
Vulnerability Detection in Open Source Software: The Cure and the
Cause

Millar, S. (2017). Vulnerability Detection in Open Source Software: The Cure and the Cause. Queen's University
Belfast.

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright the author 2017.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:06. Feb. 2024

https://pure.qub.ac.uk/en/publications/94ec148c-80e4-448e-a267-c9ffb992b285

Stuart Millar 13616005

1

Abstract— According to Veracode, a Gartner-recognised

leader in application security, 44% of applications contain

critical vulnerabilities in an open source component [16].

Most companies do not have a reliable way of being

notified when zero-day vulnerabilities1 are found, or when

patches are made available. This means that attack

vectors in Open Source Software (OSS) exist longer than

they should. This paper discusses the cause of OSS

vulnerabilities, why they are a major issue, and how they

may be mitigated. Conventional methods of detection are

discussed along with novel approaches and research

trends. A new conclusion is made that it may not be

possible to replace expert human inspection of OSS

although it can be effectively augmented with techniques

such as machine learning, IDE plug-ins and repository

linking to make OSS implementation and review less time

intensive. Underpinning any technological advances

should be better knowledge at the human level –

development teams need trained, coached and improved so

they can implement OSS more securely, know what

vulnerabilities to look for and how to handle them. It is

the use of this blended approach to detection which is key.

Index Terms— open source software, cyber security,

vulnerability detection, static analysis, dynamic analysis, software

assurance, machine learning.

I. INTRODUCTION

pen source software is that which is developed

collaboratively in the public domain with a licence that

grants rights to the user base which are usually reserved

for copyright holders. A well-known open source licence is

the GNU General Public Licence that allows free distribution

under the condition that further developments are also free. In

a globally connected software society, a sizeable amount of

development work is effectively crowdsourced to an

international community of OSS developers with little

understanding of the security problems this creates [1]. 3rd

party libraries increase development speed but there is a

corresponding increase in risk also, with the Heartbleed bug in

OpenSSL2 being a prime example.

This paper was submitted on 26th March 2017 by Stuart Millar, PhD Cyber

Security Researcher at the Queen’s University of Belfast. Email:
smillar09@qub.ac.uk

1A zero-day vulnerability is an undisclosed software vulnerability that

hackers can exploit to adversely affect programs, data, additional computers or
a network.

Research into vulnerability detection in OSS is crucial as

more than half of the Fortune Global 500 companies use

vulnerable OSS components, with vulnerable libraries also

being repackaged in software. This OSS uptake shows no sign

of reversing or slowing, with a Black Duck Software survey

[19] indicating that 43% of respondents think OSS is superior

to its commercial equivalent. Black Duck Software are a

global provider of note with regard secure management of

OSS code.

Another study carried out in 2012 from Aspect Security (a

founding member of the Open Web Application Security

Project, OWASP) and Sonatype found that more than 50% of

the Fortune Global 500 companies have downloaded

vulnerable OSS components, security libraries and web

frameworks [2]. This study analysed 113 million Java

framework and security library downloads by more than

60,000 commercial, government and non-profit organisations

from the Central3 Repository. The report found the vast

majority of library flaws remain undiscovered, that the

presence of a vulnerability (or an absence of one) is not a

security indicator, and that typical Java applications are likely

to include at least one vulnerable library.

Further, the same study shows most organisations do not

have a strong process in place for ensuring the libraries they

rely upon are up-to-date and free from vulnerabilities. The

study stresses there are no shortcuts and they go as far as

saying the only useful indicator of library security is a

thorough review that finds minimal vulnerabilities – in other

words, software assurance, or the measure of how safe the

software is to use, needs to be generated internally. One might

say this is surprising, as in many other product or service

industries, this assurance – consider it some kind of warranty

or seal of approval perhaps – is offered up by the supplier

without hesitation to help build trust and sell to the customer.

At the crux of OSS vulnerability is that today’s applications

commonly use thirty or more libraries which in turn can

comprise up to 80% of the code in any such application.

These libraries have the same full privileges of the application

that use them, letting them access data, write to files or send

data to the internet. Anything the application can do, the

library can do.

2 Heartbleed results from improper input validation (due to a missing bounds

check) in the implementation of the TLS heartbeat extension. The vulnerability
is classified as a buffer over-read, a situation where more data can be read than

should be allowed.
3 Central is the software industries most widely used repository of OSS with

more than 300,000 libraries.

