 2nd edn.
Apress, New York (2014)

7. Corbet, J., Kroah-Hartman, G., McPherson, A.: Who writes Linux: Linux ker-
nel development: how fast it is going, who is doing it, what they are doing, and
who is sponsoring it. Technical report, Linux Foundation (2013). http://www.
linuxfoundation.org/publications/linux-foundation/who-writes-linux-2013

8. Corbet, J., Rubini, A., Kroah-Hartman, G.: Linux Device Drivers, 3rd edn.
O’Reilly, Sebastopol (2005)

9. Fritz, T., Murphy, G.C., Murphy-Hill, E., Ou, J., Hill, E.: Degree-of-knowledge:
modeling a developer’s knowledge of code. ACM Trans. Softw. Eng. Methodol.
23(2), 14:1–14:42 (2014)

10. Fritz, T., Ou, J., Murphy, G.C., Murphy-Hill, E.: A degree-of-knowledge model
to capture source code familiarity. In: 32nd International Conference on Software
Engineering (ICSE), pp. 385–394 (2010)

http://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2013
http://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2013

162 G. Avelino et al.

11. German, D.M., Adams, B., Hassan, A.E.: Continuously mining distributed version
control systems: an empirical study of how Linux uses Git. Empir. Softw. Eng. 21,
260–299 (2015)

12. Gini, C.: Measurement of inequality of incomes. Econ. J. 31(121), 124–126 (1921)
13. Girba, T., Kuhn, A., Seeberger, M., Ducasse, S.: How developers drive software

evolution. In: 8th International Workshop on Principles of Software Evolution
(IWPSE), pp. 113–122 (2005)

14. Herbsleb, J.D.: Global software engineering: the future of socio-technical coordi-
nation. In: 2007 Future of Software Engineering (FOSE), pp. 188–198 (2007)

15. Hubert, M., Vandervieren, E.: An adjusted boxplot for skewed distributions. Com-
put. Stat. Data Anal. 52(12), 5186–5201 (2008)

16. Jermakovics, A., Sillitti, A., Succi, G.: Mining and visualizing developer networks
from version control systems. In: 4th International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE), pp. 24–31 (2011)

17. Joblin, M., Mauerer, W., Apel, S., Siegmund, J., Riehle, D.: From developer net-
works to verified communities: a fine-grained approach. In: 37th International Con-
ference on Software Engineering (ICSE), pp. 563–573 (2015)

18. López-Fernández, L., Robles, G., Gonzalez-Barahona, J.M., Herraiz, I.: Applying
social network analysis techniques to community-driven libre software projects.
Int. J. Inf. Technol. Web Eng. 1(3), 27–48 (2006)

19. McDonald, D.W., Ackerman, M.S.: Expertise recommender: a flexible recommen-
dation system and architecture. In: Conference on Computer Supported Coopera-
tive Work (CSCW), pp. 231–240 (2000)

20. Meneely, A., Williams, L.: Socio-technical developer networks: should we trust our
measurements? In: 33rd International Conference on Software Engineering (ICSE),
pp. 281–290 (2011)

21. Meneely, A., Williams, L., Snipes, W., Osborne, J.: Predicting failures with devel-
oper networks and social network analysis. In: 16th International Symposium on
Foundations of Software Engineering (FSE), pp. 13–23 (2008)

22. Minto, S., Murphy, G.C.: Recommending emergent teams. In: 4th Workshop on
Mining Software Repositories (MSR), p. 5 (2007)

23. Mistŕık, I., van der Hoek, A., Whitehead, J.: Collaborative software engineering:
challenges and prospects. In: Mistrik, I., Grundy, J., Hoek, A., Whitehead, J. (eds.)
Collaborative Software Engineering, 4th edn, pp. 389–403. Springer, Heidelberg
(2010)

24. Mockus, A., Herbsleb, J.D.: Expertise browser: a quantitative approach to identi-
fying expertise. In: 24th International Conference on Software Engineering (ICSE),
pp. 503–512 (2002)

25. Newman, M.E.J.: Coauthorship networks and patterns of scientific collaboration.
Proc. Natl. Acad. Sci. 101, 5200–5205 (2004)

26. Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003)
27. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Commun. ACM 15(12), 1053–1058 (1972)
28. Passos, L., Padilla, J., Berger, T., Apel, S., Czarnecki, K., Valente, M.T.: Feature

scattering in the large: a longitudinal study of Linux kernel device drivers. In: 14th
International Conference on Modularity, pp. 81–92 (2015)

29. Rahman, F., Devanbu, P.: Ownership, experience and defects. In: 33rd Interna-
tional Conference on Software Engineering (ICSE), pp. 491–500 (2011)

Assessing Code Authorship: The Case of the Linux Kernel 163

30. Sullivan, K.J., Griswold, W.G., Cai, Y., Hallen, B.: The structure and value of
modularity in software design. In: 9th International Symposium on Foundations of
Software Engineering (FSE), pp. 99–108 (2001)

31. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature
393, 440–442 (1998)

32. Yang, X.: Social network analysis in open source software peer review. In: 22nd
International Symposium on Foundations of Software Engineering (FSE), pp. 820–
822 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Project Management, Development and

Evaluation

Release Early, Release Often and Release

on Time. An Empirical Case Study

of Release Management

Jose Teixeira1,2(B)

1 Åbo Akademi, Turku, Finland
jose.teixeira@abo.fi

2 Turku Centre for Computer Science (TUCS), Turku, Finland
http://www.jteixeira.eu

Abstract. The dictum of “Release early, release often.” by Eric
Raymond as the Linux modus operandi highlights the importance of
release management in open source software development. Nevertheless,
there are very few empirical studies addressing release management in
open source software development. It is already known that most open
source software communities adopt either feature-based or time-based
release strategies. Each of these has its advantages and disadvantages
that are context-specific. Recent research reported that many prominent
open source software projects have moved from feature-based to time-
based releases. In this longitudinal case study, we narrate how OpenStack
shifted towards a liberal six-month release cycle. If prior research dis-
cussed why projects should adopt time-based releases and how they can
adopt such a strategy, we discuss how OpenStack adapted its software
development processes, its organizational design and its tools toward a
hybrid release management strategy — a strive for balancing the benefits
and drawbacks of feature-based and time-based release strategies.

Keywords: Open-Source · OSS · FLOSS · Release management · Open-
Stack

1 Introduction

The dictum of “Release early, release often.” by Eric Raymond as the Linux
modus operandi [1,2] highlights the importance of release management in open
source software development (see [3–5]). Across disciplines, release management
was acknowledged as a very complex process that raises many issues among the
producers and users of software [6–9]. Nevertheless, there are very few empiri-
cal studies addressing release management in open source software development
[5,10]. This is unfortunate since many lessons can be learned from open source
software communities [11–13]. After all, the freedom to study socio-technical
aspect of software development contrasts open source software from the propri-
etary model where access to the software development team is only granted to
a few.

c© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 167–181, 2017.
DOI: 10.1007/978-3-319-57735-7 16

168 J. Teixeira

Given such scarcity of empirical work addressing release management in the
context of open source software [5,10], we address how a particularly large,
complex and high-networked open source software ecosystem implemented a
time-based release strategy. Taking the case of OpenStack, a fast growing cloud
computing platform that is attracting great scholarly attention recently (e.g.,
[14–18]), we explore a ‘time-based release management strategy’ implementation
in practice by looking at the release management process per se as well as to the
organizational design and the tools supporting it.

2 Prior Related Work

Within the open source context, it is known that release management affects
both producers of software and its users. In one side, prior research suggested
that community activity increases when the scheduled release date gets closer
[19]. On the user side, new releases result in spikes of downloads [20]. After
all, as noted by the early work of Martin Michlmayr that focused on release
management in open source software (see [21]), release management is concerned
with the delivery of products to end-users. Is therefore not surprising that some
recently saw release management as a process that supports value co-creation
among suppliers and consumers of software (see [6]).

As pointed out by three recent doctoral dissertations addressing release man-
agement in the context of open-source software [10,21,22], most open source
software communities adopt either feature-based or time-based release strate-
gies. Many prominent open source software projects start with sporadic releases
in which developers announce the newly developed features1. However, as many
of this projects grown in size and complexity, they start adopting time-based
release strategies2. An early empirical study that mined the repository of a
project while it adopted a time-based release strategy (i.e., the Evolution
e-mail client), suggested that the adoption of a time-based released boosted the
development in general terms over time in comparison to feature-based release
management [23]. More recent research, based on interviews with key members
of seven prominent volunteer-based open source projects, point out that many
of the problems associated with release-based strategies can be overcome by
employing a time-based release strategy [5]. It is getting generally accepted that
when a open-source software project grows in size and complexity, a time-based
release strategy should be considered.

Time-based release strategies encompass meeting a schedule, an agenda, a
deadline – either a strict or more liberal ones. To enforce that software is released
on time, the use of freezes (such as code freezes), will set a clear deadline to the

1 See the historical newsgroup news: comp.os.linux.announce where developers
announced new releases of open-source software for Linux with a strong emphasis
on the implemented features.

2 See https://www.kernel.org/category/releases.html and https://www.debian.org/
releases/ for information on the releases of Linux (2–3 months release cycle) and
Debian (with a two years release cycle).

https://groups.google.com/d/forum/comp.os.linux.announce
https://www.kernel.org/category/releases.html
https://www.debian.org/releases/
https://www.debian.org/releases/

Release Early, Release Often and Release on Time 169

software development team. If open source developers have much freedom to
self-manage their own software development efforts (when comparing with tra-
ditional proprietary paradigms), the use of freezes acts in the opposite way, it
constrains the developers. If new features are not implemented before the next
freeze, they will not be included in the next release. Consequently, when devel-
opers realize that a set of new features will bot be ready before the next freeze,
the development of such features is either canceled, put on hold or developed at
the side to be integrated later on future software releases.

Such freezes, that occur before the scheduled time-based release, act as con-
trol mechanisms that slowly halt the production of the development core code
(see [13,24]). In large and complex open source software projects involving a
modular architecture in which many components integrate with each other,
such freeze forces developers to (1) fix and release the individual components
upstream, (2) integrate the different components and test the integrated core.

As earlier reported (see [13]) such freeze categories can include:

feature freeze “no new functionality can be added, the focus should is on
removing defects;”

string freeze “no messages displayed by the program, such as error mes-
sages, can be changed — this allows translating as many messages as possible
before the release;”3

code freeze “permission is required to make any change, even to fix bugs.”

3 Empirical Background

The cloud computing business is dominated by a small number of players (e.g.,
Amazon, Google and Microsoft). The leading players do not sell cloud infrastruc-
ture products. Instead, they provide bundled computing services. If there would
be no alternatives, all cloud computation would run in hardware and software
infrastructures controlled by very few players with increased customer lock-in
(see [16]).

Competing with the providers of such services, the leading product alterna-
tives are not commercial but rather four open source projects (i.e., OpenStack,
CloudStack, OpenNebula, and Eucalyptus). While the commercial cloud com-
puting services are developed and tightly controlled by a single organization,
the open source products are more inclusive and networked — multiple firms
participate in its development as well as multiple firms attempt to capture value
from it.

Our empirical unit of analysis, OpenStack is an open source software cloud
computing infrastructure capable of handling big data. It is primarily deployed
as an “Infrastructure as a Service” (IaaS) solution. It started as a joint project of
Rackspace, an established IT web hosting company, and NASA, the well-known
U.S. governmental agency responsible for the civilian space program, aeronautics

3 Here we add that many automated user-interface testing tools and techniques depend
on the ‘steadiness’ of certain strings (see [25,26]).

170 J. Teixeira

and aerospace research. The project attracted much attention from the industry.
By the end of 2016, OpenStack counted with more than 67000 contributors, 649
supporting companies. Furthermore, more than 20 millions lines of code were
contributed from 169 countries4.

Both private companies (e.g., AT&T, AMD, Canonical, Cisco, Dell, EMC,
Ericsson, HP, IBM, Intel, and NEC, among many others) and public entities
(e.g., NASA, CERN, Johns Hopkins University, Instituto de Telecomunicações,
Universidade Federal de Campina Grande, and Kungliga Tekniska Högskolan,
among others) work together with independent, non-affiliated developers in a
scenario of pooled R&D in an open source way (i.e., emphasizing development
transparency while giving up intellectual property rights). Paradoxically, even
if OpenStack emphasizes collaboration in the joint-development of a large open
source ecosystem, there are many firms directly competing with each other within
the community. Among others, there is competition among providers of public
cloud services based on OpenStack (e.g., HP, Canonical, and Rackspace), among
providers of specialized hardware complementing OpenStack (e.g., HP, IBM, and
Nebula), and among providers of complementary commercial software plug-ins
complementing OpenStack (e.g., VMware, Citrix, and Cisco) (see [16,27]).

We decided to address OpenStack due to its perceived novelty, its high inter-
networked nature (i.e., an “ecosystem” involving many firms and individual
contributors), its heterogeneity (i.e., an ecosystem involving both startups and
high-tech corporate giants), its market-size ($1.7 bn, by 20165), its complexity
(i.e., involving different programming languages, different operating systems, dif-
ferent hardware configurations) and size (20 millions lines of code contributed
by more than 67000 developers).

From the early beginnings, and while OpenStack was growing (e.g., in terms
of the number of contributors, its code-base, and adoption among other socio-
technical indicators), it adopted a six-month, time-based release cycle with fre-
quent development milestones that raised much discussion among its developers.
We found it an interesting case to study release management within the overlap
of open source software, software ecosystems, and complex software systems.

4 Methodological Design

This empirical case study was guided by the broad research question on “How
OpenStack implemented a time-based release strategy”. A particular emphasis
was given to the release management process per se as well as to the organiza-
tional design and the tools supporting it.

Our efforts were built on top of publicly-available and naturally-occurring
archival data derived from the OpenStack project. Such data are not a conse-
quence of our own actions as researcher, but are created and maintained by the
OpenStack community in their own pursuits of developing a cloud computing

4 See http://www.openstack.org/ for the official website.
5 See http://451research.com/report-short?entityId=82593.

http://www.openstack.org/
http://451research.com/report-short?entityId=82593

Release Early, Release Often and Release on Time 171

infrastructure. We took into account many methodological notes in case study
research that legitimate the use of archival data when studying a case [28–32].

We started by digesting many websites officially related to OpenStack
(e.g., https://www.openstack.org/, https://wiki.openstack.org and http://docs.
openstack.org/) expanding later to other websites. The selection of the initial
sources (i.e., departure points) took in consideration key guidelines on how to
conduct qualitative empirical research online [33,34]. From the initial sources,
we were forced to follow many links to collect further information related to
release management in OpenStack — we often landed in blogs maintained by
organizations and individuals that recurrently contribute to OpenStack. Rele-
vant data was meticulously organized withing a database for later analysis [35,
pp. 94–98].

From our initial screening of qualitative data, we were able to: (1) make sense
of the industrial background in which Openstack is embedded, (2) make sense
of the complex software development processes that steer the project evolution,
(3) survey complex inter organizational arrangements within the project, and
(4) understand the role of many of the software tools that support software
development processes.

After getting familiar with many social-technical issues within OpenStack,
we analyzed the collected data from the lenses of extant knowledge in release
management and open source software. Given the lack of empirical knowledge
addressing release management in open source software [5, 10], we explored a
‘time-based release management strategy’ in practice. Our rich description on
how OpenStack implemented its six-month, time-based release cycle with fre-
quent development milestones should increase our ability to understand and
explain release management within the context of complex open source software
ecosystems. To enhances the validity of our description on how OpenStack imple-
mented its time-based release strategy, we asked four OpenStack developers (two
of them with release management responsibilities) to early read and comment
our Sect. 5.1 in advance — we reduced then possible misinterpretations of the
collected natural occurring data.

