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ON THE EQUATION
∑

p|N
1
p + 1

N = 1,
PSEUDOPERFECT NUMBERS,

AND PERFECTLY WEIGHTED GRAPHS

WILLIAM BUTSKE, LYNDA M. JAJE, AND DANIEL R. MAYERNIK

Abstract. We present all solutions to the equation
∑

p|N
1
p

+ 1
N

= 1 with at

most eight primes, improve the bound on the nonsolvability of the Erdös-Moser
equation

∑m−1
j=1 jn = mn, and discuss the computational search techniques

used to generate examples of perfectly weighted graphs.

Recent study of the unit fraction equation
k∑

i=1

1
ni

+
k∏

i=1

1
ni

= 1,(1)

n1 < n2 < · · · < nk, has sparked renewed interest in the relation∑
p|N

1
p

+
1
N

= 1,(2)

where the sum is taken over all distinct prime divisors of N . One purpose of this
paper is to present all solutions of equation (2) with k ≤ 8 primes. There is exactly
one solution for each k in this range, verifying conjectures of Ke and Sun [9], and
Cao, Liu and Zhang [7]. In the second section, properties of solutions will be applied
to the Erdös-Moser equation

m−1∑
j=1

jn = mn.(3)

We improve the bound on m to 109.3×106
for the conjecture that no nontrivial solu-

tion to (3) exists. Finally, we apply search techniques developed in connection with
equations (1) and (2) to the topic of perfectly weighted graphs (see [4]). Specifically,
for n ≥ 3 we have found all perfectible graphs of the following form.
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1. Primary pseudoperfect numbers

Recall that a positive integer is called perfect if it is the sum of all its proper
divisors, and pseudoperfect if it is the sum of some of its proper divisors ([8, p. 46]).
A positive integer N =

∏k
i=1 ni with factors ni satisfying equation (1) is clearly

pseudoperfect since

N =
k∑

i=1

N

ni
+ 1.

All solutions n1, . . . , nk to equation (1) are known for k ≤ 7 ([5], [3]). For k = 8, the
list of known solutions continues to grow, with 89 solutions announced by Brenton
and Bruner in 1994 ([2]). At present 112 solutions are known to the authors.

In the case where the divisors ni are precisely the distinct prime divisors of N ,
we obtain equation (2). Conversely, since equation (2) implies that N is square-
free, a solution to (2) is a special case of (1). We will call an integer N =

∏k
i=1 pi

satisfying (2) a primary pseudoperfect number. Through search methods described
in Section 4, all primary pseudoperfect numbers with k ≤ 8 prime factors have been
found.

Theorem 1. Table 1 comprises the complete list of solutions to the equation∑
p|N

1
p

+
1
N

= 1

with eight or fewer primes.

Table 1. Primary pseudoperfect numbers with k ≤ 8 prime factors

k N Factors

1 2 2
2 6 2,3
3 42 2,3,7
4 1806 2,3,7,43
5 47058 2,3,11,23,31
6 2214502422 2,3,11,23,31,47059
7 52495396602 2,3,11,17,101,149,3109
8 8490421583559688410706771261086 2,3,11,23,31,47059,2217342227,1729101023519

No solutions to equation (2) are known of length greater than 8. We do not know
whether there are infinitely many solutions. As in the case of perfect numbers, no
odd primary pseudoperfect number is known.

If we allow prime powers among the divisors, we have two additional solutions.

k N Factors

7 144508961850 2,3,11,25,29,1097,2753
8 20882840055109264384350 2,3,11,25,29,1097,2753,144508961851
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These, together with the 8 solutions of Table 1, constitute the list of known
solutions in primes pi to the equation

k∑
i=1

1
pαi

i

+
1∏k

i=1 pαi

i

= 1.(4)

There is also independent interest in the companion equation∑
p|N

1
p
− 1

N
= 1.(5)

Reference [1] discusses the history of this equation and presents the eleven solutions
that were known as of 1996. Recently, two new solutions have been found:

1910667181420507984555759916338506
= 2 ∗ 3 ∗ 7 ∗ 43 ∗ 1831 ∗ 138683 ∗ 2861051 ∗ 1456230512169437

by M. Hogan and C. Mangilin, and
4200017949707747062038711509670656632404195753751630609228764416142557211-
582098432545190323474818

=2∗3∗11∗23∗31∗47059∗2217342227∗1729101023519
∗8491659218261819498490029296021∗58254480569119734123541298976556403

by R. Girgensohn (both unpublished).

