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Abstract: Markov chain Monte Carlo (MCMC) stands out as an effective method for tackling Bayesian
inverse problems. However, when dealing with computationally expensive forward models and high-
dimensional parameter spaces, the challenge of repeated sampling becomes pronounced. A common
strategy to address this challenge is to construct an inexpensive surrogate of the forward model, which
cuts the computational cost of individual samples. While the Gaussian process (GP) is widely used
as a surrogate modeling strategy, its applicability can be limited when dealing with high-dimensional
input or output spaces. This paper presents a novel approach that combines the analysis of variance
(ANOVA) decomposition method with Gaussian process regression to handle high-dimensional
Bayesian inverse problems. Initially, the ANOVA method is employed to reduce the dimension of
the parameter space, which decomposes the original high-dimensional problem into several low-
dimensional sub-problems. Subsequently, principal component analysis (PCA) is utilized to reduce
the dimension of the output space on each sub-problem. Finally, a Gaussian process model with a low-
dimensional input and output is constructed for each sub-problem. In addition to this methodology,
an adaptive ANOVA-GP-MCMC algorithm is proposed, which further enhances the adaptability
and efficiency of the method in the Bayesian inversion setting. The accuracy and computational
efficiency of the proposed approach are validated through numerical experiments. This innovative
integration of ANOVA and Gaussian processes provides a promising solution to address challenges
associated with high-dimensional parameter spaces and computationally expensive forward models
in Bayesian inference.

Keywords: Bayesian inverse problem; uncertainty quantification; ANOVA decomposition; principle
component analysis; Gaussian process regression

MSC: 62F15; 65C20; 65D15

1. Introduction

In numerous scientific and engineering domains, the inference of parameters of interest
through observations, such as inverse problems [1], is a common requirement. For instance,
in seismology, inverse problems arise in the attempt to determine the subsurface properties
of the Earth, such as seismic velocity or material composition, based on recorded seismic
waves from earthquakes or controlled sources [2]. Another example is heat conduction,
which involves determining the initial temperature distribution or the thermal properties
of a material from given temperature measurements at certain locations and times [3,4].
Recently, a statistical model for system reliability evaluation by jointly considering the
correlated component lifetimes and the lifetime ordering constraints has been proposed
in [5]. Based on the proposed model, the estimation of model parameters from the observed
data is also discussed. In [6], two semiparametric additive mean models are proposed
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for clustered panel count data, and some estimation equations are derived to estimate the
regression parameters of interest for the proposed two models. In this study, we focus on
inverse problems.

Classical inference methods typically yield a single-point estimate of the parameters by
optimizing an objective function with a regularization term. However, Bayesian inference
methods offer the advantage of not only providing parameter estimates but also quantifying
the uncertainty associated with the obtained results. This characteristic proves more
practical for addressing inverse problems [7]. Bayesian methods treat parameters as random
variables. They establish prior distributions for these variables based on existing knowledge
and then calculate the conditional probability, also known as the posterior distribution of
the parameters, given the observations using Bayes’ theorem. Consequently, statistical
information such as the expectation and variance of the parameters can be derived.

While the concept of Bayesian inference methods is straightforward, practical imple-
mentation can encounter significant challenges. In most instances, the posterior probability
distribution lacks an explicit expression and can only be approximated through numerical
methods. Typically, the Markov chain Monte Carlo (MCMC) method [8] is employed to
generate samples from the posterior distribution, which enables the estimation of posterior
statistical information based on these samples. It is crucial to note that the MCMC method
necessitates repeated evaluations of the forward model: entailing the complete simulation
of the mapping from parameters to observations. However, the forward problem often
involves the solution of computationally intensive models such as partial differential equa-
tions, especially for practical problems like groundwater inverse modeling [9] and seismic
inversion [10]. Furthermore, achieving a robust posterior estimate typically requires a
substantial number of samples. These two factors render MCMC simulations impractical
for large-scale realistic problems.

To enhance the computational efficiency of MCMC simulations, two primary ap-
proaches can be pursued. The first involves reducing the number of required samples,
which necessitates the development of more efficient sampling methods. The second aims
to minimize the computational cost of a single sample. This can be achieved by pre-building
a low-cost surrogate or simplified model for use in the MCMC process, which aligns with
the focus of our study.

Existing research methods include polynomial chaos expansion [11], the Gaussian
process [12,13], sparse grid interpolation [14], and reduced-basis models [15,16]. The perfor-
mance of these methods for accelerating Bayesian computation is discussed in [17]. While
successful for various inverse problems, their applicability is often constrained by the high
dimensionality of unknown parameters in practical scenarios. For instance, hydraulic
conductivity in groundwater models and wave speed in seismic inversion, which are often
characterized by random fields, can result in dimensions ranging from tens of thousands
to even more. Although dimension-reduction methods like truncated Karhunen–Loève
(KL) expansion can be employed [18], practical parameters are typically nonsmooth and
thus require a substantial number of KL modes. Directly building surrogates for such high-
dimensional problems poses a significant challenge. The analysis of variance (ANOVA)
methods [19,20], which are proposed for efficiently solving high-dimensional problems,
aim to decompose a high-dimensional parameter space into a union of low-dimensional
spaces such that standard surrogate modeling strategies can be applied. The adaptive
reduced basis ANOVA method combines ANOVA decomposition with reduced basis meth-
ods [21,22] to significantly reduce the computational cost of Bayesian inverse problems
without sacrificing accuracy. The combination of ANOVA decomposition with the Gaus-
sian process (GP) is studied in various fields, such as designing the surrogate model for
the forward problem [13] and recovering functional dependence from sparse data [23,24].
In this study, we primarily concentrate on ANOVA-GP modeling for high-dimensional
Bayesian inverse problems.