5 Results

Although our research is still at preliminary stage, we believe that some of our
preliminary results can already contribute towards a better understanding of
release management within complex open source software ecosystems. After all,
release management is an under-researched area in which many lessons can be
learned from open source software [13]. Our description of the implementation of
a ‘time-based release management strategy’ in the particular case of OpenStack
is organized as a complex socio-technological process and as a complex inter-
organizational arrangement supported by different tools and systems.

https://www.openstack.org/
https://wiki.openstack.org
http://docs.openstack.org/
http://docs.openstack.org/

172 J. Teixeira

5.1 Release Management at OpenStack

OpenStack was first launched by Rackspace and NASA in July 2010 as an
“open-source cloud-software initiative”. The first release, code-named ‘Austin’,
appeared four months later, with plans to release regular updates of the software
every few months. ‘Austin’ was already a sizable release as it inherited the code-
base from NASA’s Nebula platform as well as the code-base from Rackspace’s
Cloud Files platform. Firms such as Canonical, SUSE, Debian and Red Hat —
all with a recognized role in the open software world were among the first organi-
zations engaging with OpenStack. On the other side, Citrix, HP, and IBM were
among the first high-tech giants that contributed to development of the project.

As OpenStack increased both in size and complexity, the forthcoming releases
code-named ‘Bexar’, ‘Cactus’, and ‘Diablo’ came at irregular periods that ranged
from three to five months6. As captured by the following quote, the ‘Diablo’ was
the first of many forthcoming releases launched within a six months release cycle.

“This release marks the first six month release cycle of OpenStack. The next
release, Essex, will also be a six month release cycle and development is now
officially underway. While Diablo includes over 70 new features, the theme is
scalability, availability, and stability.” — Devin Carlen, 29 September 20117.

OpenStack is so far orchestrated by the Git distributed version control sys-
tem (aka repository) and the Gerrit revision control system (aka code review
tool). Its source-code is hosted across dozens of repositories8. Due to the inher-
ent complexity of a large-scale project developed by dozens of firms and hun-
dred of developers, keeping everything within a single repository would raise
issues on “when and where are bugs introduced” or “tracing longitudinally the
development of features”. Moreover, by using a multiple-repository approach
access-control could be customized to each individual repository, new develop-
ers would not spend so much time learning the structure of a large source-code
tree, and small changes across the multiple projects would not bother so much
the other projects. Additionally, OpenStack also attempted a modular architec-
ture with various components, each repository was then managed by the project
team responsible by each component9. Some components, such as the OpenStack
Compute (aka Nova and the computing fabric controller), are core components
in which many other components rely on. To be able to integrate with such
components, modular designs and much cross-project coordination is required.

“We started this five-year mission with two projects: Nova (Compute) and Shift
(Object Store) and over time, the number of projects in OpenStack grew. Some of

6 See historical information on the exact release dates at https://releases.openstack.
org/.

7 See https://www.openstack.org/blog/2011/09/openstack-announces-diablo-
release/.

8 For an exhaustive list of OpenStack repositories see http://git.openstack.org/cgit.
9 We acknowledge that some OpenStack components are also hosted in multiple repos-

itories (e.g., Neutron the “network connectivity as a service“component. They are
however exceptional cases.

https://releases.openstack.org/
https://releases.openstack.org/
https://www.openstack.org/blog/2011/09/openstack-announces-diablo-release/
https://www.openstack.org/blog/2011/09/openstack-announces-diablo-release/
http://git.openstack.org/cgit

Release Early, Release Often and Release on Time 173

this where parts of the existing projects that split out to have their own separate
teams and become little more modular. Other things were good new ideas that
people had that fit within the realm of OpenStack — Like interesting things that
you would want to do in or with a cloud. Over time, we built a process around
that to deal with the fact that there were so many of this projects coming in.” —
Sean Dague, 15 May 201510

OpenStack keeps refining its release management process but always com-
mitted to a six-month release cycle. Each release cycle encompasses: planning
(1 month), implementation (3 months), and integration where most pre-release
critical bugs should be fixed (2 months). During the earlier release phase, the
‘coding’ efforts are much driven by discussion and specifications, while in a later
release phase (i.e., stabilization of release candidates) the development turns
into the bug-fixing mode (as reported in other open source projects [5,19,23]).
At each release, developers start by implementing the discussed and/or speci-
fied key features while, by the end of the release, there is a peak of bug-fixing
activities. To sum up, each release cycle starts in a specification and discussion
driven way and ends in a bug-tracker oriented way.

The ‘planning stage’ is at the start of a cycle, just after the previous release.
After a period of much stress to make the quality of the previous release accept-
able, the community steps back and focus on what should be done for the next
release. This phase usually lasts four weeks and runs in parallel with the Open-
Stack Design Summit on the third week (in a mixture of virtual and face-to-
face collaboration). The community discusses among peers while gathering feed-
back and comments. In most cases, specification documents are proposed via
an infrastructure system11 that should precisely describe what should be done.
Contributors may propose new specs at any moment in the cycle, not just dur-
ing the planning stage. However doing so during the planning stage is preferred,
so that contributors can benefit from the Design Summit discussion and the
elected Project Team Leads (PTLs) can include those features into their cycle
roadmap. Once a specification is approved by the corresponding project leader-
ship, implementation is tracked in a blueprint12, where a priority is set and a
target milestone is defined, communicating when in the cycle the feature is likely
to go live — At this stage, the process reflects the principles of agile methods.

The ‘implementation stage’ is when contributors actually write the code (or
produce documentation, test cases among other software-related artifacts) map-
ping the defined blueprints. This phase is characterized by milestone iterations
(once again a characteristic of agile software development methods). Once devel-
opers perceive their work as ready to be proposed for merging into the master

10 Transcribed from video, see [1:26–2:06] https://www.openstack.org/summit/
vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-
openstack-projects-governance.

11 See http://specs.openstack.org/ for intra-project and cross-project specifications.
12 See https://wiki.openstack.org/wiki/Blueprints for blueprints that track each fea-

tures implementation.

https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
http://specs.openstack.org/
https://wiki.openstack.org/wiki/Blueprints

174 J. Teixeira

branch, it is pushed to OpenStack’s Gerrit review system for public review13.
It is important to remark that in order to be reviewed in time for a milestone,
the change should be proposed a few weeks before the targeted milestone pub-
lication date. An open source software collaboration platform14 is used to track
blueprints in the ‘implementation stage’. In a more open-source way and not
to discourage contributors, it is worth remarking that not all “features” have
to go through the blueprints tracking: contributors are free to submit any ad

hoc patch. Both specifications and blueprints are tools supporting the discus-
sion, design, and progress-tracking of the major features in a release. Even if
the big corporate contributors are naturally more influential in the election of
Project Team Leads (PTLs) steering the tracking process, it should not prevent
other contributors from pushing code and fixes into OpenStack. Development
milestones are tagged directly on the master branch during a two-day window
(typically between the Tuesday and the Thursday of a milestone week). At this
stage, heavy infrastructure tools that continuously integrate and test the new
code play a very important role15.

At the last development milestone OpenStack applies three feature freezes
(i.e., FeatureFreeze, SoftStringFreeze and HardStringFreeze as described in
Table 1. At this point, the project stops accepting new features or other dis-
ruptive changes. It concentrates on stabilization, packaging, and translation.
The project turns then into a ‘pre-release stage’ (termed as ‘release candidates
dance’16). Contributors are encouraged to turn most of their attention to testing
the result of the development efforts and fix release-critical bugs. Critical miss-
ing features, dubious features, and bugs are documented, filed and prioritized.
Contributors are advised to turn their heads to the quality of the software and
its documentation. The development becomes mainly bug-fixing oriented and a
set of norms and tools guide this last product-stabilization phase17. Between the
last milestone and the publication of the first release candidate, contributors are
incited to stop adding features and concentrate on bug fixes. Only changes that
fix bugs and do not introduce new features should be allowed to enter the master
branch during this period. Any change proposed for the master branch should at
least reference one bug on the bug tracking system. Once all the release-critical
bugs are fixed, OpenStack produces the first release candidate for that project

13 For more information on the OpenStack code-review activities, see http://docs.
openstack.org/infra/manual/developers.html#code-review.

14 See https://launchpad.net/ for more information on the adopted software collabo-
ration platform as well as https://launchpad.net/openstack for more information on
how OpenStack uses it.

15 See http://docs.openstack.org/infra/jenkins-job-builder/ for more information on
continuous upstream unit testing as well as http://docs.openstack.org/infra/zuul/
and http://docs.openstack.org/developer/tempest/ for more information on contin-
uous upstream integration testing across interrelated projects and repositories.

16 See http://docs.openstack.org/project-team-guide/release-management.html for
more information on the release cycles.

17 See https://wiki.openstack.org/wiki/BugTriage and https://wiki.openstack.org/
wiki/Bugs for more information on bug-fixing activities.

http://docs.openstack.org/infra/manual/developers.html#code-review
http://docs.openstack.org/infra/manual/developers.html#code-review
https://launchpad.net/
https://launchpad.net/openstack
http://docs.openstack.org/infra/jenkins-job-builder/
http://docs.openstack.org/infra/zuul/
http://docs.openstack.org/developer/tempest/
http://docs.openstack.org/project-team-guide/release-management.html
https://wiki.openstack.org/wiki/BugTriage
https://wiki.openstack.org/wiki/Bugs
https://wiki.openstack.org/wiki/Bugs

Release Early, Release Often and Release on Time 175

(named RC1). Across this last stage, the repository version control system
(i.e., Git) plays an important role in alleviating the interruption caused by the
freezes — freeze applies only to the stable branch so that developers can continue
their work on other the development branches (i.e., the trunk). New features
should be committed to other branches, discussed at the ‘planning stage’, and
merged into the stable branch at the next ‘implementation stage’.

Table 1. The three feature freezes of OpenStack

Freeze Description

FeatureFreeze Project teams are requested to stop merging code adding new
features, new dependencies, new configuration options, database
schema changes, changes in strings ... all things that make the
work of packagers, documenters or testers more difficult

SoftStringFreeze After the FeatureFreeze, translators start to translate the strings.
To aid their work, any changed of existing strings is avoided, as
this will invalidate some of their translation work. New strings
are allowed for things like new log messages, as in many cases
leaving those strings untranslated is better than not having any
message at all

HardStringFreezee 10 days after the SoftStringFreeze, any string changes after RC1
should be discussed with the translation team

The OpenStack release team is empowered during this last phase. It cre-
ates a stable/* branch from the current state of the master branch and uses
access control list (ACL) mechanisms to introduces any new release-critical fix
discovered until the release day. In other words, further changes at this stage
require permission from the release team – in the words of OpenStack, they will
be treated as feature freeze exceptions (FFE). Between the RC1 and the final
release, OpenStack looks for regression and integration issues. RC1 may be used
as is for the final release unless new release-critical issues are found that warrant
an RC respinning. If this happens, a new milestone will be open (RC2), with
bugs attached to it. Those RC bug fixes need to be merged in the master branch

before they are allowed to land in the stable/* branch. Once all release-critical
bugs are fixed, the new RC is published. This process is repeated as many times
as necessary before the final release. As it gets closer to the final release date, to
avoid introducing last-minute regressions, the release team limits the number of
changes and their impact: only extremely critical and non-invasive bug fixes can
get merged. All the other bugs are documented as known issues in the Release
Notes instead.

On the release day, the last published Release Candidate of each integrated
project is collected and the result is published collectively as the OpenStack
release for this cycle. OpenStack should by then be stable enough for real indus-
trial deployments. But once the version is released, a new cycle will commence
within OpenStack; the master branch switches to the next development cycle,

176 J. Teixeira

new features can be freely merged again, and the process starts again. After
the release and a period of much stress that required much coordination, most
of the community shifts again to the ‘planning stage’ and many will attend
the Design Summit. A new branch was opened already to accommodate new
developments. Even so, the launched release needs to be maintained and further
stabilized until its end of life (EOL) when it is no longer officially supported by
the community. OpenStack might release “bugfix updates” on top of previously
announced releases with fixed bugs and resolved security issues, actions that
might distract developers working on newer stuff.

Fig. 1. Overview of the OpenStack standard release cycles.

The overall release management process, as illustrated in Fig. 1, follows a
‘plan, implement, freeze, stabilize and launch’ cycle between releases. Each
release is then re-stabilized with a posteriori release-updates to fix bugs and
security issues. Nevertheless, the process described so far is just the most recur-
rent pattern within OpenStack – the default modus operandi. The described
process is actually quite open and liberal. It acts as a ‘recommendation’ for
the different teams so that whatever is developed is then later more smoothly
integrated, stabilized and released in a coordinated fashion.

Since the October 2016 (affecting the ‘Newton’ release), OpenStack actu-
ally recommends its project teams to opt from four different release man-
agement models: Common cycle with development milestones, Common cycle

with intermediary releases, Trailing the common cycle and Independent release

model as following described. Most of this models follow a common six-month

Release Early, Release Often and Release on Time 177

development cycle, some release intermediary releases within the six-months
cycle and others are allowed to manage their own release strategy18.

Common cycle with development milestones. The official and default
time-based model followed by most teams. It results in a single release at
the end of the development cycle and includes three development milestones
(as in Fig. 1).

Common cycle with intermediary releases. For project teams which want
to do a formal release more often, but still want to coordinate a release at
the end of the cycle from which to maintain a stable branch. Recommended
for libraries, and to more stable components which add a limited set of new
features and do not plan to go through large architectural changes.

Trailing the common cycle. For project teams that rely on the completeness
of other components (e.g., packaging, translation, and UI testing) and may not
publish their final release at the same time the other projects. For example,
teams packaging and deploying OpenStack components need the final releases
of many other components to be available before they can run their own final
tests. Cycle-trailing project teams are given an extra two weeks after the
official release date to request the publication of their own releases. They
may otherwise use intermediary releases or development milestones.

Independent release model. For project teams that do not benefit from a
coordinated release or from stable branches. They may opt to follow a com-
pletely independent release model. Suitable for instance for the OpenStack
own infrastructural systems (e.g., the ones supporting upstream testing and
integration) as well for components with little dependence on the overall
Openstack core architecture.

“We still have a coordinated release at the end of the six months for projects
that are willing to those deadlines and milestones, but the main change is that
we will move from managing most of them to refine processes and tools for
each project to be able to produce those releases easier. The development cycle
will still be using a six months development cycle, even if some projects might
do intermediary releases where it makes sense, but will still organize almost
everything under a six months development cycle between design summits.”—
Thierry Carrez, 15 May 201519

6 Discussion

Prior work had already inquired on OpenStack release management issues (see
[16, pp. 10–11] for work pointing up collaboration issues and [10, pp. 80–82]
for work pointing up communication issues). However and to the best of our

18 See http://docs.openstack.org/project-team-guide/release-management.html for
the details of each release management model.

19 Transcribed from video, see [6:34–7:00] https://www.openstack.org/summit/
vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-
openstack-projects-governance.

http://docs.openstack.org/project-team-guide/release-management.html
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance

178 J. Teixeira

knowledge, this is the first paper that is explicitly aimed at describing how a
large and complex open-source software ecosystem implemented a liberal time-
based release strategy. As this point, we are not attempting to evaluate, appraise
or compare it — we are just describing it. Future research could contrast the
processual practices of release management across multiple cases (see [5,10]).
Digital trace data generated by the upstream integration processes, the source-
code repository and the bug tracker could be used to triangulate the authenticity
of the conceptual release management models.

Our results confirm the pivotal role of freezes within the release management
process (cf. [13,24]). In our case, the use of freezes forces developers that want
to see their work in the next release to make three big shifts in the focus of the
production: (1) from the individual component level to the overall integration
as a whole, (2) from developing new features to ensuring its landing, integration
and stabilization, and (3) from individual work, or collaboration within smaller
teams, to coordination across the overall community.

Finally, in the light of prior work, the liberal release management process of
OpenStack can be considered a hybrid of feature-based and time-based release
management (see [22, pp. 23]). This as OpenStack encourages regular releases
(every six months) but also attempts to plan the introduction of new features
at each regular release. Leaders of each project team choose a set of features for
the next release at the planning stage. However, if these features are not stable
enough to be included in the next release, they will be left out by the cross-
project release management team. As pointed out recently, release management
constrains the evolution of the integrated whole [10, p. 4].