Vulnerability Detection in Open Source Software:

The Cure and the Cause

Stuart Millar, PhD Cyber Security Researcher, 13616005, Centre for Data Science and Scalable

Computing, CSIT, Queen’s University of Belfast

smillar09@qub.ac.uk

O

https://en.wikipedia.org/wiki/Bounds_check
https://en.wikipedia.org/wiki/Bounds_check
https://en.wikipedia.org/wiki/Heartbeat_(computing)
https://en.wikipedia.org/wiki/Buffer_over-read

Stuart Millar 13616005

2

Aspect Security estimate that custom built Java applications

contain 5-10 vulnerabilities per 10,000 lines of code. A

library has on average 10,000 to 200,000 lines of code,

therefore the chances a library has never had a vulnerability

are very slim, with it being more likely (if it has been classed

as ‘safe’) that it has not been examined for vulnerabilities.

Hence libraries with no vulnerabilities should not

automatically be considered ‘safe’. [2] states most

vulnerabilities are undiscovered which, based on this

reasoning, seems logical, and recommends that the only way

to deal with the risk of unknown vulnerabilities is to have

someone who understands security analyse the source code.

Tool support provides hints but is not a replacement for

experts because, as we will see when we study existing

conventional methods of detection in Section II, the lack of

context within libraries makes it virtually impossible for tools

to conclusively identify vulnerabilities.

Pham et al. [4] take the same position as the

Aspect/Sonatype study, agreeing that recurring vulnerabilities

in software are due to reuse. This reuse includes the same

code base with an identical or very similar code structure,

method calls and variables. Interestingly these attributes form

the basis of a proposed method of detecting unreported

vulnerabilities in one system by consulting knowledge of

reported vulnerabilities in other systems that reuse the same

code. This is included as part of the discussion of new

detection methods in Section III.

Linus’ Law [8] is often quoted in relation to OSS, which is

“given enough eyeballs, all bugs are shallow”, meaning with a

large enough number of developers looking at code, errors can

be found. However, this is a questionable claim from a

scientific viewpoint, and an empirical study of Linus’ Law by

Meneely and Williams [9] appeared to show more

collaboration meant more vulnerabilities. They found that

files with changes from nine or more developers were sixteen

times more likely to have a vulnerability than files changed by

fewer than nine developers. The inherent collaborative nature

of OSS unavoidably creates vulnerabilities that require

addressing.

A review of existing relevant literature regarding

conventional and newly researched detection methods was

carried out [1-7, 9-15]. Section II handles the former, Section

III the latter and then conclusions are presented with ideas for

future work.

II. CONVENTIONAL METHODS OF OSS VULNERABILITY

DETECTION

This is a relatively new area of research so there is not an

abundance of publications on methods of vulnerability

detection in OSS. However, those that have been written thus

far describe three conventional methods – static analysis (a

black box4 technique), dynamic analysis (a white box5

technique) and code reviews (again, a white box technique).

4 Black box testing is a software testing method in which the internal

structure/ design/ implementation of the item being tested is not known.
5 White box testing is a method of testing software that tests internal

structures or workings of an application.

1. Static Analysis

Many static analysis techniques and tools scan source code

and detect vulnerabilities in software after it has been written,

which encourages late detection and produces a lot of false

positives6. In the literature reviewed for this paper, Sampaio

& Garcia [6] were the only researchers that explicitly

referenced the cut and thrust of the software development

process, saying that external static tools for secure

programming don’t fit into such a workflow, since they don’t

work with the IDE and are retrospective. Zhang et al. [3]

concur that static analysis produces high levels of false

positives, as do Grieco et al. [12] and Perl et al. [10].

Shahmehri et al. [5] point out it is hard to know both which

vulnerabilities a static analysis tool deals with, and to get

assurance a tool is up-to-date.

Goseva-Popstojanova and Pehinschi [7] specifically wrote

about the capability of static code analysis to detect

vulnerabilities, concluding that tools are not effective. They

tested three widely used commercial tools and found 27% of

C/C++ vulnerabilities and 11% of Java vulnerabilities in their

dataset were missed by all three. In some cases, they were

comparable to or worse than random guessing. They too make

the point about tools being prone to false positives, and this

consolidates the need to find other methods of detection rather

than rely solely on static analysis. That is not to say static

analysis is of little use, as some compliance regulations

require inventories of OSS components so that risks can be

addressed. Static tools, such as Veracode Software

Composition Analysis (SCA) [16], can scan open source code

and create an inventory, so when a new vulnerability is

disclosed, it is known which applications use the vulnerable

OSS. Another example is the OWASP Dependency-Check

tool [18] that analyses code and creates reports on associated

CVE entries.