In this study, we introduce a novel approach that integrates ANOVA decomposition
with Gaussian processes to construct surrogate models. The resulting surrogate model
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is seamlessly integrated into MCMC simulations, which provides a substantial accelera-
tion in computation. This innovative approach addresses the challenges posed by high-
dimensional input and output spaces and holds promise for efficiently handling complex
problems in Bayesian inference. To further enhance the efficiency, we propose an adaptive
ANOVA-GP-MCMC algorithm that is designed to dynamically update the ANOVA-GP
model based on posterior samples obtained during the MCMC process. Numerical results
demonstrate the efficiency and effectiveness of the algorithm for quantifying uncertainties
of the parameters.

The remainder of the paper is structured as follows. Section 2 elaborates the problem
formulation considered in this study, which encompasses Bayesian inverse problems and
partial differential equations with random parameters. In Section 3, we delve into the
methodology for constructing the ANOVA-GP model and introduce the adaptive ANOVA-
GP-MCMC algorithm. Section 4 is dedicated to validating the accuracy and computational
efficiency of the proposed approach for high-dimensional inverse problems through a series
of numerical experiments. Finally, Section 5 encapsulates a summary of our research and
outlines prospects for future work.

2. Problem Setup
2.1. Bayesian Inverse Problem

Let X and Y denote two separable Banach spaces and consider a forward model G
mapping from X to Y . Assume that for an unknown parameter vector ξ ∈ X , the only
available observation is d = e(G(ξ)), where e : Y → Y introduces measurement noise.
The inverse problem involves inferring the parameter ξ from the observed data d.

In classical statistical inference, parameters are traditionally treated as deterministic
values, and a common approach involves obtaining a point estimate by maximizing the
likelihood function. However, in a Bayesian framework, parameters are treated as random
variables and are assigned a prior distribution to encapsulate prior knowledge. Upon mak-
ing an observation, belief in the parameter is updated using Bayes’ rule: leading to the
derivation of the posterior distribution. This Bayesian approach not only yields a single
estimate but also provides a quantification of uncertainty associated with the parameter.

Let π(ξ) : X → R+
0 denote the prior probability density function of the parameter

and satisfy
∫
X π(ξ)dξ = 1. This prior probability reflects our belief in the parameter before

any observations are made and can be suitably chosen based on historical data, model
structures, and expert knowledge.

Consider L(d, ξ) : Y × X → R+
0 as the likelihood function, which represents the

probability of the observed value d conditional on the parameter ξ. According to Bayes’
rule, the posterior probability density function of the parameter is expressed as

π(ξ|d) = L(d, ξ)π(ξ)∫
X L(d, ξ)π(ξ)dξ

. (1)

The denominator
∫
X L(d, ξ)π(ξ)dξ is referred to as the evidence or normalization constant

and equals the marginal probability of the observed data.
The likelihood function is constructed by assessing the disparity between the observed

data vector d and the output of the forward model G(ξ). In many practical physical
processes, an additive error model is commonly employed; it is represented as d = G(ξ)+ ϵ,
where ϵ accounts for measurement errors. Moreover, it is often assumed that ϵ is unbiased
and uncorrelated across dimensions. Each dimension of ϵ follows a normal distribution
with zero mean and variance σ2: denoted as πϵ ∼ N (0, σ2 I). Under these assumptions,
the likelihood function can be expressed as

L(d, ξ) = πϵ(d − G(ξ)) = exp

{
∥d − G(ξ)∥2

2
2σ2

}
, (2)
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thus we have

π(ξ|d) ∝ exp

{
∥d − G(ξ)∥2

2
2σ2 + log π(ξ)

}
. (3)

While for the aforementioned assumptions the posterior density function π(ξ|d) is
known, there are two challenges that hinder the derivation of a straightforward explicit
expression. The first challenge arises when the forward model functions as a black box or
lacks an attainable explicit expression. The second challenge involves the computation of
the normalizing constant, which may require handling intricate high-dimensional integrals
that are either computationally demanding or, in some cases, infeasible. Hence, in this
study, Markov chain Monte Carlo (MCMC) is employed to generate samples conforming
to the posterior distribution. These samples are then used for estimating both the expected
value and the uncertainty associated with the parameters.

MCMC was initially introduced by Metropolis [25] and later extended by Hastings [26].
This method constructs a Markov chain with the posterior distribution as the stationary
distribution through a random walk. In our investigation, we employ the classic Metropolis–
Hastings (MH) algorithm (refer to Algorithm 1) to generate a set of N samples conforming
to the posterior distribution of the parameters. The proposal distribution is denoted as
πp(·|ξ(j)) and is commonly chosen as a multivariate normal distribution with mean ξ(j).

Algorithm 1 Classic Metropolis–Hastings (MH) algorithm
Input: Number of samples N, forward model G, noise distribution πϵ, proposal distribu-

tion πp, prior distribution π, and observation d.
Output: Posterior samples {ξ(j)}N

j=1.

1: Draw a sample ξ(0) from the prior distribution π as the initial state.
2: for j := 1 : N do
3: Generate the proposal ξ∗ ∼ πp(·|ξ(j−1)).

4: Compute the acceptance rate a := min
(

1, πϵ(d−G(ξ∗))π(ξ∗)
πϵ(d−G(ξ(j−1)))π(ξ(j−1))

· πp(ξ(j−1) |ξ∗)
πp(ξ∗ |ξ(j−1))

)
.

5: Draw ρ ∼ Uniform[0, 1].
6: if ρ < a then
7: Let ξ(j) = ξ∗.
8: else
9: Let ξ(j) = ξ(j−1).

10: end if
11: end for

As can be seen from the algorithm, each iteration of MCMC involves an evaluation
of the forward model, rendering the MCMC process time-consuming. In the subsequent
sections, we will introduce a strategy to expedite MCMC computations by employing
surrogate models constructed using the ANOVA-GP method.

