
Puffer Finance

May 1st, 2024

Made with ❤ by the following Creed authors: Valentin Quelquejay and Dominik Muhs

https://thecreed.xyz/

4

5

6

8

19

Table of Contents

| Executive Summary

| Scope and Objectives

| Audit Artifacts

| Findings

| Disclaimer

Executive Summary

This report presents the results of our engagement with Puffer Finance to review the pufETH and
Puffer Pool smart contract systems. The review was conducted over three weeks, from April 10,
2024 to May 1, 2024 by Valentin Quelquejay and Dominik Muhs. A total of 25 person-days were
spent.

In total, one critical and two major issues have been identified, two of which have been already
addressed during the audit's time frame. The project's access control is centralized through the
OpenZeppelin AccessManager contract. Thus, the configuration of access control permissions for
the majority of functions occurs within the deployment script. Therefore, it is crucial to carefuly
review the scripts, and ensure that the permissions are set correctly before deploying the protocol.
Additionally, the off-chain guardians play a critical role in securing the system. It is important that
the majority of guardians are trustworthy. The secure signer operating within the enclave should
also be carefully reviewed.

4 Executive Summary

Scope and Objectives

Our review focused on two repositories:

pufETH at commit hash 5db7863db529e007a43bacd88aa7809332027fae, and
PufferPool at commit hash d9e7948ef18f7b03c9b98999e01eeb967597879b.

Together with the Puffer Finance team, we identified the following priorities for our review:

Review the security of the validator lifecycle and check for invalid/unwanted transitions,
Review the EigenLayer integration, specifically regarding changes of the M2 upgrade,
Ensure that the system is implemented consistently with the intended functionality, and
without unintended edge cases,
Identify known vulnerabilities particular to smart contract systems, as outlined in our Smart
Contract Security Field Guide, and the ones outlined in the EEA EthTrust Security Levels
Specification.

•
•

•
•
•

•

5 Scope and Objectives

https://scsfg.io/
https://scsfg.io/
https://entethalliance.org/specs/ethtrust-sl/
https://entethalliance.org/specs/ethtrust-sl/

Audit Artifacts

6 Audit Artifacts

7 Audit Artifacts

Findings

Critical Malicious SGX Operator

Withdrawal Credentials

Frontrunning

Fixed

The Puffer Finance team provided the following statement:

A fix has been added to Secure Signer to only allow initial deposit message signing and
prevent any subsequence signing of the deposit message: https://github.com/
PufferFinance/secure-signer/blob/e016932eab9ea204c9fb20baec119a06dacbc600/src/
enclave/shared/mod.rs#L22-L28 Removed the bypass of the depositRootHash from the
enclave node operators. Now all deposits are checked to prevent any frontrunning
opportunities on the deposits: https://github.com/PufferFinance/PufferPool/pull/245/files

The provisionNode() function in the PufferProtocol contract provisions new validators. If the
operator relies on an SGX enclave to run the signer, the function does not check that the
depositRootHash matches the depositRootHash stored in the beacon deposit contract. Thus, even
without controlling the BLS private key, which should only be accessible to the software run in the
secure enclave, if the secure signer running in the enclave allows signing arbitrary messages with
the BLS key, a malicious operator could sign a deposit message with different withdrawal
credentials, and front-run the legitimate deposit transaction, effectively stealing 32ETH from the
protocol.

Recommendation

Make sure that the signer software stored in the SGX does not allow signing arbitrary deposit
messages

8 Findings

Major Malicious Guardian

Addition/Removal DoS

Acknowledged

The Puffer Finance team provided the following statement:

Given that all the guardians are trusted in this phase of the project, we acknowledge this
issue, and fix this through the onboarding process checks. We added one step to the
guardian signup which is to get them guardians to sign a message with their address,
hence making sure the guardian address added is an EOA and not a smart contract to
enable this attack. In the future, we might move to the pull strategy for guardians as well to
mitigate this issue fully.

In GuardianModule.sol, the function splitGuardianFunds() transfers ETH to the guardians using
the sendValue() function. This function will revert if the ETH transfer fails. The comment suggests
that guardians are expected to be EOAS. Yet, it is unclear how this expectation is enforced, as there
is no check at the smart contract level.