2. Dynamic Analysis

Dynamic analysis can also be called runtime analysis.

Fuzzing is used here, where inputs are changed using random

values to detect unwanted behavior [5]. Hafiz and Fang [11]

researched the nuances of how vulnerabilities were discovered

by reporters, and how those same reporters shared their

findings with the OSS community. They found running a

fuzzer and debugging was the chosen method for developers

exploring binary executables to find buffer overflows.

Vulnerability reporters tend to make their own fuzzing tools,

seeing it as part of the learning process and preferring this

approach over more systematic exploration methods.

[12] notes the usefulness of fuzzing, and that it needs only

basic knowledge to undertake, however they also say fuzzing

does not allow the control of program execution, large

campaigns are needed for results, and it is time consuming.

[3] contends fuzzing doesn’t scale, if dynamic symbolic

6 A test result which wrongly indicates that a particular condition or attribute

is present, i.e. a false alarm

Stuart Millar 13616005

3

execution7 is used, as it explores code paths simultaneously

which could create large workloads.

3. Code Reviews

These involve manual inspection of the source code.

Consequently, this method requires a lot of human effort, a

view shared by Perl et al. [10]. Working on source code

manually does without question however detect vulnerabilities

[11], and recall that [2] argued code reviews, conducted by

someone with appropriate security knowledge, is in fact the

only way to properly deal with vulnerabilities.

III. NEW METHODS OF OSS VULNERABILITY DETECTION

We have established the issues with the conventional

methods in the main are that static analysis produces too many

false positives, dynamic analysis doesn’t scale, and code

reviews are very time consuming. Research into new methods

tries to address these problems via some interesting and novel

approaches.

1. Distributed demand-driven security testing

Proposed by Zhang et al. [3], this involves many clients

using OSS, and one main testing server. For this paper, a hub

and spoke layout has been used for illustration, as per Figure

1. When a new path in a program is about to be exercised by

user input, it is sent to the testing hub for security testing.

Symbolic execution is applied to the execution trace to check

potential vulnerabilities on this new path, and if one is

detected then a signature is generated and updated back to all

the clients for protection. If a path exercised by an input will

trigger any vulnerability that has already been detected, the

execution is terminated. This allows testing to focus on paths

being used and stops attackers exploiting unreported

vulnerabilities at a client site.

Figure 1 – Hub and spoke layout for distributed demand-

driven security testing

7 Symbolic execution uses symbolic values for variables instead of concrete

values to execute all paths in a program.

However, questions remain over how to handle the large

time and space overheads at the client sites, how sensitive data

is transmitted and handled, and actual implementation details

are scarce. That said, the principle of increasing test coverage

of important paths as users exercise them is sound, and [3]

offers a basic conclusion that machine learning can identify

patterns of bugs at the testing server and use them to predict

problematic code.

2. Use of Execution Complexity Metrics

Shin et al [13] examined complexity metrics collected

during code execution, considering them potential indicators

of vulnerable code locations. Table 1 describes these metrics.

They measure the frequency of function calls and duration of

execution functions. Firefox and Wireshark were studied

using Callgrind8 to gather the metrics and the results showed

these execution complexity metrics may be better indicators of

vulnerable code than the conventional static complexity

metric, Lines of Code (LoC).

Name Definition

NumCalls The number of calls to the functions

defined in a file.

InclusiveExeTime Execution time for the set of

functions, S, defined in a file

including all the execution time

spent by the functions called directly

or indirectly by the functions in S.

ExclusiveExeTime Execution time for the set of

functions, S, defined in a file

excluding the execution time spent

by the functions called by the

functions in S.

Table 1 – Execution complexity metrics defined in [13]

The initial results, shown in Table 2, indicate the percentage

of vulnerable files in execution is higher than the percentage

of vulnerable files in total, and hence execution complexity

metrics could be good indicators of vulnerability. This can

reduce the code inspection effort as prioritisation can take

place based on the metrics.

Program % of vulnerable

files

% of vulnerable

files in executed

files

Firefox 3.8% 11%

Wireshark 7.8% 19%

Table 2 – Execution statistics from [13]

8 Callgrind is a Valgrind tool for profiling programs. The collected data

consists of the number of instructions executed on a run, their relationship to
source lines, and call relationship among functions together with call counts.