2.2. Partial Differential Equations with Random Parameters

In this study, we address Bayesian inverse problems for which the forward model
is governed by partial differential equations with high-dimensional random parame-
ters [13,21,22]. Specifically, details of the forward model considered in this paper are
addressed as follows. Let D denote a physical domain (a subset of R2 or R3) that is
bounded and connected and has a polygonal boundary ∂D. Let ξ = [ξ1, · · · , ξM]T be a
random vector of dimension M, and denote its image by IM. The associated problem of the
forward model can be formulated as finding a function s(x, ξ) : D × IM → R that satisfies{

L(x, ξ; s(x, ξ)) = f (x), ∀(x, ξ) ∈ D × IM,

b(x, ξ; s(x, ξ)) = g(x), ∀(x, ξ) ∈ ∂D × IM,
(4)
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where L is a partial differential operator, b is a boundary operator, f denotes the source
function, and g determines the boundary conditions of the system. With an observation
operator c (e.g., extracting values of the solution u at specific points in physical space),
the forward model is expressed as

G(ξ) := u(ξ) = c(s(ξ)). (5)

During the Markov chain Monte Carlo (MCMC) process, each forward model evaluation
involves solving Equation (4). As mentioned earlier, our study will employ a computation-
ally convenient surrogate model to avoid repeatedly solving the original equation, thereby
enhancing the computational efficiency of MCMC.

3. Methodology

This section initiates with an elaborate description of the standard methodologies that
form the foundation for our study. These methodologies include ANOVA decomposition,
principal component analysis, and Gaussian process regression. Following this, we intro-
duce the integration of these approaches to construct a surrogate model for the forward
model discussed earlier: termed the ANOVA-GP model. Finally, we apply the ANOVA-GP
model to MCMC sampling and propose an adaptive ANOVA-GP-MCMC approach. In this
approach, the surrogate is dynamically updated based on the posterior knowledge acquired
during the inversion process. This adaptive approach further enhances the efficiency and
adaptability of the surrogate model in the context of Bayesian inference.

3.1. ANOVA Decomposition

The general process of ANOVA decomposition, as outlined in [13,20,22], can be de-
scribed as follows. Assume u(ξ) ∈ L2(IM), where ξ = [ξ1, · · · ·, ξM]T ∈ IM. Let P be the
collection of coordinate indices {1, · · · , M}, and any non-empty subset t ⊆ P is referred to
as an ANOVA index, with its cardinality denoted by |t|. For any given t, ξt represents a
|t|-dimensional vector composed of the values of ξ at corresponding indices. For instance,
if t = 1, 2, 4, then |t| = 3 and ξt = [ξ1, ξ2, ξ4]

T ∈ I3. Let dµ be a probability measure on IM.
The ANOVA decomposition of u(ξ) can be expressed as the sum of 2M terms:

u(ξ) = u0 + ∑
t ̸=∅,t⊆P

ut(ξt), (6)

where
u0 =

∫
IM

u(ξ)dµ(ξ), (7)

and ut(ξt) is recursively defined as

ut(ξt) =
∫

IM−|t|
u(ξ)dµ(ξP\t)− ∑

s ̸=∅,s⊂t
us(ξs)− u0, ∀t ⊆ P , (8)

where ut(ξt) is referred to as a |t|-order ANOVA term. Since we assume that {ξi}M
i=1 are

independent of each other, dµ(ξP\t) = ∏i∈P\t dµ(ξi).
For any high-dimensional function, the ANOVA decomposition is a finite and exact

expansion [19,27]. Additionally, every term in the expansion is orthogonal to the other
terms [20], i.e., ∫

IM
ut(ξt)uw(ξw)dµ(ξ) = δtw, ∀t, w ⊆ P , (9)

and thus, every term except u0 has zero mean:∫
IM

ut(ξt)dµ(ξ) = 0, ∀t ⊆ P and t ̸= ∅. (10)
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By (9), the variance of u(ξ) can be computed via

V(u(ξ)) = ∑
t ̸=∅,t⊂P

V(ut(ξt)) (11)

3.1.1. Anchored ANOVA Decomposition

When using the Lebesgue measure dµ(ξ) := dξ, Equation (6) is referred to as the clas-
sic ANOVA decomposition. However, this involves multiple high-dimensional integrals,
necessitating complex computations. To alleviate this, one often utilizes the Dirac measure
dµ(ξ) := δ(ξ − c)dξ = ∏M

i=1 δ(ξi − ci)dξi, where c = [c1, · · · , cM]T ∈ IM is a given anchor
point. This approach is known as a Dirac ANOVA decomposition or anchored ANOVA
decomposition [20,28]. Under this measure, Equations (7) and (8) can be expressed as

u0 = u(c), ut(ξt) = u(ξc,t)− ∑
s ̸=∅,s⊂t

us(ξs)− u0, ∀t ⊆ P , (12)

where ξc,t = [ξc,t
1 , · · · , ξc,t

M ]T is defined as

ξc,t
i =

{
ci, for i ∈ P\t
ξi, for i ∈ t

. (13)

This naturally raises a question: How should the anchor point c be chosen? Theo-
retically, any anchor point c can provide an accurate ANOVA decomposition. However,
a judicious choice of the anchor point enables approximation of the original function with
a small subset of expansion terms [20,28], which is a crucial factor for enhancing compu-
tational efficiency. In previous studies, selecting parameter points with function values
close to the mean has proven to be effective. However, calculating the expected value of the
function is usually challenging and can only be obtained through inexact numerical approx-
imation. Another choice of the anchor point, as demonstrated in [20], is the expectation of
the parameter, which is a strategy also adopted in our study.

3.1.2. Selection of the ANOVA Terms

In Equation (6), as the parameter dimension M increases, the number of terms in the
ANOVA expansion grows exponentially, posing a significant challenge to computing the
ANOVA decomposition for high-dimensional functions. In practice, it is often sufficient to
retain only a small subset of the lower-order ANOVA terms to approximate the original
function effectively [13,22]. Let J be the set of active ANOVA indices; the original function
can then be approximated as

u(ξ) ≈ uJ (ξ) = u0 + ∑
t∈J

ut(ξt), (14)

which is also called the truncated ANOVA expansion. In this work, we adopt the method
for selecting active ANOVA terms as explored in [22]. Define the set of active ANOVA
indices at each order i as

Ji := {t | t ∈ J and |t| = i}; (15)

then J = ∪M
i=1Ji. Initialize the set of first-order ANOVA indices as J1 = {1, · · · , M}.

