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Abstract: In order to investigate the impact of two immunization strategies—vaccination targeting
susceptible individuals to reduce their infection rate and clinical medical interventions targeting
infected individuals to enhance their recovery rate—on the spread of infectious diseases in complex
networks, this study proposes a bilinear SIR infectious disease model that considers bidirectional
immunization. By analyzing the conditions for the existence of endemic equilibrium points, we derive
the basic reproduction numbers and outbreak thresholds for both homogeneous and heterogeneous
networks. The epidemic model is then reconstructed and extensively analyzed using continuous-time
Markov chain (CTMC) methods. This analysis includes the investigation of transition probabilities,
transition rate matrices, steady-state distributions, and the transition probability matrix based on
the embedded chain. In numerical simulations, a notable concordance exists between the outcomes
of CTMC and mean-field (MF) simulations, thereby substantiating the efficacy of the CTMC model.
Moreover, the CTMC-based model adeptly captures the inherent stochastic fluctuation in the disease
transmission, which is consistent with the mathematical properties of Markov chains. We further
analyze the relationship between the system’s steady-state infection density and the immunization
rate through MCS. The results suggest that the infection density decreases with an increase in the
immunization rate among susceptible individuals. The current research results will enhance our
understanding of infectious disease transmission patterns in real-world scenarios, providing valuable
theoretical insights for the development of epidemic prevention and control strategies.

Keywords: SIR epidemic model; complex network; continuous-time Markov chain; basic reproduction
number

1. Introduction

The mathematical modeling of infectious diseases is of significant importance, as it fa-
cilitates a profound understanding of disease transmission patterns and aids in formulating
corresponding strategies for epidemic prevention. Beginning with the pioneering work of
Kermack and McKendrick [1], mathematical modeling has demonstrated its effectiveness
as a powerful tool for understanding the transmission dynamics of infectious diseases. The
classical compartmental model they introduced categorizes the population within an epi-
demic area into three groups: susceptible, infected, and recovered individuals. Additionally,
this model also elucidates the transmission dynamics of the disease across the population
through a system of differential equations grounded in mean-field methods. Indeed, the
compartmental model has gained broad acceptance and is widely utilized to explore the
intricacies of infectious disease dynamics, maintaining its significance in the contemporary
era. Later, in 1932, Kermack and McKendrick [2] introduced the SIS compartmental model.
Through a theoretical analysis of this model, they also developed the threshold theory
to distinguish the prevalence of infectious diseases, laying the foundation for exploring
epidemic dynamics.
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Following that, infectious disease models have become increasingly complex, incorpo-
rating factors such as age structures, specific disease attributes, and time-delay effects. This
enhancement allows these models to more accurately depict intricate real-world scenarios [3–
8]. However, traditional epidemic models assume homogeneous mixing of the population,
with equal opportunities for contact among individuals, thus neglecting individual heterogene-
ity. The advent of complex networks provides a fresh perspective for constructing propagation
models that can capture individual-level heterogeneity [9–11]. This advancement further
enhances the alignment of infectious disease dynamics research with real-world scenarios.
In recent years, an increasing amount of research has been directed towards understanding
the impact of population contact networks and their heterogeneity on the transmission of
infectious diseases [12–21]. In particular, Huo et al. [22] introduced a fractional SIR model with
birth and death rates on heterogeneous complex networks and analyzed both its local and
global stability of disease-free and endemic equilibrium. Additionally, Chen et al. examined
an SIRS epidemic model with vaccination on heterogeneous networks [23]. In their study, the
investigation of the global stability of both the disease-free and endemic equilibrium points is
carried out by constructing suitable Lyapunov functions. This line of inquiry can be traced
back to 2001, when Pastor and Vespignani introduced mean-field-based epidemic models
within heterogeneous networks [9].

On the other hand, additional researchers have broadened the scope of infectious
disease dynamics research by investigating factors such as heterogeneous infection rates,
vaccination strategies, and immune coverage. In particular, in 2013, Cai et al. [24] pro-
posed an enhanced susceptible–vaccinated–infected–recovered (SVIR) epidemic model
that incorporates a diversity of infection rate of the individuals. This study found that the
heterogeneity in infection rates can either hinder or accelerate the spread of the epidemic,
depending on the number of vaccinated individuals introduced into the population and
the patterns of contact among individuals. Subsequently, Cai et al. [25] further investi-
gated the impact of vaccination on the spread of infectious diseases based on the SVIR
model on complex networks. In this study, the authors conducted comparative analyses
through experimental simulations to evaluate the immunization effects of vaccination
methods such as pure vaccination/continuous vaccination and continuous vaccination
with random mutation.

Furthermore, in addition to mean-field-based stochastic differential equations, epi-
demic models constructed using the continuous-time Markov chain (CTMC) method offer
a probabilistic perspective to comprehend disease transmission patterns within a popu-
lation [26,27]. In the mathematical modeling of infectious diseases, CTMC models offer a
more accurate portrayal of the ongoing stochastic fluctuations inherent in the spread of
diseases within population contact networks, surpassing conventional mean-field models
in this regard. Additionally, in recent years, a microscopic Markov-chain approach (MMCA)
has also been employed to depict the spread of epidemics. In 2011, Gómez et al. [28] restruc-
tured the discrete-time SIS epidemic model using MMCA and observed that the epidemic
prevalence obtained through this approach is consistent with that obtained through simula-
tions. Subsequently, in 2014, Cai et al. [29] expanded the effective degree Markov-chain
approach, initially designed for analyzing continuous-time epidemic processes, to encom-
pass discrete-time SIS or SIR epidemic processes on uncorrelated complex networks. In
numerical simulations, it is demonstrated that the final epidemic size and the time series of
infected individuals obtained from MMCA closely match those produced by Monte Carlo
simulations (MCSs). In summary, the introduction of probabilistic methods, exemplified
by Markov chains, has injected fresh vitality into the field of infectious disease dynamics
research, offering a novel perspective for further exploration.

In this research, we introduce an improved network-based SIR epidemic model that
integrates bidirectional immunization rates and accounts for the birth and death rates of
individuals. In the theoretical analysis, we first calculate the basic reproduction number for
both homogeneous and heterogeneous networks by analyzing the existence of the endemic
equilibrium. Subsequently, we restructure our mean-field epidemic model using the CTMC
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method. Consequently, we further analyze the transition probabilities, transition rate
matrix, steady-state distribution, and transition probability matrix based on the embedded
chain of the CTMC epidemic model. In numerical simulations, we utilize the Gillespie
algorithm to depict the CTMC-based epidemic model. We then compare the evolution
patterns of our proposed model using three different simulation methods: mean-field
method (MF), Monte Carlo simulation (MCS), and CTMC. The simulation results demon-
strate that, compared to MF and MCS, CTMC demonstrates finer details of the evolution of
infectious diseases over shorter time intervals, thereby more accurately characterizing the
evolutionary patterns of our model. Notably, this approach employs probabilistic methods
to describe the randomness of infectious disease transmission, offering new insights into
the study of infectious disease dynamics.