7 Conclusion

OpenStack implemented a time-based release strategy on a six-month release
cycle. Each cycle comprehended a ‘planning stage’, an ‘implementation stage’
and ‘freeze, stabilize and launch’ stage. At the middle of each release cycle, the
community relies upon three freezes (i.e., “FeatureFreeze”, “SoftStringFreeze”
and “HardStringFreezee”) that encourages developers to change their produc-
tion focus from the development of components to the overall upstream inte-
gration and stabilization of components as a whole — thus affecting much the
work and communication patterns of the community. The implemented release
cycle is quite liberal (i.e., flexible to adaptation), in particular contexts, different
project teams across the community are allowed adapt the ‘default’ six months
release cycle. Moreover, the implemented release management process exhibits
hybrid characteristics of both feature-based and time-based release management
strategies as the process is both feature and time oriented.

In the case of large and complex open-source software ecosystem, the imple-
mentation of a time-based release strategy, as a complex process that inter-
twines with many other software development processes, requires the support of
a well suited organizational design as much coordination is needed. Moreover,
the process constrains the evolution of integrated core and depends heavily on

Release Early, Release Often and Release on Time 179

many software tools that make it possible (e.g., version control, revision control,
continuous upstream integration, continuous upstream testing, and configura-
tion management). Besides its acknowledged benefits, the implementation of a
time-based release strategy is a challenging cooperative task involving multiple
people and technology.

References

1. Raymond, E.: The Cathedral and the Bazaar. Knowl. Technol. Policy 12(3), 23–49
(1999)

2. Raymond, E.: The Cathedral & the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. O’Reilly Media, Sebastopol (2001)

3. Zhao, L., Elbaum, S.: A survey on quality related activities in open source. SIG-
SOFT Softw. Eng. Notes 25(3), 54–57 (2000)

4. Aberdour, M.: Achieving quality in open-source software. IEEE Softw. 24(1), 58–
64 (2007)

5. Michlmayr, M., Fitzgerald, B., Stol, K.J.: Why and how should open source
projects adopt time-based releases? IEEE Softw. 32(2), 55–63 (2015)

6. Barqawi, N., Syed, K., Mathiassen, L.: Applying service-dominant logic to recur-
rent release of software: an action research study. J. Bus. Ind. Market. 31(7),
928–940 (2016)

7. Khomh, F., Adams, B., Dhaliwal, T., Zou, Y.: Understanding the impact of rapid
releases on software quality. Empir. Softw. Eng. 20(2), 336–373 (2015)

8. Choudhary, V., Zhang, Z.: Research note-patching the cloud: the impact of saas on
patching strategy and the timing of software release. Inf. Syst. Res. 26(4), 845–858
(2015)

9. Wright, H.K., Perry, D.E.: Release engineering practices and pitfalls. In: 2012 34th
International Conference on Software Engineering (ICSE). pp. 1281–1284, June
2012

10. Poo-Caamaño, G.: Release management in free and open source software ecosys-
tems. Ph.D. thesis, University of Victoria, Canada (2016)

11. O’Reilly, T.: Lessons from open-source software development. Commun. ACM
42(4), 32–37 (1999)

12. Spinellis, D., Szyperski, C.: How is open source affecting software development?
IEEE Softw. 21(1), 28 (2004)

13. Fitzgerald, B.: Open source software: lessons from and for software engineering.
Computer 44(10), 25–30 (2011)

14. Wuhib, F., Stadler, R., Lindgren, H.: Dynamic resource allocation with manage-
ment objectives-implementation for an openstack cloud. In: 2012 8th International
Conference on Network and Service Management (CNSM) and 2012 Workshop on
Systems Virtualiztion Management (SVM), pp. 309–315. IEEE (2012)

15. Corradi, A., Fanelli, M., Foschini, L.: VM consolidation: a real case based on open-
stack cloud. Futur. Gener. Comput. Syst. 32, 118–127 (2014)

16. Teixeira, J., Robles, G., González-Barahona, J.M.: Lessons learned from applying
social network analysis on an industrial free/libre/open source software ecosystem.
J. Internet Serv. Appl. 6(1), 14 (2015)

17. Ge, X., Liu, Y., Du, D.H., Zhang, L., Guan, H., Chen, J., Zhao, Y., Hu, X.:
OpenANFV: Accelerating network function virtualization with a consolidated
framework in openstack. ACM SIGCOMM Comput. Commun. Rev. 44(4), 353–
354 (2015)

180 J. Teixeira

18. Malik, A., Ahmed, J., Qadir, J., Ilyas, M.U.: A measurement study of open source
SDN layers in openstack under network perturbation. Comput. Commun. (2017)

19. Rossi, B., Russo, B., Succi, G.: Analysis of open source software development
iterations by means of burst detection techniques. In: Boldyreff, C., Crowston, K.,
Lundell, B., Wasserman, A.I. (eds.) OSS 2009. IFIPAICT, vol. 299, pp. 83–93.
Springer, Heidelberg (2009)

20. Wiggins, A., Howison, J., Crowston, K.: Heartbeat: measuring active user base and
potential user interest in FLOSS projects. In: Boldyreff, C., Crowston, K., Lundell,
B., Wasserman, A.I. (eds.) OSS 2009. IFIPAICT, vol. 299, pp. 94–104. Springer,
Heidelberg (2009)

21. Michlmayr, M.: Quality improvement in volunteer free and open source software
projects - exploring the impact of release management. Ph.D. thesis, University of
Cambridge (2007)

22. Wright, H.K.: Release engineering processes, their faults and failures. Ph.D. thesis,
University of Texas (2012)

23. Martinez-Romo, J., Robles, G., Gonzalez-Barahona, J.M., Ortuño-Perez, M.: Using
social network analysis techniques to study collaboration between a floss commu-
nity and a company. In: Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G.
(eds.) OSS 2008. IFIPAICT, vol. 275, pp. 171–186. Springer, Boston (2008)

24. Anand, A., Bhatt, N., Aggrawal, D., Papic, L.: Software reliability modeling with
impact of beta testing on release decision. In: Ram, M., Davim, J.P. (eds.) Advances
in Reliability and System Engineering. Management and Industrial Engineering,
pp. 121–138. Springer, Cham (2017)

25. Mesbah, A., Van Deursen, A.: Invariant-based automatic testing of AJAX user
interfaces. In: IEEE 31st International Conference on Software Engineering, 2009.
ICSE 2009, pp. 210–220. IEEE (2009)

26. Artzi, S., Dolby, J., Jensen, S.H., Moller, A., Tip, F.: A framework for automated
testing of Javascript web applications. In: 2011 33rd International Conference on
Software Engineering (ICSE), pp. 571–580. IEEE (2011)

27. Teixeira, J., Mian, S., Hytti, U.: Cooperation among competitors in the open-source
arena: the case of openstack. In: Proceedings of the International Conference on
Information Systems (ICIS 2016). Association for Information Systems (2016)

28. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2008)

29. Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting empirical methods
for software engineering research. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.)
Guide to Advanced Empirical Software Engineering, pp. 285–311. Springer, London
(2008)

30. Yin, R.K.: Applications of Case Study Research. Sage, London (2011)
31. Eisenhardt, K.M.: Building theories from case study research. Acad. Manag. Rev.

14(4), 532–550 (1989)
32. Flynn, B.B., Sakakibara, S., Schroeder, R.G., Bates, K.A., Flynn, E.J.: Empirical

research methods in operations management. J. Oper. Manag. 9(2), 250–284 (1990)
33. Kozinets, R.V.: The field behind the screen: using netnography for marketing

research in online communities. J. Market. Res. 39, 61–72 (2002)
34. Kozinets, R.V.: Netnography: Doing Ethnographic Research Online. Sage Publi-

cations Limited, London (2009)
35. Yin, R.: Case Study Research: Design and Methods. Applied Social Research Meth-

ods Series. Sage Publications, London (1994)

Release Early, Release Often and Release on Time 181

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Technical Lag in Software Compilations:

Measuring How Outdated a Software

Deployment Is

Jesus M. Gonzalez-Barahona1, Paul Sherwood2, Gregorio Robles1(B),
and Daniel Izquierdo3

1 Universidad Rey Juan Carlos, Madrid, Spain
grex@gsyc.urjc.es

2 Codethink, Manchester, UK
3 Bitergia, Madrid, Spain

Abstract. Large software compilations based on free, open source soft-
ware (FOSS) packages are the basis for many software systems. When
they are deployed in production, specific versions of the packages in
the compilation are selected for installation. Over time, those versions
become outdated with respect to the upstream software from which they
are produced, and from the components available in the compilations as
well. The fact that deployed components are outdated is not a problem
in itself, but there is a price to pay for not being “as much updated
as reasonable”. This includes bug fixes and new features that could, at
least potentially, be interesting for the deployed system. Therefore, a
balance has to be maintained between “being up-to-date” and “keeping
the good old working versions”. This paper proposes a theoretical model
(the “technical lag”) for measuring how outdated a system is, with the
aim of assisting in the decisions about upgrading in production. The
paper explores several ways in which technical lag can be implemented,
depending on requirements. As an illustration, it presents as well some
specific cases in which the evolution of technical lag is computed.

1 From Upstream to Deployment

Many production systems are deployed as collections of FOSS (free, open source
software) components. All of them are based on the software produced by the
corresponding FOSS projects. And usually, as time passes, those projects deliver
new releases with more functionality, more fixed bugs, and in many cases, more
overall stability and performance [1]. We will use the term “upstream project”
for referring to the project originally producing a FOSS component. Upstream
projects release, from time to time, versions of the FOSS components they pro-
duce and maintain. This release may be continuous, each time a change is done
to the code, or discrete, at specific points in time, when the project consid-
ers it convenient [2]. In fact, many projects release in both ways: they release
continuously in their source code management system (one release per commit),

c© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 182–192, 2017.
DOI: 10.1007/978-3-319-57735-7 17

Technical Lag in Software Compilations 183

but they also offer “official” tagged discrete releases. In any case, we will consider
the released component as the “upstream released package”.

But it is unusual that upstream packages are directly deployed in production
systems. Instead of that, packages coming from software compilations, usually
referred to as “distributions”, are used for deployment. We will refer to the pack-
ages released as a part of a software compilation as “distribution packages” (to
avoid using “compilation packages”, which could be easily mistaken for “package
produced as the result of compiling some software”). Distribution packages are
produced by adapting upstream packages to the policies and mechanisms defined
by the software compilation. That usually makes the deployment of components
easier, more coordinated with other components, and in general more uniform.
This adaption usually includes changes to the code, with respect to upstream.
For example, Debian packages include certain files with information on how to
build (produce a binary version from the source code) and install the package,
and may include changes to improve or adapt it to the distribution [3].

We propose the following model for the process from the production of a
FOSS component to its deployment in production:

– The upstream project produces an upstream package. This will be a new
upstream release of the FOSS component. This can be just a commit in a Git
repository, or a curated official tagged release.

– That new upstream package is used by a software compilation as the basis
for a new release of their corresponding distribution package. For producing
it, upstream code is used, maybe with some patches applied, and some extra
files.

– Deployers use a certain release of the distribution package to deploy the FOSS
component in production.

A real deployment may include hundreds or thousands of FOSS components,
each corresponding to a certain release of the corresponding upstream package.

This model can be applied to deployments in many scenarios, such as: a collec-
tion of Debian packages in a virtual machine or container, providing some cloud-
based service; a collection of JavaScript libraries used by a web app, installed
from npm.org; or a collection of Python packages (or Ruby gems) installed in a
certain machine to run a Python (or Ruby) program; a certain Yocto-based dis-
tribution deployed in a certain car (Yocto is a Linux-based distribution oriented
towards embedded systems); etc.

2 Technical Debt and Technical Lag

Each deployment scenario has different requirements with respect to their “ideal”
relationship with upstream. But in all cases, if no updating action is performed,
they stay static, “frozen in the past”, while upstream evolves, fixing bugs and
adding new functionality. The same happens with software compilations with
respect to upstream, if they do not release new updated packages for their
components.

184 J.M. Gonzalez-Barahona et al.

Depending on the requirements of the final system, and the resources to
maintain it, lags of deployed systems with respect to their software compilations,
and to the latest upstream packages, can be larger or shorter. For example, in
deployments with a large number of components and high stability requirements,
updating even a single new package can be a challenge: the whole system has to
be tested, since the updated package could break something, specially if it is a
dependency to many other packages [4]. Even if upstream developers and compi-
lation maintainers did their own thoughtful testing, some integration bug could
be triggered when deployed. A significant amount of effort has to be devoted to
upgrading, and tracking the behavior of the system after the upgrade. Besides,
in some cases the new version could break some assumption about how it works,
affecting the overall functionality or performance. Therefore, every new version
has to be carefully examined before it can be deployed.

As time passes, if deployed components are not upgraded, the system misses
more and more new functionality and bug fixes: it is not “as good as it could
be”. This situation is akin to the one described as “technical debt” for software
development. The metaphor of “technical debt” introduced in 1992, tries to
capture the problems caused for not writing the best possible code, but code
that could (and should) be improved later on [5]. The difference between code
“as it should be” and code “as it is” is a kind of debt for the developing team.
If technical debt increases, code becomes more difficult to maintain. A similar
concept is “design debt”, which translates the concept to the design of software
components [6].

In the case we are considering in this paper, we are not exactly in a technical
debt scenario, although the concept could be easily extended to include it. The
main differences are:

– The concept does not try to capture that deployment is not done “as it should
be done”. On the contrary, the system “degrades” just with the passing of time,
and not because some code needed to be improved when deployed.

– Software development is not really involved, since it only happens upstream,
and to a certain extent, in software compilations. Only deployment decisions
are considered.

– The metaphor of the debt is difficult to understand in this case, since it is not
some “debt” being acquired at some spot, which has to be returned later. Our
case could be more comparable to a tax, paid for not being updated, in the
form of less functionality and more bugs that we could have if updating.

To recognize the differences, we are coining a new term, “technical lag”, which
refers to the increasing lag between upstream development and the deployed
system if no corrective actions are taken. Deployers need to balance the technical
lag their systems acquire as time passes, with the effort and problems caused by
upgrading activities.

Technical Lag in Software Compilations 185

3 Computing Technical Lag for a Deployment

When measuring technical lag, the first problem is to decide what is the “gold
standard” with which to compare. Depending on requirements and needs, the
comparison may focus on stability, functionality, performance, or something else.

For example, if there is interest in calculating the technical lag of a Debian-
based distribution, with a specific interest in stability, we need to find the stan-
dard for stability for Debian-based distributions. One choice could be Debian
stable (the Debian release which is currently considered “stable”1). In a differ-
ent case, a system could be interested in being as much up-to-date as possible
with respect to upstream, because they are interested in having as much func-
tionality and bugs fixed as possible. In this case, the standard would be the latest
checkout for each upstream package.

Once the gold standard is defined, we still need to find out the function to
compute the lag between the component in the standard compilation and the
deployed component. For example, if the focus is on security, the lag function
could be the number of security issues fixed in the standard which have not been
fixed in the deployed system. If the focus is functionality, the function could
be the number of features implemented in the standard which have not been
implemented in the deployed component. Some other interesting lag functions
could be the differences in lines of source code between standard and deployed
components, or the number of commits of difference between them, if both cases
correspond to upstream checkouts.

Therefore, when defining the technical lag for a system, it is not enough
to just define the deployment to consider. The standard to compare (or the
requirements of the ideal deployment) and the function to calculate the lag
between versions of the component need to be defined as well.

4 Formal Definition of Technical Lag

Assume we have a deployment D composed of a set of certain components

C, deployed as packages of a certain software collection, and a certain stan-

dard distribution S, composed by the same set of components, but packaged
for that distribution. We denote di as a package in distribution D correspond-
ing to component i, while si denotes a package in the standard distribution S

corresponding to the same component i:

D = {di : i ∈ C} S = {si : i ∈ C} (1)

We define the lag function for packages corresponding to a component,
Lag(di, si), as the function computing the lag between packages di ∈ D and
si ∈ S, for a given component i ∈ C. Lag is defined for all pairs (di, si), as
long as si is more up-to-date than di, and zero in other cases. Lag has the

1 See https://www.debian.org/releases/ for a description of the different Debian
releases.

https://www.debian.org/releases/

186 J.M. Gonzalez-Barahona et al.

following properties, which result in the technical lag of a deployment being a
non-negative real number. For Lag to be useful, it should fulfill the “lagging
condition”: computing a larger value for distribution packages “lagging behind”.
That is, the more distant di is from si, for some lag requirements, the larger
Lag(di, si) should be.