Assuming the prior distribution πt(ξt) of parameter ξt is known, the prior expectation of
ut(ξt) is

E(ut) :=
∫

I|t|
ut(ξt)πt(ξt)dξt; (16)

the relative expectation of each ANOVA term is defined as

γt :=
∥E(ut)∥2

∥u0 + ∑s∈J1∪···∪J|t|−1
E(us)∥2

, (17)
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where ∥ · ∥2 represents the L2 norm of the function. The prior expectation of the ANOVA
term E(ut) can be estimated using the Monte Carlo method:

Ẽ(ut) :=
1

Nmodel

Nmodel

∑
j=1

ut(ξ
(j)
t ), (18)

where {ξ
(j)
t }Nmodel

j=1 are Nmodel samples drawn from the prior distribution πt(ξt); thus, the
relative expectation can be approximated as

γ̃t :=
∥Ẽ(ut)∥2

∥u0 + ∑s∈J1∪···∪J|t|−1
Ẽ(us)∥2

. (19)

The relative expectation also serves as an indicator of the importance of the ANOVA terms.
For each ANOVA term in Ji, if its relative expectation exceeds a given threshold tolanova, it
is incorporated into the set J̃i

J̃i := {t | t ∈ Ji and γ̃t ≥ tolanova}. (20)

Then, the set of active ANOVA indices at order (i + 1) can be constructed through

Ji+1 := {t | |t| = i + 1 and ∀s ⊂ t with |s| = i satisfies s ∈ J̃i}. (21)

This implies that for each selected ANOVA term in J , both the term itself and any of its
subsets exhibit relative expectation values greater than the specified threshold. The process
automatically concludes when the set of active terms at some order becomes empty. It
has been demonstrated that even with a very small threshold, only a small fraction of all
expansion terms in J are reserved, with most of them being low-order terms [13,28].

By performing ANOVA decomposition on ξ of G(ξ) in Equation (5) using the afore-
mentioned approach, one can decompose the original problem into several low-dimensional
sub-problems. Gaussian process regression is then employed for local modeling. Sub-
sequently, Equation (6) is utilized to combine solutions from each sub-problem into
the full solution. In the following section, we will delve into the details of Gaussian
process regression.

3.2. Gaussian Process Regression

A Gaussian process is a collection of random variables defined over a continuous
domain for which any finite combination of these random variables collectively follows
a joint Gaussian distribution. It can be conceptualized as an extension of the multidi-
mensional Gaussian distribution to infinite dimensions [29]. Following the representation
in [30], a Gaussian process f (x) (x ∈ X ) can be specified by a mean function m(x) and a
covariance function k(x, x

′
): denoted as f (x) ∼ GP(m(x), k(x, x

′
)). Here, x can be either

one-dimensional or multidimensional. Given a series of observation points {xi}n
i=1 ⊂ X ,

according to the definition of a Gaussian process, [ f (x1), · · · , f (xn)]
T is expected to adhere

to a multidimensional Gaussian distribution:

[ f (x1), · · · , f (xn)]
T ∼ N (m, K), (22)

where m = [m(x1), · · · , m(xn)]T and Kij = k(xi, xj). Next, we will delve into the details of
using Gaussian processes for regression.

Given a set of observed points X = [x1, · · · , xn]T and their corresponding observed
values y = [y1, · · · , yn]T as well as predicted points Z = [z1, · · · , zq]T, one can utilize
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the properties discussed earlier to derive the joint distribution of observed values y and
predicted values f ∗ = f (Z) = [ f (z1), · · · , f (zq)]T:[

y
f ∗

]
∼ N

( [
m(X)
m(Z)

]
,
[

K(X, X) K(X, Z)
K(X, Z)T K(Z, Z)

] )
, (23)

where m(X) = [m(x1), · · · m(xn)]T; m(Z) = [m(z1), · · · m(zq)]T; and the ij-th elements
of K(X, Z), K(X, X), and K(Z, Z) are k(xi, zj), k(xi, xj), and k(zi, zj), respectively. Thus,
the conditional probability distribution of f ∗ is expressed as

p( f ∗|X, y, Z) ∼ N (m̂, Σ̂), (24)

where the predicted mean m̂ and the predicted covariance matrix Σ̂ are

m̂ = K(X, Z)T(K(X, X))−1(y − m(X)) + m(Z),

Σ̂ = K(Z, Z)− K(X, Z)T(K(X, X))−1K(X, Z).
(25)

In practice, data are often standardized to be zero mean. Given that m(x) = 0, the expres-
sions for the predicted mean and predicted covariance matrix become

m̂ = K(X, Z)T(K(X, X))−1y,

Σ̂ = K(Z, Z)− K(X, Z)T(K(X, X))−1K(X, Z).
(26)

The covariance function, commonly referred to as the kernel of the Gaussian process,
is evidently crucial in the outlined process. However, determining the specific form and
parameters of the kernel poses a challenge. Currently, there is no unified solution for kernel
selection across different problems. Researchers typically rely on the experience of their
predecessors to manually choose a relatively suitable form. One of the most frequently
used kernels in Gaussian processes is the squared exponential kernel, which is also known
as the Gaussian kernel [31]:

kSE(x, x′) = ρ2 exp
(
−∥x − x′∥2

2l2

)
, (27)

where l represents the correlation length, and ρ2 is the variance. When extended to high-
dimensional situations, where fluctuations in each dimension are not uniform, one can
consider an automated relevance determination form for the kernel:

kSEard(x, x′) = ρ2 exp
(
− (x − x′)TL−1(x − x′)

2

)
, (28)

where x ∈ RM, and L = diag(l2
1 , · · · , l2

M) is a diagonal matrix with the squared correlation
length of each dimension on the diagonal.