2. The Erdös-Moser equation

More than four decades ago Paul Erdös conjectured that no solution exists to
the equation

1n + 2n + · · ·+ (m− 1)n = mn

except the trivial solution 11 +21 = 31. Although the conjecture remains unproven
(see [8, p. 153–154]), in 1953 Leo Moser [11] verified that no solution exists for
m < 10106

. This bound has recently been used by Pieter Moree [10] to obtain
similar results for the equation

∑m−1
j=1 jn = amn. Moser’s proof proceeds by using

elementary number theoretic considerations to show that if (m, n) is a solution,
then the following expressions involving the prime divisors of m− 1 and of 2m± 1
must be integers: ∑

p|(m−1)

1
p

+
1

m− 1
= t1,(α)

∑
p|(2m−1)

1
p

+
2

2m− 1
= t2,(β)

∑
p|(2m+1)

1
p

+
4

2m + 1
= t3.(γ)

Furthermore, if m is odd, then m ≡ 3 mod 8 and∑
p| (m+1)

2

1
p

+
1

(m+1)
2

= t4.(δ)

No solution to any of these is known for ti > 1. For t1, t4 = 1, equations (α)
and (δ) imply that m − 1 and m+1

2 are a pair of primary pseudoperfect integers.
No nontrivial solution is known to either (β) or (γ). All of this comprises strong
support for the conjecture that no solution to (3) exists.
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Considering first the case m ≡ ±1 mod 6, Moser notes that except for the primes
2 and 3, no prime can divide any two of m±1, 2m±1. Therefore, the prime divisors
of the square-free integer M = (4m4−5m2+1)

12 = 1
12 (m− 1)(m + 1)(2m− 1)(2m + 1)

satisfy ∑
p|M

1
p

+
1

m− 1
+

2
m + 1

+
2

2m− 1
+

4
2m + 1

(6)

= t1 + t2 + t3 + t4 − 1
2
− 1

3
≥ 3

1
6
.

In the remaining cases m ≡ 3 mod 6 and m even, similar analysis applied to
M ′ = 1

4 (m− 1)(m + 1)(2m− 1)(2m + 1) and to M ′′ = (m − 1)(2m− 1)(2m + 1),
respectively, lead to similar inequalities, which are greatly more restrictive than (6),
since in these cases the small primes 3, respectively 2, do not appear in the sum.
The bound m > 10106

then follows from estimates on the rate of growth of
∑

1
p

taken over all primes.
In 1953 “computation” was the unwanted stepchild of “pure” mathematics, in

part because adequate computational tools were lacking. Moser himself is (justly)
proud of having achieved the startlingly immense bound 10106

by techniques of
analytic number theory “without laborious computations” ([11, p. 84]).

Times change: now we can actually calculate these large numbers that previously
could only be roughly estimated. All calculations reported in this paper were done
on a network of 20 Sun Sparc stations over the course of about 10 months.

Theorem 2. Let (m, n) be a solution to the Erdös-Moser equation (3), with n > 1.
Then m > 1.485× 109321155.

Proof. As above, the critical case is m ≡ ±1 mod 6. In this case put M =
4m4−5m2+1

12 . We claim that M has at least 4990906 prime factors. For if not,
then ∑

p|M

1
p
≤

4990905∑
i=1

1
pi

,

where pi is the ith prime. But by direct computation

4990905∑
i=1

1
pi

= 3.1666666588101728584 · · ·< 3
1
6
− 10−9.

Since, by Moser’s bound m > 10106
, this is less than 3 1

6− 1
m−1− 2

m+1− 2
2m−1− 4

2m+1 ,
contradicting (6). Thus M ≥ ∏4990906

i=1 pi. Again, direct computation gives

4990906∑
i=1

log pi = 8.5851010694053365252 · · · ∗ 107.

Solving the resulting inequality

m4

3
> M > e8.5851010694053365252∗107

gives the required bound m > 1.485 ∗ 109321155. The cases m ≡ 0 mod 3 and m
even are similar.
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Remark. While this bound appears to be the best available by the method pioneered
by Moser, the authors hope that new insights will eventually make it possible to
reach the more natural benchmark 10107

.

3. Perfectly weighted graphs

The concept of a perfectly weighted graph was introduced by Brenton and
Drucker in [4] in connection with the problem of classifying isolated singular points
of algebraic surfaces by properties of the local fundamental group.

Definitions. Let G be a tree (a connected graph with no circuits) on n vertices
v1, . . . , vn, with an integer weight wi > 1 assigned to each vertex vi. Then the
weighted graph G = G(w1, . . . , wn) is called perfectly weighted if the corresponding
matrix

MG =


w1 0 . . . 0

0 w2 0
...