Stuart Millar 13616005

4

4. Integrated Development Environment (IDE) Plugins for

Early Detection

Sampaio & Garcia [6] attempted to detect vulnerabilities

earlier in the development process by using an Eclipse Java

plug-in, arguing developers should be aware of security

vulnerabilities as they are coding. To reduce false positives,

they proposed context-sensitive data flow analysis which uses

a program’s context of variables and methods when searching

for vulnerabilities instead of pattern matching,

Zhu et al. [14] present interactive static analysis, also

known as IDE static analysis. They too developed an Eclipse

Java plug-in for detecting code patterns that gives a two-way

interaction between the IDE and the developer. According to

[14], their tool detected multiple zero day vulnerabilities.

Figure 2 shows a screenshot of this tool where the

developer is instructed to annotate access control logic for a

highlighted sensitive method call.

Figure 2 – a screenshot from an IDE static analysis tool

developed in [14]

5. Machine Learning

Most OSS code is managed using version control systems

like Git or CVS, with vulnerable code inserted via commits

from the developer to the main data repository. But most tools

can’t run on a small code snippet in an individual commit, and

checking the whole project is time consuming. Perl et al. [10]

implemented a type of machine learning algorithm9 called a

Support Vector Machine (SVM) that used metadata10 from

commits made to OSS repositories.

The SVM used features from the metadata such as the

number of added, deleted or modified functions and how often

a contributor had contributed to a given project before. Their

results showed that false positives were reduced by over 99%

compared to those generated by a static analysis tool - to be

exact, their SVM driven tool generated 36 false positives

compared to 5460 generated from the static analysis tool. The

goal of their work was to reduce the chance of vulnerabilities

getting from a vulnerable commit into the fully deployed

software.

9 Machine learning is a type of artificial intelligence where computers use

algorithms to learn iteratively, teaching themselves to recognise patterns.

[12] also developed a machine learning tool to predict

vulnerabilities for large scale software like operating systems.

They took the popular Debian OS as an example, since it has

30,000 programs and 80,000 bug reports. Clearly, code flaws

can be hard to find manually in a code base of that size, so the

application of machine learning is of interest. Their

classification results were not conclusive but nevertheless, as

an initial study, they showed promise for large-scale

vulnerability detection only using binary executables, an

approach which does not appear to have been attempted

elsewhere.

6. Further Knowledge Formalisation and Linking Repositories

Algahtani et al. [15] discussed formalising knowledge

representation to determine transitive dependencies in

software. The idea is the various vulnerability repositories

that exist online like the NIST National Vulnerability

Database, or the Common Weakness Enumeration (CWE)

database can be linked and simultaneously used to find out if a

project is indirectly dependent on vulnerable components.

IV. CONCLUSIONS & FUTURE WORK

The global use of OSS presents such a huge number of

attack vectors that discovering novel techniques of

vulnerability detection is an essential area of research. Of the

new methods mentioned in this paper, it is the opinion of the

author that machine learning, early detection IDE plug-ins and

linking repositories show much promise for future work.

Machine learning lends itself well to feature-rich OSS which

speeds up classification of vulnerable code and reduces the

time burden on development teams. Early detection IDE plug-

ins will help developers implementing OSS to grow and

consolidate their secure coding knowledge. Linking

repositories ensures better value from the separate,

unconnected datastores of vulnerabilities as they presently

exist.

Improvements in OSS vulnerability detection may be

quicker to realise than one would think – English et al. [17]

mention Pareto’s law, where 80% of effects can be contributed

to 20% of causes, and so identifying a small proportion of

problematic OSS code then focusing testing efforts using a

selection of detection methods could improve code quality and

time-to-release, whilst reducing development and maintenance

costs. The exact mix of techniques will vary from one OSS

scenario to another but the conclusion this paper draws is that

the very existence of a strategy that uses a blend of methods

that augment each other is likely to be of significantly more

benefit than using just one approach in isolation.

ACKNOWLEDGEMENT

This paper was supported by the Centre for Secure

Information Technologies (CSIT), at the Queen’s University of

Belfast.

