
On the Computational Practicality of Private Information R etrieval

Radu Sion∗

Network Security and Applied Cryptography Lab
Computer Sciences, Stony Brook University

sion@cs.stonybrook.edu

Bogdan Carbunar
Pervasive Platforms and Architectures

Motorola Labs
carbunar@motorola.com

Abstract

We explore the limits of single-server computational pri-
vate information retrieval (PIR)for the purpose of preserv-
ing client access patterns leakage. We show that deployment
of non-trivial single server PIR protocols on real hardware
of the recent past would have been orders of magnitude less
time-efficient than trivially transferring the entire database.
We stress that these results are beyond existing knowledge
of mere “impracticality” under unfavorable assumptions.
They rather reflect an inherent limitation with respect to
modern hardware, likely the result of a communication-cost
centric protocol design. We argue that this is likely to hold
on non-specialized traditional hardware in the foreseeable
future. We validate our reasoning in an experimental setup
on modern off-the-shelf hardware. Ultimately, we hope our
results will stimulate practical designs.

1 Introduction

Private Information Retrieval, (PIR) has been proposed
as a primitive for accessing outsourced data over a network,
while preventing its storer to learn anything about client ac-
cess patterns [27].

In initial results, Chor et al.[27] proved that in an in-
formation theoretic setting in which queries do not reveal
any information at all about the accessed data items, any
solution requiresΩ(n) bits of communication. To avoid
this overhead, if multiple non-communicating databases can
hold replicated copies of the data, PIR schemes with only
sub-linear communication overheads are shown to exist
[27]. We discuss related single-server PIR schemes in Sec-
tion 4. The related notion ofsymmetricPIR (SPIR) [36, 56]
handles the scenario in which privacy of server data is of
concern and a client is allowed to retrieve only a limited
number of data bits. We discuss SPIR in Section 5.1.

∗Sion is supported in part through the NSF CyberTrust Award CNS-
0627554 and by the Stony Brook Office of the Vice President forResearch.

Here we discuss single-server computational PIRfor the
purpose of preserving client access patterns leakage. We
show that deployment of non-trivial single server private
information retrieval protocols on real hardware of the re-
cent past would have been orders of magnitude more time-
consuming than trivially transferring the entire database.
The deployment of computational PIR would in factin-
creaseoverall execution time, as well as the probability of
forward leakage, when the deployed present trapdoors be-
come eventually vulnerable – e.g., today’s queries will be
revealed once factoring of today’s values will become pos-
sible in the future.

We stress that this is beyond existing knowledge of mere
“impracticality” under unfavorable assumptions. On real
hardware,noexisting non-trivial single server PIR protocol
could have possibly had outperformed the trivial client-to-
server transfer of records in the past, and is likely not to do
so in the future either. This is due to the fact that on any
known past general-purpose Von Neumann hardware, it is
simply more expensive to PIR-process one bit of informa-
tion than to transfer it over a network.

In particular, this impacts the type of complexity reason-
ing as found in [28] (section 2.4, page 971). The complexi-
ties discussed there do not consider thesignificantcomputa-
tion times associated with individual operations. While the
claimed “linear inn” behavior of server-side computation
seems satisfactory, unfortunately, the constants prove tobe
orders of magnitude higher than in the case of trivial (linear
communication) transfer of data, in effect invalidating the
case for PIR as a whole.

We are no wizards. The future prediction section of our
results is at most well-documented guess-work. Indeed, in
the event of an un-expected surge in processing speed per
deployed processor gate (if not simultaneously reflected in
network performance increases) it is possible that current
single-server PIR protocols could become useful. But this is
unlikely to happen until Moore’s Law impact in computing
performancewill significantly out-perform Nielsen’s Law
of networkbandwidth. Moreover, such a surge will not im-
mediately make PIR usable as it will also likely increase the

required minimum key sizes due to faster factoring available
to adversaries.

Scope. We consider single-server computational PIR only.
While we believe also the practicality of themulti-server
case is hampered by hard-to-realize non-collusion assump-
tions, we will not explore multi-server PIR here. We note
that more computationally efficient, sub-linear communica-
tion protocols for multi-server PIR exist, including clever
pre-processing schemes [20] and the use of auxiliary servers
[35] to “hide” the computation costs away from the main
database server. We discuss how our results apply to SPIR
scenarios, in Section 5.1.

Also, it is not in our intention to survey the inner work-
ings (beyond complexity considerations) of various PIR
mechanisms or of associated but unrelated research. We in-
vite the reader to explore a multitude of existing sources,
including the excellent, almost complete survey by William
Gasarch [31, 32]. We will however briefly discuss gen-
eral lower bounds on server-side per-data-bit computation
as well as the associated communication complexity. For
illustration purposes we will exemplify our numbers with
one single-server PIR instance, namely [46], based on the
quadratic residuosity assumption.

Ultimately, we hope this work will stimulate the design
of practical single server PIR protocols.

2 Building Blocks

We start by outlining a few building block elements to
our argument: arithmetic capabilities of modern commod-
ity hardware, the state of the art in modular arithmetic (in
particular multiplications), as well as an instance of a well-
known single-server computational PIR mechanism.

2.1 Hardware

Given specification information availability as well as a
large market share of small business and server markets, we
will illustrate our results for top of the line server CPU x86
architecture hardware. We argue that the results hold cer-
tainly for other architectures in the past and are likely to do
so also for traditional commodity Von Neumann architec-
tures in the future [37]. Moreover, we are not concerned
with expensive specialized fast modular arithmetic hard-
ware. While commercially available accelerators do not sur-
pass our considered baseline1, arguably, more expensive,

1For example, the IBM 4764 PCI-X Cryptographic Coprocessor
(PCIXCC) [14] can generate around roughly 900 RSA signatures per sec-
ond. A 3.6GHz P4 yields a comparable throughput of 400 using the GNU
Multiple Precision Arithmetic Library 4.2.1 [12]. Investing an order of
magnitude more for such hardware for the sole purpose of accelerating
modular arithmetic becomes questionable. We believe the reason for this
anomaly is simply the lack of a market, as x86 performance is more than
adequate for current applications and can be cheaply mass-produced.

specialized high-throughput hardware exists or will become
available. This, however, does not contradict the thesis of
this paper. Indeed, the results below show that investing a
few orders of magnitude more cash resources at the server
side could yield just enough computation speed to keep up
with trivial database transfer. Nevertheless, requiring such
large amounts of resources constitutes an impractical de-
ployment instance in itself. We consider instead realistic
scenarios, using top of the line hardware likely available to
commercial and governmental institutions.