We define the lag aggregation function, LagAgg, as the function used to
aggregate the package lags for a set of components.

Finally, we define the technical lag for the deployment D with respect to
the standard distribution S as the aggregation of the lags between the deployed
and the standard distribution packages:

TechLag(D,S) = LagAgg(Lag(di, si)∀i ∈ C) (2)

When the aggregation function is summation, technical lag is defined as:

TechLag(D,S) =
∑

i∈C

Lag(di, si) (3)

This definition captures how technical lag depends on:

– the distribution selected as the standard distribution to compare
– the function used to calculate the lag for each of the components in the

deployment
– the aggregation function for the lags of the deployed components

5 Calculating Lag Between Packages

After the formal definition of the concept, this section will illustrate with an
example how the lag can be computed for a certain component, how results
differ depending on the distribution selected as the gold standard, and how they
however make sense from a practical point of view. For simplicity, we will work
with packages for which upstream is working openly in a Git repository. This
allows us to model upstream as following a continuous release process, with each
commit in the master branch of the Git repository being a release.

We selected components packaged for Debian, because it is a very popular
distribution, basis for many other popular distributions, such as Ubuntu. It is
common to find Debian or Ubuntu packages in real deployments, both of cloud
and embedded systems, to mention just two domain areas. Debian provides the
Debian Snapshot Archive2, which offers for each component a very complete
collection of all packages that have been in Debian distributions in the past.
This collection includes not only packages in Debian stable releases, but also in
Debian unstable and Debian testing, that –because of their nature– may include
many interim versions. For each package in the Debian Snapshot archive, its
version tag and the date of its release are available. This allows for easy plotting
of the evolution of the technical lag of those packages, either just over time, or
grouping by releases, as will be shown in the figures in this section.

2 http://snapshot.debian.org/.

http://snapshot.debian.org/

Technical Lag in Software Compilations 187

Fig. 1. Lag functions applied to Debian acl package releases, by release date

The selected illustrative cases are the acl and Git packages. In the case of acl,
we have found 24 packages in the Debian archive (released from 2005 to 2012),
while for Git we have found 192 (from 2005 to 2016). Only since 2010 Debian
Git packages correspond to the “current” Git package, the popular source code
management system. Before 2010, there were 7 packages which corresponded to
GNU Interactive Tools, a set of tools for extending the shell. Therefore, only
data since 2010 is really relevant, and we consider 185 Debian Git packages.

To estimate the technical lag of each Debian package, we will assume that
it is deployed as such, and compared with the current upstream master HEAD
checkout at the time of the study (Oct. 2016). Therefore, following the notation
in the previous section: di is each of the Debian packages considered; si is the
latest upstream continuous release (defined as the HEAD of the master branch
in the upstream Git repository); and LagAgg is summation.

As Lag, we computed four different functions, to offer different lagging cri-
teria3:

– different lines and different files: number of different lines or files,
including those that are present only in di or si.

– diff commits: number of commits, following the master branch of the
upstream Git repository, needed to go from the most likely upstream com-
mit corresponding to di to the commit corresponding to si.

– normal effort: total normalized effort for the commits identified when com-
puting diff commits. We define normalized effort (in days) for an author as
the number of days with at least one commit between the dates corresponding
to two commits in the master branch. We define total normalized effort (in
days) as the sum of normalized effort for all the authors active during the
period between two commits.

3 For computing different and common lines and files, we used the Python3 difflib

module.

188 J.M. Gonzalez-Barahona et al.

Fig. 2. Lag functions applied to Debian Git package releases, by release date

The first two lag functions capture how different is the deployed component
is from the component in the standard distribution (in our case, the most recent
commit upstream). The last two functions capture how many changes (or, to
some extent, effort in changing) were applied to the component in the standard
distribution since the upstream release used to build the deployed package.

To provide some context, we computed as well common lines and
common files, which is the number of lines an files in common between Di

and Ci (lines exactly the same). Those are not really Lag functions, since they
do not fulfill the lagging condition: both grew larger when di and si were closer.

Figures 1 and 2 show the evolution of the lag over time, considering the release
time of Debian packages. Each chart shows the value of lag (using one of the
lag functions mentioned above) for the release time of each Debian package. For
all the four “Lag” functions, it can be seen that they are almost monotonically
decreasing over time, clearly converging to zero as time approaches the release
time of si (the rightmost values). For acl, there is a clear step in 2009, which
corresponds to major changes in the component, as will be shown later. For Git
the change around 2010 is due to the different packages being tracked (see above,
that means that only the data from 2010 onwards is really meaningful). After
that point there are some spikes and steps, notably two large spikes in late 2015
and early 2016. But in general, the trend in all charts is clearly decreasingly
monotonic.

Figures 3 and 4 are more revealing, because they have into account two com-
mon practices in Debian: labeling package releases (in part) with upstream ver-
sion tags, and releasing slightly modified versions for stable distributions.

The first is observed by the different colors and lines in the charts: all Debian
packages corresponding to the same major release have been depicted in the same
color, and linked with lines. Now, when we look at the charts for acl in Fig. 3, we
see how the step in 2009 corresponds to a change in version (from pink to red),
which did a major refactoring of the code. That is clearly appreciated in the

Technical Lag in Software Compilations 189

Fig. 3. Lag functions applied to all releases of the Debian acl package, by release date,
organized by version (Color figure online)

Fig. 4. Lag functions applied to all releases of the Debian Git package, by release date,
organized by version (Color figure online)

190 J.M. Gonzalez-Barahona et al.

functions showing common and different lines. In the case of Git, the transition
from GNU Interactive Tools (horizontal line in the left) to the “real” Git is now
evident.

The second practice is observed for Git in Fig. 4: the red horizontal lines on
the right correspond to new releases of “old” packages, fixing some important
bugs, since they are still maintained after a long time for some stable distribution.
That helps to explain the spikes we saw in Fig. 2: those di are really “out of order”
packages.

In all the figures for the same component, the different functions show similar
trends. There are differences, but probably any of them would provide enough
information for evaluating if the lag is large enough to justify an update of a
deployed package.

6 Discussion and Conclusions

Software compilations for FOSS components are usually complex and large, and
decisions about when to upgrade specific deployed packages, or whole deployed
distributions, is not easy. The complexity of dependency management [7–9], or
their significant evolution over time [3] are reasons both to delay upgrading
(because of the potential problems), and to consider it (because of the added
functionality and improved code). The same way that the complexity in depen-
dencies, or the some parameters of their evolution [10] can be measured, we are
exploring the concept of technical lag to measure their “degradation” over time
with respect to some “ideal” gold standard.

Defining this degradation requires identifying the “ideal” packages to deploy
(the “gold standard” to compare), and finding distance metrics (lag functions)
to compare deployed software with that standard collection. To be useful, these
metrics should track characteristics linked to requirements of the deployed sys-
tem. As it was discussed in the first part of this paper, a system interested in
stability may define very different metrics and gold standard than one interested
in maximum functionality. In this paper we have just explored one kind of ideal
distribution (the latest available upstream code), and two kinds of metrics: those
based on differences in source code (in terms of lines or files), and those based on
the number of changes (either the number of commits or the normalized effort).
However, many other could be explored.

In particular, the exploration of criteria to define “gold standards” for general
or specific scenarios seems promising. Complete industries, such as automotive,
embedded systems or cloud, could be interested in finding standard collections
with which to compare any deployment, in a way that they may decide better
when and what to upgrade, given a set of requirements.

The definition of lag functions requires careful exploration as well. Some of
them may be difficult, because the needed information may be heterogeneous,
and distributed. But some seem feasible: the number of bugs fixed, or security
advisories addressed; the number of new features implemented; improvements in
performance, etc. (obviously, when there are ways of collecting that information).

Technical Lag in Software Compilations 191

This makes us think that there is a lot of work to do in this area, and that we
have not even collected all the low hanging fruits.

In this paper, we have considered that distribution packages are directly
deployed in production, and therefore make no real difference between the pack-
ages in a distribution, and those packages when deployed. In the real world,
packages may be deployed with some differences with respect to the distribution
packages used. For example, some patches could be applied to fix known bugs.
However, this does not make the model less general: the patched packages can
be modeled as a new distribution, based on the “original” one, and all the above
considerations will apply.

As a kind of a conclusion, we propose technical lag as useful concept to
deal with large FOSS deployments. As real-world systems are increasingly built
by assembling large collections of FOSS components, it is evident the need of
techniques for managing their complexity. In some areas, such as dependency
management or architectural evolution, research has been producing results for
many years. But there is little evidence that may help in the system-wide main-
tenance procedures, including those relatively easy, such as when and what to
upgrade. With this paper we propose a new line of research, trying to provide
support practitioners in may fields of the industry.

Although we are focused on FOSS compilations, it is interesting to notice that
the concept of technical lag can in theory be extended to non-FOSS components.
However, in practical terms that may be difficult, except if source code and other
related information needed to estimate lag is present. This can be the case in
some special cases, such as when a company deploys systems composed by a
mix of FOSS and proprietary components, but it has access to all the needed
information for proprietary ones.

Acknowledgments and Reproduction Package. The work of Jesus Gonzalez-
Barahona and Gregorio Robles has been funded in part by the Spanish Gov. under
SobreVision (TIN2014-59400-R), and by the European Commission, under Seneca,
H2020 Program (H2020-MSCA-ITN-2014-642954). The research described in this paper
was started thanks to a contract funded by Codethink.

All the code and data needed to reproduce the results in this package is avail-
able from a GitHub repository (https://github.com/jgbarah/techlag/) (checkout as of
December 2016).

References

1. German, D.M.: Using software distributions to understand the relationship among
free and open source software projects. In: Proceedings of the Fourth International
Workshop on Mining Software Repositories, p. 24. IEEE Computer Society (2007)

2. Michlmayr, M., Fitzgerald, B., Stol, K.: Why and how should open source projects
adopt time-based releases? IEEE Softw. 32(2), 55–63 (2015)

3. González-Barahona, J.M., Robles, G., Michlmayr, M., Amor, J.J., Germán, D.M.:
Macro-level software evolution: a case study of a large software compilation. Empir.
Softw. Eng. 14(3), 262–285 (2009)

https://github.com/jgbarah/techlag/

192 J.M. Gonzalez-Barahona et al.

4. Claes, M., Mens, T., Di Cosmo, R., Vouillon, J.: A historical analysis of Debian
package incompatibilities. In: IEEE/ACM 12th Working Conference on Mining
Software Repositories (MSR), pp. 212–223. IEEE (2015)

5. Cunningham, W.: The Wycash portfolio management system. In: Addendum to
the Proceedings on Object-Oriented Programming Systems, Languages, and Appli-
cations (Addendum), OOPSLA 1992, pp. 29–30. ACM, New York (1992)

6. Kerievsky, J.: Refactoring to Patterns. Addison-Wesley Professional, Reading
(2004)

7. Mancinelli, F., Boender, J., Cosmo, R.D., Vouillon, J., Durak, B., Leroy, X.,
Treinen, R.: Managing the complexity of large free and open source package-
based software distributions. In: 21st IEEE/ACM International Conference on
Automated Software Engineering (ASE 2006), 18–22 September 2006, Tokyo, pp.
199–208. IEEE Computer Society (2006)

8. Wermelinger, M., Yu, Y.: Analyzing the evolution of eclipse plugins. In: Proceed-
ings of the 2008 International Working Conference on Mining Software Reposito-
ries, MSR 2008 (Co-located with ICSE), Leipzig, 10–11 May 2008, pp. 133–136
(2008)

9. Bavota, G., Canfora, G., Penta, M.D., Oliveto, R., Panichella, S.: How the apache
community upgrades dependencies: an evolutionary study. Empir. Softw. Eng.
20(5), 1275–1317 (2015)

10. Gala-Pérez, S., Robles, G., González-Barahona, J.M., Herraiz, I.: Intensive metrics
for the study of the evolution of open source projects case studies from apache
software foundation projects. In: Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR 2013, San Francisco, 18-19 May 2013, pp.
159–168 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

OSSpal: Finding and Evaluating Open Source Software

Anthony I. Wasserman
(✉)

, Xianzheng Guo, Blake McMillian, Kai Qian,
Ming-Yu Wei, and Qian Xu

Carnegie Mellon University, Silicon Valley, Moffett Field, CA 94035, USA
{tonyw,blake.mcmillian,ming.yu.wei,qian.xu}@sv.cmu.edu,

{xianzheg,kaiq}@andrew.cmu.edu

Abstract. This paper describes the OSSpal project, which is aimed at helping

companies, government agencies, and other organizations find high quality free

and open source software (FOSS) that meets their needs. OSSpal is a successor

to the Business Readiness Rating (BRR), combining quantitative and qualitative

evaluation measures for software in various categories. Instead of a purely

numeric calculated score OSSpal adds curation of high-quality FOSS projects

and individual user reviews of these criteria. Unlike the BRR project, for which

there was no automated support, OSSpal has an operational, publicly available

website where users may search by project name or category, and enter ratings

and reviews for projects.

Keywords: Open source software · Software evaluation · Open source forges ·

Software metrics · FOSS · FLOSS · Software taxonomy

1 Introduction

Free and open source software (FOSS) has flourished in the past decade. GitHub, the

leading repository for FOSS projects, now hosts more than 50 million projects (not all

FOSS). These projects vary in software quality, project maturity, documentation, and

support, and hence in their suitability for widespread use. Projects in their early stages

aren’t mature enough for use outside the development team and the small band of brave

souls who are willing to try almost any piece of software and accept the results.

Over time, some of these projects will thrive, becoming stable and useful software,

while other projects will be abandoned, with little or nothing to show for the effort. High

quality open source software (FOSS) allows developers to incorporate reliable code in

their applications and to focus their efforts on other product functions. FOSS software

can also allow users to avoid the costs of proprietary software for use both within their

organizations and in their products.

While business decision makers, such as corporate IT managers, have a good under‐

standing of the business models of traditional proprietary software vendors and how to
work with them, open source software presents them with a new set of challenges. While

some open source software is provided through vendors who offer regular releases,

technical support, and professional services, other software may not have an established

© The Author(s) 2017

F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 193–203, 2017.

DOI: 10.1007/978-3-319-57735-7_18

source of commercial support, even though the software itself is of good quality from a

technical perspective.

Evaluating open source software is quite different from evaluating traditional pack‐

aged applications and tools. Open source software can be freely used according to the

terms of its license (see the Open Source Definition and open source licenses at http://

www.opensource.org). Traditional enterprise software vendors often provide pre-

purchase support for a trial of the software. While some FOSS projects have commercial

sources of training and support, most users of FOSS must seek support from online

forums and documentation or, in some cases, from commercially published books. It’s

still uncommon for industry analysts to include open source software in their product

evaluation frameworks.

For organizations without prior experience with open source software, it has, until

now, been necessary to rely solely on internal evaluations and “word of mouth” recom‐

mendations. Even finding suitable candidate software can be daunting, and the process

can prevent managers from trying to do so.

In the remainder of this paper, we review the initial goals and the experience with

the Business Readiness Rating (Sect. 2), describe the approach of the OSSpal project

(Sect. 3), describe the project status (Sect. 4), and conclude with goals for future work.

2 The Business Readiness Rating

For open source software to be widely accepted and used, it’s essential to simplify the

evaluation and adoption process and to increase the comfort level of decision makers in

choosing and using open source software. Achieving this goal led to the concept of the

Business Readiness Rating (BRR) in 2005 [1]. People often rely on reviews from trusted

sources, e.g., Consumer Reports in the US, or collected opinions with summary scores,

for technical and consumer products, restaurants, films, and automobiles. Some of these

ratings are multidimensional, while others are a single combined score reflecting all

facets of the reviewed product.

