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What the electrons are doing in molecules?

• The exact solution to the Schrödinger equation cannot be obtained and we must 
introduce approximation in our solutions.


• Computational quantum chemistry has developed a few standard models for the 
construction of approximate electronic wave functions.


• At the simplest level, the wave function is represented by a single Slater 
determinant. The true wave function is represented by the variationally 
determined superposition of all determinants in the N-particle Fock space.  
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1sB1sA

Hydrogen Molecule in a Minimal Basis 
Electronic structure of  in variational space of two orbitals. H2

1sA(r) =
1

π
e−rA 1sB(r) =

1

π
e−rB

rA and rB: distance between the electron and nuclei A and B. 

One-electron Basis 

Symmetry-adapted orthonormal MOs

φ1(r) = 1σg(r) =
1

2(1 + S)
[1sA(r) + 1sB(r)]

φ2(r) = 1σu(r) =
1

2(1 − S)
[1sA(r) − 1sB(r)]

1σu
1σg
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S = ∫ 1sA(r)1sB(r)dr = (1 + R +
1
3

R2)e−R



Hydrogen Molecule in a Minimal Basis 
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Generate six determinates by distributing the two electrons among the four spin 
orbitals in all possible ways
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bonding orbital antibonding orbital 

Superposition of bonding and antibonging orbital 
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|Ψ⟩ =
1

2
φ1σg

(r1)φ1σg
(r2)
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Energy:

One and two-electron density function:

E = ∑
pq

Dpqhpq +
1
2 ∑

pqrs

dpqrsgpqrs +
1
R

ρ(r) = ∑
pq

Dpqφ*p (r)φq(r) ρ(r1, r2) =
1
2 ∑

pqrs

dpqrsφ*p (r1)φq(r1)φ*r (r2)φs(r2)

 and  are one- and two-electron density matrix.Dpq dpqrs
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Dpq = ⟨0 Epq 0⟩ = ∑
σ

⟨0 a+
pσaqσ 0⟩ dpqrs = ⟨0 EpqErs − δrqEps 0⟩ = ∑

στ
⟨0 a+

pσa+
rτasτaqσ 0⟩



Exercise: Show that one and two-electron density function.
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Energy:

E(1σ2
g) = 2h11 + g1111 +

1
R

E(1σ2
u) = 2h22 + g2222 +

1
R

State Kinetic Attraction Electron repulsion Nuclear 
repulsion Total

0.8162 -3.1874 0.5660+0.0000 0.7143 -1.0909

2.3042 -3.4516 0.5863+0.0000 0.7143 0.1532

1σ2
g

1σ2
u
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One and two-electron density functions
One-electron density functions:

 

1Sg
+ = 1s g

2 =j1j1
1
2
(ab -ba)

 

1Sg
+ = 1s u

2 =j2j2
1
2
(ab -ba)

ρ1σ2
g
(r) = 2φ2

1(r)

ρ1σ2
u
(r) = 2φ2

2(r)

Accumulation of density in 
internuclear 

Depletion of density in 
internuclear 12



Two-electron density functions

 

r1s g
2 (r1, r2) = j1

2(r1)j1
2(r2)

 

r1s u
2 (r1, r2) = j2

2(r1)j2
2(r2)

ρ1σ2
g
(r1, r2) =

1
4

ρ1σ2
g
(r1)ρ1σ2

g
(r2) ρ1σ2

u
(r1, r2) =

1
4

ρ1σ2
u
(r1)ρ1σ2

u
(r2)
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The relative probabilities of locating one electron at different positions are independent 
of the whereabouts of the other electron, so provides uncorrelated description. 

 ionic characterz1 = z2 covalent characterz1 = − z2



Superposition of Configurations

 

1Sg
+(t) = cos(t)1s g

2 + sin(t) 1s u
2

Mixing the bonding and antibonding configurations: 

 

Et (Sg
+) = cos2(t)E(g2)+ sin2(t)E(u2)+ sin(2t)g2121

 

1Sg
+(t 0) e = 0.99391s g

2 -0.1106 1s u
2

 

1Sg
+(t1) e

= 0.11061s g
2 + 0.9939 1s u

2

An arbitrary normalized state, where τ is the variational parameter.
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Ground State W.F.