PufferPool/src/GuardianModule.sol

114
115
116
117
118
119

for (uint256 i = 0; i < numGuardians; ++i) {
// slither-disable-start reentrancy-unlimited-gas
// slither-disable-next-line calls-loop
payable(_guardians.at(i)).sendValue(amountPerGuardian);
// slither-disable-end reentrancy-unlimited-gas

}

Moreover, this approach would exclude the use of smart-contract wallets, such as multi-sigs,
potentially posing a problem in the future. Assuming guardians could be smart-contract wallets, a
malicious guardian could intentionally revert on all ETH transfers.

PufferPool/src/GuardianModule.sol

255
256
257
258

function addGuardian(address newGuardian) external restricted {
splitGuardianFunds();
_addGuardian(newGuardian);

}

9 Findings

PufferPool/src/GuardianModule.sol

264
265
266
267

function removeGuardian(address guardian) external restricted {
splitGuardianFunds();

(bool success) = _guardians.remove(guardian);

This would cause both the removeGuardian() and addGuardian() functions to revert, preventing
any guardian from being added or removed from the system and effectively bricking the guardian
module. Note that this would also prevent rewards from being distributed to other guardians.

Recommendation

We recommend using a 'pull' over a 'push' strategy for ETH transfers.

10 Findings

Major Frontrunnable Protocol

Initialization

Fixed

Note: During the audit, the development team added a separate Mainnet deploy script and fixed
the issue independently: PufferPool@50fd1bc1

In the Puffer deployment script, the PufferProtocol contract has circular dependencies with other
system components. To resolve this issue, the NoImplementation placeholder contract is deployed
first and then upgraded to the new PufferProtocol implementation.

In the upgradeToAndCall admin call to the proxy, no call data is given, however, and a separate call
to initialize is performed after.

PufferPool/script/DeployPuffer.s.sol

150
151
152
153
154
155

pufferProtocol = PufferProtocol(payable(address(proxy)));

NoImplementation(payable(address(proxy))).upgradeToAndCall(address(pufferProtoco…

// Initialize the Pool
pufferProtocol.initialize({ accessManager: address(accessManager) });

This call can be frontrun by an attacker to initialize the protocol contract with a malicious
AccessManager instance.

Recommendation

We recommend performing the upgrade and initialization atomically to avoid frontrunning attacks.

11 Findings

https://github.com/PufferFinance/PufferPool/commit/50fd1bc14e5c398fa99108d5d19f3100b7f235b9

Medium postRewardsRoot() might

lead to a potential loss of

rewards

Acknowledged

The Puffer Finance team provided the following statement:

The rewards won't be enabled in this upgrade as it's still unclear for EigenLayer rewards, etc.
The issue will be fixed when more details are defined.

The external function postRewardsRoot() in PufferModule is used to post the root of the rewards
Merkle Tree for the given module and block number. The function checks the guardian signatures to
ensure the root and the corresponding block number are valid. Additionally, it requires the block
number of the posted root to be greater than the block number of the last posted root. Thus, it
disallows posting rewards roots out of order.

PufferPool/src/PufferModule.sol

331
332
333

if (blockNumber <= $.lastProofOfRewardsBlockNumber) {
revert InvalidBlockNumber(blockNumber);

}

This means that if rewards are posted for block x, and then x+j, it is impossible to post rewards for
blocks x+i, 0<i<j. This could cause problems if transactions are reordered, for instance, as it might
prevent posting rewards for certain blocks.

Recommendation

Ideally, one should allow reward roots to be posted out-of-order. Alternatively, a sub-optimal
solution would be to implement strict off-chain validation at the guardian level to ensure no roots
can be signed before the previous one has been confirmed on-chain.