In Section 2, we thoroughly conduct a theoretical analysis of the proposed epidemic
model using both mean-field and continuous-time Markov chain approaches. This analysis
encompasses the derivation of the basic reproduction numbers, steady-state distributions,
and transition probabilities for epidemic spreading on both homogeneous and hetero-
geneous networks. The results from the simulations and the subsequent discussion are
detailed in Section 3. A summary of the findings is provided in Section 4.

2. Model

In this study, we integrate immunization measures targeting susceptible individuals
and clinical treatment measures aimed at infected individuals into the traditional SIR
network-based infectious disease model. Furthermore, our proposed epidemic model
accounts for the birth and death rates of individuals. In our model, akin to the standard SIR
model, S(t), I(t), and R(t) denote the proportions of susceptible, infected, and recovered
individuals, respectively, at each time step. Additionally, we employ the notations β and
γ to symbolize the infection and recovery rates for susceptible and infected individuals,
respectively. In addition, deviating from conventional propagation models, we further
integrate the birth rate b and death rate d into our model to capture the intricate dynamics
of population evolution. In particular, it should be mentioned that the death rate d is
the natural death rate, not one related to the epidemic. Furthermore, parameters δ and λ
are also introduced in this model, representing the reduction rate of infected individuals
and the increase rate of recovered individuals, respectively, after implementing the corre-
sponding immunization and treatment measures. Considering the practical significance
of δ and λ in clinical immunization measures, δ and λ can respectively be regarded as the
effective vaccination rate of susceptible individuals and the immunity rate of individuals
recovered from natural infection. Additionally, dS(t)

dt , dI(t)
dt , and dR(t)

dt are used to represent
the instantaneous rates of change of susceptible, infected, and recovered individuals with
respect to time step t.

2.1. Mean-Field Equations and Analysis

According to the propagation rules proposed in this study, the mean-field differential
equations for our model in homogeneous networks can be expressed as follows:

dS(t)
dt

= bN − d · S(t)− β(1 − δ)⟨k⟩S(t)I(t),

dI(t)
dt

= β(1 − δ)⟨k⟩S(t)I(t)− γ(1 + λ)I(t)− d · I(t),

dR(t)
dt

= γ(1 + λ)I(t)− d · R(t),

(1)

where ⟨k⟩ = ∑
k

kp(k) represents the average degree of networks, with p(k) denoting the

degree distribution of each individual in the networks. This indicates that, in homogeneous
networks, the number of contacts between any individual node and other nodes can be
approximated by the average degree ⟨k⟩. Additionally, when considering the density of
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susceptible, infected, or recovered individuals, N is commonly assumed to be equal to 1,
representing the normalization of the population size in the context of the model.

Furthermore, in real-world human contact networks, individuals exhibit a significant
degree of heterogeneity. Therefore, to provide a more comprehensive understanding of
epidemic spreading dynamics on heterogeneous networks, Pastor-Satorras and Vespignani
introduced mean-field equations specifically tailored for such networks [9]. Similarly,
within the context of this study, the densities of susceptible, infected, and recovered individ-
uals associated with degree k are denoted as Sk, Ik, and Rk, respectively. Therefore, based on
the propagation rules proposed in this paper, the mean-field equations for heterogeneous
networks can be denoted as follows:

dSk
dt

= bN − d · Sk − β(1 − δ)kSkΘk,

dIk
dt

= β(1 − δ)kSkΘk − γ(1 + λ)Ik − d · Ik,

dRk
dt

= γ(1 + λ)Ik − d · Rk,

(2)

where Θk = 1
⟨k⟩ ∑

k
kp(k)Ik signifies the fraction of infected edges within the network,

reflecting the likelihood that each edge connecting a susceptible individual is linked to
an infected individual. Continuing our analysis, we further investigate the equilibrium
solution of the epidemic model in heterogeneous networks [30]. Firstly, by setting dSk

dt =
dIk
dt = Ik = 0, we can derive the disease-free solution of Equation (2) depicted as follows:

E0(S0
k , I0

k , R0
k) = (

bN
d

, 0, 0), k = 1, 2, · · · , N, (3)

that is, the disease-free equilibrium point always exists in the system (2). Furthermore, it is
necessary to discuss the endemic equilibrium solution of this model.

Similar to the disease-free equilibrium solution, setting dSk
dt = dIk

dt = 0, the endemic
equilibrium solution can be expressed as follows: S∗

k = bN
d+βk(1−δ)Θk

,

I∗k = βk(1−δ)SkΘk
γ(1+λ)+d .

(4)

From Equation (4), it is obvious that I∗k is a function that includes the independent variable
Sk; therefore, substituting S∗

k into I∗k , the result is as follows:

I∗k =
bNβkΘk(1 − δ)

[d + βkΘk(1 − δ)][γ(1 + λ) + d]
. (5)

Similarly, Θk is an expression containing the argument Ik. Substituting Equation (5) into
Θk, the self-consistent equation for Θk is obtained as follows:

Θk = ∑
k

kp(k)bNβk(1 − δ)Θk
⟨k⟩[d + βk(1 − δ)Θk][γ(1 + λ) + d]

. (6)

It is easy to obtain that Θk = 0 is a trivial solution of Equation (6), corresponding to the
disease-free equilibrium point E0. Therefore, when there is a nontrivial solution Θk ∈ (0, 1),
this model can be considered to have an endemic equilibrium point E∗. Thus, we further
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discuss the existence of a non-zero solution to Θk. Firstly, construct the auxiliary function
F(Θk) as follows:

F(Θk) = Θk −
1
⟨k⟩ ∑

k

bNβ(1 − δ)k2 p(k)Θk
[d + βk(1 − δ)Θk][γ(1 + λ) + d]

. (7)

Obviously, if there is a non-zero solution for F(Θk) = 0, it indicates that our model satisfies
the conditions for an epidemic outbreak, thus confirming the existence of an endemic
equilibrium point. Therefore, to derive the condition for the existence of a non-zero
solution for F(Θk) = 0, we will further explore the derivative of F(Θk). The first and
second derivatives of F(Θk) are given as follows:

dF(Θk)

dΘk
= 1 − 1

⟨k⟩ ∑
k

bdNβ(1 − δ)k2 p(k)

[d + βk(1 − δ)Θk]
2[γ(1 + λ) + d]

, (8)

d2F(Θk)

dΘk
2 =

2
⟨k⟩ ∑

k

bdNβ2(1 − δ)2k3 p(k)

[d + βk(1 − δ)Θk]
3[γ(1 + λ) + d]

. (9)

From Equation (9), it is evident that d2F(Θk)
dΘk

2 > 0, indicating that F(Θk) is a concave function.
In addition, from Equation (6), we can deduce that F(0) = 0. Next, we examine the value
of the other endpoint F(1). The result of F(1) can be denoted as follows:

F(1) = 1 − 1
⟨k⟩ ∑

k

bNβ(1 − δ)k2 p(k)
[d + βk(1 − δ)][γ(1 + λ) + d]

. (10)

It is clear that bNβ(1−δ)
γ(1+λ)+d < β(1 − δ) ⇒ bNβk(1−δ)

γ(1+λ)+d < d + βk(1 − δ), resulting in the follow-
ing inequality:

F(1) > 1 − 1
⟨k⟩ ∑

k
kp(k) = 0. (11)

Based on the aforementioned analysis, it can be concluded that the necessary and sufficient
condition for F(Θk) = 0 to have a nontrivial solution at Θk ̸= 0 is dF(θk)

dθk

∣∣∣
θk=0

< 0, which

can be obtained as follows:

1 −
〈
k2〉
⟨k⟩

bNβ(1 − δ)

d[d + γ(1 + λ)]
< 0. (12)

Based on Equation (12), it can be observed that, when ⟨k2⟩
⟨k⟩

bNβ(1−δ)
d[d+γ(1+λ)]

> 1, system (2)
demonstrates an endemic equilibrium point, which signifies the occurrence of an epidemic
outbreak. Therefore, according to the definition, the basic reproduction number of this
model in heterogeneous networks can be characterized as follows:

R̂0 =
bNβ(1 − δ)

d2 + γd(1 + λ)

〈
k2〉
⟨k⟩ . (13)

Thus, when R̂0 = 1, the epidemic in heterogeneous networks is in a critical state of out-
break. Therefore, in accordance with the definition of the epidemic outbreak threshold, the
outbreak threshold of our model in heterogeneous networks can be represented as follows:

β̂c =
d2 + γd(1 + λ)

bN(1 − δ)

⟨k⟩
⟨k2⟩ . (14)
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This means that, when the infection rate β exceeds d2+γd(1+λ)
bN(1−δ)

⟨k⟩
⟨k2⟩ , an outbreak of infectious

diseases will occur in heterogeneous networks.

Specifically, in a homogeneous network with a degree distribution p(k) ∼ ξke−ξ

k!
following a Poisson distribution, where ξ is the parameter, the approximate equality
⟨k2⟩
⟨k⟩ ≈ ⟨k⟩ holds. This indicates that the basic reproduction number in homogeneous

networks can be expressed as follows:

R̃0 =
bNβ(1 − δ)⟨k⟩
d2 + γd(1 + λ)

. (15)

Similarly, the outbreak threshold of infectious diseases in homogeneous networks can be
obtained as follows:

β̃c =
d2 + γd(1 + λ)

bN(1 − δ)⟨k⟩ . (16)

2.2. Modeling and Analysis Based on Continuous-Time Markov Chain

In this section, we utilize the continuous-time Markov chain (CTMC) to formulate
the proposed epidemic model and derive the steady-state distribution, as well as the state
transition probabilities, of the CTMC-based propagation model [26]. Initially, it is evident
that the array consisting of the susceptible node density S(t) and the infected node density
I(t) at any time t can be represented as a CTMC. In addition, the discrete random variables
in the CTMC-based SIR model adhere to the following:

S(t), I(t) ∈ {0, 1, 2, · · · , N}, (17)

where t ∈ [0, ∞). Differently from the previous analysis of the mean-field SIR model, S(t)
and I(t) in Markov chains represent the number of susceptible and infected individuals
in the system at time step t, respectively. Moreover, any increase in I(t) within a certain
time interval is inevitably accompanied by an equivalent decrease in S(t) during the
same period. In addition, s and i in lowercase represent the discrete random variable
values from the set {0, 1, 2, · · · , N}. Thus, when the network contains i infected nodes, the
transition probability for the stochastic process over a short time interval of ∆t > 0 can be
represented as follows:

p(s,i),(s+k,i+j)(∆t) = P(S(t + ∆t), I(t + ∆t)) = (s + k, i + j)|(S(t), I(t)) = (s, i) . (18)

According to the properties of CTMC, we assume that, within a sufficiently small time
interval ∆t, the network can only experience one of the following events: an increase by one
infected node, a decrease by one infected node, or the number of infected nodes remains
unchanged. Therefore, it is clear that (k, j) ∈ {(−1,+1), (0,−1), (0, 0)}. The transition
probabilities of these three cases will be discussed separately. When (k, j) = (−1,+1), as
per the proposed propagation model in this paper, the transition probability of the CTMC
in homogeneous networks can be expressed as follows:

p̃(s,i),(s−1,i+1)(∆t) =
s
N

βi(1 − δ)⟨k⟩∆t ≜ ρ̃(s,i)∆t, (19)

which can be defined as ρ̃(s,i)∆t. Similarly, the transition probabilities for reducing one in-
fected node and maintaining the same number of infected nodes in homogeneous networks
can be respectively denoted as follows:

p̃(s,i),(s,i−1)(∆t) = γi(1 + λ)∆t ∆
= µ̃(s,i)∆t, (20)
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p̃(s,i),(s,i)(∆t) = 1 − (
s
N

βi(1 − δ)⟨k⟩+ γi(1 + λ))∆t ∆
= 1 − (ρ̃(s,i) + µ̃(s,i))∆t, (21)

which can be represented as µ̃(s,i)∆t and 1 − (ρ̃(s,i) + µ̃(s,i))∆t. Similarly, in heterogeneous
networks, the transition probabilities of increasing an infected node, decreasing an infected
node, and maintaining the number of infected nodes can be gained as follows:

p̂(s,i),(s−1,i+1)(∆t) =
s
N

βi(1 − δ)

〈
k2〉
⟨k⟩ ∆t ∆

= ρ̂(s,i)∆t, (22)

p̂(s,i),(s,i−1)(∆t) = γi(1 + λ)∆t ∆
= µ̂(s,i)∆t, (23)

p̂(s,i),(s,i)(∆t) = 1 − (
s
N

βi(1 − δ)

〈
k2〉
⟨k⟩ + γi(1 + λ))∆t ∆

= 1 − (ρ̂(s,i) + µ̂(s,i))∆t. (24)

Building upon the aforementioned equations, we can proceed to derive the transition
probabilities matrix for the states (S(t), I(t)), denoted as P, as follows:

P =



1 − ρ(s,1)∆t ρ(s,1)∆t 0 0 · · · 0
µ(s,2)∆t 1 − (ρ(s−1,2)∆t + µ(s,2)∆t) ρ(s−1,2)∆t 0 · · · 0

0 µ(s,3)∆t 1 − (ρ(s−2,3)∆t + µ(s,3)∆t) ρ(s−2,3)∆t · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · ρ(s−N+2,N−1)∆t
0 0 0 0 · · · 1 − µ(s,N)∆t


. (25)

