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Abstract. Using the Mathematica package, we find exact analytical expressions for the so-called de-projected
de Vaucouleurs and Sérsic laws as well as for related spatial (3D) quantities – such the mass, gravitational
potential, the total energy and the central velocity dispersion – generally involved in astronomical calculations
expressed in terms of the Meijer G functions.
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1. Introduction

Dynamical studies of astronomical systems like Elliptical
Galaxies or Clusters of Galaxies involve the de-projection
of observed (projected on the sky) quantities like surface
brightness profiles, numerical density profiles, velocity dis-
persion profiles etc. The 3D profiles obtained are then used
to derive e.g. the total luminosity (or mass) of the system
or the gravitational potential and are used in the Jeans
equation which is then resolved to get for instance the
kinematics of the system.

The de Vaucouleurs profile (de Vaucouleurs 1948) and
its generalization by the Sérsic law (Sérsic 1968), is one
of the most often used laws particularly in the study of
Elliptical Galaxies.

Unhappily these laws have so far lead to non-analytical
de-projected (i.e. spatial) quantities. Efforts have been
made in the last decades to provide either numerical
tables (Poveda et al. 1960; Young 1976) or approxima-
tions and asymptotic expressions (Mellier & Mathez 1987;
Ciotti 1991; Graham & Colless 1997; Ciotti & Bertin 1999;
Marquez et al. 2001).

Here we give analytical exact expressions for 3D quan-
tities usually derived when using the de Vaucouleurs or
Sérsic laws.

2. Principles

The classical de Vaucouleurs and Sérsic laws express the
dependence on the projected central distance R of for
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instance the Luminosity Intensity I(R) of an Elliptical
Galaxy.

The de Vaucouleurs law relates the intensity I(R) to
the central one, I(0), by:

I(R)/I0 = exp
[
−7.66925 [(R/Re)

1
4 − 1]

]
(1)

and the Sérsic profile, which is a generalization of the
de Vaucouleurs profile, is written:

I(R)/I0 = exp
[
−b(m) [(R/Re)

1
m − 1]

]
· (2)

The parameter b(m) is determined from the definition of
the effective radiusRe, which is the projected radius inside
which the projected luminosity (or mass) equals half of
the total luminosity (or mass). The de Vaucouleurs law is
recovered for b(4) = 7.66925.

The requested 3D profiles are related to the derivative
of the projected profiles by the usual Abel Integral written
here for the 3D density profile n(r):

n(r) = − 1
π

∫ ∞
r

dI
dR

1√
R2 − r2

dR. (3)

Except for some particular cases there is no known exact
expression for theses integrals, in particular in the case of
the Sérsic (de Vaucouleurs) profiles.

However, using Mathematica we succeeded in obtain-
ing exact analytical expressions for such integrals that in-
volve the Meijer G functions. Physical quantities such as
the spatial luminosity or mass profiles, the gravitational
force, the gravitational potential and energy, which are
combinations or integrals of the above functions, have also
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analytical expressions involving Meijer G functions. Some
of these expressions are given below and numerical evalu-
ations are compared to previous numerical calculations.

We first give the classical definition of the Meijer G
functions together with some of their properties which
will be useful in understanding the results given by
Mathematica.

3. The Meijer functions

These functions are defined as integrals of products of Γ
functions. The generalized Meijer G function is defined as:

Gk,lp,q

(
z, r|α1···αl,αl+1···αp

β1···βk,βk+1···βq

)
=

r

2πi∫
[Γ(1−α1−ru)...Γ(1−αl−ru)Γ(β1+ru)...Γ(βk+ru)]

[Γ(αl+1+ru)...Γ(αp+ru)Γ(1−βk+1−ru)...Γ(1−βq−ru)] z
−udu

(4)

(Gradshteyn & Ryzhik 1980; Wolfram 1991; for a col-
lection of formulae related to the Meijer G functions
cf. http://functions.wolfram.com/Hypergeometric
Functions/MeijerG/).

The case r = 1 defines the standard Meijer function,
Gk,lp,q

(
z|{α1···αl},{αl+1···αp}
{β1···βk},{βk+1···βq}}

)
, which is the form we will be

dealing with in the rest of this work. In the Mathematica
StandardForm notation it writes as:

MeijerG
[
{{α1· · ·αl}{αl+1 · · ·αp}}

×{{β1 · · ·βk}{βk+1 · · ·βq}}, z
]

≡ Gk,lp,q

(
z
∣∣∣{α1 · · ·αl}, {αl+1 · · ·αp}{
β1 · · ·βk}, {βk+1 · · ·βq}

)
·

For clarity we will keep both these notations, although
suppressing the suffix “Meijer”. Notice that in these for-
mulae, the empty case: { } means that the corresponding
coefficients are not defined and thus do not exist. This
may occur, for instance, when k = q, or l = p, or else
when one of those indices are null. An example is given by
Eq. (7) below.