Exited State W.F.

Eτ0
= − 1.1066

Eτ1
= 0.1688

Bonding Weight = 98.8%

Antibonding Weight = 1.2%



One and two-electron density functions

By mixing the bonding and antibonding configurations, we arrive at a more realistic 
description of the electronic system, where the motion of electrons is correlated. 

z1 = z2z1 = − z2

 ionic characterz1 = z2

 covalent characterz1 = − z2
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Covalent and Ionic States

 

cov = cos(t cov )1s g
2 + sin(t cov ) 1s u

2

 

ion = cos(t cov )1s g
2 - sin(t cov ) 1s u

2

 

cov e = 0.99021s g
2 -0.1396 1s u

2

 

ion e = 0.99021s g
2 + 0.1396 1s u

2

At the equilibrium, the covalent and ionic states are both dominated by the bonding 
configuration. 

Covalent Ionic
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Electron Correlation

• In normal usage, the term correlation occurs upon superposition of configurations 
and the description provided by a single configuration is referred to as uncorrelated. 


• The correlated behavior of the singlet and triplet states is instead described as an 
exchange effect since it arises from the Pauli principle's anti-symmetrization of the 
wave function. 


• Generally, a truly uncorrelated many-particle state is always represented by a 
product of one-particle functions. 


• Any superposition of such products represented a state where the motion of the 
particles is correlated. 
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Dissociation Limit 
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Our reasons for going beyond the single-configuration of wave function for 
hydrogen molecules: 


In the equilibrium geometry: To describe the detailed correlated motion of the 
electrons as induced by their instantaneous mutual repulsion. 


In the molecular dissociation limit: The reason is related to the degeneracy of 
the bonding and antibonding configurations and unrelated to the repulsion 
between the electrons. 


In the intermediate region: Considering the two configurations serves the 
double purpose of accounting for the effects of Coulomb repulsion and near-
degeneracy of the configurations. 

Electron Correlation
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The exact solution to the Schrödinger equation may be written as a linear combination 
of all determinates that can be constructed from this one-electron basis in the N-
electron Fock space 


The expansion coefficient may be obtained from the variation principle and the solution 
is called the full configuration-interaction (FCI) wave function. 


The number of determinates in a FCI wave function 

FCI = Ci
i
å i

 

Ndet =
M
N
æ 

è 
ç 

ö 

ø 
÷ =

M!
N! (M -N)!

N number of electrons 

M number of orbitals

The factorial dependence of the number of determinates makes FCI intractable for all 
but the smallest systems. 
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Static and Dynamical Correlation 

In the design of configuration spaces smaller than that of FCI, it is important to 
distinguish between static and dynamical correlation. 


Static Correlation is treated by considering the dominant configuration of the FCI 
expansion as well as those configurations that are nearly degenerate with the 
dominant configurations. 


Dynamical Correlation is subsequently treated by adding to the wave function 
configurations generated by excitations, all single, double, and triple excitations, 
and so on. 
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The electronic energy and the occupation numbers of the most important natural orbitals hydrogen 
molecule at the FCI/cc-pVQZ level of theory and the weight of the HF determinant (W(HF)).  

R=1.4 a0 R=4.0 a0 R=15.0 a0

E(FCI)


W(HF)

-1.173796 Eh

  0.9820

-1.015724 Eh

  0.7445

-0.999891 Eh

 0.4751

η(1σg)

η(2σg)

η(3σg)

1.9643

0.0061

0.0003

1.5162

0.0015

0.0000

1.0000

0.0000

0.0000

η(1σu)

η(2σu)

0.0199

0.0002

0.4804

0.0000

1.0000

0.0000

η(1πu) 0.0043 0.0000 0.0000

η(1πg) 0.0001 0.0000 0.0000

At equilibrium single determinant with 
doubly occupied 1σg is enough.