With the specified kernel form, the hyperparameters still need to be determined
through optimization. Let β = [l1, · · · , lM, ρ]T, and our objective is to maximize the
marginal probability of observed values and, equivalently, to minimize its negative loga-
rithm [32]:

M(β) = − log p(y|β) = 1
2

log det(K(β)) +
1
2

yTK−1(β)y +
n
2

log(2π), (29)

where K(β) = K(X, X; β) is the covariance matrix for a given parameter β.
As discussed earlier, our study involves Bayesian inversion, necessitating the repeated

solution of a partial differential equation with random parameters. To streamline this
process, we intend to utilize the finite element method to pre-calculate solutions for a
subset of parameters. These parameters and their corresponding finite element solutions
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will then serve as training samples in the Gaussian process to optimize kernel parameters
and establish the Gaussian process model. This approach enables us to predict results
directly when confronted with unknown parameters: eliminating the need to solve the
equation anew.

However, classical Gaussian process regression faces challenges when handling multi-
dimensional outputs. Modeling each dimension separately would imply assuming that
each dimension is unrelated [33]. Hence, directly using the finite element solutions as the
predicted output in Gaussian process regression may not be advisable. To address this,
principal component analysis becomes necessary. It allows us to project the solution space
of the equation into a lower-dimensional subspace, thereby improving the performance of
Gaussian process regression.

3.3. Principal Component Analysis

This section provides a detailed description of how to employ principal component
analysis (PCA) on each sub-problem to reduce the dimensionality of the output of the
forward model.

Following the representation in [33], for every ANOVA term ut(ξt), assuming that
we have Nmodel training samples: {y(j)

t | y(j)
t = ut(ξ

(j)
t ) ∈ Rd, j = 1, · · · , Nmodel}. First,

standardize these samples to zero mean:

ỹ(j)
t = y(j)

t − µt, j = 1, · · · , Nmodel , (30)

where

µt =
1

Nmodel

Nmodel

∑
j=1

y(j)
t . (31)

Construct the matrix
S :=

[
ỹ(1)t , ỹ(2)t , · · · , ỹ(Nmodel)

t

]
, (32)

and perform singular value decomposition:

S = UΣVT, (33)

where Σ is a diagonal matrix composed of the singular values

Σ = diag([σ1, σ2, · · · , σNmodel ]), σ1 ≥ σ2 ≥ · · · ≥ σNmodel . (34)

Given the threshold tolpca, one can find 0 ≤ R ≤ Nmodel such that

∑R
j=1 σ2

j

∑Nmodel
j=1 σ2

j

> 1 − tolpca and
∑R−1

j=1 σ2
j

∑Nmodel
j=1 σ2

j

≤ 1 − tolpca. (35)

Select the first R column vectors of the matrix U as the principal components matrix:

Vt := [v1, · · · , vR]. (36)

Consequently, ut(ξt) can be approximated as

ut(ξt) ≈ Vtũt(ξt) + µt, (37)

where

ũt(ξt) = [ũt,1(ξt), · · · , ũt,R(ξt)]
T ∈ RR,

ũt,r(ξt) = vT
r (ut(ξt)− µt), for r = 1, · · · , R.

(38)
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Generally, singular values decay quite rapidly, making the value of R much smaller
than the dimension of the model output. We then construct a Gaussian process model for
each PCA mode ũt,r(ξt)(r = 1, · · · , R) and ultimately obtain ut(ξt) through Equation (37).

3.4. ANOVA-GP Modeling

This section outlines the overall ANOVA-GP modeling approach [33] used to construct
a low-complexity surrogate model for the forward problem (5).

Given the input samples Ξ := {ξ(j)}Nmodel
j=1 generated from a specific distribution,

the first step is to conduct the truncated ANOVA expansion as described in Section 3.1.
This decomposes the problem with high-dimensional inputs into several low-order sub-
problems: yielding the active set J and training sets {ξ

(j)
t , ut(ξ

(j)
t )}Nmodel

j=1 for t ∈ J . The sec-
ond step is to perform PCA analysis as presented in Section 3.3: projecting the high-
dimensional outputs ut(ξ

(j)
t ) of each sub-problem into a compact subspace denoted as

ũt(ξ
(j)
t ) = [ũt,1(ξ

(j)
t ), · · · , ũt,R(ξ

(j)
t )]T. The final step is to perform Gaussian process regres-

sion for each local training set {ξ
(j)
t , ũt,r(ξ

(j)
t )}Nmodel

j=1 , resulting in GP models

ût,r = GP(mt,r(ξt), kt,r(ξt, ξ ′t)) (39)

for t ∈ J and r = 1, · · · , R. The squared exponential kernel with automated relevance
determination is selected as the covariance function here, and the hyperparameter βt,r is
determined through minimizing

M(βt,r) = − log p(αt,r|βt,r)

=
1
2

log det(K(βt,r)) +
1
2

αT
t,rK−1(βt,r)αt,r +

Nmodel
2

log(2π),
(40)

where
αt,r = [ũt,r(ξ

(1)
t ), · · · , ũt,r(ξ

(Nmodel)
t )]T, K(βt,r)ij = kt,r(ξ

(i)
t , ξ

(j)
t ). (41)

By substituting the predicted mean values of these models into Equation (37), we obtain
the predictor of ut(ξt):

ût(ξt) = VtUt(ξt) + µt, Ut(ξt) = [m̂t,1(ξt), · · · , m̂t,R(ξt)]
T, (42)

where

m̂t,r(ξt) = kT
∗K−1(βt,r)αt,r, k∗ = [kt,r(ξt, ξ

(1)
t ), · · · , kt,r(ξt, ξ

(Nmodel)
t )]T. (43)

Finally, in accordance with Equation (14), we integrate all local predictors of sub-problems
to obtain the overall ANOVA-GP model:

ûJ (ξ) = u0 + ∑
t∈J

ût(ξt). (44)

Refer to Algorithm 2 for a detailed description of the entire process of obtaining the
ANOVA-GP model.
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Algorithm 2 Construction of ANOVA-GP model

Input: Sample set Ξ = {ξ(j)}Nmodel
i=1 ⊂ IM.

Output: ANOVA-GP model ûJ .

1: Compute c = 1
Nmodel

∑Nmodel
j=1 ξ(j).