The Business Readiness Rating followed this well-established tradition, giving

reviewers a framework to evaluate various characteristics of an open source project as

they apply to that reviewer’s specific requirements. Golden’s Open Source Maturity

Model (OSMM) [2] used a matrix of weights and values to calculate a maturity level

for open source software. The OSMM, along with QSOS [3], and unpublished work by

the consulting firm CapGemini, were all influences on the BRR approach. Subsequently,

the OpenBQR project [4], within the Qualipso Project, drew upon all of these to create

a new quality evaluation framework, but that effort does not appear to have progressed

beyond the initial work reported in 2007.

2.1 Evaluation Categories

From discussions with evaluators, we identified categories that are important for the

open source evaluation process. We used those categories, along with those found in

194 A.I. Wasserman et al.

http://www.opensource.org
http://www.opensource.org

standard evaluation process documents (such as ISO/IEC 9126 [5] and ISO/IEC

25010:2011 [6]), and condensed them to seven (initially twelve) areas for evaluation:

• Functionality

How well will the software meet the average user’s requirements?

• Operational Software Characteristics

How secure is the software? How well does the software perform? How well does

the software scale to a large environment? How good is the UI? How easy to use is

the software for end-users? How easy is the software to install, configure, deploy,

and maintain?

• Support and Service

How well is the software component supported? Is there commercial and/or

community support? Are there people and organizations that can provide training

and consulting services?

• Documentation

Is there adequate tutorial and reference documentation for the software?

• Software Technology Attributes

How well is the software architected? How modular, portable, flexible, extensible,

open, and easy to integrate is it? Are the design, the code, and the tests of high quality?

How complete and error-free are they?

• Community and Adoption

How well is the component adopted by community, market, and industry? How active

and lively is the community for the software?

• Development Process

What is the level of the professionalism of the development process and of the project

organization as a whole?

The first four categories are quite similar to those used to evaluate proprietary, i.e.,

closed source, software. For the latter three topics, it is usually easier to obtain the data

for an open source project. In an open source project, the size of the user community is

important for assessing the availability of informal support available, and the speed with

which a posted question might be answered or a problem in the code might be fixed.

Open source projects contain extensive data on the size of the development team and

the list of outstanding issues, as well as the number and frequency of releases, data that

is difficult, if not impossible, to obtain from closed source products. In this way, the

project data can be used in the evaluation process, thus adding a quantitative aspect to

what has traditionally been an informal process.

The term “Operational Software Characteristics” refers to those aspects of a software

system that can be evaluated without access to the source code. It includes such quality-

related areas as reliability, performance, scalability, usability, installability, security,

and standards compliance. Evaluating “Software Technology Attributes” involves

access to the source code to review software architecture, code quality, and internal

documentation.

As additional examples, vendor support, standards compliance, test coverage, and

the presence of published books are characteristics that indicate a high degree of read‐

iness for an open source component. Different organizations can and should apply

OSSpal: Finding and Evaluating Open Source Software 195

different priorities and weightings to these categories (and perhaps to subcategories),

based on the intended use of the software and their risk acceptance profile.

In summary, the BRR was conceived as an open and standard model to assess soft‐

ware to increase the ease and correctness of evaluation, and accelerate the adoption of

open source software. Such a model should include the crucial requirements of a good

software rating model — that it be complete, simple, adaptable, and consistent.

2.2 Experience and Shortcomings of the BRR

The BRR was used informally for many software evaluations since its initial release in

2005. As a manual process, it failed to gain much traction in the community. We attribute

that situation primarily to the absence of automated tools to assist in the calculation, but

also because of personal situations affecting team members. In addition, we found that

business users of FOSS were rarely willing to take the time and effort to contribute their

assessments back to the community, sometimes because they viewed their studies as

having proprietary value to their companies. But the problems went well beyond those,

and it took us some time to recognize them fully.

First, in most cases, it was easy to estimate which FOSS projects would receive a

high BRR score, based on high awareness of the project, along with existing documen‐

tation and commercial support. FOSS projects such as MySQL and OpenOffice were

mature, well-supported projects, well-suited for organizational adoption.

Next, a numeric score alone fails to reveal necessary details about a FOSS compo‐

nent, particularly how well it works in practice, as well as individual issues that can’t

be captured in the evaluation subcategories. That’s particularly true of the functionality

category, where a complex piece of software may be created to perform multiple func‐

tions, but may not do all of them satisfactorily for a specific requirement. The BRR

didn’t have a way to evaluate in detail the functionality of a FOSS product in a specific

software category, nor could one easily do an evaluation based on a single key charac‐

teristic such as “security”.

Third, using the BRR requires finding candidate FOSS software to evaluate. Many

organizations lack internal expertise with FOSS software, and thus don’t know where

to begin, especially when they don’t fully understand the concepts of FOSS. Doing a

search for “open source content management systems”, for example, yields a vast

number of results (148 M when one of the authors tried it), that provide very little help

to the user. Even if the search led the organization to cmsmatrix.org, which provides

comparative information on content management systems (CMS), there are more than

1200 listed CMS’s. In short, without previous FOSS experience or the use of external

consultants, an organization isn’t likely to be successful finding high-quality FOSS

candidates this way. It was initially difficult for us to appreciate how challenging it is

for someone without FOSS experience and technical knowledge to find FOSS software.

For those users, it’s easier to rely on opinions provided by IT industry analysts, which

are almost exclusively limited to commercial software products and services.

Finally, and most significantly, we found that people rely heavily on the opinions of

others, including both peers and “experts”. The numeric score from the BRR would help

196 A.I. Wasserman et al.

them to form a short list of candidates for their use, but they then wanted to see reviews

or experience reports for those candidates.

All of these issues convinced us to take the project in a different direction while

remaining focused on the goal of helping people find high-quality FOSS software that

they could successfully adopt and use.

3 From BRR to OSSpal

3.1 Overview of Changes to the Model

We changed the project name to OSSpal because we thought that the concept of finding

FOSS was broader than just “business” and we wanted a clean break with the BRR

approach. But the new name had another nice property, namely the double meaning of

“pal”. In American and UK English, “pal” is an informal term for a friend, hence OSSpal.

But the name was also chosen as a tribute to the late Murugan Pal, a key cofounder of

the BRR project.

There are several major differences between OSSpal and the BRR, along with

numerous less significant changes. First, we removed the calculated score, based on our

previously-noted observation that the single digit result was not valuable to users,

particularly because it hid the details of the seven evaluation criteria, which in turn hid

the lower level details of such key areas as operational characteristics and functionality.

Second, given the difficulty that people have in finding candidate FOSS software, we

decided to create short lists for them. In other words, we curated FOSS projects, using

some quantitative measures, including the number of commits, the number of forks, and

the number of subscribers. Note that these metrics are not specifically correlated to FOSS

quality, but rather to the level of project activity. We leave the assessment of quality to

the individual reviewers of a project.

Furthermore, we grouped those projects into categories, based on the software

taxonomy produced annually by the International Data Corporation (IDC) [7]. This

grouping allowed us to define both generic evaluation criteria and category-dependent

evaluation criteria. Finally, we built a website, using the open source Drupal content

management system (CMS) [8], organizing the projects along the lines of the IDC

taxonomy so that users could search by name and category, and allow registered users

to enter their own reviews of specific projects.

We explored other sites that provide evaluation of FOSS projects. Of these, the most

significant one is OpenHub (formerly Ohloh) [9], managed by BlackDuck Software.

OpenHub collects data from open source repositories (forges) such as GitHub. Available

information includes the project status, the number of contributors, the programming

languages used, the number of contributions made by individual contributors, and

metrics of project activity. Site visitors can leave an overall rating and a written review

of individual projects, but the rating is simply based on a 1-to-5 star scale, intended to

cover all aspects of the project, without the granularity used in OSSpal. Nonetheless,

the detailed information provided on OpenHub is extremely valuable, especially for

developers looking to join and contribute to a project, and we decided to provide a link

between projects on OSSpal and the detailed developer-related data on OpenHub.

OSSpal: Finding and Evaluating Open Source Software 197

The OSSpal approach differs from other evaluation approaches, in that it uses metrics

to find qualifying FOSS projects in the various categories, but leaves the assessment of

quality and functionality of individual projects to external reviewers, who may also add

informal comments to their scores.

3.2 Implementation and the Quick Assessment Tool

Implementation of a site for searching and adding projects, as well as adding user

reviews, was a principal goal for the OSSpal project, especially since the absence of

automated tools was a major shortcoming of the earlier BRR effort. We chose to build

OSSpal on Drupal because using a CMS allowed us to greatly reduce the amount of

coding needed and thus devote more effort to creating the content. In retrospect, we are

very pleased with this decision. The Drupal core Taxonomy module was particularly

helpful, as we were easily able to map software categories from the IDC taxonomy into

a Drupal taxonomy, and thus associate FOSS projects with a category in the taxonomy.

Furthermore, it’s easy to modify the taxonomy as IDC modifies their taxonomy. We

also gained the flexibility to modify the implementation taxonomy as needed. While our

goal was to stay as close to the IDC taxonomy as possible, we found a few areas, partic‐

ularly in the area of application development software, where we wanted a finer gran‐

ularity. Making that change allowed us to refine the functionality for different types of

application development languages, environments, and tools.

The quality attributes of FOSS projects can be classified into two general categories,

hard metrics and soft metrics. Hard metrics are objective quantifiable measurements,

covering most attributes in areas of software technology and development process. They

can be collected efficiently through sending API calls to GitHub and Open Hub based

on automated scripts. Soft metrics are subjective qualitative measurements, covering

most attributes in areas of operational software characteristics as well as service and

support.

To make the collection process of the hard metrics more efficient, we developed a

web service to gather quantifiable FOSS project information from Open Hub and GitHub

to determine if a FOSS project is high quality. Instead of searching for project attributes

manually, the relevant attributes are returned to the user after querying the project’s

name in our web service. A user simply enters the name of a FOSS project into the search

bar of the web service, and the script will display the hard metrics for the project after

querying Open Hub and GitHub. The project information that is returned to the user

includes attributes such as, number of project contributors, number of commits, lines of

code, and project activity.

The implementation of the quick assessment tool uses the Flask web microframe‐

work, which takes the project name and uses the Open Hub and GitHub APIs to retrieve

data which is returned in JSON format and then rendered as a web page. Figure 1 shows

the data about project activity returned from a query on Electron. For now, we have used

the quick assessment tool to screen 59 additional projects out of 101 candidate projects

for inclusion on the site.

198 A.I. Wasserman et al.

Fig. 1. Raw results of quick assessment tool for the electron project

From our work, we were able to extrapolate two key findings pertaining to hard

metrics:

(1) Effectiveness of metrics. The most effective hard metrics to find high-quality FOSS

projects are the number of contributors, the number of commits, the number of

subscribers, the number of forks, and the number of open issues.

(2) Thresholds of metrics. With trial and error, the optimal threshold values for each

effective hard metric is identified to meet the quality baseline for including new

projects. Such metrics, for example, are the number of commits >1000, the number

of forks >100, and the number of subscribers >50.

3.3 A Note About FOSS Quality

We have used, but not defined, the term “high-quality FOSS software”. That’s inten‐

tional, since there are a large number of definitions for “software quality”. Miguel et al.

[10] reviewed numerous software quality models for evaluating software products

(without regard to source code availability). Their comparison of six different basic

quality models yielded 29 different characteristics considered by one or more of the

models. Ruiz and Robinson [11] published an extensive literature review to identify

many different measures of open source quality, grouped by product quality (16 meas‐

ures), process quality (12 measures), and community quality (11 measures), drawn from

more than 20 different relevant articles. Hauge et al. [12] performed an extensive study

on adoption of FOSS software in software-intensive organizations. However, their focus

was primarily on organizational issues in adoption, rather than on the quality of the

software being adopted. The SQO-OSS [13] quality model is interesting because it is

specific to FOSS software and focuses on measurable criteria, but our experience from

the earlier BRR effort is that some important quality aspects, such as usability, cannot

be scored numerically.

OSSpal: Finding and Evaluating Open Source Software 199

Our approach was to include quality characteristics in the list of items that a reviewer

could address. Every review of a FOSS component leaves a place for the reviewer to

evaluate both generic and specific features of the software. The initial set of generic

quality-related features are: installability, usability, robustness, security, and scalability,

as well as an overall assessment. Note that it is difficult to find metrics for these five

aspects. The set of specific features depends on the category of the software, where the

list of features draws from the IDC taxonomy for that category. This aspect of the review

allows reviewers to address the important quality issue of how well the software does

what it is supposed to do. In summary, a thorough review of a FOSS component could

combine quantitative items, as found in SQO-OSS, with an averaged score of community

ratings for the generic and category-specific properties.

3.4 Using the OSSpal Site

The user of the OSSpal site can browse by category or can search by category or project

name. In that way, the user might find the Electron project, and would then see the

information shown in Fig. 2.

Fig. 2. OSSpal display for electron project

The information presented about Electron shows the user the location for the project

home page, the software download page, and the detailed project information on

OpenHub. The main section presents an average of the ratings, with the top section
addressing generic software product issues and the lower section focused on features

specific to its category. In this case, the project is newly listed, so there are no reviews

200 A.I. Wasserman et al.

to summarize. Once there are reviews for the project, a user can scroll through them to

see the individual ratings and reviewer comments, ten reviews to a web page.

Since the site currently contains a relatively small number of FOSS projects, we

wanted to simplify the process for users to propose a new project for inclusion, and

included a form on the OSSpal site for that purpose (see Fig. 3). As with traditional open

source projects, the average user cannot commit a new project to the directory.

Fig. 3. Form for proposing a new FOSS project for the OSSpal site

Instead, the proposal is scored against the Quick Assessment metrics for possible

site inclusion.

4 Status and Future Directions

At the outset, the OSSpal site has more than 300 FOSS projects identified by the OSSpal

team, allocated among the 86 IDC categories. Initially, there are no registered users, and

hence no reviews of those projects. However, we expect this situation to change quickly

once the publicity spreads. We also expect the number of projects to grow significantly,

with some projects added by the OSSpal core team but most submitted by the public.

As noted, we have developed a tool for quickly assessing candidate projects for inclusion

on the OSSpal site, but we believe that further refinement is needed, especially as the

number of projects grows and as some FOSS projects become outdated or supplanted

by newer projects.

As these numbers increase, the OSSpal site can provide data for analyzing and

understanding the process by which people find and evaluate software. We also hope

that the IT industry analysts will also draw upon the results of submitted reviews and

OSSpal: Finding and Evaluating Open Source Software 201

include FOSS projects, particularly those with commercial support, to their lists of

recommended software for their clients.

Another important issue involves handling successive versions of FOSS projects. Of

course, the information associated with the FOSS project should be kept up-to-date.

Beyond that, though, is the question of how to associate user reviews with software

versions, particularly when minor updates are released frequently. Major releases of a

software project may have a significant impact on overall quality. It’s not unusual for

such releases to address a major concern, resulting in greatly improved performance or

user interfaces. Thus, it can be valuable to tie evaluations to specific versions of a FOSS

project. For example, Drupal 7 was released in early 2011 (after a code freeze in early

2009) and is still being maintained, with Drupal 7.54 being the current version at the

time of this writing, even though Drupal 8 was released in November, 2015. On the

surface, it seems straightforward to separate reviews of Drupal 7 from Drupal 8, but it’s

not clear that reviews of Drupal 7.43 should be separated from reviews of Drupal 7.44

(or perhaps anything newer), since the release frequency is approximately once per

month. However, the Google Play Store for Android software handles reviews for each

release of each app separately. The eventual solution may be to offer multiple options

to the user, but that remains a research question.

Finally, there is work to be done with the site functionality and infrastructure. The

current OSSpal.org site is hosted on a shared Linux server, which is adequate for light

site traffic. As popularity increases, it will become necessary to migrate the site, initially

to a dedicated server, and eventually to a dynamically scalable, cloud-based environ‐

ment. A second issue involves analysis of the site visitors, particularly the source(s) of

reviews. The success of OSSpal depends on reliable reviews and the recognition of

efforts by people to unfairly influence the overall ratings; this is a problem already faced

on a large scale by numerous well-known sites that accept reviews from the public, and

we will have to address it in the context of OSSpal so that the results are not skewed.

