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A New Proof of Yun'sInequality for
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Abstract. We give a new proof of a recent inequality for bicentric qulaterals
that is an extension of the Euler-like inequalRy> /2r.

A bicentric quadrilateral ABC D is a convex quadrilateral that has both an in-
circle and a circumcircle. In [6], Zhang Yun called theseuble circle quadrilat-
erals” and proved that

r\/§<1 A B_I_,B C_I_,C D+,D A 1

R =73 S B COS B) Sin B COS B) S B COS B Sin B COS B) <

wherer and R are the inradius and circumradius respectively. While haop

mainly focused on the angles of the quadrilateral and how #ine related to the
two radii, our proof is based on calculations with the sides.

Figure 1. A bicentric quadrilateral with its inradius andccimradius
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In [4, p.156] we proved that the half angles of tangent in atiicc quadrilateral
ABCD with sidesa, b, ¢, d are given by

\/T; C

2 )

cd D
ab

We need to convert these into half angle formulas of sine asthe. The trigono-
metric identities

LT tan 3
sin— = ——=——,
2 tan? s+1
x 1
CoS — = ———
2 tan? £ +1
yields
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From the formulas for the inradius and C|rcumrad|us in anftite quadrilateral
(these where also used by Yun, but in another way)

2V abed
a+b+c+d

1 \/ (ab + cd)(ac + bd)(ad + be)
R="
4 abed

= sin

we have

rv2 8v/2abed

R (a+b+c+d)\/(ab+ cd)(ac + bd)(ad + be)
< 8v/2abed
~ 4v/abedy/(ab + cd)(ad + be) v/ 2V acbd
2v/abed
N V/ (ab + cd)(ad + be)
where we used the AM-GM inequality twice.
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Let us for the sake of brevity denote the trigonometric esgimn in the paren-
thesis in Yun’s inequality by.. Thus
B B C C D D A

E:SiHECOSE+Sin§COSE+Sin§COS§+Sin§COSE

and the half angle formulas (1), (2), (3) and (4) yields

_ Vab?c+ Vberd + Vaed? + Va2bd  (Vab+ Ved)(vVad + Vbe)
V/(ab + cd)(ad + be) V(ab +cd)(ad +be)
Using the AM-GM inequality again,

(Vab + Ved)(Vad + Vbe) > 2/ Vabved - 2y/vadv/be = 4v/abed,

Hence

b

rv2 < 2v/ abed
R = \/(ab+ cd)(ad + bc)
This proves the left hand side of Yun's inequality.
For the right hand side we need to prove that

(Vab 4+ Vcd)(Vad + Vbe)
V/(ab + cd)(ad + be)
By symmetry it is enough to prove the inequality

Vab+Ved <3
vab+ ed

Since both sides are positive, we can rewrite this as

(Vab+Ved)? < 2(ab+cd) <  2Vabed < ab+ cd

which is true according to the AM-GM inequality.

This completes our proof of Yun’s inequality for bicentriaaglrilaterals. From
the calculations with the AM-GM inequality we see that thisrequality on the left
hand side only when all the sides are equal since we wselH- ¢+ d > 4v/abed,
with equality only ifa = b = ¢ = d. On the right hand side we have equality only
if ab = cd andad = bc, which is equivalent taa = ¢ andb = d. Since itis a
bicentric quadrilateral, we have equality on either sidenidl only if it is a square.

It can be noted that since opposite angles in a bicentricrdatatal are supple-
mentary angles, Yun's inequality can also (after rearmaggine terms) be stated as
either

ﬂ < l (simésimE —l—singsing —I—Singsing —|—SiHQSiné> <1

R — 2 2 2 2 2 2 2 2 2) =

3.

<

1
2

<2

or

rv2 < 1 n N C D n D A <1

_— — | COS — COS — COS — COS — COS — COS — COS — COS — .
R —2 2 2 2 2 2 2 2 2)~
We conclude this note by a few comments on the simpler inéguil> /2r.

According to [2, p.132] it was proved by Gerasimov and Katiil©64. The next
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year, the American mathematician Carlitz published a pgjevhere he derived a
generalization of Euler’s triangle formula to a bicentricagrilateral. His formula
gaveR > /2r as a special case. Another proof can be based on Fuss’ theswem
[5]. The inequality also directly follows from the fact thie areak of a bicentric
quadrilateral satisfiedR? > K > 42, which was proved in [1].
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