2: Compute the zero-order term u0 = u(c).
3: Initialize J = J1 = {1, · · · , M} and i = 1.
4: while Ji ̸= ∅ do
5: Let J̃i = ∅.
6: for t ∈ Ji do
7: Construct sample set Ξt = {ξ

(j)
t , ξ(j) ∈ Ξ for j = 1, · · · , Nmodel} ⊂ Ii.

8: Compute γ̃t =
∥Ẽ(ut)∥

∥u0+∑s∈J1∪···∪J|t|−1
Ẽ(us)∥

through Equations (8) and (18).

9: if γ̃t > tolanova then
10: Update J̃i = J̃i ∪ {t}.
11: end if
12: end for
13: Construct Ji+1 = {t | |t| = i + 1 and ∀s ⊂ t with |s| = i satisfies s ∈ J̃i}.
14: Update J = J ∪ Ji+1 and i = i + 1.
15: end while
16: for t ∈ J do
17: For sample set {ut(ξ

(j)
t )}Nmodel

j=1 , obtain the mean µt, principal components matrix Vt,

and PCA coefficients {ũt,r(ξ
(j)
t )}Nmodel

j=1 through Equations (30)–(38).
18: for r = 1 : R do
19: Train a Gaussian process regression model ût,r = GP(mt,r(ξt), kt,r(ξt, ξ ′t)) with

training set {ξ
(j)
t , ũ(j)

t,r }
Nmodel
j=1 , for which the hyperparameter is determined by minimiz-

ing (40).
20: end for
21: Construct the local predictor ût(ξt) through Equations (41)–(43).
22: end for
23: Integrate the overall ANOVA-GP model ûJ (ξ) = u0 + Σt∈J ût(ξt).

3.5. Adaptive ANOVA-GP-MCMC

Section 3.4 introduces a surrogate modeling strategy with the aim of replacing the
computationally intensive forward model with fast ANOVA-GP predictions in MCMC
iterations. This is done to reduce computational costs and enhance sampling efficiency.
Ideally, the sample set Ξ should be selected from the posterior distribution. However, this is
impractical since we lack knowledge of the posterior information of the parameters before
conducting MCMC. Thus, prior to obtaining posterior information, an initial model must be
built using samples that align with the prior probability distribution. Nevertheless, using
a model based solely on priors may be inefficient, especially when the prior distribution
significantly differs from the posterior distribution [34]. The impact of employing a sample
set that does not conform to the actual distribution on model efficiency is primarily observed
in two aspects. Firstly, in the anchored ANOVA decomposition, the selection of the anchor
point and active terms involves statistical information about parameters. Research by
Gal et al. [15] indicates that appropriate anchor point selection—specifically, choosing the
expectation of the parameters (i.e., the posterior mean in the Bayesian inverse problem
setting)—enables achieving a given approximation accuracy with very few expansion
terms. Additionally, the selection of active terms relies on their relative expectations.
Therefore, utilizing a sample set that adheres to the posterior distribution leads to a more
efficient ANOVA representation. Secondly, during the Gaussian process regression, if the
training sample set deviates significantly from the actual distribution of parameters, it
affects the accuracy of prediction. To address this issue, we design an adaptive algorithm
that updates our ANOVA-GP model based on the obtained posterior samples during the
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MCMC process to enhance computational efficiency. We refer to this approach as the
adaptive ANOVA-GP-MCMC algorithm.

This process is detailed in Algorithm 3. Initially, we obtain Nmodel samples from
the prior distribution π(ξ) and construct an initial ANOVA-GP model based on these
samples. Then we employ the resulting model as the initial surrogate of the forward model
in MCMC.

Algorithm 3 Adaptive ANOVA-GP-MCMC algorithm
Input: Number of MCMC samples N, number of samples to construct model Nmodel ,

number of samples for updating model Nupdate, noise distribution πϵ, proposal distribution
πp, prior distribution π, and observation d.
Output: Posterior samples {ξ(j)}N

j=1.

1: Generate Nmodel samples from π(ξ) and construct the prior ANOVA-GP model ûJ
according to Algorithm 2.

2: Draw a sample ξ(0) from the prior distribution π as the initial state.
3: Let Update−label = 1.
4: for j = 1 : N do
5: Generate the proposal ξ∗ ∼ πp(·|ξ(j−1)).

6: Compute the acceptance rate a := min
(

1, πϵ(d−ûJ (ξ∗))π(ξ∗)
πϵ(d−ûJ (ξ(j−1)))π(ξ(j−1))

· πp(ξ(j−1) |ξ∗)
πp(ξ∗ |ξ(j−1))

)
.

7: Draw ρ ∼ Uniform[0, 1].
8: if ρ < a then
9: Let ξ(j) = ξ∗.

10: else
11: Let ξ(j) = ξ(j−1).
12: end if
13: if j mod Nupdate = 0 and Update−label = 1 then
14: Let J ′

= J .
15: Randomly select Nmodel samples from {ξ(k)}j

k=j−Nupdate+1, reconstruct the

ANOVA-GP model ûJ , and update J .
16: if J = J ′

then
17: Let Update−label = 0.
18: end if
19: end if
20: end for

Suppose we have observation d. Initialize the Markov chain Ξ∗ := {ξ(1)}, where ξ(1)

is obtained from π(ξ). Subsequently, for j ≥ 1, obtain a candidate sample ξ∗ from the
proposal distribution πp(·|ξ(j)) based on the current sample ξ(j). Then, adopt the prediction
ûJ (ξ) of the ANOVA-GP model to approximate the output u(ξ) of the forward model.
Compute the acceptance rate of the candidate sample ξ∗:

a := min

(
1,

πϵ(d − ûJ (ξ∗))π(ξ∗)

πϵ(d − ûJ (ξ(j)))π(ξ(j))
·

πp(ξ(j)|ξ∗)
πp(ξ∗|ξ(j))

)
, (45)

which is the probability that the candidate sample ξ∗ is accepted. If accepted, the state
of the Markov chain transits to ξ∗, i.e., ξ(j+1) = ξ∗; otherwise, it remains the same,
i.e., ξ(j+1) = ξ(j). Each time Nupdate new samples are generated, we randomly select Nmodel
samples from them to reconstruct the ANOVA-GP model. This updating procedure stops
when the active set J of the newly updated model remains unchanged.