These projects are just a representative sample of important issues for the OSSpal

project. Addressing these issues, among others, will make it possible for the project to

help organizations find and adopt FOSS projects.

Acknowledgments. We are grateful to the early sponsors of the Business Readiness Rating

project and the lead author’s related research: Google, HP, IBM, and Intel. We are pleased to

acknowledge the other co-founders of the BRR project: Pete Kronowitt, Nat Torkington, and the

late Murugan Pal. Finally, we appreciate the contributions of former Carnegie Mellon University

Silicon Valley students (Anirudh Bhargava, Sneha Kedlaya, Poorva Jain, and Pramothini

Dhandapany) for their help with the initial version of the OSSpal site and the set of FOSS projects.

References

1. Wasserman, A.I., Pal, M., Chan, C.: Business readiness rating for open source. In: Proceedings

of the EFOSS Workshop, Como, Italy (2006)
2. Golden, B.: Succeeding with Open Source. Addison Wesley, Boston (2004)
3. Semeteys, R. et al.: Method for Qualification and Selection of Open Source software (QSOS),

version 1.6, Atos Origin (2006). http://www.qsos.org

202 A.I. Wasserman et al.

http://www.qsos.org

4. Taibi, D., Lavazza, L., Morasca, S.: OpenBQR: a framework for the assessment of OSS. In:

Feller, J., Fitzgerald, B., Scacchi, W., Sillitti, A. (eds.) OSS 2007. ITIFIP, vol. 234, pp. 173–

186. Springer, Boston, MA (2007). doi:10.1007/978-0-387-72486-7_14
5. ISO: Software Engineering – Product Quality – Part 1: Quality Model. ISO/IEC 9126-1:2001.

International Standards Organization, Geneva (2001)
6. ISO: Systems and Software Engineering – Systems and software Quality Requirements and

Evaluation (SQuaRE) – System and Software Quality Models. ISO/IEC 25010: 2011.

International Standards Organization, Geneva (2011)
7. International Data Corporation Software Taxonomy 2016. International Data Corporation,

Framingham, MA (2016). https://www.idc.com/getdoc.jsp?containerId=US41572216
8. Drupal, 27 February 2017. drupal.org
9. OpenHub, 27 February 2017. openhub.net

10. Miguel, J.P., Mauricio, D., Rodríguez, G.: A review of software quality models for the

evaluation of software products. Int. J. Softw. Eng. Appl. 5(6), 31–53 (2014)
11. Samoladas, I., Gousios, G., Spinellis, D., Stamelos, I.: The SQO-OSS quality model:

measurement-based open source software evaluation. In: Russo, B., et al. (eds.) Open Source

Development, Communities and Quality. IFIP International Federation for Information

Processing, vol. 275, pp. 237–248. Springer, Boston (2008)
12. Hauge, Ø., Ayala, C., Conradi, R.: Adoption of open source software in software-intensive

organizations–A systematic literature review. Inf. Softw. Technol. 52(11), 1133–1154 (2010)
13. Ruiz, C., Robinson, W.: Measuring open source quality: a literature review. Int. J. Open Sour.

Softw. Process. 3(3), 189–206 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license

and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

OSSpal: Finding and Evaluating Open Source Software 203

http://dx.doi.org/10.1007/978-0-387-72486-7_14
https://www.idc.com/getdoc.jsp?containerId=US41572216
http://drupal.org
http://openhub.net
http://creativecommons.org/licenses/by/4.0/

Longitudinal Analysis of the Run-up
to a Decision to Break-up (Fork)

in a Community

Amirhosein “Emerson” Azarbakht(B) and Carlos Jensen

School of Electrical Engineering and Computer Science, Oregon State University,
1148 Kelley Engineering Center, Corvallis, OR 97331, USA

{azarbaka,carlos.jensen}@oregonstate.edu

Abstract. In this paper, we use a developer-oriented statistical app-
roach to understand what causes people in complex software development
networks to decide to fork (break away), and what changes a community
goes through in the run-up to a decision to break-up. Developing com-
plex software systems is complex. Software developers interact. They may
have the same or different goals, communication styles, or values. Inter-
actions can be healthy or troubled. Troubled interactions cause troubled
communities, that face failure. Some of these failures manifest them-
selves as a community split (known as forking). These failures affects
many people; developers and users. Can we save troubled projects? We
statistically model the longitudinal socio-grams of software developers
and present early indicators and warning signs that can be used to pre-
dict an imminent break-up decision.

1 Introduction

Social networks are a ubiquitous part of our social lives, and the creation of online
social communities has been a natural extension of this phenomena. Social media
plays an important role in software engineering, as software developers use them
to communicate, learn, collaborate and coordinate with others [31]. Free and
Open Source Software (FOSS) development efforts are prime examples of how
community can be leveraged in software development, where groups are formed
around shared interest, and depend on continued interest and involvement to
stay alive [24].

Community splits in free and open source software development are referred
to as forks, and are relatively common [27]. Robles et al. [27] define forking as
“when a part of a development community (or a third party not related to the
project) starts a completely independent line of development based on the source
code basis of the project.”

Although the bulk of collaboration and communication in FOSS communities
occurs online and is publicly accessible for researchers, there are still many open
questions about the social dynamics in FOSS communities. Projects may go
through a metamorphosis when faced with an influx of new developers or the

c© The Author(s) 2017
F. Balaguer et al. (Eds.): OSS 2017, IFIP AICT 496, pp. 204–217, 2017.
DOI: 10.1007/978-3-319-57735-7 19

Longitudinal Analysis of the Run-up to a Decision to Break-up (Fork) 205

involvement of an outside organization. Conflicts between developers’ divergent
visions about the future of the project may lead to forking of the project and
dilution of the community. Forking, either as an acrimonious split when there is
a conflict, or as a friendly divide when new features are experimentally added,
affect the community [8].

Previous research on forking ranges from the study by Robles et al. [27] that
identified 220 significant FOSS projects that have forked over the past three
decades, and compiled a comprehensive list of the dates and reasons for forking
to the study by Baishakhi et al. [7] on post-forking porting of new features or
bug fixes from peer projects. It encompasses works of Nyman on developers’
opinions about forking [26], developers motivations for performing forks [23],
the necessity of code forking as tool for sustainability [25], and Syeed’s work on
sociotechnical dependencies in the BSD projects family [32].

Most existing research on forking, however, is post-hoc. It looks at the forking
events in retrospect and tries to find the outcome of the fork; what happened
after the fork happened. The run-up to the forking events are seldom studied.
This leaves several questions unanswered: Was it a long-term trend? Was the
community polarized, before forking happened? Was there a shift of influence?
Did the center of gravity of the community change? What was the tipping point?
Was it predictable? Is it ever predictable? We are missing that context.

Additionally, studies of FOSS communities tend to suffer from an important
limitation. They treat community as a static structure rather than a dynamic
process. Longitudinal studies on open source forking are rare. To better under-
stand and measure the evolution, social dynamics of forked FOSS projects, and
integral components to understanding their evolution and direction, we need
new and better tools. Before making such new tools, we need to gain a bet-
ter understanding of the context. With this knowledge and these tools, we could
help projects reflect on their actions, and help community leaders make informed
decisions about possible changes or interventions. It will also help potential spon-
sors make informed decisions when investing in a project, and throughout their
involvement to ensure a sustainable engagement.

We use an actor-oriented longitudinal statistical model [29] to study the evo-
lution and social dynamics of FOSS communities, and to investigate the driving
forces in formation and dissolution of communities. This paper is a part of a
larger study aiming to identify better measures for influence, shifts of influence,
measures associated with unhealthy group dynamics, for example a simmering
conflict, in addition to early indicators of major events in the lifespan of a com-
munity. One set of dynamics we are especially interested in, are those that lead
FOSS projects to fork.

2 Related Work

The free and open source software development communities have been stud-
ied extensively. Researchers have studied the social structure and dynamics of
team communications [9,15–17,22], identifying knowledge brokers and associ-
ated activities [30], project sustainability [22,25], forking [3–5,24], requirement

206 A.E. Azarbakht and C. Jensen

satisfaction [13], their topology [9], their demographic diversity [19], gender dif-
ferences in the process of joining them [18], and the role of age and the core team
in their communities [1,2,6,12,34]. Most of these studies have tended to look at
community as a static structure rather than a dynamic process [11]. This makes
it hard to determine cause and effect, or the exact impact of social changes.

Post-forking porting of new features or bug fixes from peer projects hap-
pens among forked projects [7]. A case study of the BSD family (i.e., FreeBSD,
OpenBSD, and NetBSD, which evolved from the same code base) found that
10–15% of lines in BSD release patches consist of ported edits, and on average
26–58% of active developers take part in porting per release. Additionally, They
found that over 50% of ported changes propagate to other projects within three
releases [7]. This shows the amount of redundant work developers need to do to
synchronize and keep up with development in parallel projects.

Visual exploration of the collaboration networks in FOSS communities was
the focus of a study that aimed to observe how key events in the mobile-device
industry affected the WebKit collaboration network over its lifetime [33]. They
found that coopetition (both competition and collaboration) exists in the open
source community; moreover, they observed that the “firms that played a more
central role in the WebKit project such as Google, Apple and Samsung were by
2013 the leaders of the mobile-devices industry. Whereas more peripheral firms
such as RIM and Nokia lost market-share” [33].

The study of communities has grown in popularity in part thanks to advances
in social network analysis. From the earliest works by Zachary [35] to the more
recent works of Leskovec et al. [20,21], there is a growing body of quantita-
tive research on online communities. The earliest works on communities was
done with a focus on information diffusion in a community [35]. The study by
Zachary investigated the fission of a community; the process of communities
splitting into two or more parts. They found that fission could be predicted by
applying the Ford-Fulkerson min-cut algorithm [14] on the group’s communica-
tion graph; “the unequal flow of sentiments across the ties” and discriminatory
sharing of information lead to subcommunities with more internal stability than
the community as a whole [35].

3 Research Goals

Social interactions reflect the changes the community goes through, and so, it can
be used to describe the context surrounding a forking event. Social interactions in
FOSS can happen, for example, in the form of mailing list email correspondence,
bug report issue follow-ups, and source code contributions and co-authoring. We
consider some forking decisions [27] to be socially related, such that, they should
have left traces in the developers’ interactions data. Such traces may be identified
using longitudinal modeling of the interactions, without digging into the contents
of the communications. These three reasons are (1) Personal differences among
developer team, (2) The need for more community-driven development, and (3)
Technical differences for addition of functionality. In this study, we analyzed,

Longitudinal Analysis of the Run-up to a Decision to Break-up (Fork) 207

quantified and visualized how a community is structured, how it evolves, and
the degree to which community involvement changes over time. Our over-arching
research objective was to identify these traces/social patterns associated with
different types of undesirable forking

R.G. 1: Do forks leave traces in the collaboration artifacts of open source projects
in the period leading up to the fork? To study the properties of possible social
patterns, we need to verify their existence. More specifically, we need to check
whether the possible social patterns are manifested in the collaboration artifacts
of open source projects, e.g., mailing list data, issue tracking systems data, source
code data. This is accomplished by statistical modeling of developer interactions
as explained in more detail in Sect. 4.

R.G. 2: What are the traces that can explain longitudinal changes in sociograms
in run-up to a forking event? What quantitative measure(s) can be used as an
early warning sign of an inflection point (fork)? Are there metrics that can
be used to monitor the odds of change, (e.g. forking-related patterns) ahead of
time? This will be accomplished by statistical modeling of developer interactions
as explained in more detail in Sect. 4.

4 Methodology

Detecting change patterns, requires gathering relevant data, cleaning it, and
analyzing it. In the following subsections, we describe the proposed process in
detail. Figure 1 shows the overview of our methodology.

4.1 Data Collection

The data collected were developer mailing lists, where developers’ interact by
sending and receiving emails, and source-code repository contribution logs, where
developers interact by modifying the code. The sociograms were formed based
on interactions among developers in these settings. For the purpose of our larger
study, not included in this paper, we gathered data for 13 projects, in three
categories of forking, plus a control group. We have included the data for a
project that forked in 2010. The name is left out for anonymity, to prevent
defaming a project, and to prevent individuals from becoming target of blame,
in case our findings may be misused. Mailing list data was cleaned such that
the sender and receiver email ID case-sensitivity differences would be taken into
account, to prevent duplicity. The Source Code repository version control logs
were used to capture the source code activity levels of the developers who had
contributed more than a few commits. The set of the developers who had both
mailing list activity and source code repository activity formed the basis of
the socio-grams we used in our analysis. The time period for which data was
collected is one year leading to when the decision to break-up (fork) happened.
This should capture the social context of the run-up to the forking event.

208 A.E. Azarbakht and C. Jensen

Data Collection
Mailing Lists
Bug Tracking Repositories
Codebase

Data Cleaning and Wrangling
12 equioespaced directed graphs

for each project

Morkov Chain Monte Carlo Estimation
Rate of Change

Parameter Estimates with p-value and

s.e.

Statistical Model
Test of Goodness of Fit
Relative Importance of Effects

Multi-Parameter T-test and MANOVA
Project Comparison
Multivariate Analysis of Variance be-
tween Multiple Groups, with p-value

Results
Reresented Collaboration with Longitudinal Change

Modeled change and Rate of change statistically
Expressed underlying properties/values of commu-
nity Behavior as model effects and their significance

and relative importance

Good starting point for gaining an understanding of

longitudinal change of underlying properties of an
open source project community

Raw Data

12 Directed Graph representation of each project’s collaborations

Model parameter estimates

A well-fitting statistical model (i.e. weighted sum of effects) for each project

Between group and cross-group comparison results of significance with p-values

Fig. 1. The methodology in a glance

Social connections and non-connections can be represented as graphs, in
which the nodes represent actors (developers) and the edges represent the inter-
action(s) between actors or lack thereof. Such graphs can be a snapshot of a
network – a static sociogram – or a changing network, also called a dynamic
sociogram. In this phase, we process interactions data to form a communication
sociogram of the community. Two types of analysis can be done on sociograms:
Either a cross-sectional study, in which only one snapshot of the network is
looked at and analyzed; or a longitudinal study, in which several consecutive
snapshots of the network are looked at and studied. We are interested in pat-
terns in the run-up to forks, therefore, unlike most existing research on forking,
we did a longitudinal study. We formed 10 equispaced consecutive time-window
snapshots of the socio-grams for the community, using the mailing list interac-
tion data and the source code repository commit activity data. These socio-grams
were used to find a well-fitting statistical model that would explain how they
changed from time-window t1 through time-window t10.

Longitudinal Analysis of the Run-up to a Decision to Break-up (Fork) 209

4.2 The Statistical Model

Longitudinal evolution of a network data is the result of many small atomic
changes occurring between the consecutively observed networks. In our case,
software developers are the actors in the networks, and they can form a con-
nection with another developer, break off an existing connection, or maintain
their status quo. These are the four possibilities of atomic change within our
evolving networks: (1) forming a new tie; (2) breaking off an existing tie; (3)
maintaining a non-connection; and (4) maintaining a connection. We assume a
continuous-time network evolution, even though our observations are made at
two or more discrete time points.

The state-of-the-art in studying longitudinal social networks, is the idea
of actor-oriented models [29], based on a model of developers changing their
outgoing ties as a consequence of a stochastic optimization of an objective

function. This framework assumes that the observed networks at discrete
times, are outcomes of a continuous-time Markov process. In the case of open
source developers, the actor-oriented model, can be informally described as
OpenSourceDeveloper-oriented model, in which, it is assumed that developers
are in charge of their communication and collaboration choices. They choose
to have interactions with certain other developers and/or they choose to stop
having interactions with another developer. In short, they have autonomy in
choosing their connections.