Pentium 4. For illustration and experimental consistency
purposes we will focus on the latest top of the line Intel [3]
Pentium 4 (P4) [43] rated around 10500-11500 (DhryStone)
MIPS in various instances and core frequencies [38, 61]. We
mention that the results of this paper hold regardless of mi-
nor differences in architectural components and function-
ality reasoning [40], including AMD [1] and Motorola [5]
chips. In particular they are true even if the arithmetic abil-
ities of the processing plant were to be one order of magni-
tude faster. Moreover, choosing the x86 as the architecture
of choice is justified by the recent shift toward x86 hardware
even in traditional competitors of Intel/Microsoft [16].

For brevity we will discuss only relevant functionality
and performance elements of the P4, namely its arithmetic
abilities [17, 18]:

“[The P4 contains threearithmetic and logicunits (ALU)],
one complex, slow ALU and two simple, fast ALUs. [...]
The complex ALU handles complex integer instructions like
multiply, divide, and some special-purpose register instruc-
tions. Instructions sent to this ALU generally takefour cy-
clesto complete. [...] The P4’s execution core exhibits one
major peculiarity that sets it apart from any other architec-
ture: two of its integer execution units run at twice the core
clock speed. This allows each double-speed unit effectively
to act as two regular-speed units, because each unit can take
in and spit out two instructions per clock cycle (one on the
clock’s rising edge and one on its falling edge). [...] That’s a
lot of integer horsepower, and indeed the P4 does quite well
in integer benchmarks, especially at higher clock speeds.]”

For simplification reasons we will favor the case for PIR
and assume that the deployed CPU will be able to perform
at least 1 digit multiplication per cycle. Additionally, we
note that we will consider this also for older architectures
(certainly requiring more cycles per multiplication), again
favoring PIR.

Parallelism. It is also important to note that the addition of
multiple units of computation (whether as multi-core archi-
tectures [41] or as traditional multi-processor systems) can
only speed up computation so much. The minimal degree
of parallelism that would make PIR practical is explored in

Section 6. Ultimately this reduces to balancing a trade-off
between financial and performance concerns.

MIPS. For the prediction section of our results, we will
use MIPS (Millions of Instructions Per Second) figures as
a baseline to provide an approximate scale for future per-
formance. While commonly used as a metric of processor
speed, MIPS constitute at its best just a relative measure of
performance for general purpose applications [68]. Never-
theless, the less I/O intensive nature of modular arithmetic
makes MIPS a better predictor to use in this case. Addition-
ally, this is reasonable because the claims below hold within
one order of magnitude or more (i.e., even if the CPU were
one order of magnitude faster). Moreover, we will favor
PIR by always using optimistic speed estimates (assuming
the fastest CPU). LetM denote the MIPS figure for the cur-
rently considered CPU.

2.2 Fast Modular Arithmetic Algorithms

In this section we briefly survey current fast modular
multiplication algorithms.

Beyond Montgomery reduction [52, 54] which results in
a cost of2m2 + 2m digit operations (m is the number of
digits in the operands) a multitude of results have aimed at
reducing the constants. For example, the method in [65]
yields the following execution times:

tmul ≈ (m2+7m)td+(4m
2+20m)ta+(4m

2+2m)tmem (1)

where we denoted bytd, ta andtmem the digit multipli-
cation, digit addition and memory access times.

For illustration purposes we will make a few simplifying
assumptions, favorable to the deployment of computational
PIR. We will ignore additions and memory accesses as well
as insignificant factors in (1). We will approximate the num-
ber of digits in the operands bym ≈ |N |

d where|N | is the
bit-size ofN andd is the bit-size of a digit. We define:

tmul(|N |) ≈ (
|N |
d

)2 × td

Normally [48, 50] we haved = log2(10) ≈ 3.3. The deci-
sion for the value ofd should be made based on the comput-
ing platform and the programming language used to imple-
ment modular reduction [21]. To account for pipelining and
inter-ALU optimizations on the considered Intel platforms,
in the evaluation experiments we will make the empirical,
PIR-favorable approximation ofd ≈ 5 (operating in base
32). This decision is favoring PIR because in effect it is
reducing the number of digits in the main operands2.

2Thus also reducing the claimed complexity of server-side operations,
if 1 digit operation is performed per second as discussed in Section 2.1.

From Section 2.1 we havetd ≈ 1
M and thus:

tmul(|N |) ≈ |N |2
M × d2

(2)

We note that in our experimental evaluation in Section 3.2
this result validates well.

2.3 Quadratic Residuosity PIR

It is known that single-server PIR requires a full transfer
of the database [27, 28] for computationally unbounded ad-
versaries (servers). For bounded adversaries,computational
PIR (cPIR) mechanisms have been proposed.

For illustration purposes, we will consider here one such
protocol [46]. We note that our results hold immediately for
other mechanisms such as [24, 26, 49]. This is due to the fol-
lowing two reasons. First, even though these newer cPIR so-
lutions have a lower communication complexity than [46],
our analysis ignores the communication costs of cPIR. Sec-
ond, anO(n) lower bound on server-side computation com-
plexity is trivial to establish – and for privacy, the per-bit op-
eration(s) for current protocols rely on expensive modular
arithmetic leveraged in the instantiation of some trapdoor.
In fact, in Section 4 we show that the computation costs of
[24, 26, 49] exceed those of [46].