12 Findings

Minor Events emitted when no

state change is performed

Fixed

The Puffer Finance team provided the following statement:

Fixed: by making sure there are no empty calls to the functions and revert if empty: https://
github.com/PufferFinance/pufETH/pull/77/files

In the PufferVaultV2 contract, the operations multisig has access to the
initiateETHWithdrawalsFromLido and claimWithdrawalsFromLido functions. These functions take
calldata arrays which are not checked for emptiness.

pufETH/src/PufferVaultV2.sol

269
270
271
272

for (uint256 i = 0; i < requestIds.length; ++i) {
$.lidoWithdrawalAmounts.set(requestIds[i], amounts[i]);

}
emit RequestedWithdrawals(requestIds);

pufETH/src/PufferVaultV2.sol

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

for (uint256 i = 0; i < requestIds.length; ++i) {
// .get reverts if requestId is not present
expectedWithdrawal += $.lidoWithdrawalAmounts.get(requestIds[i]);

// slither-disable-next-line calls-loop
_LIDO_WITHDRAWAL_QUEUE.claimWithdrawal(requestIds[i]);

}

// ETH balance after the claim
uint256 balanceAfter = address(this).balance;
uint256 actualWithdrawal = balanceAfter - balanceBefore;
// Deduct from the locked amount the expected amount
$.lidoLockedETH -= expectedWithdrawal;

emit ClaimedWithdrawals(requestIds);

Thus, the functions' logic can be skipped and a rogue event can be emitted. A similar issue affects
the Timelock.cancelTransaction function, which permits the cancelation of non-existent operation
IDs:

13 Findings

pufETH/src/Timelock.sol

170
171
172
173
174
175
176
177
178
179
180

function cancelTransaction(address target, bytes memory callData, uint256 operat…
// Community multisig can call this by via executeTransaction
if (msg.sender != OPERATIONS_MULTISIG && msg.sender != address(this)) {

revert Unauthorized();
}

bytes32 txHash = keccak256(abi.encode(target, callData, operationId));
queue[txHash] = 0;

emit TransactionCanceled(txHash, target, callData, operationId);
}

Another instance of this issue is the EnclaveVerifier.removeLeafX509 function where non-existent
leaves can be deleted and an event is emitted:

PufferPool/src/EnclaveVerifier.sol

66
67
68
69
70

function removeLeafX509(bytes32 hashedCert) external restricted {
delete _validLeafX509s[hashedCert].modulus;
delete _validLeafX509s[hashedCert].exponent;
emit RemovedPubKey(hashedCert);

}

14 Findings

Minor Duplicate stETH Withdrawal

Root Submissions

Acknowledged

In the PufferVaultV2 contract, users can initiate a withdrawal of their stETH funds from the
respective EigenLayer strategy. This will queue the withdrawal through the EigenLayer delegation
manager and return a withdrawal root.

This withdrawal root is stored internally for later claiming. However, when adding the root, the
return value is left unchecked, allowing the function call to succeed even if the given root is already
in the set:

pufETH/src/PufferVaultV2.sol

461 $.eigenLayerWithdrawals.add(withdrawalRoot);

15 Findings

Minor DAO Lacks Exit Fee Setting

Permissions

Fixed

Note: This issue has been fixed in the following revision: https://github.com/PufferFinance/pufETH/
commit/175b3fb93da366c071f7018a6a7e53c8ec8cbd38

In PufferVaultV2, the Puffer Finance DAO should be given the ability to call
setExitFeeBasisPoints to set the vault's exit fee:

pufETH/src/PufferVaultV2.sol

365
366
367

function setExitFeeBasisPoints(uint256 newExitFeeBasisPoints) external restricte…
_setExitFeeBasisPoints(newExitFeeBasisPoints);

}

However, in the access initialization script the permission is never granted since the selector has
been omitted:

pufETH/script/GenerateAccessManagerCallData.sol

55
56
57
58
59
60
61
62
63

function _getDaoSelectorsCalldataCalldata(address pufferVaultProxy) internal pur…
// DAO selectors
bytes4[] memory daoSelectors = new bytes4[](1);
daoSelectors[0] = PufferVaultV2.setDailyWithdrawalLimit.selector;

return abi.encodeWithSelector(
AccessManager.setTargetFunctionRole.selector, pufferVaultProxy, daoSelec…

);
}

Recommendation

We recommend adding the respective selector to the list. The assignment of roles in a separate
script instead of in the code itself can result in hard-to-detect permission errors. We recommend
reviewing all access restrictions before deployment to make sure all roles are correctly assigned.