According to matrix P, it is evident that I(0) = 1. Moving forward, we further consider the
transition rates within our proposed network-based SIR model using a continuous-time
Markov chain. Firstly, the rate at which the Markov chain transitions from state (s, i) to
state (s + k, i + j) can be represented as follows:

q((s, i), (s + k, i + j)) = lim
h→0

p(s,i),(s+k,i+j)(h)
h

, (26)

where p(s,i),(s+k,i+j)(h) represents the probability of transitioning from state (s, i) to state
(s + k, i + j) within time h. Hence, the transition rates for adding and removing an infected
node in homogeneous networks can be described as follows:

q̃((s, i), (s − 1, i + 1)) = lim
∆t→0

p̃(s,i),(s−1,i+1)(∆t)
∆t

= ρ̃(s,i) =
s
N

βi(1 − δ)⟨k⟩, (27)

q̃((s, i), (s, i − 1)) = lim
∆t→0

p̃(s,i),(s,i−1)(∆t)
∆t

= µ̃(s,i) = γi(1 + λ). (28)

Similarly, the transition rates for the addition and removal of an infected node in heteroge-
neous networks can be obtained as follows:

q̂((s, i), (s − 1, i + 1)) = lim
∆t→0

p̂(s,i),(s−1,i+1)(∆t)
∆t

= ρ̂(s,i) =
s
N

βi(1 − δ)

〈
k2〉
⟨k⟩ , (29)

q̂((s, i), (s, i − 1)) = lim
∆t→0

p̂(s,i),(s,i−1)(∆t)
∆t

= µ̂(s,i) = γi(1 + λ). (30)
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Furthermore, according to the following properties of the CTMC model
q((s, i), (s, i)) ≤ 0,

q((s, i), (s + k, i + j)) ≥ 0((k, j) ̸= (0, 0)),

∑
(k,j)

q((s, i), (s + k, i + j)) = 0,
(31)

the transition rates matrix of the proposed CTMC-based SIR epidemic model can be
acquired as follows:

Q =



−ρ(s,1) ρ(s,1) 0 0 · · · 0
µ(s,2) −(ρ(s−1,2) + µ(s,2)) ρ(s−1,2) 0 · · · 0

0 µ(s,3) −(ρ(s−2,3) + µ(s,3)) ρ(s−2,3) · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · ρ(s−N+2,N−1)
0 0 0 0 · · · −µ(s,N)


. (32)

Based on matrix (32), the state transitions in this model only occur between adjacent states
or remain unchanged. Therefore, this chain can be regarded as a birth and death process
within CTMC. Therefore, for a birth and death process, it satisfies the following local
balance equation:

πiq((s, i), (s + k, i + j)) = πi+jq((s + k, i + j), (s, i)), (33)

where πi+j = lim
t→∞

p(s,i),(s+k,i+j)(t) denotes the probability of the network containing i + j

infected nodes in the steady state. Therefore, based on Equation (31), we can derive the
following system of local balance equations for our model:

ρ(s,1)π1 = µ(s,2)π2,
ρ(s−1,2)π2 = µ(s,3)π3,

...
ρ(s−N+2,N−1)πN−1 = µ(s,N)πN ,

π1 + π2 + · · ·+ πN−1 + πN = 1.

(34)

According to Equation (34), a recursive formula for πi can be derived as follows:

πi+1

πi
=

ρ(s−i+1,i)

µ(s,i+1)
. (35)

Following that, we can further express the recursive formulas for the steady-state distribu-
tion of the number of infected nodes i in both homogeneous and heterogeneous networks
as follows:

π̃i+1

π̃i
=

ρ̃(s−i+1,i)

µ̃(s,i+1)
=

(s − i + 1)βi(1 − δ)⟨k⟩
Nγ(i + 1)(1 + λ)

, (36)

π̂i+1

π̂i
=

ρ̂(s−i+1,i)

µ̂(s,i+1)
=

(s − i + 1)βi(1 − δ)
〈
k2〉

Nγ(i + 1)(1 + λ)⟨k⟩ . (37)
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Thus, based on the equations above, the steady-state probability of πi can be easily obtained
as follows:

πi =
ρ(s−i+2,i−1)ρ(s−i+3,i−2) · · · ρ(s,1)

µ(s,i)µ(s,i−1) · · · µ(s,2)
π1, (38)

which represents the probability that the system contains i infected nodes when it reaches
steady state. In addition, according to the property of ∑N

i=1 πi = 1, π1 can be expressed
as follows:

π1 =
1

N
∑

i=1

ρ(s−i+2,i−1)ρ(s−i+3,i−2) ···ρ(s,1)
µ(s,i)µ(s,i−1) ···µ(s,2)

. (39)

Substituting Equation (39) into Equation (38), the complete expression of πi can be repre-
sented as follows:

πi =
ρ(s−i+2,i−1)ρ(s−i+3,i−2) · · · ρ(s,1)

µ(s,i)µ(s,i−1) · · · µ(s,2)
N
∑

i=1

ρ(s−i+2,i−1)ρ(s−i+3,i−2) ···ρ(s,1)
µ(s,i)µ(s,i−1) ···µ(s,2)

. (40)

Hence, the steady-state probability distribution of containing i infected nodes in the sys-
tem can be denoted respectively in homogeneous and heterogeneous network models
as follows:

π̃i =
s![β(1 − δ)⟨k⟩]i−1

i(s − i + 1)![Nγ(1 + λ)]i−1 N
∑

i=1

s!
i(s−i+1)!

[
β(1−δ)⟨k⟩
Nγ(1+λ)

]i−1
, (41)

π̂i =
s!
[
β(1 − δ)

〈
k2〉]i−1

i(s − i + 1)![Nγ(1 + λ)⟨k⟩]i−1 N
∑

i=1

s!
i(s−i+1)!

[
β(1−δ)⟨k2⟩
Nγ(1+λ)⟨k⟩

]i−1 . (42)

Consequently, we further consider the embedded Markov chain of our model. For
a continuous-time Markov chain with the transition rate matrix Q, the set of r(s,i),(s+k,i+j)
that satisfies the following condition constitutes the corresponding embedded chain.

r(s,i),(s+k,i+j) =


q(s,i),(s+k,i+j)

∑(k,j) ̸=(0,0) q(s,i),(s+k,i+j)
=

q(s,i)(s+k,i+j)
q(s,i)

, (k, j) ̸= (0, 0),

0, (k, j) = (0, 0),
(43)

where q(s,i),(s+k,i+j) represents the corresponding elements of the matrix Q and q(s,i) is
the rate of leaving state (s, i). Additionally, it is important to note that q(s,i) = −q(s,i),(s,i).
Therefore, compared with the birth and death process, the embedded chain neglects
the case where the state remains unchanged. Subsequently, let T(s−1,i+1) and T(s,i−1)
denote the durations that the Markov chain spends in state (s, i) before transitioning
to state (s − 1, i + 1) and (s, i − 1), respectively. According to the properties of CTMC,
T(s−1,i+1) and T(s,i−1) follow exponential distributions with parameters ρ(s,i) and µ(s,i),
correspondingly. That is, T(s−1,i+1) ∼ ε(ρ(s,i)) and T(s,i−1) ∼ ε(µ(s,i)), where ε(ρ(s,i)) =