The hardness problem of choice is the quadratic residu-
osity assumption and its equivalent, factoring. We investi-
gate PIR computation times and compare against the alter-
native of transferring the entire database to the client.

In the following we briefly discuss the cPIR mechanisms
in [46]. Then bits of the database are organized logically
at the server as a bi-dimensional matrixM of size

√
n ×√

n. To retrieve bitM(x, y) with computational privacy,
the client:

• randomly chooses two prime numbersp andq of sim-
ilar bit length, computes their product,N = pq and
sends it to the server.

• generates
√

n numberss1, s2, . . . , s√n, such thatsx

is a quadratic non-residue (QNR) and the rest are
quadratic residues (QR) inZ∗

N .

• sendss1, s2, . . . , s√n to the server.

For each “column”j ∈ (1,
√

n) in the
√

n×√
n matrix,

the server:

• computes the productrj =
∏

0<i<
√

n qij whereqij =

s2
i if M(i, j) = 1 andqij = si otherwise3.

3In fact this apparently works also with less work by makingqij = si

if M(i, j) = 1 andqij = 1 otherwise. In the remainder of the paper we
will favor PIR by only assuming 1 multiplication per bit is required

• sendsr1, . . . , r√n to the client

The client then simply checks ifry is a QR inZ
∗
N which

impliesM(x, y) = 1, elseM(x, y) = 0.
The last step can be done also recursively, further reduc-

ing communication. This however, only leads to increases
in computation times, and would make the case for deploy-
ing PIR vs. transferring the data even more difficult. We
will thus rather just look at the lesser PIR cost of the simple
protocol above.

Let M be the CPU processing speed measured in MIPS
andB the available (bps) network bandwidth between client
and server. We will denotett = 1

B the time required
to transmitone bitbetween the server and the client, and
tqrv(b) the time required to verify the quadratic residuosity
of oneb-bit number.

The above computational PIR protocol will incur the fol-
lowing cost (including communication and execution time):

Tpir = ntmul(|N |) + 2
√

n(|N |)tt +
√

ntqrv(|N |) (3)

We will simplify further, by ignoring any other costs besides
thentmul(|N |) factor:

Tpir ≈ n × tmul(|N |)

We emphasize that this is favorable to PIR, by ignoring the
quadratic residuosity verification of

√
n |N |-bit numbers (as

well as the PIR communication costs), which can be signif-
icant. We will compare against the time required to transfer
the entire database:

Ttrans = n × tt

Let us then consider∆T , the difference in execution time
between a protocols involving PIR vs. simple complete
database transfer to the client:

∆T = Tpir − Ttrans ≤ n × (tmul(|N |) − tt)

It can be seen that if the server-side 1-bit processing time
exceeds a 1-bit transmission time, the single-server compu-
tational PIR protocol will take longer (∆T > 0) than simply
transferring the database over to the client.

Next, to evaluate the above in a PIR-favorable scenario,
we will assume that very fast modular arithmetic algorithms
are put in place, as discussed above in Section 2.2. Using
equation (2) in Section 2.2, we write:

((
|N |2

M × d2
− 1

B
) > 0) ⇒ (∆T > 0) (4)

Equation (4) represents the boundary condition that deter-
mines whether single-server computational PIR is slower
than downloading the entire database to the client. In Sec-
tion 3 we evaluate this condition and show that its left side
holds true on traditional hardware.

2.4 Key Sizes

By operating under an assumption of acomputation-
ally bounded adversary, it is important to assess associated
bounds and relate them to the deployed privacy-enabling
trapdoor. Because the single-server computational PIR set-
ting of choice relies on the quadratic residuosity assumption
we will consider here the (equivalent) assumed hardness of
factoring as a metric for achieved privacy.

RSA Labs [8] has started evaluating and recommending
key sizes for RSA since 1995 [11] when 768 bit sizes were
deemed appropriate for most application. Both the RSA
[9] and the National Institute of Standards and Technology
(NIST) key schedules [58] (last updated in August 2005)
propose 1024 bits minimum until 2010. Secrets that are to
live beyond 2010, but not after 2030, are to be protected
by minimum 2048 bit RSA keys. Beyond 2030, a minimum
key size of 3072 bit and above is recommended [9] (we omit
the symmetric key sizes and discussion for brevity). See
also the RSA Factoring Challenge effort [7]. Additionally,
in 2004, the NESSIE (New European Schemes for Signa-
tures Integrity and Encryption) Project [6] recommended a
minimum of 1536 bits for RSA signatures.

target 1995 2000 − 2010 2011 − 2030 2030−
bits 768 1024-1536 2048 3072

Figure 1. RSA key size schedule.

These recommendations are important to consider also
in the light of new specialized factoring hardware such as
the Weizmann Institute Relation Locator [10] that claims
factoring times of no more than 1 year for 1024 bit sizes, at
a cost of a few dozen million US dollars. In the following
we will use these recommendations (Figure 1) to establish
the values of|N | for different points in time.

3 Timeline

To evaluate the behavior of boundary condition (4) we
will basically analyze its left side. Specifically, we will
compare the time required to perform a modular|N |-bit
multiplication,tmul with the time taken to transfer one bit
of information,tt.

As a lower bound baseline we consider Intel CPUs [25,
42], and a variety of network setups, including average
home-user last-mile connection bandwidths [4], Ethernet as
well as commercial high-end inter-site connections [2, 70,
72]. These are arguably settings in which PIR would be
very likely of deployment use.

3.1 Past: 1995-2005

We start by discussing the evolution oftmul andtt be-
tween 1995 and 20054.

year M B B2 B3

1995 200 0.028 10 0.256
1997 300 0.056 100 0.768
1998 400 1.000
1999 744 0.768 1000 10
2000 1500
2001 2500 1.000 100
2005 15000 4.000 10000 1000
2006 25000 6.000 10000 1500

Figure 2. Estimated average values for x86
CPU MIPS, end-user home commodity Inter-
net (B), Ethernet LAN (B2) and commercial
high-end inter-site (B3) bandwidth (Mbps), be-
tween 1995 and 2006.