10 Metadata is a set of data that describes and gives information about other
data.

Stuart Millar 13616005

5

REFERENCES

[1] S. Koussa, “13 tools for checking the security risk of open-

source dependencies”, TechBeacon, May 2016,

https://techbeacon.com/13-tools-checking-security-risk-open-

source-dependencies-0, accessed 20/3/17

[2] J. Williams, A. Dabirsiaghi, “The Unfortunate Reality of

Insecure Libraries”, Aspect Security, March 2012,

http://cdn2.hubspot.net/hub/315719/file-1988689661-

pdf/download-

files/The_Unfortunate_Reality_of_Insecure_Libraries.pdf?t=1

490125724196, accessed 20/3/17

[3] D. Zhang et al, “A distributed framework for demand-

driven software vulnerability detection”, The Journal of

Systems and Software 87, pgs 60-73, Elsevier, 2014

[4] N. Pham et al, “Detection of recurring software

vulnerabilities”, ASE ’10, September 20-24, 2010, Antwerp,

Belgium

[5] N. Shahmehri et al., “An advanced approach for modeling

and detecting software vulnerabilities”, Information and

Software Technology 54, pgs 997-1013, Elsevier, 2012

[6] L. Sampaio, A. Garcia, “Exploring context-sensitive data

flow analysis for early vulnerability detection”, The Journal of

Systems and Software 113, pgs 337-361, Elsevier, 2016

[7] K. Goseva-Popstojanova, A. Perhinschi, “On the capability

of static code analysis to detect security vulnerabilities”,

Information and Software Technology 68, pgs 18-33, Elsevier,

2015

[8] Linus’ Law,

https://en.wikipedia.org/wiki/Linus%27s_Law, accessed

20/3/17

[9] A. Meneely, L. Williams, “Secure Open Source

Collaboration: An Empirical Study of Linus’ Law”, CCS ’09,

November 9-13, 2009, Chicago, Illinois, USA.

[10] H. Perl et al., “VCCFinder: Finding Potential

Vulnerabilities in Open-Source Projects to Assist Code

Audits”, CCS ’15, October 12-16, 2015, Denver, Colorado,

USA

[11] M. Hafiz, M. Fang, “Game of detections: how are

security vulnerabilities discovered in the wild?”, Empir

Software Eng (2016) 21:1920-1959, Springer

Science+Business Media New York

[12] G. Grieco et al., “Toward Large-Scale Vulnerability

Discover using Machine Learning”, CODASPY ’16, March 9-

11, 2016, New Orleans, LA, USA.

[13] Y. Shin, L. Williams, “An Initial Study on the Use of

Execution Complexity Metrics as Indicators of Software

Vulnerabilities”, SESS ’11, May 22, 2011, Waikiki, Honolulu,

HI, USA

[14] J. Zhu et al., “Supporting secure programming in web

applications through interactive static analysis”, Journal of

Advanced Research (2014) 5, pgs 449-462, Elsevier, 2014

[15] S. Alqahtani et al., “Tracing known security

vulnerabilities in software repositories – A Semantic Web

enabled modeling approach”, Science of Computer

Programming 121 (2016) pgs 153-175, Elsevier, 2016

[16] Veracode Software Composition Analysis,

https://www.veracode.com/products/software-composition-

analysis, accessed 20/3/17

[17] M. English et al., “Fault Detection and Prediction in an

Open-Source Software Project”, ACM 2009

[18] OWASP Dependency Check,

https://www.owasp.org/index.php/OWASP_Dependency_Che

ck, accessed 20/3/17

[19] Black Duck Software, “78% of Companies Run on Open

Source Yet Lack Formal Policies”,

https://www.blackducksoftware.com/de/node/1011, 16th April

2015, accessed 20/3/17

https://techbeacon.com/13-tools-checking-security-risk-open-source-dependencies-0
https://techbeacon.com/13-tools-checking-security-risk-open-source-dependencies-0
http://cdn2.hubspot.net/hub/315719/file-1988689661-pdf/download-files/The_Unfortunate_Reality_of_Insecure_Libraries.pdf?t=1490125724196
http://cdn2.hubspot.net/hub/315719/file-1988689661-pdf/download-files/The_Unfortunate_Reality_of_Insecure_Libraries.pdf?t=1490125724196
http://cdn2.hubspot.net/hub/315719/file-1988689661-pdf/download-files/The_Unfortunate_Reality_of_Insecure_Libraries.pdf?t=1490125724196
http://cdn2.hubspot.net/hub/315719/file-1988689661-pdf/download-files/The_Unfortunate_Reality_of_Insecure_Libraries.pdf?t=1490125724196
https://en.wikipedia.org/wiki/Linus%27s_Law
https://www.veracode.com/products/software-composition-analysis
https://www.veracode.com/products/software-composition-analysis
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.blackducksoftware.com/de/node/1011