ρ(s,i)e
−ρ(s,i)t and ε(µ(s,i)) = µ(s,i)e

−µ(s,i)t. Consequently, grounded in the characteristics
of exponential distributions, the transition probability of the embedded chain can be
represented as follows:

P{Xt = (s − 1, i + 1)|X0 = (s, t)} = P{T(s−1,i+1) = min(T(s−1,i+1), T(s,i−1))} =
ρ(s,i)

ρ(s,i) + µ(s,i)
, i ̸= N, (44)
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P{Xt = (s, i − 1)|X0 = (s, t)} = P{T(s,i−1) = min(T(s−1,i+1), T(s,i−1))} =
µ(s,i)

ρ(s,i) + µ(s,i)
, i ̸= 0. (45)

where Xt represents the state of the corresponding Markov chain at time step t. Therefore,
in accordance with the definition of the embedded chain, we can deduce the associated
transition probabilities matrix as follows:

R =



0 1 0 0 · · · 0 0 0
µ(s,2)

ρ(s−1,2)+µ(s,2)
0

ρ(s−1,2)
ρ(s−1,2)+µ(s,2)

0 · · · 0 0 0

0
µ(s,3)

ρ(s−2,3)+µ(s,3)
0

ρ(s−2,3)
ρ(s−2,3)+µ(s,3)

· · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · µ(s,N−1)

ρ(s−N+2,N−1)+µ(s,N−1)
0

ρ(s−N+2,N−1)
ρ(s−N+2,N−1)+µ(s,N−1)

0 0 0 0 · · · 0 1 0


. (46)

Additionally, from Equations (44) and (45), it is obvious that

P{Xt = (s − 1, i + 1)|X0 = (s, t)}+ P{Xt = (s, i − 1)|X0 = (s, t)} = 1, (47)

which indicates that the normalization condition between probabilities is satisfied. There-
fore, by using matrix R, we can obtain the probabilities of the proposed CTMC-based SIR
model transitioning between different states at any given time. Furthermore, the main
diagonal elements of this matrix are all zeros, indicating that the embedded chain does
not account for situations where the number of infected individuals remains unchanged.
Following that, according to the properties of the embedded chain, the probabilities of
increasing and decreasing an infected node in homogeneous networks at any given time
can be represented as follows:

p̃(s,i),(s−1,i+1) =
ρ̃(s,i)

ρ̃(s,i) + µ̃(s,i)
=

s
N βi(1 − δ)⟨k⟩

s
N βi(1 − δ)⟨k⟩+ γi(1 + λ)

,

p̃(s,i),(s,i−1) =
µ̃(s,i)

ρ̃(s,i) + µ̃(s,i)
=

γi(1 + λ)
s
N βi(1 − δ)⟨k⟩+ γi(1 + λ)

.
(48)

Similarly, in heterogeneous networks, we can represent the probabilities of adding and
removing a single infected node at any given time as follows:

p̂(s,i),(s−1,i+1) =
ρ̂(s,i)

ρ̂(s,i) + µ̂(s,i)
=

s
N βi(1 − δ)

⟨k2⟩
⟨k⟩

s
N βi(1 − δ)

⟨k2⟩
⟨k⟩ + γi(1 + λ)

,

p̂(s,i),(s,i−1) =
µ̂(s,i)

ρ̂(s,i) + µ̂(s,i)
=

γi(1 + λ)

s
N βi(1 − δ)

⟨k2⟩
⟨k⟩ + γi(1 + λ)

.

(49)

Obviously, if i = 0, the system reaches an absorbing state and the process of epidemic
transmission comes to a halt.

3. Numerical Simulations

In 1977, Gillespie introduced a numerical simulation technique tailored for CTMC
models, known as either the Gillespie algorithm or the Stochastic Simulation algorithm [31].
In this section, we utilize the mean-field (MF), Monte Carlo simulation (MCS), and Stochas-
tic Simulation (CTMC) methods to simulate an epidemic spreading in our proposed model
on both homogeneous and heterogeneous networks. We then compare the results obtained
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from these three methods. In the study of epidemic dynamics in complex networks, ER
random networks and BA scale-free networks are commonly regarded as typical models of
homogeneous and heterogeneous networks, respectively [32,33]. In particular, the degree
distribution of ER networks follows a Poisson distribution, while the degree distribution of
BA networks follows a power-law distribution. Therefore, in the Monte Carlo simulations
(MCSs), we employ the ER and BA network models to represent homogeneous and hetero-
geneous networks. Each of these networks consists of 5 × 103 nodes, which is in line with
the network sizes used in the MF and CTMC simulations. To validate the practicality of our
model, we also simulate the evolutionary process of our model in real network datasets.
Moreover, we conduct an in-depth analysis of the impact of bidirectional immunization
on the transmission dynamics of infectious diseases within complex networks, utilizing
the outcomes derived from Monte Carlo simulations (MCSs). In addition, the impact of
the main parameters of our model on the basic reproduction numbers is also discussed in
this section.

3.1. Impact of Replenishing of Susceptible Individuals on the Model

In Section 2, we have examined the presence of the endemic equilibrium point E∗ in
our model when R0 > 1, as illustrated by the simulation results presented in Figure 1. In
this model, the involvement of newly born susceptible individuals in epidemic spreading
(SPES) leads to the emergence of an endemic equilibrium point, ensuring the perpetuation
of the epidemic. Conversely, when newly born susceptibles do not participate in epidemic
spreading (SNES), our model will only exhibit a disease-free equilibrium point E0. In the
context of the Gillespie algorithm, the model exclusively permits the increase or decrease
of one infected node within a unit time interval ∆t, without considering the additional
replenishment of susceptible individuals. As such, in the ensuing numerical simulations,
we operate under the assumption that newly added susceptible individuals at each time
step do not partake in the transmission of the infectious disease. Instead, following the rules
outlined in this paper, these individuals are introduced into our proposed evolutionary
model at a fixed proportion. Operating under this assumption, the model manifests a
unique disease-free equilibrium point, as depicted in Figure 1. Additionally, it is important
to note that, in the model, β = 0.175 indicates that susceptible individuals have a 17.5%
probability of being infected upon contact with infected individuals, while γ = 0.05 denotes
a 5% chance per unit time for infected individuals to transition to the recovered state.