The following identity may be easily obtained by a
substitution of the integration variable u→ u+ c, where c
is a constant, in Eq. (4):

Gk,lp,q

(
z
∣∣{α1···αl},{αl+1···αp}
{β1···βk},{βk+1···βq}

)
≡ z−cGk,lp,q

(
z
∣∣{α1+c···αl+c},{αl+1+c···αp+c}
{β1+c···βk+c},{βk+1+c···βq+c}

)
· (5)

The moments of the Meijer function are expressible in
terms of the higher-order Meijer functions:∫
zξGk,lp,q

(
z
∣∣{α1···αl},{αl+1···αp}
{β1···βk},{βk+1···βq}

)
dz =

z−cz1+ξGk,l+1
p+1,q+1

(
z
∣∣{α1···αl, −ξ },{αl+1···αp}
{β1···βk},{−(1+ξ),βk+1···βq}

)
· (6)

This may be straightforwardly demonstrated by inverting
the order of the integrations.

In some particular cases the Meijer G func-
tions may be expressed in term of more classi-
cal special functions. As an example we give be-
low the case of the Meijer function G2,0

0,2 (z|β1, β2) (cf.
http://functions.wolfram.com/07.09.03.0330):

G2,0
0,2 (z|β1, β2)≡G2,0

0,2

(
z
∣∣ {},{}
{β1,β2},{}

)
= 2z(β1+β2)/2Kβ1−β2(2

√
z) (7)

where Kτ (x) is the modified Bessel function of τ− order.

4. The 3D laws

In the following, we give the analytical expressions using
the Mathematica formalism for the G Functions.

Let first start by introducing some useful dimensionless
quantities. The dimensionless 2D and 3D x and s radial
distances are expressed in terms of Re as:

x ≡ R/Re; s ≡ r/Re. (8)

The dimensionless 2D and 3D profiles are also defined as:

i(x) ≡ I(R)/I0 and ν(s) ≡ n(r)
Re

I0
(9)

which lets Eqs. (1) and (2) transform in the following re-
duced form:

i(x) = exp
[
−b(m)(x

1
m − 1)

]
(10)

where the de Vaucouleurs law is obtained for m = 4.
The de-projection integral (3) also transforms to:

ν(s) = − 1
π

∫ ∞
s

di
dx

1√
x2 − s2

dx. (11)

4.1. De-projection of the de Vaucouleurs law

We give here some detailed results for the case of the
de Vaucouleurs law as an example and give more gen-
eral results in the next section using the Sérsic law.
Integrating the preceding equations using Mathematica,
we first derive the expression for the 3D profile n(r). We
will then calculate the luminosity (or mass) profiles as well
as the gravitational potential and the gravitational energy.

Only numerical estimations or asymptotic behaviors
were given before (Poveda et al. 1960; Young 1976; Mellier
& Mathez 1987) so we will compare our results with those
provided by Young for the spatial density and for the lu-
minosity (or mass).

The basic ingredient to obtain the ν(s) profile is the
derivative of the de Vaucouleurs law, Eq. (1), relative to
the projected dimensionless distance, x, which is written:

di
dx

= − b

4x
3
4

exp [−b(x 1
4 − 1)] with b = 7.66925. (12)

Integrating Eq. (11), the spatial density ν(s) expressed in
terms of the dimensionless 3D radial distance s is then
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Table 1. The spatial density and mass profiles for the de Vaucouleurs profile.

s ν(s) νYoung(s) M(s) MYoung(s)

1× 10−6 2.5553 × 106 2.5535 × 106 1.4730 × 10−11 1.4717 × 10−11

1× 10−5 3.5797 × 105 3.5786 × 105 2.1130 × 10−9 2.1122 × 10−9

1× 10−4 4.2189 × 104 4.2183 × 104 2.5959 × 10−7 2.5954 × 10−7

1× 10−3 3.7044 × 103 3.7042 × 103 2.4545 × 10−5 2.4544 × 10−5

1× 10−2 1.9679 × 102 1.9679 × 102 1.4961 × 10−3 1.4960 × 10−3

1× 10−1 4.4047 4.4047 4.4102 × 10−2 4.4102 × 10−2

1. 2.1943 × 10−2 2.1943 × 10−2 4.1536 × 10−1 4.1536 × 10−1

10. 7.8166 × 10−6 7.8165 × 10−6 9.4308 × 10−1 9.4308 × 10−1

given by:

ν(s) = 6.23828s−7/4G

(
{{}, {}},{{

1
2
,

5
8
,

3
4
,

7
8
,

7
8
, 1,

9
8
,

5
4

}
, {}
}
, 0.713351 s2

)
· (13)

One then obtains the luminosity (or mass) spatial profile
defined by:

M(s) = 4π
∫ s

0

s′2ν(s′)ds′ (14)

which with a new formal integration gives:

M(s) = 39.1962 s
5
4 G

({{
3
8

}
, {}
}
,{{

1
2
,

5
8
,

3
4
,

7
8
,

7
8
, 1,

9
8
,

5
4

}
,

{
−
(

5
8

)}}
, 0.713351 s2

)
·

(15)

The gravitational potential is defined by:

Ψ(s) =
∫ s

0

M(s′)
s′2

ds′ (16)

which gives:

Ψ(s) = 19.5981 s
1
4 ∗

G

({{
3
8
,

7
8

}
, {}
}
,

{{
1
2
,

5
8
,

3
4
,

7
8
,

7
8
, 1,

9
8
,

5
4

}
,{

−
(

5
8

)
,−
(

1
8

)}}
, 0.713351 s2

)
· (17)

The values tabulated by Young (1976) are recovered defin-
ing the new potential:

Ψ′(s) = 1−Ψ(s)/Ψ(∞)

such that

Ψ′(0) = 1 and Ψ′(∞)) = 0.

In Table 1, we compare the values given with the above
expressions (normalized by the factor exp(b)(π8!/b8)) to
the numerical values obtained by Young for s ranging
from 10−6 to 10.

4.2. The de-projection of the Sérsic law

We give now more general expressions for the 3D profile
derived from the Sérsic law. This law is parametrized by
an index m and a parameter b(m). The Sérsic law for
m = 1 corresponds to a 3-D Exponential profile, already
discussed by Fuchs & Materne (1982) and for m = 4 to
the usual de Vaucouleurs law, treated in Sect. 2 above.
In general, b(m) is found as a solution of Eq. (A.4) given
in the Appendix. Values of b(m), (as well as logL(m))
have also been given before by Ciotti et al. and Ciotti &
Bertin. We give in the appendix, values of b(m) calculated
using Mathematica for the range m = 1 to m = 15 and
compared to those of Ciotti & Bertin.

The spatial density expressed in terms of the dimen-
sionless 3D distance s can be written as (see e.g. Ciotti
1991; Graham & Colless 1997):

ν(s) =
beb

π
s(1/m−1)

∫ 1.

0

exp (−b s
1
m

t
)

1
t2
√
t−2m − 1

dt (18)

where b means b(m)
Again this integral is found in terms of

Meijer G Functions which reduces to a Bessel function
(K0) for m = 1. We give below the various expressions
for various values of m and b(m). Defining auxiliary
constants:

c1(m) ≡ b(m) exp [b(m)]
(2π)m

√
m

(19)

and

c2(m) ≡
(
b(m)
2m

)2m

(20)

we obtain, for m = 1:

ν1(s) = 2c1(1)K0(b(1) s)· (21)

For m = 2:

2.58697 s−
1
2

×G
(
{{}, {}},

{{
0,

1
4
,
1
4
,

1
2

}
, {}
}
, 0.710231 s2

)
(22)

. . .
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For m = 4:

5.26885 s−
3
4 G

(
{{}, {}},{{

0,
1
8
,

1
4
,

3
8
,

3
8
,

1
2
,

5
8
,

3
4

}
, {}
}
, 0.713351 s2

)
(23)

. . .

Notice that Eq. (23) is equivalent to Eq. (13) for the
de Vaucouleurs profile given before. This may be seen
by applying the identity Eq. (5) and noting that βS =
βDV − 1/2, where βS and βDV denote the arrays of β co-
efficients appearing respectively in Eqs. (23) and (13).