Second most important orbital, with 
nodal plane, increases probability of 
locating electron around opposite 
nucleus “left-right correlation”    

1πu has a nodal plane, increasing the 
probability of finding an electron on the 
opposite side of the molecular axis 
angular correlation. 
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2σg with same irrep as 1σg but radial node, introduces radial 
correlation increasing the probability of locating electrons in 
different distances from molecular axis. 



R=1.4 a0 R=4.0 a0 R=15.0 a0

E(FCI)


W(HF)

-1.173796 Eh

  0.9820

-1.015724 Eh

  0.7445

-0.999891 Eh

 0.4751

η(1σg)

η(2σg)

η(3σg)

1.9643

0.0061

0.0003

1.5162

0.0015

0.0000

1.0000

0.0000

0.0000

η(1σu)

η(2σu)

0.0199

0.0002

0.4804

0.0000

1.0000

0.0000

η(1πu) 0.0043 0.0000 0.0000

η(1πg) 0.0001 0.0000 0.0000

Static correlation 
is dominant.

Dynamical correlation 
is dominant.

At long distances as the interaction between electrons vanishes the importance of 
dynamical correlation decreases and the importance of static correlation increases, and 
orbital 1σg and 1σu becomes degenerate.      
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Configuration Interaction Theory
Configuration interaction (CI) is the most straightforward and general approach for 
the treatment of electron correlation in atoms and molecules.


In the early literature, one used the term “superposition of configurations” which as 
an acronym would be misleading nowadays.


The nodal properties of virtual orbitals can be exploited to improve the description of 
electron interactions. 


For this purpose, excited configurations are generated by moving electrons from 
occupied to virtual orbitals. 
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ns® ks k > n
s ®p *

s ®s *

Radial correlation           
Angular correlation


Left-right correlation 



The Early Days of Configuration Interaction Theory
The first CI calculation was carried out byHyllerass in 1928 for the

helium atom. He investigated the electron corrlation by exciting one or
both electron to higher lying ns orbitals.
He was the father of the CI theory.

In 1950, S. F. Boys published CI study on beryllium atom.
He concluded in his paper that CI is the only feasible method for

calculating, analyzing, and predicting the electronic structure of atoms
and molecules.

Boys and his students (among them Shavitt) pushed forward the
algorithms and computational techniques to carry out CI.

In 1955, Löwdin introduced the natural spin orbitals, which helped to
analyze and understand the wave function of a CI calculation.

A big step was made when Boys group programmed CI calculation for
the EDSAC in 1956 … 25



Configuration Interaction Theory
Wave Function: a linear combination of Slater-determinants

ΨCI = C0ΨHF + ∑
ia

Ca
i Φa

i + ∑
i>j,a>b

Cab
ij Φab

ij + ∑
i>j>k,a>b>c

Cabc
ijk Φabc

ijk + ⋯

HF Singlet Doublet Triplet
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CI Model
In CI method, the electronic wave function is constructed as a linear combination of 
Slater determinants.

|C⟩ = ∑
i

Ci | i⟩

 coefficients determined by variational optimization.Ci

ECI =
⟨C ̂H C⟩

⟨C |C⟩

HC = EC

∂
∂Ci

⟨C ̂H C⟩
⟨C |C⟩

= 0

This is Matrix eigenvalue equation. With element Hij = ⟨i ̂H j⟩
27



CI recipe:

1. Select the expansion space  


2. Construction of the CI matrix elements 


3. Diagonalization of the Hamiltonian or Fock matrix.

{ | i⟩}

⟨C ̂H C⟩
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Full CI Wave Functions

2N Ndet

2 4
4 36
6 400
8 4 900

10 63 504
12 853 776
20 34 134 779 536

Full CI (FCI) wave function generated by distributing all electrons among all orbitals.

In this expansion the number of Slater determinants increase very rapidly with the 
number of electrons and number of orbitals. 