16 Findings

None Guardians messages are not

bound to a specific domain

Acknowledged

The Guardians' message hashes are not using the EIP-712 domain separator. Thus, the messages
are not bound to a specific chain. This could mean that the messages might be replayable if the
protocol is deployed on a different chain in the future with the same guardian setup. Ideally, it
would be beneficial to bind the messages to a specific domain to make the protocol more robust
and prevent any future issues if the protocol were eventually deployed on other chains.

PufferPool/src/LibGuardianMessages.sol

42
43
44
45

function _getSkipProvisioningMessage(bytes32 moduleName, uint256 index) internal…
// All guardians use the same nonce
return keccak256(abi.encode(moduleName, index)).toEthSignedMessageHash();

}

PufferPool/src/LibGuardianMessages.sol

66
67
68
69
70
71
72

function _getSetNumberOfValidatorsMessage(uint256 numberOfValidators, uint256 ep…
internal
pure
returns (bytes32)

{
return keccak256(abi.encode(numberOfValidators, epochNumber)).toEthSignedMes…

}

17 Findings

None Separate Test and

Production Code

Acknowledged

The PufferVaultV2Tests contract is located in the source directory. To keep the code base clean
and separate the test from the production code, it should be moved to the test directory.

18 Findings

File Hashes

./code/PufferPool/script/DeployNewPufferModule.s.sol

388148afd36a9e4ec7c1dfa6198e5f7cb17ef9c434cc7e4281c73ac7e438974e

./code/PufferPool/script/DeployPufferOracle.s.sol

03357b3ad85f7ef5f9a969f8ba6f0601b425653adfcbfc566e2fc4034111c46f

./code/PufferPool/script/DeployEverything.s.sol

273fa0db33d71fd6dd58782d3bb071662367512f9ae64119c5740344669006d8

./code/PufferPool/script/DeployGuardians.s.sol

7b820d88574c7479c9deb346c062094c678db46f4435c7e4cfc9015f41ce8f3e

./code/PufferPool/script/AddLeafX509.s.sol

a17758826e2e1c36521b405ccf4a9567b3a5b0f3b61f4167841051611382ba6c

./code/PufferPool/script/SetGuardianEnclaveMeasurements.s.sol

374e1aa57e93a769115f6aaf8fa892964c42a8d90dab0d2ed4adda69c878b5d4

./code/PufferPool/script/DeployPuffer.s.sol

c05ca8bfab214c2a9285c430af826b2ba39d8c47b0bff6068db991700ec55107

./code/PufferPool/script/DeploymentStructs.sol

78402b887d58bd37dd318607396a341e6ed3e90b8eca3a2afbae05ffa519911c

./code/PufferPool/script/DepositETH.s.sol

fe72ffe2e8764f90a2e4827bb933ca6f135f6d8f670f6f9f35136939ab708b34

./code/PufferPool/script/BaseScript.s.sol

1e8b74745c33756faecaf77d9a282d8d49d0daca5d09d4a94b53777d4d1f1017

./code/PufferPool/script/SetupAccess.s.sol

c46e9da2913d971fc5baf101510b58df6e9bcc9c102e440f60de425221d98f44

./code/PufferPool/script/ReadValidators.s.sol

0620a9b6202263e5b06debf0c26f1c92e7f9e5482797ee728ba285c27a24e204

./code/PufferPool/script/DelegateTo.s.sol

0a45884c303c9a76af52b218d532a3c70f40244aa5e762f79772fb0866dac614

./code/PufferPool/script/DeployPufferProtocolImplementation.s.sol

b291f38313c923f85cf86b822e97fa28dd607e726d8c3e2a462a21b952cc386e

./code/PufferPool/src/LibGuardianMessages.sol

20ef275b8ce80f698d5528f5a74e05fd23282b08f90629a768bf62f6f2167905

./code/PufferPool/src/PufferModuleManager.sol

194d569ec86d80588d6a651479ef9f1ca438ad0c151fbf7d8dee1e57407d9ebe

./code/PufferPool/src/interface/IEnclaveVerifier.sol

1de9b4493b02e6b8a6b030bc88c096972e2cd529e040e4416a63ff54479f54f9

./code/PufferPool/src/interface/IRegistryCoordinatorExtended.sol

fdb233a5a6367d41bd3503700fa830738220d3c5032855ab080313e14d72cf44

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

19 File Hashes