Figure 2 shows averages of MIPS (M) [25, 42] and band-
width (B) values for commodity hardware and various types
of networks [2, 30, 70, 72], between 1995 and 2006.

 1e−11

 1e−10

 1e−09

 1e−08

 1e−07

 1e−06

 1e−05

 0.0001

 0.001

 1994 1996 1998 2000 2002 2004 2006

tim
e

(s
)

year

1995−2006: cost of one multiplication vs. cost of 1 bit transmission

pir
home connection

Ethernet LAN
commercial inter−site

Figure 3. Comparison between the time re-
quired to perform PIR and the time taken
to transfer the database, between 1995 and
2005. PIR is orders of magnitude slower. (log-
arithmic)

In Figure 3 (logarithmic scale) we plottmul and tt for
hardware between 1995 and 2005 (see also Figure 2). It can
be seen that the time required for performing one|N |-bit
multiplication has consistently beenone order of magnitude
larger than the time of transferring one bit on a low-end con-
nection andtwo orders of magnitudelarger than the transfer

4Single-server computational PIR was introduced in 1995.

on a high-end connection. Note that the increase of|N |
from 768 to 1024 bits, reflects also in the increase of PIR
cost between 1995 and 1997.

3.2 Present: 2006

We now consider current hardware and start by validat-
ing equation (2). This is important so as to ensure bet-
ter prediction ability for Section 3.3. For this purpose,
we benchmarked 1024 bit operations on a Intel(R) Pen-
tium(R) 4 CPU running at 3.60GHz with 1GByte RAM,
using the GNU Multiple Precision Arithmetic Library5

4.2.1 [12]. For modular multiplication GMP uses Mont-
gomery’s REDC [54] method [12]. Running in semi-
controlled light-load multi-user mode on a Linux box, we
obtained a throughput of around0.273 million 1024-bit
modular multiplications per second.

For this processor, rated at around 11000 MIPS (see Sec-
tion 2.1), this value is predicted with surprising accuracy
by equation (2) – considering all the simplifying assump-
tions made in deriving it. The value predicted is around
0.275 million. The higher actual throughput is likely due to
pipelining, predictive branching and multi-ALU operations.

For cross-validation purposes, we further repeated the
same experiments on other platforms, including a Pen-
tium(R) M CPU running at 1.80GHz, rated at 6500-7500
(Dhrystone) MIPS [53, 62] (despite its lower clock-rate).
We achieved similar good prediction: 0.197 million 1024-
bit modular multiplications were benchmarked, 0.189 mil-
lion were predicted by equation (2).

In the Pentium(R) 4 CPU setup above, PIR process-
ing one single bit would require around 3700 nanoseconds.
Considering even a home-user cable-modem bandwidth of
only 10Mbps6 transferring one bit would require roughly
100 nanoseconds. Even if one would consider significant
transfer protocol overheads this would still be over 30 times
faster than PIR processing.

Drastically Limited Bandwidth. For extremely limited
bandwidth however, it seems like PIR could be more ef-
ficient. In this particular scenario, PIR seems to become
usable for bandwidths of 300Kbps or less. This is not the
case immediately however. The PIR-favorable simplifica-
tions and previously ignored factors now become signifi-
cant. For example, on a slow connection, the2

√
n(|N |) PIR

associated network traffic in equation (3) cannot be ignored
anymore. This will (i) further reduce the bandwidth thresh-
old below which PIR is usable and (ii) make this threshold
dependent onn (thus impractical in deployment).

5Which proved faster than the OpenSSL 0.9.7j Library [63], thus was
chosen instead.

6At the time of this writing, one of the author’s home connec-
tion offers 15Mbps down-stream and 5Mbps up-stream throughputs for
$29.95/month.

We illustrate this borderline behavior in Figure 4. The
dependency ofn becomes apparent when considering 10
MBytes vs. 1 MBytes databases. It can be seen that for
10 MBytes databases, PIR become profitable if the band-
width is below 210 Kbps, whereas in the case of a 1 MByte
database, this threshold goes down to 70Kbps. It is also im-
portant to note that for

√
n < |N | this PIR protocol would

require more communication than a trivial database transfer
(thus it cannot be used for small databases, e.g.< 1MBit).

 0

 200

 400

 600

 800

 1000

 50 100 150 200 250 300

tim
es

 (
se

cs
)

bandwidth (Kbps)

1MB transfer
1MB cPIR

10MB transfer
10MB cPIR

Figure 4. Low Bandwidth (tmul < tt, condi-
tion (4) does not hold): behavior of execution
times for cPIR for the Pentium(R) 4 CPU set-
ting vs. database transfer times. If its (previ-
ously ignored) communication overheads are
considered, the bandwidth thresholds below
which cPIR becomes usable (faster than triv-
ial transfer) further decrease.

3.3 Future: 2006-2035 and beyond

We have shown that single-server computational PIR has
not been yet an efficient alternative to a straightforward
database transfer for the purpose of privacy of client access
patterns. Now we explore if this is likely to change in the
next 30 years. We model advances in processing power by
Moore’s Law [55]. We model future bandwidth figure by
Nielsen’s Law of Internet Bandwidth [57].

In its current form, believed to hold for at least two more
decades [25, 42], Moore’s Law states that the number of
transistors on integrated circuits doubles every 18 months
(increases 100 times every ten years). Intel notes the law
holds very well, roughly doubling the processor MIPS fig-
ures every two years [42]. Nielsen’s Law states that high-
end network bandwidth grows at least by 50% per year
(increases 57 times every ten years). It has been so far
(over)validated [2, 70, 72].