 

Ndet =
n
Na

æ 

è 
ç 

ö 

ø 
÷ 
n
N b

æ 

è 
ç 

ö 

ø 
÷ =

n
N

æ 

è 
ç 

ö 

ø 
÷ 
2

n number of orbital
Nα number of α electron
Nβnumber of βelectron
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CI Expansion Space

Truncation is necessary

 

Ndet =
n
Na

æ 

è 
ç 

ö 

ø 
÷ 
n
N b

æ 

è 
ç 

ö 

ø 
÷ =

n
N

æ 

è 
ç 

ö 

ø 
÷ 
2
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CI Expansion Space

ΨCI = CHF |ΨHF⟩ + CS |S⟩ + CD |D⟩ + CT |T⟩ + ⋯

1. No coupling between the HF ground state and single excitations “Brillouin’s theorem”.    

⟨ΨHF ̂H S⟩ = 0

⟨ΨHF ̂H Φa
i ⟩ = ⟨i ̂h a⟩ + ∑

j
(⟨ij |aj⟩ − ⟨ij | ja⟩) = ⟨i ̂f a⟩

⟨i ̂f a⟩ = εa ⟨i |a⟩ = 0 If spin-orbitals are generated with HF method then the Brillouin 
theorem applied as spin-orbitals orthogonal.     

Single excitations do not mix directly with HF ground state, they can be expected to have 
a very small effect on the ground state energy. Their effect is not zero because they do 
mix indirectly through doubles. 31



CI Expansion Space

⟨ΨHF H ΨHF⟩ 0 ⟨ΨHF H D⟩ 0 ⋯

⟨S H S⟩ ⟨S H D⟩ ⟨S H T⟩ ⋯

⟨D H D⟩ ⟨D H T⟩ ⋯

⟨T H T⟩ ⋯

2. There is no coupling between HF ground state and triples and higher. All matrix 
elements of the Hamiltonian which differ by more than 2 spin orbitals are zero. 


 

D >> S > Q > T
It would be good to terminate it in such a way that all essential terms are retained. 


The approximate order of importance is:     
32



weight =
abc⋯

∑
ijk⋯

(Cabc⋯
ijk⋯ )

2

Ref.
Singles 2
Doubles 1
Triples                   4
Quadruples          3

Relative

importance 
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CI Expansion Space: Truncated CI Wave Functions

ΨCI = C0ΨHF + ∑
ia

Ca
i Φa

i + ∑
i>j,a>b

Cab
ij Φab

ij + ∑
i>j>k,a>b>c

Cabc
ijk Φabc

ijk + ⋯

̂H |ΨCI⟩ = E |ΨCI⟩

( ̂H − EHF) |ΨCI⟩ = (E − EHF) |ΨCI⟩ = Ecorr |ΨCI⟩

Then multiply by   

⟨ΦHF | , ⟨Φa
i | , ⟨Φab

ij | , etc

34



⟨ΦHF ̂H − E0 ΨCI⟩ = Ecorr ⟨ΦHF |ΨCI⟩ = Ecorr

!!

 

E = FHF
ˆ H FHF + ci

a FHF
ˆ H Fi

a

ia
å + cij

ab FHF
ˆ H Fij

ab

i> j a>b
å

+ cijk
abc FHF

ˆ H Fijk
abc

i> j>k a>b>c
å +L

0

0

EHF

…

!!

 

FHF
ˆ H YCI = FHF

ˆ H FHF + ci
a Fi

a

ia
å + cij

ab Fij
ab

i> j a>b
å + cijk

abc Fijk
abc

i> j>k a>b>c
å +L

æ 

è 
ç ç 

ö 

ø 
÷ ÷ 

…

Ecorr = E − EHF = ∑
i>j,a>b

cab
ij ⟨ΦHF ̂H Φab

ij ⟩
35

⟨ΦHF |ΨCI⟩ = 1 Intermediate 
normalized



Ecorr = ∑
i>j,a>b

cab
ij ⟨ΦHF ̂H Φab

ij ⟩

Correlation energy is determined solely by the coefficients of the 
double excitations !!!


Is it enough to include only double excitations in the wave function???

NO!  depends on the other coefficients through the CI equations!


BUT: if  small, this dependence can be neglected.

cab
ij

cab
ij

CID (CI with double excitations) is a good approximation.