... 0
. . . 0

0 . . . 0 wn

− [the adjacency matrix of G]

is positive definite with determinant 1. An unweighted tree G is perfectible if there
exist weights wi for its vertices such that the resulting weighted graph G(w1, . . . , wn)
is perfectly weighted.

An isolated singular point x of an m-dimensional complex analytic variety X
is called homologically trivial if x admits a neighborhood U in X which is homeo-
morphic to the cone on a homology (2m − 1)-sphere. That is, Hi(∂U, Z) = 0 for
0 < i < 2m− 1.

The main theorem from [4] gives the following relation between perfectly
weighted graphs and homologically trivial singularities in complex dimension 2.

Lemma 3.1. Let X be a complex surface with a singularity at the point x ∈ X

and with no other singular points. Let X̃ be the minimal nonsingular model of X

and let ρ : X̃ → X be the minimal resolution of singularities. Denote by C the
exceptional curve ρ−1(x), and write C =

⋃n
i=1 Ci with each Ci irreducible. Suppose

that the resolution ρ is normal and that each component Ci is rational. Then x ∈ X
is homologically trivial if and only if the dual intersection graph of ρ is a perfectly
weighted tree.

Here the dual intersection graph (call it Gρ) is the graph on vertices v1, . . . , vn,
where vi meets vj if and only if Ci meets Cj in X̃ and with weight wi on vi equal to
the negative of the Chern class of the normal bundle of the embedding of Ci in X̃.
The essential element of the proof is the following presentation, due to Mumford
[12], of the local fundamental group. Under the hypotheses of Lemma 3.1, if Gρ is
a tree, then the first homotopy group of a tubular neighborhood T = ρ−1(∂U) of
the exceptional curve C in X̃ is given by generators x1, . . . , xn with relations

n∏
j=1

x
Ci·Cj

j = 1

for all i, and xixj = xjxi if Ci meets Cj , where Ci · Cj is the intersection number
(the negative of the i, jth entry of Gρ). Since the intersection matrix [Ci · Cj ] is
always negative definite in the complex case, the corresponding first homology group



412 WILLIAM BUTSKE, LYNDA M. JAJE, AND DANIEL R. MAYERNIK

H1(T, Z) = π1(T )/(xyx−1y−1 = 1) is a finite group of order D = (−1)n det[Ci ·
Cj ] = det[MGρ ]. Thus, if x ∈ X is homologically trivial, then π1(T ) is a perfect
group (generated by commutators), and the converse follows from Poincaré duality.

In the special case in which G = Gρ is the weighted star

direct computation shows that

D = det[MG] =
k∏

i=0

ni −
k∑

i=1

∏
j 6=i

nj .

This is equivalent to

k∑
i=1

1
ni

+
D∏k

i=1 ni

= n0,

which exhibits the connection between this topic and our equations (1) and (2).
Explicitly (allowing n0 = 1), the group generated by x0, . . . , xn with relations
x0 =

∏k
i=1 xi = xni

i for all i is perfect if and only if the integer N =
∏k

i=1 ni is
pseudoperfect with factors ni satisfying equation (1). We find it interesting that al-
though the terms “perfect number” and “perfect group” were coined independently,
the results of this paper reveal a relation between these apparently disparate topics.

From the point of view of number theory, perhaps the most interesting graphs
are the so-called “weighted flowers”, which are weighted graphs of the form

Jk,m = Jk,m(n1, . . . , nk; w0, . . . , wm)

Lemma 3.2. For the weighted graph G = Jk,m(n1, . . . , nk; w0, . . . , wm) pictured
above, we have

k∑
i=1

1
ni

+
D

Q
∏k

i=1 ni

=
P

Q
,(7)
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where P
Q has the continued fraction expansion

[w0, w1, . . . , wm] = w0 − 1
w1 − 1

w2− . . . − 1
wm

and where D = det[MG].

A simple proof follows by induction on m (cf. [4, Lemma 4.3]).
In view of Lemma 3.2, we can use computational techniques similar to those

employed in finding solutions of equation (1) to find perfect weights for graphs of
this type. A perfectible graph is called minimal if it contains no proper perfectible
subgraphs. Table 2 presents the complete list of minimal perfectible flowers Jk,m

with m > 2. Since a graph containing a perfectible subgraph is itself perfectible,
we have the following result.

Theorem 3. Let G = Jk,m be a flower with m > 2. Then G is perfectible if and
only if G contains one of the five graphs in Table 2.

Verifying that each of these weighted graphs is perfectly weighted is a direct
application of Lemma 3.2. The proof of Theorem 3 consists of verifying that each
graph is minimal and that the list is complete. This was accomplished by exhaustive
searches, as discussed in Section 4.