4. Numerical Study

In this section, we consider a Bayesian inverse problem in which the forward model is
governed by partial differential equations with random parameters. To demonstrate the effi-
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ciency and effectiveness of the ANOVA-GP modeling approach and the proposed adaptive
ANOVA-GP-MCMC algorithm, both the forward and the inverse problems are investigated.
In this section, the finite element solutions are obtained by IFISS [35,36]. All the results
presented here are obtained on a desktop with a 2.20 GHz Intel Xeon E52630 v4 CPU.

4.1. Problem Setup

Consider a parametric two-dimensional elliptic problem on a unit square D = (0, 1)× (0, 1):

∇ · (− exp(a(x, ξ))∇s(x, ξ)) = f (x), x ∈ D, ξ ∈ RM (46)

with boundary conditions{
exp(a(x, ξ))∇s(x, ξ) · n⃗ = 0, x ∈ (0, 1)× {0, 1}

s(x, ξ) = 0, x ∈ {0, 1} × [0, 1],
(47)

where n⃗ denotes the unit normal vector. In (47), the notation (0, 1) represents the open
interval of real numbers from 0 to 1, while [0, 1] denotes the closed interval. The set {0, 1}
consists of the real numbers 0 and 1. This equation characterizes steady flows in porous
media, where a(x, ξ) is an unknown permeability field, s(x, ξ) represents the pressure head,
and f (x) serves as the source term, which we set to

f (x) = 3 exp
(
−(x1 − 0.5)2 − (x2 − 0.5)2

)
. (48)

The permeability field a(x, ξ) is parameterized through a truncated Karhunen–Loève (KL)
expansion [18] of a Gaussian random field featuring a constant mean function a0(x) and an
exponential kernel covariance function.

C(x, x′) = σ2
f exp

(
−
∥x − x′∥2

2
τ

)
, (49)

where σf represents the standard deviation and τ is the correlation length. Denoting the
eigenpairs of the covariance function (49) as {λk, ak(x)}∞

k=1, the truncated Karhunen–Loève
expansion can be expressed as

a(x, ξ) = a0(x) +
M

∑
k=1

√
λkak(x)ξk, (50)

where {ξk}M
k=1 are independent and identically distributed (i.i.d.) random variables follow-

ing a standard normal distribution N (0, 1). In this numerical example, we set a0(x) = 1,
σ2

f = 0.5, and τ = 2. To capture 95% of the total variance of the random field, the KL

expansion is truncated at M = 12. The prior distribution of the parameters {ξk}M
k=1 is

specified as N (0, 1).
Once ξ is specified, we employ the finite element method [35,36] with bilinear basis

functions to numerically solve this equation. The forward model is defined as

G(ξ) := u(ξ) = c(s(ξ)) = {s(x, ξ), x ∈ S} ∈ Rd, (51)

where S is the collection of sensor points in the physical space and is defined as S :=
{(x1, x2) ∈ D | x1 = 0.125i, x2 = 0.125j, ∀i, j = 1, 2, · · · , 7}. Consequently, the dimension of
the model output is 49. To generate the ground truth of the permeability field a∗(x) utilized
in the inverse problem, we randomly generate {ξ∗k}

M
k=1 from the prior distribution N (0, 1)

and assemble them through (50). Figure 1 illustrates the discretization of the physical
domain and the locations of sensors as well as the actual permeability field a∗(x).
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Figure 1. The FEM grids and sensor locations (left) and the ground truth of the permeability
field (right).

4.2. Performance in Forward Problem

This section assesses the accuracy and efficiency of the ANOVA-GP models. As out-
lined in Section 3.4, the construction of an ANOVA-GP model necessitates samples of the
parameters. In the absence of posterior information, the prior distribution of the parameters
is considered. The anchor point c is chosen as the prior mean of the parameters, and the
sample set {ξ(j)}Nmodel

j=1 consists of Nmodel samples randomly drawn from the prior distri-
bution. The number of samples is set to Nmodel = 100. The threshold for retaining PCA
modes is defined as tolpca = 10−3. We construct three ANOVA-GP models with different
thresholds tolanova = 10−2, 10−3, 10−4 for selecting active ANOVA terms and employ the
following methods to evaluate their performance.

The test samples {ξ(j)}Ntest
j=1 are randomly drawn from the prior distribution, with

Ntest = 500. The reference solutions u(ξ(j)) are obtained using the finite element method.
The relative error between the predicted mean ūJ (ξ(j)) given by the ANOVA-GP model
and the reference solution is defined as

Relative error =
∥u(ξ(j))− ūJ (ξ(j))∥2

∥u(ξ(j))∥2
. (52)

Table 1 and Figure 2 demonstrate that as tolanova decreases, more ANOVA terms are
included in J : leading to improved accuracy but at the expense of increased prediction
cost. To strike a balance between accuracy and efficiency, tolanova = 10−3 is adopted in
subsequent experiments.

Table 1. The mean of relative errors and the mean of prediction costs of ANOVA-GP models when
tolanova = 10−2 (left), 10−3 (middle), and 10−4 (right).

tolanova = 10−2 tolanova = 10−3 tolanova = 10−4

Mean cost (s) 1.279 × 10−2 1.684 × 10−2 2.184 × 10−2

Mean relative error 6.531 × 10−3 3.992 × 10−3 1.114 × 10−3

Figure 2. The relative errors of ANOVA-GP models when tolanova = 10−2 (left), 10−3 (middle), and
10−4 (right) for 500 test samples.
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As mentioned in Section 3.1.2, J comprises only a few low-order terms. Table 2
provides the counts of active terms in Ji and J̃i at each order (i = 1, 2, 3) as well as for the
overall set J . In all settings, only terms up to second-order are selected into J , which is
consistent with findings from prior research [13].