The expressions above have the general form:

νm(s) = c1(m) s
1−m
m G({{}, {}}, {{βS(m)}, {}}, c2(m) s2)

≡ c1(m) s
1−m
m G2m,0

0,2m

(
c2(m) s2

∣∣ { } ,{ }
{βS(m)},{ }

)
(24)

with βS(m) denoting the 2m-array:

βS(m) ≡
{ (

j − 1
2m

)
1≤j≤m

;
(
j − 2
2m

)
m+1≤j≤2m

}
· (25)

4.3. Other related quantities

Related quantities as the mass, the gravitational potential,
the (total) potential energy and the (central) velocity dis-
persion, can then be formally calculated by other integra-
tions, similar to what has been done for the de Vaucouleurs
profile. From Eq. (14) we find for the mass:

M(s) = 2πc1(m) s
2m+1
m G

({{
− 1

2m

}
, {}
}
,{

{βS(m)},
{
−2m+ 1

2m

}}
, c2(m) s2

)

≡ 2πc1(m) s
2m+1
m G2m,1

1,2m+1

(
c2(m) s2

∣∣∣∣{−( 1
2m )}, { }

{βS(m)},{−( 2m+1
2m )}

)
·

(26)

Notice that in the case m = 1, because of Eq. (21), an
alternative expression for the mass may be given by:

M(s) = 8 πc1(1)
∫ s

0

z2K0(b · z)dz

=
8 π c1(1)

18
s3

[
2F3

({
3
2
,

3
2

}
,

{
1,

5
2
,

5
2

}
,
b2s2

4

)

−3
2 1F2

({
3
2

}
,

{
1,

5
2

}
,
b2s2

4

)
· log

(
b2s2

4

)

+
9
2

∞∑
j=0

21−2j b2j s2j Ψ(0, 1 + j)
(3 + 2j) Γ2(1 + j)

]
(27)

in which b stands for b(1) and Γ(x) and Ψ(n, x) denote
the gamma function and its (n + 1)th derivative (i.e.,

the digamma – or psi – function in the case n = 0, and
polygamma function in the general case). Both expres-
sions, Eqs. (26) and (27) have similar performances in
Mathematica. The total mass, M(∞) = 2π

b exp b, is ob-
tained to within 10−4, for s = 10.

For the gravitational potential, using Eqs. (16) and
(26), we find the following expression:

Ψ(s) =πc1(m) s
m+1
m ∗G

({{
− 1

2m
,
m− 1

2m

}
, {}
}
,{

{βS(m)},
{
−2m+ 1

2m
,−m+ 1

2m

}}
, c2(m) s2

)

≡πc1(m) s
m+1
m

×G 2m,2
2,2m+2

(
c2(m) s2

∣∣∣∣{−( 1
2m ),(m−1

2m )},{ }

{βS(m)},{−( 2m+1
2m ),−(m+1

2m )}

)
· (28)

Notice that, as before with the equations for ν(s) and for
the same reasons, in the case m = 4, Eqs. (26) and (28)
above will differ from those given before in Sect. 4.1
(Eqs. (15) and (17)).

The gravitational potential energy is defined by:

Ω(s) =
1
2

∫ s

0

Ψ(s)dM(s) =
1
2

∫ s

0

s2ν(s)Ψ(s)ds. (29)

Unfortunately there seems to be no formal solution for
this integral in terms of Meijer functions. However, by
making use of a classical integral of a product of Meijer
functions given in http://functions.wolfram.com/
07.09.16.0025 one finds the following expression for the
total potential energy:

Ω(∞)=
πc21(m)

4 c
2+3m

2m
2 (m)

·G
({{

− 1
2m

,
1
2
− 1

2m
, αE(m)

}
, {}
}
,

{
{βS(m)},

{
−1− 1

2m
,−1/2− 1

2m

}}
, 1
)

≡ πc21(m)

4 c
2+3m

2m
2 (m)

×G2m,2m+2
2m+2,2m+2

(
1
∣∣∣{− 1

2m ,
1
2− 1

2m , αE(m)},{}

{βS(m)},{−1− 1
2m ,−1/2− 1

2m}

)
(30)

where, besides the 2m−array of coefficients βS(m) defined
by Eq. (25), we have also defined the 2m−array: αE(m) ≡
−(m+ 1)/m− βS(m).