Figure 1. Comparison of the S(t), I(t), and R(t) proportions through mean-field (MF) simulation
method with and without the involvement of newly susceptible individuals in the epidemics spread-
ing at each time step t. (a) Homogeneous networks, ⟨k⟩ = 4; (b) heterogeneous networks, ⟨k⟩ = 4.
Setup of other parameters is b = 0.08, d = 0.05, β = 0.175, γ = 0.05, δ = 0.2, and λ = 0.3. The
number of infected and recovered individuals at initial time step is I(0) = 1 and R(0) = 0.
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In addition, owing to the inclusion of the birth rate for susceptible individuals in
our model, it becomes apparent that, during the initial phases of the infectious disease’s
evolution, when newly born susceptible individuals participate in disease transmission
(SPES), the proportion of S(t) exceeds 1, as illustrated in Figure 1. However, as the infec-
tious disease evolves over time, an increasing number of susceptible individuals gradually
transition into infected status. Eventually, a dynamic equilibrium is established between
the newly susceptible individuals and those transitioning into the infected states. No-
tably, the emergence of an endemic equilibrium point signals the accomplishment of this
dynamic balance.

3.2. Comparison between MCS and CTMC Methods

In this subsection, we compare the epidemic propagation curves of our model using
the MCS and CTMC methods, respectively. Additionally, since the bidirectional immu-
nization proposed in this model primarily influences the density of infected and recovered
individuals, the simulation results are focused solely on the dynamics of I(t) and R(t).
Compared to MCS and MF, CTMC accounts for the variation in the number of infected
individuals in the system over a time interval ∆t shorter than each time step t. Therefore,
the CTMC model provides a more accurate representation of the infectious disease trans-
mission process in real-world scenarios. In Figure 2, we compare the MCS and CTMC
approaches in homogeneous networks. The result illustrates that both simulation methods
exhibit similar evolutionary trends. Additionally, similar to the MF approach, the CTMC
model assumes that epidemics propagate within a well-mixed framework, freeing the
transmission of epidemic diseases from the constraints of network structure and resulting
in an optimal transmission effect. Therefore, the CTMC model demonstrates higher infec-
tion peaks and a broader transmission range, as illustrated in Figure 2. Moreover, CTMC
assumes that, within sufficiently short time intervals ∆t, only one of two events can occur:
the transition of a susceptible node to an infected node or the transition of an infected node
to a recovered node. Thus, the simulation results reveal continuous fluctuations in data
over short time periods in the CTMC model.

In Figure 3, we compare the simulation results between MCS and CTMC within het-
erogeneous networks. Clearly, the observations made in Figure 2 persist in the context
of heterogeneous networks, as depicted in Figure 3. Notably, in homogeneous networks,
the degree distribution closely approximates a Poisson distribution, demonstrating a high
degree of uniformity. In contrast, for heterogeneous networks, the degree distribution
exhibits a pronounced scale-free feature, closely resembling a power-law distribution.
Consequently, within heterogeneous network models, certain nodes exhibit degrees signifi-
cantly higher than others. Moreover, as illustrated in Figure 3, the rate and extent of disease
transmission in heterogeneous networks are significantly higher compared to homoge-
neous networks. This leads to the conclusion that network heterogeneity, characterized by
scale-free properties, can effectively facilitate disease transmission. Hence, in infectious
disease control efforts, it is crucial to accurately monitor and control the mobility of those
with the highest contact rates and super-spreaders, as they can significantly expedite the
spread of epidemics.



Entropy 2024, 26, 227 13 of 22

Figure 2. Comparison of the evolution curves of the proportions of I(t) and R(t) based on MCS and
CTMC methods at each time step on homogeneous networks with average degree ⟨k⟩ = 4. (a) Local
amplification of Infected-MCS; (b) local amplification of Infected-CTMC; (c) local amplification of
Recovered-MCS; (d) local amplification of Recovered-CTMC. Setup of other parameters is same
as Figure 1.

Figure 3. Comparison of the evolution curves for the proportions of I(t) and R(t) through MCS and
CTMC methods at each time step on heterogeneous networks with average degree ⟨k⟩ = 4. (a) Local
amplification of Infected-MCS; (b) local amplification of Infected-CTMC; (c) local amplification of
Recovered-MCS; (d) local amplification of Recovered-CTMC. Setup of other parameters is same
as Figure 1.
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3.3. Comparison between MF and CTMC Methods

In this section, we compare the simulation results between the MF and CTMC ap-
proaches for both homogeneous and heterogeneous networks. The results are illustrated in
Figure 4. Both CTMC and MF models assume that epidemics spread in well-mixed network
models, neglecting the influence of network structure on disease transmission. As depicted
in Figure 4, the propagation curves of our model, generated by two distinct simulation
methods, indeed demonstrate a high degree of similarity. Therefore, the CTMC model
effectively reproduces the transmission patterns based on the rules proposed in this paper,
closely mirroring the performance of the MF method. Additionally, akin to the simulation
outcomes illustrated in Figures 2 and 3, the CTMC-based model also accurately captures the
inherent stochastic fluctuations present throughout the transmission of infectious diseases.
Furthermore, the substantial agreement observed in the simulation outcomes between
the CTMC and MF models indirectly validates the precision of the steady-state distri-
bution and transition probabilities derived from the CTMC model in Section 2.2. These
results provide a precise probabilistic depiction of the inherent propagation patterns in our
proposed model.

Figure 4. Comparison of the evolution curves for the proportions of I(t) and R(t) through MF and
CTMC methods at each time step on homogeneous and heterogeneous networks with average degree
⟨k⟩ = 4. (a) Homogeneous networks, local amplification of I(t); (b) homogeneous networks, local
amplification of R(t); (c) heterogeneous networks, local amplification of I(t); (d) heterogeneous
networks, local amplification of R(t). Setup of other parameters is same as Figure 1.

3.4. Impact of Bidirectional Immunization on Epidemic Spreading

The present study introduces an enhanced bilinear SIR model that incorporates bidi-
rectional immunization and the birth and death of individuals. In this model, δ represents
the immunity rate of susceptible individuals after vaccination while λ represents the re-
covery rate and formation of immunity post-infection of individuals. In this subsection,
our primary objective is to explore the influence of bidirectional immunity (post-infection
and post-vaccination) on the spread of infectious diseases within complex networks. We
achieve this by analyzing numerical simulation results obtained through the MCS method.
To reduce the impact of randomness on simulation outcomes, the results of each set are
averaged over 1.0 × 103 independent replicate experiments.
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Initially, as illustrated in Figure 5, the implementation of bidirectional immunization
measures results in a reduction in infected individuals and an increase in the number of
recovered individuals. However, with the increase in the average degree of the network,
the impact of bidirectional immunity measures on infectious disease transmission grad-
ually diminishes until it disappears entirely. This result indicates that the effectiveness
of immunization measures diminishes with an increase in the individuals’ contact rates.
Hence, following an epidemic outbreak, effective disease control strategies might consider
prioritizing the regulation of interactions among individuals in the affected area before
implementing immune interventions such as vaccination and clinical treatments.

Figure 5. Comparison of the fraction of I(t) and R(t) with and without immunization measures
over time, in BA networks with varying average degree ⟨k⟩. (a) ⟨k⟩ = 2; (b) ⟨k⟩ = 4; (c) ⟨k⟩ = 6;
(d) ⟨k⟩ = 8. Setup of other parameters is same as Figure 1. As average degree ⟨k⟩ increases, the
impact of bidirectional immunization measures on epidemic spreading gradually diminishes.