Table 2. The number of active ANOVA terms at each order when tolanova = 10−2 (left), 10−3 (middle),
and 10−4 (right).

tolanova |J1| |J̃1| |J2| |J̃2| |J3| |J |

10−2 12 1 0 0 0 12
10−3 12 3 3 0 0 15
10−4 12 4 6 3 0 18

4.3. Performance in Inverse Problem

This section assesses the performance of the ANOVA-GP model in MCMC and verifies
the validity of the adaptive ANOVA-GP-MCMC algorithm (see Algorithm 3).

Three sets of MCMC inversions are carried out in the numerical study. The first set
utilizes the finite element method (referred to as the full model in the subsequent text) in
the forward evaluation. The second set employs the ANOVA-GP model constructed with
prior samples (refer to Section 4.2) as a surrogate for the forward model. The third set
adopts the adaptive ANOVA-GP-MCMC algorithm (see Algorithm 3), where the ANOVA-
GP model is adaptively updated during sampling. These three sets are denoted as full
MCMC, prior ANOVA-GP-MCMC, and adaptive ANOVA-GP-MCMC, respectively, in the
subsequent text.

In all cases, 106 samples are generated through MCMC. The proposal distribution
πp(·|ξ(j)) is set to a multivariate Gaussian distribution with a mean value ξ(j) and a
covariance matrix of 0.0152 I. The measurement noise of sensors is modeled as independent
and identically distributed Gaussian distributions ϵ ∼ N (0, 0.0012). For constructing the
ANOVA-GP surrogate, we set Nmodel = 100. In adaptive ANOVA-GP-MCMC, the model
is updated after Nupdate = 103 new samples are generated until the set of active terms
J remains unchanged. The acceptance rates for the three groups are 31.13%, 31.25%,
and 30.98%, respectively.

Figure 3 displays the mean of posterior samples generated by full MCMC, prior
ANOVA-GP-MCMC, and adaptive ANOVA-GP-MCMC, from which we can observe that
the results obtained from the three sets are similar to the ground truth (see Figure 1),
indicating the effectiveness of the proposed approach.

Figure 3. The means of posterior samples generated by full MCMC (left), prior ANOVA-GP-
MCMC (middle), and adaptive ANOVA-GP-MCMC (right).

Table 3 illustrates the average cost for a single sample in the three sets. The model
based on posterior samples accelerates the sampling speed by 82.73%, evidencing the
substantial improvement in efficiency achieved by the proposed method.
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Table 3. The mean costs per sample of full MCMC (left), prior ANOVA-GP-MCMC (middle), and
adaptive ANOVA-GP-MCMC (right).

Full Prior Adaptive

Cost per sample (s) 4.663 × 10−2 2.414 × 10−2 8.051 × 10−3

Speedup \ 48.23% 82.73%

To access the accuracy of the estimated posterior mean and variance, we introduce the
relative mean error ϵmean and the relative variance error ϵvar as

ϵmean :=
∥EΞ∗(a(x, ξ))− Eref∥2

∥Eref∥2
, ϵvar :=

∥VΞ∗(a(x, ξ))− Vref∥2

∥Vref∥2
, (53)

where the mean and variance of the posterior samples are computed through

EΞ∗(a(x, ξ)) :=
1

|Ξ∗|

|Ξ∗ |

∑
j=1

a(x, ξ(j)),

VΞ∗(a(x, ξ)) :=
1

|Ξ∗|

|Ξ∗ |

∑
j=1

(a(x, ξ(j))− EΞ∗(a(x, ξ)))2.

(54)

The reference mean estimate Eref and the reference variance estimate Vref in (53) are ob-
tained by full MCMC with 106 samples.

Figure 4 illustrates the trend of ϵmean and ϵvar during the sampling process of the
three sets. The figure reveals that, owing to the acceleration of individual sampling,
the relative error decreases more rapidly using the ANOVA-GP model than with the
full model. Particularly in the adaptive ANOVA-GP model, as the anchor point and the
samples used for construction are closer to the posterior distribution, fewer ANOVA terms
are selected in J , and a smaller number of PCA modes remain in each local problem.

Figure 4. Errors in mean and variance estimates (ϵmean and ϵvar) for full MCMC, prior ANOVA-GP-
MCMC, and adaptive ANOVA-GP-MCMC.

Table 4 shows the total number of PCA modes in the model used in prior ANOVA-GP-
MCMC (referred to as the prior ANOVA-GP model) and the updating model in adaptive
ANOVA-GP-MCMC (referred to as the posterior ANOVA-GP model). Because of the
substantial reduction in the cost of a single prediction compared to the prior-based model,
adaptive ANOVA-GP-MCMC achieves a given accuracy even more rapidly.

Table 4. The number of total PCA modes in the prior ANOVA-GP model (left) and the posterior
ANOVA-GP model (right).

Prior ANOVA-GP Model Posterior ANOVA-GP Model

Number of PCA modes 47 29
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5. Conclusions

In high-dimensional Bayesian inverse problems, establishing a cost-effective surrogate
model for the forward model is pivotal for accelerating the MCMC process. Our study
leverages ANOVA decomposition and PCA to break down the high-dimensional original
problem into several low-dimensional input–output sub-problems. Gaussian process re-
gression is then employed to build local predictors. To enhance the overall efficiency of
the model in the Bayesian inversion setting, we propose an adaptive ANOVA-GP-MCMC
algorithm that updates the model using posterior samples obtained during the sampling
process. Through numerical experiments, we first validate the computational accuracy and
efficiency of the ANOVA-GP model. Subsequently, we apply this model to the MCMC
process to evaluate the effectiveness of our adaptive algorithm. It is important to note that
our study currently focuses on ANOVA decomposition based on a single anchor point: lim-
iting its applicability to Bayesian inverse problems with single-peak posterior distributions.
For multi-peak distributions, a potential solution is to employ multiple anchor points for
ANOVA decomposition. Additionally, although the number of selected ANOVA terms does
not increase exponentially with the growth of the parameter dimension, this method may
still lose its acceleration effect when dealing with extremely high-dimensional parameters.
Developing a high-dimensional-model reduction method with broader applicability than
ANOVA decomposition will be a key focus of our future work.
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