The graphs in Table 2 are pictured with one set of perfect weights. The perfect
weights may not be unique. For instance,

is another set of perfect weights on J6,5.
The graphs J3,28, J4,6, and J6,5 were discusssed in [4]. J10,3 was also introduced

in [4], but at that time it was not known whether it was minimal or not. J7,4 was
derived only in 1995 after an earlier discovery by K. Conway (unpublished) of a set
of perfect weights for J8,4 shown below.
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Table 2. Minimal perfectible flowers
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4. Search techniques

The computational results reported thus far stem from finding solutions to the
equation

k∑
i=1

1
ni

+
1

Q
∏k

i=1 ni

=
P

Q
.(8)

Our main computational tool is Lemma 4.1, which gives a criterion for extending a
solution of equation (7) to a solution of equation (8) by the adjunction of two more
terms. Lemmas 4.1 and 4.2 generalize results of [5, Proposition 12 and Lemma 17].

Lemma 4.1. Given a positive integer P and relatively prime positive integers
n1, . . . , nk, Q, write

k∑
i=1

1
ni

+
D

Q
∏k

i=1 ni

=
P

Q
,

where D = (P
Q −

∑k
i=1

1
ni

)Q
∏k

i=1 ni. Let F be a factor of Y = Q2
∏k

i=1 n2
i +D and

write Y = FG. Suppose that F (and hence also G) is congruent to −Q
∏k

i=1 ni

mod D and put

nk+1 =
Q

∏k
i=1 ni + F

D
and nk+2 =

Q
∏k

i=1 ni + G

D
.

Then the integers n1, . . . , nk+2 satisfy the equation

k+2∑
i=1

1
ni

+
1

Q
∏k+2

i=1 ni

=
P

Q
.

Proof.

k∑
i=1

1
ni

+
1

nk+1
+

1
nk+2

+
1

Q
∏k

i=1 ni(nk+1)(nk+2)

=
P

Q
− D

Q
∏k

i=1 ni

+
D

Q
∏k

i=1 ni + F
+

D

Q
∏k

i=1 ni + G

+
D2

Q
∏k

i=1 ni(Q
∏k

i=1 ni + F )(Q
∏k

i=1 ni + G)

=
P

Q
+

D(Y − FG)

Q
∏k

i=1 ni(Q
∏k

i=1 ni + F )(Q
∏k

i=1 ni + G)
=

P

Q
.

In addition, given a partial solution n1, n2, . . . , ni, we know the bounds on a
search for ni+1.

Lemma 4.2. Let n1 < n2 < · · · < nk, k > 2, satisfy equation (8). Then for each
index i ≤ k − 2, we haveP

Q
−

i∑
j=1

1
nj

−1

< ni+1 < (k − i)

P

Q
−

i∑
j=1

1
nj

−1

.
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Proof.

1
ni+1

=
P

Q
−

∑
j 6=i+1

1
nj
− 1

Q
∏k

j=1 nj

<
P

Q
−

i∑
j=1

1
nj

,

so ni+1 > (P
Q −∑i

j=1
1

nj
)−1 as required.

On the other hand, since n1 < n2 < · · · < nk, we have

(k − i)
1

ni+1
≥ 1

ni+1
+

1
ni+2

+
(

1
ni+1

− 1
ni+2

)
+

k∑
j=i+3

1
nj

=
k∑

j=i+1

1
nj

+
ni+2 − ni+1

ni+1ni+2

>

k∑
j=i+1

1
nj

+
1

Q
∏k

j=1 nj

=
P

Q
−

i∑
j=1

1
nj

,

and thus ni+1 < (k − i)(P
Q −∑i

j=1
1
nj

)−1 as claimed.

To implement these ideas in a search program for fixed P
Q and k, we use Lemma

4.2 to determine all possibilities for n1, . . . , nk−2, then we determine nk−1 and nk by
the technique of Lemma 4.1. The advantage of this method over simply searching
for all possiblities for nk−1 (as many as 1013 choices for k = 8 and P

Q = 1) is that
we can reduce computation time by making use of advanced factoring techniques.
In contrast, a complete tree search for nk−1, using the bounds of Lemma 4.2, is
equivalent to factoring the large integer Y of Lemma 4.1 by trial division up to
the square root. Computation time could be further reduced by incorporating
the required congruence relations F, G ≡ −Q

∏k
i=1 ni mod D into the factoring

methods and by taking advantage of the special form Y = (Q
∏

ni)2 + D for a
known small number D. This program has proven to be the most useful tool for
finding solutions to equation (8) and its special cases, equations (1) and (2). It
yields both nonsporadic solutions (solutions of length k resulting from extending
known solutions of length k − 1 or k − 2) and sporadic solutions (solutions not
generated from such solutions of smaller length).