 1e−16

 1e−14

 1e−12

 1e−10

 1e−08

 1e−06

 0.0001

 2010 2015 2020 2025 2030 2035

tim
e

(s
)

year

2006 − 2036: cost of one multiplication vs. cost of 1 bit transmission

pir
home connection

Ethernet LAN
commercial inter−site

Figure 5. Prediction of future PIR execution
vs. database transfer times. PIR is orders of
magnitude slower. (logarithmic)

It is apparent that processing power increases faster than
the available bandwidth. The increase in processing power
however implies not only decreases intmul but also man-
dates larger|N | values as factoring speeds will increase too.
It is important to evaluate which of these trends (if any) will
dominate. Figure 5 (logarithmic scale) plots the predicted
evolution for tmul and tt between 2005 and 2035 by also
considering the recommended key schedules discussed in
Section 2.4. It can be seen thattmul can be predicted to
continue to be at least one order of magnitude larger than
tt (even for slow home connections !), effectively neutral-
izing the impact of the accelerated increase in processing
power vs. bandwidth. In other words PIR execution times
are likely to continue to be orders of magnitude higher than
trivial database transfers.

4 Other Protocols

We argued above that deploying any single-server com-
putational PIR protocol is necessarily less efficient than a
simple transfer of the entire database, in real scenarios. We
have done so by illustrating our results with the aid of a par-
ticular well-known computational PIR method.

In this section we aim to understand if other existing
single-server PIR variants can surpass these results and in
fact be efficient enough to become usable. We previously
(Section 2.3) argued that this is unlikely due to theO(n)
lower bound on server-side processing mandating expensive
trapdoor operations per bit, for privacy. We now elaborate
on existing single-server PIR mechanisms.

Cachin et al.[24] propose the use of theφ-Hiding As-
sumption to perform PIR with poly-logarithmic communi-
cation complexity. We note the protocol requires the server
to performn exponentiations modulom. As the security

of the protocol relies on the assumed hardness of factoring
m, this immediately implies that the bit size ofm has to be
at least as recommended in Section 2.4. This would render
the method significantly more expensive than the quadratic
residuosity PIR version discussed above, as modular expo-
nentiation is costlier.

Lipmaa [49] extends the work of Stern [71]. In their
scheme, the server performs more thann expensive expo-
nentiations (andn multiplications).

Chang [26] introduces a single database computational
PIR scheme for which the server side communication com-
plexity is O(log(n)). This scheme relies on Paillier [59].
The computation complexity significantly exceeds the com-
plexity of our considered algorithm above [46] as the server
is required to operate inZ∗

n2
. Thus the results hold7.

Kushilevitz and Ostrovsky [47] generalize a set of previ-
ous results and show that PIR can be performed with com-
munication strictly less thann when using one-way trap-
door permutations (TDPs). They propose a protocol that
requires the client to sendO(k2) bits and the server to reply
with n − n/2k bits, wherek is a security parameter of the
TDPs. In addition, the server has to performn/k TDPs on
strings ofk bits andn bitwise XORs.

Thus the protocol decreases communication byn/2k bits
at the expense ofn/k TDPs. For consistency, it is natural
to require the PIR method to offer at least the security at-
tained under the hardness of factoring trapdoor as consid-
ered above. Unless a cheaper instance of such type of trap-
door can be materialized, for the time being it is reasonable
to assume the trapdoor is at least as computationally inten-
sive as modular squaring8. In fact our argument requires
less, namely that the trapdoor is at least as expensive asone
half the cost of a modular multiplication.

This is true because the protocol effectively reduces the
argument of PIR’s practicality to a comparison between the
cost of the trapdoor andhalf of the cost of transferring a bit.
This in fact strengthens the argument against PIR that was
made above, which relied on comparing the cost of transfer-
ring a full bit with the cost of the trapdoor. Thus, the above
results hold.

Mann [51] extends the work of [46] with a trapdoor pred-
icate with homomorphic properties; the server is required to
performn modular multiplications.

7In fact we have designed and experimentally evaluated a customized,
more efficient (than [26]) use of Paillier for PIR and validated the fact that
[46] is much faster.

8It is known that TDPs imply the existence of public key encryption
mechanisms. Known TDPs are RSA, Rabin [64] and Paillier. RSArequires
one modular exponentiation and Rabin relies on modular squaring. Paillier
[60] requires two exponentiations and a multiplication inZ

∗

n2
.

5 Limitations of Our Argument

We now briefly describe several existing PIR extensions
for which our analysis seems to not directly apply.

5.1 Symmetric Private Information Retrieval

In the analysis above, we specifically did not address the
symmetric PIR case. We do so here.

In the multi-server space, Gertner et al. [36] propose
a transformation from any PIR scheme to a SPIR scheme
at the expense of an increased number of non-cooperating
servers. Naor and Pinkas [56] have shown a PIR-to-SPIR
transformation for any PIR scheme for the single server
case. The transformation uses their 1-out-of-n Oblivi-
ous Transfer (OT) protocol. The idea of the transforma-
tion is for the server to generatel = log n key pairs,
(k0

1 , k1
1), .., (k

0
l , k0

l) and mask itsi-th data item,i = 1..n,
with a subset of the keys (one from each pair), correspond-
ing to the binary representation ofi. That is, if the server’s
values arex1, .., xn and the binary representation ofi is
i1..il, then the server masks valuexi using keyski1

1 , .., kil

l .
Let xi be the value the client wants to retrieve and letyi

denote the maskedxi value. Using any existing 1-out-of-2
OT protocol, the client retrieves only one key out of each
pair, the one corresponding to the binary representation of
the index of interest (ki1

1 , .., kil

l).
The PIR-to-SPIR transformation uses any PIR scheme

to transfer to the client only the masked item of interest.
The transformation adds to the communication complexity
of the PIR scheme onlylog n invocations of the 1-out-of-
2 OT protocol. The per query computation complexity in-
creases withn log n pseudo-random function evaluations.