In Figures 6 and 7, we systematically examine the correlation between δ and the
steady-state values of both R(∞) and S(∞) within ER and BA networks. Herein, R(∞)
and S(∞) denote the proportion of compartments R(t) and S(t), respectively, when the
system reaches its equilibrium state. In particular, it is noteworthy that the impact of
random numbers in Monte Carlo simulations leads to observable random fluctuations in the
experimental results. In Figure 6, with an increase in the distribution of the average number
of contacts between an infected individual with a susceptible individual, the extent of
disease transmission in both ER and BA networks exhibits varying degrees of growth. This
highlights that elevated levels of population contact undeniably contribute to the facilitated
spread of infectious diseases, aligning with prior research findings. Additionally, under
identical immunization rate conditions, the steady-state fraction of infected individuals,
denoted as R(∞), increases with the escalation of the infection rate β. This outcome suggests
that the intrinsic transmission capacity of the infectious disease plays a decisive role in
determining the scale of infection. Moreover, with an increase in the immunization rate,
denoted by δ, there is a noteworthy decrease in the value of R(∞). As the immunization
rate approaches 1, the disease tends to fade away. This underscores the critical importance
of immunizing susceptible individuals as a pivotal measure in controlling the spread of
infectious diseases.
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Figure 6. Fraction of R(t) at steady state on ER and BA networks as a function of δ for distinct values
of β. (a) ER network, ⟨k⟩ = 4; (b) ER network, ⟨k⟩ = 8; (c) BA network, ⟨k⟩ = 4; (d) BA network,
⟨k⟩ = 8. Setup of other parameters is same as Figure 1. An augmentation in the parameter δ leads to
a discernible decrease in the magnitude of epidemic propagation in both ER and BA networks.

Figure 7. Fraction of S(t) at steady state on ER and BA networks as a function of δ for distinct values
of β. (a) ER network, ⟨k⟩ = 4; (b) ER network, ⟨k⟩ = 8; (c) BA network, ⟨k⟩ = 4; (d) BA network,
⟨k⟩ = 8. Setup of other parameters is same as Figure 1. With the incremental rise in δ, there is a
notable augmentation in the magnitude of S(∞).
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In Figure 7, as β increases, the proportion of zero-infected individuals gradually dimin-
ishes. The simulation results indicate that, in the absence of immunization interventions,
controlling individual contacts and gatherings can effectively suppress the transmission of
less infectious epidemics but proves ineffective against highly contagious diseases. Addi-
tionally, when ⟨k⟩ is set to 8, in the absence of immune intervention measures, the density
of S(∞) approaches zero. This result suggests that, under conditions of a sufficiently
high population contact rate, the containment of epidemic spread relies exclusively on
the implementation of immunization measures directed towards susceptible individuals.
Moreover, Figure 7 also reveals that, as vaccination coverage δ increases, the proportion of
susceptible never-infected individuals also increases. This denotes that the effectiveness of
epidemic prevention is positively correlated with the vaccination rate among susceptible
individuals, aligning with the conclusion drawn from Figure 6. Therefore, attaining the
maximum vaccination rate among susceptible individuals with the highest contact rates
emerges as the most effective strategy for both controlling and ultimately eliminating
infectious diseases.

Subsequently, we will conduct a comparative simulation analysis of our model across
four network datasets: ER networks, BA networks, the Facebook social network, and the
Eneon email communication network. The ER and BA networks are synthetic, while the
Facebook social network and the Eneon email communication network are real-world
datasets [34,35]. Specifically, the Facebook social network comprises 4039 nodes (sus-
ceptible individuals) and 88,234 edges (contacts to susceptible individuals or number of
susceptible individuals with a contact to an infected individual) with an average degree
of 43.69 (number of susceptible person contacts for an infected individual); the Eneon
email communication network includes 36,692 nodes and 183,831 edges, with an average
degree of 10.02. Moreover, we have extended the SIS model by introducing bidirectional
immunization, as well as birth and death rates, and conducted comparative experiments
with the traditional SIS and SIR models. Specifically, we assume that the infection rate
and recovery rate of the SIS model are consistent with the SIR model. The remaining
parameters of the model are consistent with those in Figure 1 and the simulation results
are illustrated in Figure 8, where SIR* represents the transmission model proposed in this
study and SIS* represents the SIS model extended with bidirectional immunization, as
well as birth and death rates. Differently from the SIR model, in the SIS model, infected
individuals have a certain probability of reverting to susceptible states. Therefore, in the
simulation results, the evolution curve of the infected individual density, I(t), over each
time step t in the SIS model exhibits the steady-state equilibrium point. In Figure 8, it can
be observed that the immunization effectiveness of the improved model is superior in ER
networks compared to BA networks, indicating that the heterogeneity of the network exerts
an inhibitory effect on immunization measures. Furthermore, for the same propagation
model, the steady-state density and transmission peak of I(t) are significantly higher in
the smaller Facebook network with four times higher average degree (number of contacts)
compared to the larger-scale Eneon network. Therefore, in comparison to the network’s
node scale, the average degree of the population contact network exerts a more pronounced
impact on the infection scale of the infectious diseases. Additionally, our simulation results
confirmed that, when contrasted with the standard epidemic model, the enhanced bidirec-
tional immunity model exhibits lower infection peaks by 20%, a diminished steady-state
infection density by 30%, and a decelerated transmission speed. Furthermore, this conclu-
sion remains valid in both theoretical datasets and real large-scale network datasets. Thus,
this provides further confirmation that bidirectional immune effects effectively reduce the
scale of epidemic transmission.
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Figure 8. Fraction of I(t) at each time step on different types of network datasets under various
propagation models. (a) ER network, ⟨k⟩ = 4; (b) BA network, ⟨k⟩ = 4; (c) Facebook social network,
⟨k⟩ = 43.69; (d) Eneon mail communication network, ⟨k⟩ = 10.02. Setup of other parameters is same
as Figure 1. In various datasets, bidirectional immunization measures can effectively reduce the
infection peaks and steady-state infection density of epidemics.

3.5. Sensitivity Analysis of Basic Reproduction Numbers

In the field of infectious disease dynamics, the basic reproduction number is a critical
concept. It signifies the number of susceptible individuals that an infected individual can
infect during their infectious period, thus characterizing the potential for disease spread.
Furthermore, the basic reproduction number is also a vital indicator for determining
whether an infectious disease will become an epidemic. Typically, when R0 is greater
than 1, an epidemic outbreak occurs; conversely, if R0 is less than or equal to 1, the disease
gradually fades away. In this subsection, we analyze the sensitivity of the basic reproduction
number to various parameters in both homogeneous and heterogeneous networks.