Requirement:  is a good starting wave function, i.e. 
ΦHF c0 ∼ 1.0
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CI Expansion Space: Truncated CI Wave Functions

The double excitation coefficients affected by the presence of other excitations.

We would end of with a hierarchy of equations that must be solved simultaneously 
to obtain the correlation energy.   37



CI with single and double substitutions (CISD)

ΦCISD = C0ΨHF + ∑
ia

Ca
i Φa

i + ∑
i>j,a>b

Cab
ij Φab

ij

In practice: CISD - only single and double excitations

We consider the singles also, because:

- Not expensive – much less than double excitations

- One electron properties such as dipole moment

- They will interact (i.e. have non-vanishing matrix elements) with the doubly-

excited configurations. 

This approximation is valid if: , 

i.e. the wave function is dominated by the reference (HF) determinant

c0 ∼ 1.0
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Truncated CI Wave Functions
 is usually satisfied:


-At ground electronic states 

-At equilibrium geometry


Very often this is not satisfied: 

- Dissociation limit; potential energy surface

- Low-lying virtual orbital; transition metal  

- Excited states 


If  is not satisfied what can we do? 

- Include triple, quadruple, etc excitations – too 
expensive 


- Use multi-reference wave function

- Use Coupled-Cluster theory 

c0 ∼ 1.0

c0 ∼ 1.0

CI dissociation curves of water at fixed bond angle (left panel) 
Difference between CI and FCI energies (right panel)  

Water dissociation energy 
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Truncated CI Calculation for Dissociation of H2O

R=Rref R=2Rref

E-EFCI Wa E-EFCI W

RHF 0.217822 0.941050 0.363954 0.589664

CISD 0.012024 0.998047 0.072015 0.948757

CISDT 0.009043 0.998548 0.056094 0.959086

CISDTQ 0.000327 0.999964 0.005817 0.998756

CISDTQ5 0.000139 0.999985 0.002234 0.999553

CISDTQ56 0.000003 1.000000 0.000074 0.999993

a the weights of the CI wave functions in the FCI wave function. 

40



Main problem with CI

Consider two subsystems at infinite separation. We have two choices:


- treat the two systems separately


- consider only a super-system 

Provided that there is no interaction between the two systems, the two treatments 
should give the same result.

Energy does not scale properly with the size of the system:

-not size-consistent 

-not size-extensive 
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Size-consistency 
CID wave function is used to describe two non-interacting system! 


For the supersystem we have:


 is the sum of all double excitations out of  (including coefficients).


For the subsystems, we can write:


The product of these two wave functions gives the other choice for the wave function 
of the super-system:

ΦD
AB ΦHF

AB

 

YAB
CID = YA

CIDYB
CID

=FA
HFFB

HF +FA
HFFB

D +FA
DFB

HF +FA
DFB

D

=FAB
HF +FAB

D +FA
DFB

D

 

YA
CID =FA

HF +FA
D 

YAB
CID =FAB

HF +FAB
D

 

YB
CID =FB

HF +FB
D
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This simple model enables us to identify the origin of the size-consistency error. 


The difference of the two super-system wave functions: 

Size-consistency Size-consistency 

 

YA
CIDYB

CID -YAB
CID =FA

DFB
D

i.e. simultaneous double excitations on the subsystems are missing from the CI 
wave function. 


This error is present also if there is an interaction between A and B, but we cannot 
quantify it by two calculations


 ⇓ 

Lack of Size-extensivity 
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Davidson corrections:


Size-consistency Correction

 

EDC = (1- c0
2)DE

 

DE = Ecorr(CID) = ckl
cd

k>l,c>d
å F0 H - E0 Fkl

cd

 

c0
2=1- (ckl

cd )2
k>l,c>d
å

Correlation energy per water monomer a function of non-interacting water 
molecules. FCI

CISD+DC
CISD

44



Bottlenecks of CI Calculation 
Prerequisite for any CI methods is the efficient calculation of:


Hij = ⟨Φi ̂H Φj⟩
1. Two‐electron integrals


2. Diagonalization of large matrix H.


3. Slow convergence toward FCI limit.