Let the data for our statistical developer-oriented model be M repeated
observations on a network with g developers. The M observed networks (at
least two) are represented as directed graphs with adjacency matrices X(tm) =
(Xij(tm)) for m = 1, ..., M , where i and j range from a to g. The variable Xij

shows whether at time t there exists a tie from i to j (value 1) or not (value 0).
Be definition, ∀i, Xii = 0 (i.e. the diagonal of the adjacency matrices).

In order to model the network evolution from X(t1) to X(t2), and so on, it
is natural to treat the network dynamics as the result of a series of small atomic
changes, and not bound to the observation moment, but rather as a more of less
continuous process. In this way, the current network structure is a determinant
of the likelihood of the changes that might happen next [10].

For each change, the model focuses on the developer whose tie is changing.
We assume that developer i has control over the set of outgoing tie variables
(Xi1, ..., Xig) (i.e. the ith row of the adjacency matrix). The network changes one
tie at a time. We call such an atomic change a ministep. The moment at which
developer i changes one of his ties, and the kind of change that he makes, can
depend on attributes represented by observed covariates, and the network struc-
ture. The moment is stochastically determined by the rate function, and the par-
ticular change to make, is determined by the objective function and the gratifica-

tion function. We cannot calculate this complex model exactly. Rather than cal-
culating exactly, we estimate it using a Monte Carlo Markov Chain method. The
estimated model is used to test hypotheses about the forked FOSS communities.

210 A.E. Azarbakht and C. Jensen

These above three functions and their definitions taken from [28] are explained in
detail the following subsections.

4.2.1 Rate Function

The rate function λi(x) for developer i is the rate at which developer i’s out-
going connections changes occur. It models how frequently the developers make
ministeps. The rate function is formally defined [28] by

λi(x) = lim
dt→0

1

dt
P

(

Xij(t + dt) �= Xij(t) for some j ∈ {i, ..., g}|X(t) = x)
)

.

(1)
The simplest specification of the rate of change is that all developers have the
same rate of change of their ties.

4.2.2 Objective Function

The objective function fi(s) for developer i is the value attached to the network
configuration x. The idea is that, given the opportunity to make a change in his
outgoing tie variables (Xi1, ..., Xig), developer i selects the change that gives the
greatest increase in the objective function. We assume that if there is difference
between developers in their objective functions, these differences can be repre-
sented based on the model covariates [28]. For more details, please refer to [28].
The following weighted sum represents the objective function (2):

fi(β, x) =
L

∑

k=1

βksik(x) (2)

Parameters β = (β1, ..., βL) is to be estimated. Functions sik(x) can be the
following [28]:

4.2.2.1 Structural Effects

For the structural effects, the following were used in the objective function.

1. The reciprocity effect, which reflects the tendency toward reciprocation of
connections. A high value for its model parameter will indicate a high ten-
dency of developers for reciprocated interactions.

2. The closure effects (e.g. in friendship networks, it means, friends of friends
tend to become friends) In our case, Transitive triplets effect, which models
the tendency toward network closure. It reflects the preference of developers
to be connected to developers with similar outgoing ties.

3. Three-cycles, may be interpreted as the tendency toward local hierarchy. It
is similar to reciprocity defined for three developers, and is the opposite of
hierarchy.

4. Activity, which reflects the tendency of developers with high in-degree/out-
degrees to send out more outgoing connections because of their current high
in-degree/out-degree.

Longitudinal Analysis of the Run-up to a Decision to Break-up (Fork) 211

5. Covariate effects: Developers’ covariates may influence the formation or ter-
mination of ties. For example: (a) Covariate V-related activity, which reflects
the developer i’s out-degree multiplied by his covariate V value. (b) Covariate
V-related dissimilarity, which reflects the sum of differences in covariate V val-
ues’ between developer i and all developers to whom developer i is connected.
We use the following developer attributes as covariates:
– (Covariate V1) Developer’s level of activity (i.e. mailing list posts per

month)
– (Covariate V1) Developer’s level of contribution (i.e. code commits per

month) as shown in Table 2
– (Covariate V4) Developer’s seniority as a development community member

(i.e. how many total contributions they have had in the lifetime of the
project)

6. out-out degree assortativity, which reflects which reflects the tendency of
developers with high out-degree to be connected to other developers with
high out-degrees.

4.2.3 Markov Chain Transition Rate Matrix

The components of the developers-oriented model, described above, define a
continuous-time Markov chain on the space χ of all directed graphs on this set
of g developers. This Markov chain is used to estimate the model parameters
stochastically, instead of calculating them exactly, which is not possible for us.
This Markov chain has a transition rate matrix. The transition rate matrix (also
called intensity matrix), for this model is given by expression (3):

qij(x) = lim
dt→0

1

dt
P

(

X(t + dt) = X(i �→ j)|X(t) = x)
)

= λi(x)pij(x) (3)

Expression (3) shows the rate at which developer i makes ministeps, mul-
tiplied by the probability that he changes the arc variable Xij , if he makes a
ministep. Our Markov chain can be simulated by following the steps explained
in [28].

4.2.4 Markov Chain Monte Carlo (MCMC) Estimation

The described statistical model for longitudinal analysis of open source software
development communities is a complex model and cannot be exactly calculated,
but it can be stochastically estimated. We can simulate the longitudinal evolu-
tion, and estimate the model based on the simulations. Then we can choose an
estimated model that has a good fit to the network data. For details of the sim-
ulation and estimation procedures please refer to [28]. The desirable outcome

for the estimation is the vector parameter β̂ for which the expected and the
observed vectors are the same.

212 A.E. Azarbakht and C. Jensen

5 Results

The results of parameter estimation are listed in Table 1. The parameter esti-
mates that are statistically significant are marked with an asterisk (*) in Table 1.
Recall that the weighted sum in expression (2) represents our objective function,
and the effects listed in Table 1 are the parameter estimates of βk’s in expres-
sion (2).

The rate parameters represent the rate of change for the period between t1
to t2 for developers (i.e. how likely developers were to change ties in that time
period). There’s a clear trend in the rates 1–9, with a peak of 11.65 for the t4 to
t5 time period. This suggests a significantly higher “preference” by developers for
(a) forming new ties and interacting with previously non-connected developers
and (b) terminating a previously connected tie. This peak value dies down as to
less than 1, for the t8 to t9 time period at 0.79 which can be used as an early
warning sign of an imminent change decision.

Table 1. Parameter estimates

Effect Par. (s.e.)

Rate 1 1.419 (0.402)

Rate 2 2.633 (0.919)

Rate 3 3.231 (1.222)

Rate 4 11.656 (7.158)

Rate 5 5.238 (1.871)

Rate 6 5.431 (1.901)

Rate 7 1.863 (0.520)

Rate 8 0.791 (0.258)

Rate 9 0.671 (0.206)

outdegree (density)* –5.389 (0.300)

reciprocity –6.448 (31.754)

transitive triplets –0.582 (0.875)

3-cycles –2.680 (8.084)

out-out degree(̂1/2) assortativity* 1.123 (0.291)

devScAct alter* –0.021 (0.009)

devScAct ego* 0.011 (0.003)

devScAct ego x devScAct alter –0.000 (0.000)

devMlAct alter 0.141 (0.010)

devMlAct ego –0.037 (0.051)

devMlAct ego x devMlAct alter 0.002 (0.003)

int. devMlAct ego x devScAct ego* 0.003 (0.002)

Longitudinal Analysis of the Run-up to a Decision to Break-up (Fork) 213

Table 2. The list of developers source code contributions in the 10months run-up to
the forking event, sorted by total number of commits.

Developer t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Sum t1..t10

1 Anonymized Developer #1 17 54 48 22 86 298 238 154 136 210 1263

2 Anonymized Developer #2 55 100 42 58 74 156 120 16 44 4 669

3 Anonymized Developer #3 7 34 12 70 64 70 8 38 146 118 567

4 Anonymized Developer #4 21 163 54 138 64 46 38 36 0 4 564

5 Anonymized Developer #5 38 190 6 26 40 14 10 30 34 36 424

6 Anonymized Developer #6 21 0 20 58 59 35 48 41 24 80 386

7 Anonymized Developer #7 0 0 0 0 0 36 42 47 143 15 283

8 Anonymized Developer #8 23 22 9 87 72 1 1 0 0 0 215

9 Anonymized Developer #9 8 60 53 55 3 1 0 0 12 0 192

10 Anonymized Developer #10 0 0 3 81 39 12 4 8 2 4 153

11 Anonymized Developer #11 0 0 0 0 8 60 1 6 14 23 112

12 Anonymized Developer #12 2 47 30 1 7 2 0 8 0 0 97

13 Anonymized Developer #13 0 0 3 0 0 0 11 13 1 63 91

14 Anonymized Developer #14 0 0 0 0 0 0 0 8 38 40 86

15 Anonymized Developer #15 3 35 33 1 0 0 0 0 0 0 72

16 Anonymized Developer #16 3 0 0 0 0 0 0 4 17 46 70

17 Anonymized Developer #17 0 3 0 25 40 0 0 0 0 0 68

18 Anonymized Developer #18 0 0 0 55 0 9 0 1 0 1 66

19 Anonymized Developer #19 0 0 0 0 0 0 4 21 17 23 65

20 Anonymized Developer #20 0 0 0 9 15 14 11 2 6 0 57

21 Anonymized Developer #21 13 1 3 3 0 12 17 2 0 0 51

22 Anonymized Developer #22 8 18 12 0 0 0 0 0 3 4 45

23 Anonymized Developer #23 0 0 9 6 0 0 1 3 1 24 44

24 Anonymized Developer #24 0 0 0 0 0 0 13 16 3 4 36

25 Anonymized Developer #25 5 20 10 0 0 0 0 0 0 0 35

26 Anonymized Developer #26 1 0 11 2 14 7 0 0 0 0 35

27 Anonymized Developer #27 0 0 0 0 0 0 4 14 3 13 34

28 Anonymized Developer #28 3 12 4 1 5 0 0 1 1 4 31

29 Anonymized Developer #29 0 0 0 26 1 0 0 0 0 0 27

30 Anonymized Developer #30 0 0 0 0 0 0 0 0 0 26 26

31 Anonymized Developer #31 0 0 0 0 3 8 7 0 0 8 26

32 Anonymized Developer #32 0 0 0 0 10 13 0 1 0 0 24

33 Anonymized Developer #33 0 0 0 0 0 0 19 2 2 0 23

34 Anonymized Developer #34 0 0 0 16 7 0 0 0 0 0 23

35 Anonymized Developer #35 0 0 0 0 0 0 2 19 0 0 21

36 Anonymized Developer #36 0 8 11 0 0 0 0 0 0 0 19

37 Anonymized Developer #37 0 0 0 18 0 0 0 0 0 0 18

38 Anonymized Developer #38 0 0 0 0 0 0 17 0 0 0 17

39 Anonymized Developer #39 0 0 0 11 6 0 0 0 0 0 17

40 Anonymized Developer #40 0 0 0 0 0 0 0 2 0 12 14

41 Anonymized Developer #41 3 0 1 0 0 0 0 0 0 9 13

42 Anonymized Developer #42 0 0 0 0 0 0 7 2 2 2 13

43 Anonymized Developer #43 2 0 0 3 0 1 1 0 1 5 13

44 Anonymized Developer #44 0 0 0 0 0 0 0 0 8 5 13

45 Anonymized Developer #45 1 2 0 5 1 0 0 1 3 0 13

46 Anonymized Developer #46 0 0 0 0 4 5 3 0 1 0 13

47 Anonymized Developer #47 0 0 0 0 0 0 0 0 3 9 12

48 Anonymized Developer #48 0 0 0 0 0 0 10 1 0 0 11

49 Anonymized Developer #49 0 0 0 0 0 0 1 10 0 0 11

50 Anonymized Developer #50 0 6 5 0 0 0 0 0 0 0 11

51 Anonymized Developer #51 0 0 2 1 0 0 0 0 0 8 11

52 Anonymized Developer #52 0 1 0 0 0 0 0 6 2 0 9

53 Anonymized Developer #53 0 0 0 4 4 0 0 0 0 1 9

54 Anonymized Developer #54 0 0 0 0 0 0 0 0 0 9 9

55 Anonymized Developer #55 1 0 0 0 1 6 0 0 0 0 8

56 Anonymized Developer #56 1 6 1 0 0 0 0 0 0 0 8

57 Anonymized Developer #57 1 7 0 0 0 0 0 0 0 0 8

58 Anonymized Developer #58 0 0 0 0 0 0 0 0 0 8 8

59 Anonymized Developer #59 0 0 0 2 4 0 0 0 0 0 6

60 Anonymized Developer #60 0 0 1 1 0 1 1 0 0 1 5

214 A.E. Azarbakht and C. Jensen

6 Conclusion

In this study, we used a developer-oriented approach to statistically model the
changes a FOSS community goes through in the run-up to a fork. The model
represented tie formation, breakage, and maintenance between developers. We
use 10 snapshots of the graph as observed data to estimate the influence of several
effects on formation of the observed networks. We used a stochastic estimation
method to estimate several model parameters of the model and used a Wald-
type t-test to estimate the significance of these parameters on this longitudinal
change.

The results show that the out-out degree assortativity and the outdegree
(density) effects are statistically significant, which can be interpreted that devel-
opers maintained a “preference” for interacting with developers who had similar
outdegree levels. For example, core developers with high levels of mailing list
activity responding to messages, were more likely to be connected to other simi-
larly behaving high-outdegree developers. Also, that top answerer/repliers on the
mailing list were more likely to contact other top developers, and the community
shows a preference for inter-stratum ties.

The developers’ source code repository contribution level (devScAct ego) was
also statistically significant, which implies developers with higher levels of source
code contributions increase their outdegree more rapidly. The developers’ source
code repository contribution level (devScAct alter) is also statistically significant,
which implies developers with higher levels of source code contributions increase
their indegree more rapidly.

Perhaps, an interesting observation is the existence of significance for high
activity/contribution to the source code repository, however, in contrast, there’s
a lack of significance for high activity on the mailing list. In summary, high levels
of contribution to the source code brings you connections more rapidly, while
high levels of contributions to the mailing list is not suggestive of this. This can
be interpreted as a sign of meritocracy based on code, rather than talk, which
captures a healthy dynamic in this project, that was forked because of addition
of functionality, and was classified as a healthy fork.

7 Threats to Validity

The study findings may not be generalized. First, one reason is that the projects
is this research study were selected from a pool of candidate projects, based on
a filtering criteria that included availability of their data. Given access, a larger
number of projects as the sample size could result in a more robust investigation.

Second, we used data from online communications. The assumption that all
the communication can be captured by mining repositories is intuitively imper-
fect, but inevitable. Third, social interactions data is noisy, and our statistical
approach might be affected because of this.

Third, the statistical model we use to model the longitudinal evolution of
collaboration networks is estimated stochastically, rather than being calculated

Longitudinal Analysis of the Run-up to a Decision to Break-up (Fork) 215

exactly. The stochastic process might not always arrive at the same results. To
counter this issue, we run the algorithm several times to double-check for such
irregularities.