However, as argued in this paper, trivial PIR (transfer-
ring the entire database at the client) is more efficient than
performing computation intensive PIR with reduced com-
munication costs. Consequently, it seems that having the
client simply transfer alln masked items,y1, .., yn would
be more efficient in this case. The symmetric assurances
still hold, since the client can retrieve only one key out of
each key pair, it can unmask only one of then items. In
conclusion, symmetric PIR seems to be achievable without
the aid of non-trivial computational PIR schemes.

5.2 Computation-Amortized PIR

Ishai et al. [44] proposed the use of batch codes to amor-
tize the server-side computation complexity of PIR over
k queries performed by a single client. The solution al-
lows the simultaneous retrieval ofk data items using only
n1+o(1) server-side computation. Thus, its applicability is
constrained to cases where clients can wait for the collec-
tion of k queries. In [45] the same authors have also investi-

gated multi-client computation and communication amorti-
zation techniques. They propose the use of two-way anony-
mous communication channels and amortization over multi-
ple clients in order to provide a PIR solution close to optimal
in terms of both communication and computation. Its secu-
rity relies on the hardness of interpolating noisy low-degree
curves in a low dimensional space.

Specifically, the server stores the database entries as
coefficients of ac-variate polynomialq of degreed =
O(n1/c), wheren is the database size. For each itemxi

in the database, there exists a pointzi ∈ F c, such that
q(zi) = xi (whereF is a field). For a query for item
xi a client randomly generatesc polynomials of degreek,
p1, .., pc such thatzi = (p1(0), .., pc(0)). It then picks
kd + 1 points fromF and generates for each such point
a sub-query consisting of the evaluation of itsc polynomi-
als on the point. It then sends the resultingc points to the
server, through an anonymizer. Upon receiving a sub-query,
the server evaluatesq on thec points of the sub-query, and
anonymously sends back the result. Thus, the server is pre-
vented from correlating sub-queries and clients. Using the
answers tokd+1 sub-queries, the client can reconstructxi.

To provide computational privacy, the above mechanism
requires each client to add “noise” to its query. That is, a
client needs to mix its previouskd + 1 sub-queries with a
set of random points. The total amount of noise sent by all
uncorrupted (not cooperating with the server) clients must
beω(kn1+1/c). Each sub-query, including each noise point,
is sent separately through the anonymizer.

While the maximum number of clients concurrently ac-
cessing the database,C, can be on the order of thousands,
the size of average databases can be on the order of millions
of items. Hence, the number of noise containing sub-queries
per client query,ω(kn1+1/c/C) is likely to be quite large.
For instance, for a database of one million items, concur-
rently accessed by 10000 clients and for values ofk = 5 and
c = 20, the number of noise sub-queries per query needs to
be larger than 1000. This, together with the relatively high
latency of anonymizers9 (on the order of hundreds of mil-
liseconds), can lead to high response times.

Experiments in Tor [29] (similarly in [23]) show
anonymizer-induced latencies to be anywhere in the 0.1-5s
range. Even in the presence of optimal query pipe-lining,
and, under the favorable (yet unrealistic) assumption thatall
clients “arrive” simultaneously at the anonymizer, this can
result in significant overheads, often rendering trivial multi-
client transfer of the database more efficient. Moreover, in
[29] the authors note the fact that, with increasing network
loads (e.g., many clients – as required by the mechanisms
above), “the chance of building a slow circuit is increasing”,
thus leading to increased latencies in average expectation.

9Low latency anonymizers are open to timing attacks [22].

6 Conclusions

We explored single-server PIR for client access privacy.
We showed that single-server PIR protocols, running on
modern high-end non-specialized hardware and networks,
are mostly orders of magnitude slower than the trivial trans-
fer of the entire database to the client. We illustrated this
for past hardware and experimentally validated our claim
on current hardware. We predicted the results to hold also
in the future based on considerations of future network and
computation devices.

We explored settings in which existing single-server PIR
protocols may become usable. In particular, this is the case
for scenarios involving highly limited bandwidth (tens of
KBps or less) networks. Moreover, such protocols can be
leveraged if large (10-1000 CPUs) amounts of server pro-
cessing units are available to overcome the orders of mag-
nitude difference between per-bit privacy processing and bit
network transfer. This is likely impractical from a dollar-
cost point of view. Purchasing hundreds of CPUs to achieve
the same privacy level as offered by transferring the entire
data over a cheap network link is hardly sound. Informally,
single-server PIR can only become usable if communica-
tion can be traded for orders of magnitude more computa-
tion. We argue this is an unrealistic proposition given likely
mainstream or even specialized application scenarios.

Recommendations. We hope this work will stimulate
work on practical designs [13]. We believe it is important
to explore protocols for single-server PIR in the presence of
server-side trusted hardware [15, 69]. This should allow the
delegation of client-logic in closer proximity to the data and
might yield significant benefits. The dominant component
of current solutions [19, 39, 73] is the periodic reshuffling
of the database, performed by the secure CPU. The period
is determined by the size of the secure CPU’s tamper proof
cache. For reshuffling, the operations performed by the se-
cure CPU are encryptions, decryptions and communication
with the host. Asonov [19] proposed a solution that requires
O(n

√
n) operations for a reshuffle. Iliev and Smith [39] use

Benes networks to decrease this overhead toO(n log n) op-
erations. Wang et al.[73] further reduce this overhead to
O(n) operations.

We argue that “run client p̈roxyı̈nside secure CPU” ap-
proaches [19, 39, 73] are likely to fail as typically such hard-
ware is orders of magnitude slower than main CPUs (e.g.,
due to heat dissipation concerns). The main CPU will re-
main starkly under-utilized and the entire cost-proposition
of having fast (unsecured) main CPUs and an expensive
and slow secured CPU will be defeated. We believe effi-
cient protocols are likely to access the secure hardware just
sparsely, in critical portions, not synchronized with the main
data flow.