./code/PufferPool/src/interface/IValidatorTicket.sol

ac9f076e2dbd9cabd64c406e392645c8536805be62578242d742968b952dc8df

./code/PufferPool/src/interface/IBeaconDepositContract.sol

99aac3de1a8691783984f798f429eee6d6a202fd56d36121ff0218e5ec06f028

./code/PufferPool/src/interface/IRestakingOperator.sol

ccd5b4cdbddc206e1ea402ddd7d2d36f42c2b48163d6138f8f9efbc577275f7b

./code/PufferPool/src/interface/IWETH.sol

6e0fd67e25bdacbc7bbbade2fdc4da68b9695310f16c95ed12be6f1475e42aae

./code/PufferPool/src/interface/IPufferModule.sol

6d143e0ff4deb48e25e2ee8ab8f92accbb310264dab06c50d74eb256ca9d9695

./code/PufferPool/src/interface/IPufferModuleManager.sol

b8f7fbc71b2aead6827e2504ebd627ca6f8a34f86b7629be729b7d88fe32641b

./code/PufferPool/src/interface/IPufferProtocol.sol

7dd40738810465456b1e2b06681d578015ebb44728d9be90de87aa3846604a5c

./code/PufferPool/src/interface/IGuardianModule.sol

3b48a7c0e5718cf4e323eb39937f15b19fd0a3aa96f0221c1ec3b72e6d9c6d42

./code/PufferPool/src/PufferProtocolStorage.sol

183d055a78020383ee7b30c31d5762a922fab442237475d3c9b38700c7157df2

./code/PufferPool/src/Errors.sol

effe1495e01156217299f03f9fcda120f477211c4b70e809da68530f3b571fe3

./code/PufferPool/src/EnclaveVerifier.sol

8039a848920276111a8e5c3e47048b1ed813c06d8d788fd7949d221df27caa54

./code/PufferPool/src/ValidatorTicket.sol

7efebb165b08a346a3d01846ad87c4593b37887d0eda35419733c0f24272eabd

./code/PufferPool/src/PufferOracle.sol

0713072cf05d62cba4740be18b1b2953c9278aaa0be2f59a880e92dedf2145bd

./code/PufferPool/src/struct/StoppedValidatorInfo.sol

02e462da7ecda05d6ecc76cc2da8fcd78fa97e0f328e6705fbbaad17803bba41

./code/PufferPool/src/struct/Validator.sol

3733090b908f559bcf50175767e066e87ab68572e0cd7655b0ee15d19aa7fc8c

./code/PufferPool/src/struct/NodeInfo.sol

f748dd5ecfeae58bcc80f9d5be4ed38afaee461cc18bac13ee75da89275b0dc0

./code/PufferPool/src/struct/ProtocolStorage.sol

2a9754ca50ba1effedafae14522d560b6eb48ada9b17aa14a642b6fdbaef5a51

./code/PufferPool/src/struct/Status.sol

14598e49a5badf71a9b41bc99003c79faa90df99cd928dedaf10d3a50b54a251

./code/PufferPool/src/struct/RaveEvidence.sol

23b24221ad6611d71d834b9faed2bafe8029a44045493c1f194ad1b95364fe48

./code/PufferPool/src/struct/ValidatorKeyData.sol

797d77d62cba82668ae1eb38096317cc95d40964b71271b6e216b05695f04f41

./code/PufferPool/src/integrations/BalancerRateProvider.sol

adb715cde09cd9f183e7db4ebca74bd27dceb40f4e0dc6c552e48ce17627cc91

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

20 File Hashes

./code/PufferPool/src/ValidatorTicketStorage.sol

92b12047708f23ef1d0843b5056778c11271efad489b681acb8b2ca71cbdb1c5

./code/PufferPool/src/PufferOracleV2.sol

97086d1546ed2b7413f77cb98b594e33364e1120d0cfb8928141234588ed9b21

./code/PufferPool/src/PufferModule.sol

e6d25c5ac05a9be213f2010a9b7b8db4d6aee8b715150f23596455cb74ffd6b7

./code/PufferPool/src/RestakingOperator.sol

7289872fd7564dc6ebc9f199ddc3017343590ec087f63a28a10c1704c93f391b

./code/PufferPool/src/LibBeaconchainContract.sol

863e2608a2c7fb92ff94f9a2f22870cf5b51e2d7e2884dac576e69a76b9ff2e7

./code/PufferPool/src/GuardianModule.sol

60ce70372f40944569e81b8bbb8c845f0e0a6718b6855a719f734ddf3c727048

./code/PufferPool/src/PufferProtocol.sol

7fd50a3614a74c9dbce5f99f21f892030efea2474065fdebd292d6f56b625d79

./code/pufETH/script/Roles.sol

fcdc6d6817d41d67f50b077a18489c488c4ed8e61aef5be684186d6ebdab827e

./code/pufETH/script/DeployPufETH.s.sol

323509b219dc4a6038675f2bcdca9daccd72f25cd236f85d3789bde4abc953d4

./code/pufETH/script/BaseScript.s.sol

70a660e619e9c3389eb53e62206461f18b167af264697428be93f43c66678e8b