In Figure 9, we analyze the impact of three parameter pairs on the basic reproduction
number. These pairs consist of birth rate b and death rate d, infection rate β and recovery
rate γ, and immunity rate for the infected individuals δ and immunity rate for the recovered
individuals λ. The simulation results reveal that, compared to the immunity rates δ and λ,
R0 is more sensitive to β and γ, indicating that the inherent infection and recovery rates
of the infectious disease are the primary influencing factors on its transmission capability.
Additionally, as depicted in Figure 9b, variations in λ have a comparatively minor impact on
the value of R0 when contrasted with changes in δ. This result indicates that immunization
measures of susceptible individuals are more effective in reducing the transmission capacity
of infectious diseases compared to immunity due to natural infections as those individuals
infect more individuals before becoming immune. Furthermore, Figure 9c indicates that
extreme values of the death rates have a significant impact on R0, which is determined by
the mathematical properties of the basic reproduction number. In addition, the values of
b and d within their normal ranges do not substantially affect the value of R0, suggesting
that the inflow and outflow of individuals within a certain acceptable range have limited
influence on the transmission capacity of epidemics. While this finding suggests that
imposing stringent restrictions on population mobility in affected areas may not lead to
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significant changes in population numbers, it is well established that population mobility
often substantially increases contact rates, serving as a well-established mechanism for
introducing infectious diseases to immunologically naive populations. Hence, without
disrupting the regular activities of ordinary citizens, minimizing population movement in
epidemic zones and reducing interpersonal contact frequency can be viewed as effective
measures to curb the spread of the epidemics. Additionally, Regardless of parameter
values, R0 consistently exceeds that in heterogeneous networks compared to homogeneous
networks, indicating a more pronounced facilitating effect of heterogeneity on infectious
disease transmission, aligning with the earlier discoveries.

Figure 9. Comparison of the basic reproduction number R0 in homogeneous and heterogeneous
networks: impact of epidemic spreading parameters, bidirectional immunization rates and the rates
of birth and death. (a) Variations in β and γ, ⟨k⟩ = 4; (b) variations in δ and λ, ⟨k⟩ = 4; (c) variations
in b and d, ⟨k⟩ = 4. Setup of other parameters is same as Figure 1.

4. Conclusions and Discussion

In this paper, we propose an extended network-based SIR model that takes into ac-
count bidirectional immunity as well as the birth and death rates of individuals. We conduct
theoretical analyses of this model, calculating the basic reproduction numbers and corre-
sponding epidemic thresholds by examining the conditions for the existence of endemic
equilibrium points in both homogeneous and heterogeneous networks. Subsequently, we
utilize CTMC to formulate our proposed model, examining the steady-state distribution
and transition probabilities of the CTMC-based epidemic model in homogeneous and
heterogeneous networks, respectively. Furthermore, the transition rates matrix based on
the embedded chain for our proposed propagation pattern is also derived.

Following that, we validate the relevant properties of the model through numerical
simulations. Considering the characteristics of the MCS and CTMC simulation algorithms,
in our experimental simulations, we operate under the assumption that newly born suscep-
tible individuals do not immediately participate in disease transmission. Therefore, the
results of the simulations do not indicate the presence of an endemic equilibrium point.
Additionally, simulation results also indicate that, in comparison to the network-based
MCS method, epidemics spread more extensively in the CTMC and MF methods, which
assume a well-mixed model for disease transmission. The results demonstrate that the
well-mixed model, established on the basis of the mean-field hypothesis, represents an
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ideal scenario for infectious disease transmission. Furthermore, while the simulation data
from the CTMC approach displays some fluctuation, the results of the simulations also
demonstrate a good fit between the CTMC and MF models. The analysis presented in
Section 2.2 offers theoretical foundation for the presence of these stochastic fluctuations. In
the CTMC model, it is assumed that, within a sufficiently small time interval ∆t, only one
event occurs, representing either an increase in infected nodes (indicating susceptible nodes
becoming infected) or a decrease in infected nodes (indicating infected nodes transitioning
to the recovered state). The pair of susceptible and infected node quantities, represented
as a tuple (s(t), i(t)), constitutes the fundamental state space set of the continuous-time
Markov chain. Within our model, state transitions occur between adjacent state spaces, fa-
cilitating the progression of infectious disease transmission. Significantly, the incorporation
of a probabilistic perspective leads to continuous stochastic fluctuations in the simulation
results of the CTMC model over brief time intervals. This characteristic enriches the CTMC
model’s portrayal of the dynamics of infectious diseases, aligning it more closely with
real-world scenarios.

Additionally, we utilize MCS to assess the effects of bidirectional immunization mea-
sures on the transmission of infectious diseases in networks. The results indicate that, as
the network’s average degree increases, the effectiveness of the immunization measures
gradually diminishes. This observation suggests that the anticipated effectiveness of immu-
nization measures can only be realized when population contact rates are sufficiently low.
Hence, it is crucial to reduce interactions among the population in an epidemic area before
implementing immunity measures for individuals. Moreover, the relationship between the
steady-state infection density and the immunization rate of susceptible individuals is also
the focus of our study. The experimental results indicate a notable decrease in the steady-
state infection density of the infectious disease as the immunization rate increases. This
suggests that the implementation of robust immunization measures targeting susceptible
individuals can effectively control the spread of the epidemics.

Finally, we explore how three distinct sets of pivotal parameters within this model
impact the value of the basic reproduction number. The simulation results emphasize the
pivotal role of infection and recovery rates in determining the transmission capacity of the
infectious disease. In comparison, immunization measures targeting susceptible individuals
have a more pronounced effect on the basic reproduction number compared to clinical
treatment measures directed at recovered individuals. This highlights the effectiveness of
post-outbreak immunization measures aimed at susceptible individuals in managing the
extent of infectious diseases spread.

In our research, besides analyzing the proposed model using conventional mean-
field methods, we endeavored to map the transmission dynamics of infectious diseases
onto a comprehensive CTMC framework. This approach offered an additional analytical
perspective, employing probabilistic methods and contributing to a certain degree of
theoretical innovation. Within the CTMC framework, when the time intervals between state
transitions are sufficiently small, state changes can be treated as continuous. Conversely,
the Gillespie algorithm discretely updates states at each event occurrence, providing an
approximation of continuous-time processes. Through careful selection of appropriate
time steps, the discretized process can effectively mimic the continuous-time evolution.
Furthermore, the integration of discrete-time reasoning and a probabilistic viewpoint
in the CTMC method enables the observation of stochastic fluctuations and oscillations
in individual density over time within the simulated results. This feature enhances the
model’s fidelity to real-world scenarios of disease spread. However, beyond the mere
existence of endemic equilibrium points, the analysis of the stability of both disease-free
and endemic equilibrium points constitutes a crucial aspect of infectious disease dynamics
research [36–46]. Accordingly, our forthcoming research will primarily focus on examining
the stability of equilibrium points within infectious disease models, thereby contributing
significantly to the advancement of our work.
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