The velocity dispersion of a spherical system in hydro-
static equilibrium is given by:

σ2(s) =
1

ν(s)

∫ ∞
s

M(x)ν(x)
x2

dx. (31)

As for the gravitational potential energy, for systems en-
dowed with a Sérsic density profile, this integral may be
expressible in terms of Meijer functions for the case s = 0.
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We proceed similarly as to Eq. (30) to get:

σ2(0)=
1

ν(0)
π c21(m)

c
1/2m
2 (m)

·G
({{

− 1
2m

, ασ(m)
}
, {}
}
,{

{βS(m)},
{
−1− 1

2m

}}
, 1
)

≡ 1
ν(0)

π c21(m)

c
1/2m
2 (m)

·G2m,2m+1
2m+1,2m+1

(
1
∣∣∣{− 1

2m , ασ(m)},{}

{βS(m)},{−1− 1
2m}

)
(32)

with ασ(m) ≡ (2m− 1)/2m− βS(m).

5. Conclusions

1. We obtain analytical solutions for the de-projected
de Vaucouleurs and Sérsic laws using formal integra-
tion with Mathematica as well as for other related
quantities like the mass or the potential, total potential
energy and the central velocity dispersion.

2. Comparisons with existing numerical estimates show
very few differences, however analytical expressions
are always much more very convenient to deal with
in many cases.
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Appendix A

The projected luminosity profile is defined by:

L(R)≡ 2π
∫ R

0

I(R′)R′ dR′

≡ 2πI0R2
e

∫ x=R/Re

0

i(x′)x′ dx′. (A.1)

In terms of the dimensionless quantities, x ≡ R/Re and
l(x) ≡ L/I0R2

e , this gives:

l(x)=
2mπeb

b2m
γ(2m, bx

1
m )

≡2mπeb

b2m

[
Γ(2m)− Γ(2m, bx

1
m )
]

(A.2)

where γ(a, x) is the incomplete gamma function and Γ its
complement (cf. Gradshteyn & Ryzhik 1980). For integer
values of m it can also be expressed as:

l(x) =
2mπeb

b2m
·
[

(2m− 1)!− exp (−bx1/m)

×
(

(2m− 1)!+
2m−1∑
j=1

(2m− 1)!
(2m− j)! b

2m−jx(2m−j)/m

)]
. (A.3)

From this one may find b(m) as the solutions of the
equation L(Re) ≡ Ltot/2, where Ltot is the total luminos-
ity integrated to infinity. We have (see also Ciotti 1991):

γ(2m, b) ≡ Γ(2m, b) = Γ(2m)/2. (A.4)

This is solved instantaneously using the following
Mathematica commands:

mm = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
b[m ] := FindRoot[Gamma[2m, b] == Gamma[2m]/2, {b, 2m -

1/3}, WorkingPrecision -> 60, AccuracyGoal -> 30]

blist = Map[b, mm]; bb = N[b /. blist, 17]

The derived values of b(m) are given in Table A.1, where
we compare the Mathematica results with those from the
asymptotic expansions by Ciotti & Bertin (1999). Form =
4, we find of course b(4) = 7.66925.

Table A.1. The values of b(m).

m b(m) bCB99 b(m)− bCB99

1 1.67834699001666 1.67838865492157 −4.16649049 × 10−5

2 3.67206074885089 3.67206544591768 −4.6970667 × 10−6

3 5.67016118871207 5.67016250849902 −1.3197869 × 10−6

4 7.6692494425008 7.66924998466950 −5.421687 × 10−7

5 9.66871461471413 9.66871488808778 −2.733736 × 10−7

6 11.6683631530448 11.6683633097115 −1.566667 × 10−7

7 13.6681145993449 13.6681146973462 −9.80013 × 10−8

8 15.6679295443172 15.6679296096535 −6.53363 × 10−8

9 17.6677864177885 17.6677864635090 −4.57206 × 10−8

10 19.6676724233057 19.6676724565414 −3.32357 × 10−8

11 21.6675794898319 21.6675795147457 −2.49138 × 10−8

12 23.6675022752263 23.6675022943807 −1.91544 × 10−8

13 25.6674371029624 25.6674371180047 −1.50423 × 10−8

14 27.6673813599995 27.6673813720274 −1.20280 × 10−8

15 29.6673331382212 29.6673331479896 −9.7684 × 10−9

The luminosity so writes:

• for m = 2, with b = b(2):

4 π
b4

eb [ 6− e−b
√
x (6 + 6 b

√
x+ 3 b2 x+ b3 x

3
2 )] (A.5)

• for m = 4, with b = b(4):

8 π
b8

eb [ 5040− e−b x
1
4 (5040 + 5040 b x

1
4 + 2520 b2

√
x

+840 b3 x
3
4 + 210 b4 x+ 42 b5 x

5
4 + 7 b6 x

3
2 + b7 x

7
4 )](A.6)

and so on . . .
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