Additionally, novel PIR protocols with lower server-side

per-bit computation requirements should be designed. Main
directions of research here include (i) the design of block-
level protocols that amortize expensive modular operations
over larger block sizes, and (ii) protocols based on novel
hard problems that allow cheaper server-side arithmetic.

In promising ongoing work [33, 34] a method replac-
ing modular multiplication with modular addition (based on
novel security results [66, 67]), has been proposed.

7 Acknowledgments

We would like to thank Dan Boneh, Giovanni Di
Crescenzo, Bill Gasarch, Aggelos Kiayias, Rafail Ostro-
vsky, Gene Tsudik, Rebecca Wright, as well as our anony-
mous reviewers for their great feedback throughout the pro-
cess that led to this paper.

References

[1] Advanced Micro Devices. Online athttp://www.amd.
com.

[2] Intel and Ethernet. Online athttp://www.intel.com/
standards/case/case ethernet.htm.

[3] Intel Corporation. Online athttp://www.intel.com.
[4] Introduction to DSL. Online at http://www.

informit.com/articles/article.asp?p=
31699&seqNum=3&rl=1.

[5] Motorola. Online athttp://www.motorola.com.
[6] New European Schemes for Signatures Integrity and En-

cryption. Online athttp://www.cryptonessie.
org/.

[7] RSA Factoring Challenge. Online atwww.
rsasecurity.com/rsalabs/challenges/
factoring/.

[8] RSA Labs. Online athttp://www.rsasecurity.
com/rsalabs.

[9] TWIRL and RSA Key Size. Online athttp:
//www.rsasecurity.com/rsalabs/node.
asp?id=2004.

[10] TWIRL: The Weizmann Institute Relation Locator. On-
line at http://www.wisdom.weizmann.ac.il/
∼tromer/twirl/.

[11] RSA CryptoBytes, Summer 1995. Online atftp:
//ftp.rsasecurity.com/pub/cryptobytes/
crypto1n2.pdf, 1995.

[12] GMP: GNU Multiple Precision Arithmetic Library. Online
athttp://www.swox.com/gmp/, 2005.

[13] Achieving Practical Private Information Retrieval (Panel).
Online at https://www.cs.stonybrook.edu/
∼sion/research/PIR.Panel.Securecomm.
2006/, 2006.

[14] IBM 4764 PCI-X Cryptographic Coprocessor (PCIXCC).
Online at http://www-03.ibm.com/security/
cryptocards/pcixcc/overview.shtml, 2006.

[15] IBM Cryptographic Hardware. Online athttp://
www-03.ibm.com/security/products/, 2006.

[16] Apple. Apple to Use Intel Microprocessors Beginning
in 2006. Online athttp://www.apple.com/pr/
library/2005/jun/06intel.html, June 2005.

[17] Arstechnica.com. The Pentium 4 and the G4e: an
architectural comparison – Part II: the execution core.
Online at http://arstechnica.com/articles/
paedia/cpu/p4andg4e2.ars/2, Nov. 2001.

[18] Arstechnica.com. The Pentium: An Architectural History
of the World’s Most Famous Desktop Processor (Part II).
Online at http://arstechnica.com/articles/
paedia/cpu/pentium-2.ars/3, July 2004.

[19] D. Asonov.Querying Databases Privately: A New Approach
to Private Information Retrieval. Springer Verlag, 2004.

[20] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers
computation in private information retrieval: PIR with pre-
processing.Lecture Notes in Computer Science, 1880:55–
??, 2000.

[21] A. Bosselaers, R. Govaerts, and J. Vandewalle. Comparison
of three modular reduction functions. InCRYPTO ’93: Pro-
ceedings of the 13th annual international cryptology confer-
ence on Advances in cryptology, pages 175–186, 1994.

[22] Brian N. Levine and Michael K. Reiter and Chenxi Wang
and Matthew Wright. Timing attacks in low-latency mix-
based systems. InProceedings of Financial Cryptography,
2004.

[23] M. Burnside and A. Keromytis. Low latency anonymity with
mix rings. InProceedings of the 9th International Informa-
tion Security Conference (ISC), 2006.

[24] C. Cachin, S. Micali, and M. Stadler. Private Information
Retrieval with Polylogarithmic Communication. InProceed-
ings of Eurocrypt, pages 402–414. Springer-Verlag, 1999.

[25] C. D. Carothers. Evolution of Intel microprocessors:
1971 to 2007. Online athttp://www.cs.rpi.edu/
∼chrisc/COURSES/CSCI-4250/SPRING-2004/
slides/cpu.pdf, 2004.

[26] Y. Chang. Single-Database Private Information Retrieval
with Logarithmic Communication. InProceedings of the 9th
Australasian Conference on Information Security and Pri-
vacy ACISP. Springer-Verlag, 2004.

[27] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private
information retrieval. InIEEE Symposium on Foundations of
Computer Science, pages 41–50, 1995.

[28] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private
information retrieval.J. ACM, 45(6):965–981, 1998.

[29] R. DingleDine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. InProceedings of the 13th
USENIX Security Symposium, 2004.

[30] Ethernet Alliance. A historical perspective of ether-
net. http://www.ethernetalliance.org/
technology/presentations.

[31] W. Gasarch. A WebPage on Private Information
Retrieval. Online athttp://www.cs.umd.edu/
∼gasarch/pir/pir.html.

[32] W. Gasarch. A survey on private information retrieval,2004.
[33] W. Gasarch and R. Sion. Personal Communication, 2006.
[34] W. Gasarch and A. Yerukhimovich. Computational Inexpen-

sive PIR (unpublished manuscript), 2006.

[35] Y. Gertner, S. Goldwasser, and T. Malkin. A random server
model for private information retrieval or how to achieve in-
formation theoretic PIR avoiding database replication.Lec-
ture Notes in Computer Science, 1518:200–??, 1998.

[36] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protect-
ing data privacy in private information retrieval schemes.In
STOC ’98: Proceedings of the thirtieth annual ACM sym-
posium on Theory of computing, pages 151–160, New York,
NY, USA, 1998. ACM Press.