./code/pufETH/script/GenerateAccessManagerCallData.sol

c714feeb269810894ae6f058134b7554529987c87f6c264db449d3a38879c10e

./code/pufETH/script/UpgradePufETH.s.sol

280f297d65fa8ce2f5e4126f51f1a1d53c2ba4f362b626f71080350506d32f7c

./code/pufETH/src/interface/EigenLayer/IDelegationManager.sol

a45cd5d139300362d48b8835a0f0664e4f8743799e092fff46cc15302b511461

./code/pufETH/src/interface/EigenLayer/IEigenLayer.sol

3c21ba0ff050fa43a12e19c417220f31435f109e868c91b0bfe33374db382a71

./code/pufETH/src/interface/EigenLayer/IStrategy.sol

44d31de9ccd9c0b6f228829bac6e9707a71b748e0a8bec42abdd940cecaf45b5

./code/pufETH/src/interface/Lido/IStETH.sol

85585fd946b70fc135f2d36488c6dec8b2b7e85d7bb99657f7914fed6ae6b450

./code/pufETH/src/interface/Lido/IWstETH.sol

1dcf9256e90af3d6d16cb99158dce769a791291a21389ed80d43c601d58706e5

./code/pufETH/src/interface/Lido/ILidoWithdrawalQueue.sol

d6f52d07e3c3bc300fbeb4ecba96bca27d84a72f8ca6c09f01c7d9ee774307ef

./code/pufETH/src/interface/IPufferOracle.sol

b697c15e4032b336b5747438f0a8dc17acbc7a768128e884dcc696640bbfdb6f

./code/pufETH/src/interface/Other/ISushiRouter.sol

86c7a45893cd124357d1de206a1a09ee4e25b2c5199faeb795d4ab7dbb7c0ae8

./code/pufETH/src/interface/Other/IWETH.sol

ef73ee560254e14a80a6b043e1ba8cd2a860320d6e278a69d5db648f8c994ba0

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

21 File Hashes

./code/pufETH/src/interface/IPufferDepositorV2.sol

89731f758e11987292b578c715b5097d2be35cb28ec9451cd6fc4df61c5d6e0c

./code/pufETH/src/interface/IPufferDepositor.sol

2e2e9cb4780012e415f7a659ffbd910006c77e28be05976e57ac96fee8fac66f

./code/pufETH/src/interface/IPufferOracleV2.sol

b4d67da62e4fba52b8b8e38b9a1998a958be131ec96bd520414cdddf594d550d

./code/pufETH/src/interface/IPufferVaultV2.sol

7241e106c22027d40bd0b71b0419e7c286a1c86be7e57aef8b62fa06df43ab7d

./code/pufETH/src/interface/IPufferVault.sol

eb26fe8c1d19d394721755c9a57940aeeb7ed00fdf41e7fa88b97b52831d9c8c

./code/pufETH/src/NoImplementation.sol

9029116868f444a7c46a3205b94fac76aed889a0f92fcc6b8b6748e9b2158fee

./code/pufETH/src/Timelock.sol

8e44bfd64f94c9151f419e52756759d8444bb28e5046d1e9bcbcd168b15f0ec7

./code/pufETH/src/PufferDepositorStorage.sol

beaf244dcf1228a47aa1aa7235219ca2b16c914a0e261d6884d08f24585a4ff9

./code/pufETH/src/PufferVault.sol

7ecfe5c361904805e77ee20c25211c3ea3251de8f8097589fbbf2b6cf37a3abb

./code/pufETH/src/echidna/EchidnaPufferVaultV2.sol

d261fd1c662d71be0aa943702726119e477792f8912a84161aa7442a1174b9bf

./code/pufETH/src/structs/PufferDeployment.sol

49a95164ca8b5f3f233860f384e113c30cd67b0cd76939dc6445ab0b49eb3685

./code/pufETH/src/structs/Permit.sol

76fbee25bec43dd516415f9bda1552d8863ec3b201a31ddcaaeb9ac183f0c091

./code/pufETH/src/PufferDepositor.sol

bc94998113109aead1b414e0dbcc7c799b4cc61ec93c8cb185d63e1f11b21c06

./code/pufETH/src/PufferVaultStorage.sol

1fcee57b54cfa49eebcff881d25d320c0cfe3b9a20dd0586ec7833847334f2a8

./code/pufETH/src/PufferVaultV2.sol

2791e47f3209f03ee7a12750550c81b7e8b77969e4b4142a5c891294c77022f8

./code/pufETH/src/PufferDepositorV2.sol

72e5245d7f284ad8efa0e93435ae7224608255512607604bb7369ce13c67ddc7

./code/pufETH/src/PufferVaultV2Tests.sol

79223dcbecd59889a2042d03a8b7b9000f3f4c0b5cc529eb9ee01aa36aa16d9a

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

22 File Hashes

Disclaimer

Creed (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing
the analysis contained in these reports (the “Reports”). The Reports may be distributed through
other means, including via Creed publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the