References

1. Azarbakht, A., Jensen, C.: Drawing the big picture: temporal visualization of
dynamic collaboration graphs of OSS software forks. In: Corral, L., Sillitti, A.,
Succi, G., Vlasenko, J., Wasserman, A.I. (eds.) OSS 2014. IFIP AICT, vol. 427,
pp. 41–50. Springer, Heidelberg (2014)

2. Azarbakht, A., Jensen, C.: Temporal visualization of dynamic collaboration graphs
of OSS software forks. In: Proceedings of the International Conference on Network
for Social Network Analysis Sunbelt XXXIV (2014)

3. Azarbakht, A.: Drawing the big picture: analyzing FLOSS collaboration with tem-
poral social network analysis. In: Proceedings of the 9th International Symposium
on Open Collaboration. ACM (2013)

4. Azarbakht, A., Jensen, C.: Analyzing FOSS collaboration & social dynamics with
temporal social networks. In: Proceedings of the 9th International Conference on
Open Source Systems Doctoral Consortium (2013)

5. Azarbakht, A.: Temporal Visualization of collaborative software development in
FOSS forks. In: Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing (2014)

6. Azarbakht, E.A.: Longitudinal analysis of collaboration graphs of forked open
source software development projects using an actor-oriented social network analy-
sis. In: Proceedings of the International Network for Social Network Analysis Sun-
belt Conference (2016)

7. Baishakhi R., Wiley, C., Kim, M.: REPERTOIRE: a cross-system porting analysis
tool for forked software projects. In: Proceedings of the 20th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM (2012)

8. Bezrukova, K., Spell, C.S., Perry, J.L.: Violent splits or healthy divides? Coping
with injustice through faultlines. Pers. Psychol. 63(3), 719–751 (2010)

9. Bird, C., Pattison, D., D’Souza, R., Filkov, V., Devanbu, P.: Latent social structure
in open source projects. In: Proceedings of the 16th ACM SIGSOFT international
Symposium on Foundations of software engineering. ACM (2008)

10. Coleman, J.S.: Introduction to Mathematical Sociology. The Free Press of Glencoe,
New York (1964)

11. Crowston, K., Wei, K., Howison, J., Wiggins, A.: Free/Libre open-source software
development: what we know and what we do not know. ACM Comput. Surv. 44(2)
(2012). Article 7

12. Davidson, J., Naik, R., Mannan, A., Azarbakht, A., Jensen, C.: On older adults
in free/open source software: reflections of contributors and community leaders.
In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (2014)

13. Ernst, N., Easterbrook, S., Mylopoulos, J.: Code forking in open-source software:
a requirements perspective. arXiv preprint arXiv:1004.2889 (2010)

14. Ford, L.R., Folkerson, D.R.: A simple algorithm for finding maximal network flows
and an application to the Hitchcock problem. Can. J. Math. 9, 210–218 (1957)

15. Guzzi, A., Bacchelli, A., Lanza, M., Pinzger, M., van Deursen, A.: Communica-
tion in open source software development mailing lists. Proceedings of the 10th
Conference on Mining Software Repositories. IEEE Press (2013)

http://arxiv.org/abs/1004.2889

216 A.E. Azarbakht and C. Jensen

16. Howison, J., Inoue, K., Crowston, K.: Social dynamics of free and open source team
communications. In: Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi,
G. (eds.) OSS 2006. IFIP AICT, vol. 203, pp. 319–330. Springer, Boston (2006)

17. Howison, J., Conklin, M., Crowston, K.: FLOSSmole: a collaborative repository
for FLOSS research data and analyses. Int. J. Inf. Technol. Web Eng. 1(3), 17–26
(2006)

18. Kuechler, V., Gilbertson, C., Jensen, C.: Gender Differences in Early Free and Open
Source Software Joining Process. In: Hammouda, I., Lundell, B., Mikkonen, T.,
Scacchi, W. (eds.) OSS 2012. IFIP AICT, vol. 378, pp. 78–93. Springer, Heidelberg
(2012)

19. Kunegis, J., Sizov, S., Schwagereit, F., Fay, D.: Diversity dynamics in online net-
works. In: Proceedings of the 23rd ACM Conference on Hypertext and Social Media
(2012)

20. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: Proceedings of the SIGKDD
International Conference on Knowledge Discovery and data Mining (2005)

21. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of
community structure in large social and information networks. In: Proceedings of
the 17th International Conference on World Wide Web. ACM (2008)

22. Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye, Y.: Evolution pat-
terns of open-source software systems and communities. In: Proceedings of the
international Workshop on Principles of Software Evolution. ACM (2002)

23. Mikkonen, T., Nyman, L.: To fork or not to fork: fork motivations in SourceForge
projects. In: Hissam, S.A., Russo, B., de Mendonça Neto, M.G., Kon, F. (eds.)
OSS 2011. IFIP AICT, vol. 365, pp. 259–268. Springer, Heidelberg (2011)

24. Nyman, L.: Understanding code forking in open source software. In: Proceedings
of the 7th International Conference on Open Source Systems Doctoral Consortium
(2011)

25. Nyman, L., Mikkonen, T., Lindman, J., Fougère, M.: Forking: the invisible hand
of sustainability in open source software. In: Proceedings of SOS 2011: Towards
Sustainable Open Source (2011)

26. Nyman, L.: Hackers on forking. In: Proceedings of the International Symposium
on Open Collaboration (2014)

27. Robles, G., Gonzalez-Barahona, J.M.: A comprehensive study of software forks:
dates, reasons and outcomes. In: Hammouda, I., Lundell, B., Mikkonen, T., Scacchi,
W. (eds.) OSS 2012. IFIP AICT, vol. 378, pp. 1–14. Springer, Heidelberg (2012)

28. Snijders, T.A.B.: Models for longitudinal network data. In: Models and Methods
in Social Network Analysis, vol. 1, pp. 215–247 (2005)

29. Snijders, T.A.B., Van de Bunt, G.G., Steglich, C.E.G.: Introduction to stochastic
actor-based models for network dynamics. Soc. Netw. 32(1), 44–60 (2010)

30. Sowe, S., Stamelos, L., Angelis, L.: Identifying knowledge brokers that yield soft-
ware engineering knowledge in OSS projects. Inf. Softw. Technol. 48, 1025–1033
(2006)

31. Storey, M., Singer, L., Cleary, B., Figueira Filho, F., Zagalsky, A.: The (R) Evo-
lution of social media in software engineering. In: Proceedings of the on Future of
Software Engineering. ACM (2014)

32. Syeed, M.M.: Socio-technical dependencies in forked OSS projects: evidence from
the BSD family. J. Softw. 9(11), 2895–2909 (2014)

33. Teixeira, J., Lin, T.: Collaboration in the open-source arena: the webkit case. In:
Proceedings of the 52nd ACM Conference on Computers and People Research
(SIGSIM-CPR 2014). ACM (2014)

Longitudinal Analysis of the Run-up to a Decision to Break-up (Fork) 217

34. Torres, M.R.M., Toral, S.L., Perales, M., Barrero, F.: Analysis of the core team role
in open source communities. In: International Conference on Complex, Intelligent
and Software Intensive Systems. IEEE (2011)

35. Zachary, W.: An information flow model for conflict and fission in small groups. J.
Anthropol. Res. 33(4), 452–473 (1977)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

Abate, Pietro 139

Andrade, Sandro 34

Avelino, Guilherme 151

Azarbakht, Amirhosein “Emerson” 204

Barany, Gergö 101

Corr, Niklas 60

da Silva Amorim, Simone 89

de Almeida, Eduardo Santana 89

Di Cosmo, Roberto 139

Feist, Jonas 80

Fischer, Thomas 80

Fujibayashi, Daiki 128

Gamalielsson, Jonas 80

German, Daniel M. 69

González Quiroga, Víctor 117

Gonzalez-Barahona, Jesus M. 182

Guo, Xianzheng 193

Gustavsson, Tomas 80

Hammouda, Imed 14, 49

Hora, Andre 151

Ihara, Akinori 128

Inoue, Katsuro 69

Izquierdo, Daniel 182

Jensen, Carlos 204

Johansson, Gert 80

Kilamo, Terhi 23

Krüger, Jacob 60

Kula, Raula Gaikovina 128

Landemoo, Stefan 80

Leich, Thomas 60

Linåker, Johan 55

Lindman, Juho 14, 49

Lönroth, Erik 80

Lundell, Björn 80

Mäenpää, Hanna 23

Manabe, Yuki 69

Männistö, Tomi 23

Matsumoto, Kenichi 128

Mattsson, Anders 80

McGregor, John D. 89

McMillian, Blake 193

Mikkonen, Tommi 23

Mols, Carl-Eric 55

Oppmark, Johan 80

Passos, Leonardo 151

Qian, Kai 193

Raab, Markus 101

Robles, Gregorio 182

Rodung, Bengt 80

Saraiva, Filipe 34

Schröter, Ivonne 60

Sherwood, Paul 182

Squire, Megan 3

Suwa, Hirohiko 128

Syeed, Mahbubul 49

Teixeira, Jose 167

Tengblad, Stefan 80

Valente, Marco Tulio 151

von Flach Garcia Chavez, Christina 89

Wasserman, Anthony I. 193

Wei, Ming-Yu 193

Wnuk, Krzysztof 55

Wolf, Gunnar 117

Wu, Yuhao 69

Xu, Qian 193

Yousefi, Bahram Hooshyar 80

© The Editor(s) (if applicable) and The Author(s) 2017. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appro-

priate credit to the original author(s) and the source, provide a link to the Creative Commons

license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the book’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder.

220 Author Index

	General Chair’s Message
	Program Chairs’ Message
	Organization
	Contents
	Projects, Communication, and Participation
	Considering the Use of Walled Gardens for FLOSS Project Communication
	Abstract
	1 Introduction
	2 Communication Technology Used in FLOSS Projects
	2.1 Asynchronous Communication
	2.2 Synchronous Communication
	2.3 How FLOSS Values Conflict When Communicating in Walled Gardens

	3 Data on Walled Garden Usage in FLOSS Projects
	4 Archiving Walled Gardens
	4.1 Archiving Slack
	4.2 Archiving Stack Exchange

	5 Conclusion
	Appendix
	References

	Investigating Relationships Between FLOSS Foundations and FLOSS Projects
	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Data Collection
	3.2 Data Analyses

	4 Findings
	5 Discussion
	6 Conclusions and Future Avenues for Research
	Acknowledgements
	References

	Designing for Participation: Three Models for Developer Involvement in Hybrid OSS Projects
	1 Introduction
	2 Previous Work
	2.1 Policies and Practices

	3 Research Approach
	4 Case Companies
	5 Findings
	5.1 Access to Development Tasks
	5.2 Influencing Development Priorities
	5.3 Becoming an Actionable Developer

	6 Discussion and Implications
	7 Conclusions
	References

	Principled Evaluation of Strengths and Weaknesses in FLOSS Communities: A Systematic Mixed Methods Maturity Model Approach
	1 Introduction
	2 Method
	3 Problem and Requirements
	4 Related Work
	5 The Maturity Model
	6 Artifact Demonstration
	7 Discussion and Future Work
	8 Conclusion
	References

	Posters and Tools
	Measuring Perceived Trust in Open Source Software Communities
	1 Introduction
	2 Methodology
	2.1 Data Collection and Presentation
	2.2 Data Analysis

	3 Result and Synthesis
	References

	The Open Source Officer Role – Experiences
	Abstract
	1 Introduction
	2 The Open Source Officer Role Description
	3 Experiences from Three Software-Intensive Organizations
	4 Conclusion and Future Work
	Acknowledgements
	References

	Digging into the Eclipse Marketplace
	1 Introduction
	2 Research Method
	3 Preliminary Results
	4 Research Agenda
	5 Related Work
	6 Conclusions
	References

	Licensing, Strategies, and Practices
	How are Developers Treating License Inconsistency Issues? A Case Study on License Inconsistency Evolution in FOSS Projects
	1 Introduction
	2 Methodology
	2.1 Obtain License Inconsistency Groups for Debian 7.5 and Debian 8.2
	2.2 Compare the Difference of Groups
	2.3 Investigate the Groups Manually

	3 Results
	3.1 Why Do License Inconsistencies Appear?
	3.2 Why Do License Inconsistencies Persist?
	3.3 Why Do License Inconsistencies Disappear?

	4 Discussion
	4.1 Revisiting the Research Questions
	4.2 Effectiveness of This Approach
	4.3 Threats to Validity

	5 Related Work
	6 Conclusions
	References

	Addressing Lock-in, Interoperability, and Long-Term Maintenance Challenges Through Open Source: How ...
	Abstract
	1 Introduction
	2 On Fundamental Challenges: Lock-in, Interoperability, and Long-Term Maintenance
	3 Addressing Fundamental Challenges Through Open Source: An Overview of the LIM-IT Project
	4 Strategic Use of Open Source in Different Company Contexts
	5 Conclusion
	Acknowledgements
	References

	Understanding the Effects of Practices on KDE Ecosystem Health
	1 Introduction
	2 Background
	3 The NFR Framework with Practices
	3.1 SIG with Practices (SIG-P)
	3.2 SIG-P Construction

	4 Methodology
	4.1 Research Method
	4.2 Data Collection and Analysis Procedures

	5 Results and Analysis
	5.1 Practices in KDE
	5.2 Analysis

	6 Discussion
	6.1 Findings
	6.2 Contributions
	6.3 Limitations

	7 Related Work
	8 Conclusions and Future Work
	References

	Challenges in Validating FLOSS Configuration
	1 Introduction
	2 Methodology
	2.1 Source-Code Analysis
	2.2 Questionnaire

	3 Configuration Access
	3.1 Which Methods for Configuration Access are Popular?
	3.2 What Is the Purpose of getenv?

	4 Configuration Validation
	4.1 Which Are the Concerns Regarding Global Validation?
	4.2 Which Challenges Prevent Us from Supporting Validation?

	5 Experience Report on Supporting Global Validation
	5.1 Unify Configuration
	5.2 Validate Configuration
	5.3 Community Building

	6 Community Feedback and Future Work
	7 Related Work
	8 Conclusions
	References

	Case Studies
	Progression and Forecast of a Curated Web-of-Trust: A Study on the Debian Project's Cryptographic Keyring
	1 Introduction
	2 Trust Models in Public Key Cryptography
	2.1 Cryptographic Strength

	3 Trust Aging and Reestablishment
	4 Expectations on Key Survival
	5 Conclusions and Future Work
	References

	Understanding When to Adopt a Library: A Case Study on ASF Projects
	1 Introduction
	2 Background and Definitions
	2.1 Motivation
	2.2 Library Adoption and Release Timings

	3 Empirical Study
	3.1 Data Preparation
	3.2 Clustering Libraries by Release Cycle

	4 Results
	5 Conclusions and Future Work
	References

	Adoption of Academic Tools in Open Source Communities: The Debian Case Study
	1 Introduction
	1.1 Packages in the Debian Distribution
	1.2 The Installability Problem
	1.3 The Edos and Mancoosi Research Projects

	2 Our Tools
	2.1 Distcheck and Buildcheck

	3 Enhancing the Debian Distribution Build Process
	3.1 Buildd, sbuildd, Dose-Tools

	4 Bootstrapping Debian on a New Architecture
	4.1 Botch

	5 The Technology Transfer Problem
	5.1 Community vs. Academia
	5.2 The Communication Gap
	5.3 Community Driven Open Development
	5.4 Lesson Learned

	6 Conclusion
	References

	Assessing Code Authorship: The Case of the Linux Kernel
	1 Introduction
	2 Study Design
	2.1 Author Identification
	2.2 Linux Kernel Architectural Decomposition
	2.3 Data Collection

	3 Results
	4 Threats to Validity
	5 Related Work
	6 Conclusion
	References

	Project Management, Development and Evaluation
	Release Early, Release Often and Release on Time. An Empirical Case Study of Release Management
	1 Introduction
	2 Prior Related Work
	3 Empirical Background
	4 Methodological Design
	5 Results
	5.1 Release Management at OpenStack

	6 Discussion
	7 Conclusion
	References

	Technical Lag in Software Compilations: Measuring How Outdated a Software Deployment Is
	1 From Upstream to Deployment
	2 Technical Debt and Technical Lag
	3 Computing Technical Lag for a Deployment
	4 Formal Definition of Technical Lag
	5 Calculating Lag Between Packages
	6 Discussion and Conclusions
	References

	OSSpal: Finding and Evaluating Open Source Software
	Abstract
	1 Introduction
	2 The Business Readiness Rating
	2.1 Evaluation Categories
	2.2 Experience and Shortcomings of the BRR

	3 From BRR to OSSpal
	3.1 Overview of Changes to the Model
	3.2 Implementation and the Quick Assessment Tool
	3.3 A Note About FOSS Quality
	3.4 Using the OSSpal Site

	4 Status and Future Directions
	Acknowledgments
	References

	Longitudinal Analysis of the Run-up to a Decision to Break-up (Fork) in a Community
	1 Introduction
	2 Related Work
	3 Research Goals
	4 Methodology
	4.1 Data Collection
	4.2 The Statistical Model

	5 Results
	6 Conclusion
	7 Threats to Validity
	References

	Author Index