[37] J. L. Hennessy and D. Goldberg.Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers,
1996.

[38] Hothardware.com. Pentium 4 670 3.8GHz Performance
Profile. Online athttp://www.hothardware.com/
viewarticle.aspx?articleid=686.

[39] A. Iliev and S. W. Smith. Protecting client privacy with
trusted computing at the server.IEEE Security and Privacy,
3(2):20–28, 2005.

[40] Intel. Intel Itanium 2 Processor Reference Manual For Soft-
ware Development and Optimization. Intel Corporation,
2004.

[41] Intel. Intel Multi-Core Processing. Online athttp://
www.intel.com/cd/ids/developer/asmo-na/
eng/strategy/multicore/index.htm, May 2006.

[42] Intel Circuit Research Labs. Gigascale Integration-
Challenges and Opportunities. Online athttp:
//www.intel.com/cd/ids/developer/
asmo-na/eng/182440.htm.

[43] Intel Corporation. Intel Pentium 4 Processor. Online at
http://www.intel.com/products/processor/
pentium4.

[44] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Batch
codes and their applications. InSTOC ’04: Proceedings of
the thirty-sixth annual ACM symposium on Theory of com
puting, pages 262–271, 2004.

[45] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryp-
tography from anonymity. InProceedings of 47st Annual
IEEE Symposium on the Foundations of Computer Science
(FOCS), 2006.

[46] E. Kushilevitz and R. Ostrovsky. Replication is not needed:
single database, computationally-private information re-
trieval. In Proceedings of FOCS. IEEE Computer Society,
1997.

[47] E. Kushilevitz and R. Ostrovsky. One-way trapdoor permu-
tations are sufficient for non-trivial single-server private in-
formation retrieval. InProceedings of EUROCRYPT, 2000.

[48] J.-Y. Leu and A.-Y. Wu. A scalable low-complexity digit-
serial VLSI architecture for RSA cryptosystem. InProceed-
ings of the IEEE Workshop Signal Processing Systems SIPS,
1999.

[49] H. Lipmaa. An oblivious transfer protocol with log-squared
communication. Cryptology ePrint Archive, 2004.

[50] Mads Oesterby Olesen and Henrik Sandmann and Christo-
pher Mosses. Implementing Fast Modular Arithmetic
(Course). Online athttp://www.daimi.au.dk/
∼cmosses/crypt/, 2002.

[51] E. Mann. Private access to distributed information. Master’s
thesis, Technion - Israel Institute of Technology, 1998.

[52] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 2001.

[53] MobilityGuru.com. The First Pentium-M Notebook Put To
The Test. Online athttp://www.mobilityguru.
com/2003/02/05/the first pentium/page10.
html.

[54] P. Montgomery. Modular Multiplication without Trial Divi-
sion.Mathematics of Computation, 44(170):519–521, 1985.

[55] G. Moore. Cramming more components onto integrated cir-
cuits. Electronics Magazine, April 1965.

[56] M. Naor and B. Pinkas. Oblivious transfer and polynomial
evaluation. InSTOC ’99: Proceedings of the thirty-first an-
nual ACM symposium on Theory of computing, pages 245–
254, New York, NY, USA, 1999. ACM Press.

[57] J. Nielsen. Nielsen’s Law of Internet Bandwidth. Online
at http://www.useit.com/alertbox/980405.
html, Apr. 1998.

[58] N. I. of Standards and T. (NIST). The key manage-
ment guideline. Online athttp://csrc.nist.gov/
CryptoToolkit/tkkeymgmt.html, Aug. 2005.

[59] P. Paillier. Public-key cryptosystems based on composite de-
gree residuosity classes. InProceedings of EuroCrypt, 1999.

[60] P. Paillier. A trapdoor permutation equivalent to factoring.
In PKC ’99: Proceedings of the Second International Work-
shop on Practice and Theory in Public Key Cryptography,
pages 219–222, London, UK, 1999. Springer-Verlag.

[61] PCStats.com. Intel Pentium 4 3.2GHz Extreme Edition Pro-
cessor Review. Online athttp://www.pcstats.com/
articleview.cfm?articleid=808.

[62] PCStats.com. Shuttle XPC SD11G5 Small Formfactor
PC Review. Online athttp://www.pcstats.com/
ArtRSS.cfm?articleid=1905.

[63] T. O. Project. OpenSSL: The open source toolkit for
SSL/TLS.www.openssl.org, April 2003.

[64] M. O. Rabin. Digitalized signatures and public-key func-
tions as intractable as factorization. Technical report, Cam-
bridge, MA, USA, 1979.

[65] Rainer Bluemel and Ralf Laue and Sorin A. Huss. A highly
efficient modular Multiplication Algorithm for Finite Field
Arithmetic in GF(P). InProceedings of ECRYPT Workshop,
Cryptographic Advances in Secure Hardware, 2005.

[66] O. Regev. New lattice based cryptographic constructions.
Journal of the ACM, 51(6):899–942, 2004.

[67] O. Regev. Lattice-based cryptography. InProceedings of
Crypto, 2006.

[68] R. D. Silverman. Exposing the Mythical MIPS Year.Com-
puter, 32(8):22–26, 1999.

[69] S. W. Smith and D. Safford. Practical server privacy with
secure coprocessors.IBM Systems Journal, 40(3):683–695,
2001.

[70] C. E. Spurgeon.Ethernet: The Definitive Guide. O’Reilly
and Associates, 2000.

[71] J. Stern. A new and efficient all-or-nothing disclosureof
secrets protocol. InProceedings of Asia Crypt, pages 357–
371, 1998.

[72] A. S. Tanenbaum.Computer Networks. Prentice Hall, 2002.
[73] S. Wang, X. Ding, R. Deng, and F. Bao. Private information

retrieval using trusted hardware. In11th European Sympo-
sium On Research In Computer Security (ESORICS), 2006.