Reports do not guarantee the security of any particular project. This Report does not consider, and
should not be interpreted as considering or having any bearing on, the potential economics of a
token, token sale or any other product, service or other asset. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty. No Report provides
any warranty or representation to any Third-Party in any respect, including regarding the bugfree
nature of code, the business model or proprietors of any such business model, and the legal
compliance of any such business. No third party should rely on the Reports in any way, including for
the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not
intended to be relied upon as investment advice, is not an endorsement of this project or team, and
it is not a guarantee as to the absolute security of the project. CD owes no duty to any Third-Party by
virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients
and published with their consent. The scope of our review is limited to a review of code and only the
code we note as being within the scope of our review within this report. Any Solidity code itself
presents unique and unquantifiable risks as the Solidity language itself remains under development
and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any
other areas beyond specified code that could present security risks. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. In some
instances, we may perform penetration testing or infrastructure assessments depending on the
scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) – on its website.
CD hopes that by making these analyses publicly available, it can help the blockchain ecosystem
develop technical best practices in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer
links, gain access to web sites operated by persons other than CD. Such hyperlinks are provided for
your reference and convenience only, and are the exclusive responsibility of such web sites' owners.
You agree that CD are not responsible for the content or operation of such Web sites, and that CD
shall have no liability to you or any other person or entity for the use of third party Web sites. Except
as described below, a hyperlink from this web Site to another web site does not imply or mean that
CD endorses the content on that Web site or the operator or operations of that site. You are solely

23 Disclaimer

responsible for determining the extent to which you may use any content at any other web sites to
which you link from the Reports. CD assumes no responsibility for the use of third party software on
the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing
on the Report and is subject to change without notice. Unless indicated otherwise, by CD.

24 Disclaimer

	Puffer FinanceMay 1st, 2024
	Table of Contents

	Executive Summary
	Scope and Objectives
	Audit Artifacts
	Findings
	Critical Malicious SGX Operator Withdrawal Credentials Frontrunning
	Recommendation

	Major Malicious Guardian Addition/Removal DoS
	Recommendation

	Major Frontrunnable Protocol Initialization
	Recommendation

	Medium postRewardsRoot() might lead to a potential loss of rewards
	Recommendation

	Minor Events emitted when no state change is performed
	Minor Duplicate stETH Withdrawal Root Submissions
	Minor DAO Lacks Exit Fee Setting Permissions
	Recommendation

	None Guardians messages are not bound to a specific domain
	None Separate Test and Production Code

	File Hashes
	Disclaimer