These searches have produced the following results. With respect to equation
(1), 68 nonsporadic and 44 sporadic solutions have been discovered for k = 8. The
68 nonsporadic solutions are easy to find and were discussed in [3]. The 44 sporadic
solutions include all except those in the string 2,3,7,43. The search is also complete
with respect to solutions in prime integers ni, giving a proof of the completeness of
the list of primary pseudoperfect numbers in Table 1.

Similar computational searches give results about particular perfectible graphs.
J8,5, for instance, admits at least 21 sets of perfect weights. Sixteen of these sets
result from extending perfect weights on the minimal perfectible graph J6,5, four
of them result from extending J7,4, and one from extending J8,4. These are the
nonsporadic solutions, and there are possibly sporadic solutions for perfect weights
on J8,5 which have not yet been explored.

A special case of Lemma 3.2 reveals further interesting properties of the graphs
Jk,m and a tighter relation between the topics of perfectible graphs and pseudo-
perfect numbers.
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Proposition 4.1. The weighted graph

is perfectly weighted if and only if n1, . . . , nk satisfy equation (1), where nk =
m2(w − 1) + m.

Proof. Direct computation verifies that the continued fraction

[2, 2, . . . , 2, w] =
(m + 1)w −m

mw − (m− 1)
= 1 +

1
m
− 1

nk

for nk as above. Thus, by Lemma 3.2 we have
k−1∑
i=1

1
ni

+
1
m

+
D

(mw − (m− 1))m
∏k−1

i=1 ni

= 1 +
1
m
− 1

nk
,

or
k∑

i=1

1
ni

+
D∏k

i=1 ni

= 1,

where D is the determinant of the weighted graph. Hence D = 1 if and only if
n1, . . . , nk satisfy equation (1).

To apply this result we need only find solutions n1, . . . , nk to equation (1) in
which one of the ni’s happens to be congruent to m mod m2 for some m (but
ni 6= m to ensure that w = 1 + (ni−m)/m2 is greater than 1). For k ≤ 8 we found
24 distinct solution sets n1, . . . , nk which contain an ni with this special property
for some integer m. Three of these sets have two different ni’s with this property,
and two have an ni which satisfies this congruence for two different m’s. This gives
a total of 29 examples of perfectly weighted graphs of the type Jk,m with k ≤ 8
and with weights as pictured in Proposition 4.1. They are presented in Table 3.

For m < 5 there are no solutions of this type for k < 10. The most challenging
case in this range was k = 9 and m = 3. In this instance we found that there are
only 5 solutions to equation (1) with no ni = 3:

2, 5, 7, 9, 31, 73, 13327, 63582361, 110273083859;
2, 5, 7, 9, 37, 61, 383, 3226871, 2344136699;

2, 5, 7, 11, 17, 149, 1431, 64911433, 1169526576259;
2, 5, 7, 11, 17, 157, 961, 4398619, 8687184244716671;

2, 5, 7, 11, 17, 167, 1257, 1919, 9373.

This leads immediately to the result that J9,3 is not perfectible. First, it is easy to
reduce the general case of perfect weights for J9,3 to those pictured in Proposition
4.1. Then we check that none of the ni’s appearing in the five solutions above is
congruent to 3 mod 9. In a similar manner, other graphs of type Jk,m can be shown
not to be perfectible, resulting in a proof of Theorem 3.
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Table 3. Special perfect weights on Jk,m, k ≤ 8

n1, n2, . . . , nk−1 m w

2,3,7,179,24323 5 3
2,3,7,55,179,24323 67 2240437
2,3,7,179,24323,10057317271 5 3
2,3,11,23,31,211031 71 13
2,3,11,23,31,12017087 7 965
2,3,7,43,1807,3263443,134811739261383753719 5 426002311687
2,3,7,43,1807,3263479,243811701792623 5 11527311163
2,3,7,43,1823,193667,637617223459 5 1250940688133154818523
2,3,7,43,1823,193667,637617223459 31 32542681793266254385
2,3,7,43,1831,132347,231679879 17 4142701692187

2,3,7,47,395,277442411,1701723083 361 7
2,3,7,47,403,19403,15435516179 5 3387914913502507
2,3,7.55,179,24323,101149630679497570171 67 2240437
2,3,7,55,179,24323,513449911932648503 37 7346471
2,3,7,179,24323,10057317271,101149630679497570171 5 3
2,3,7,179,24323,10057317287,5949978284730273323 5 3
2,3,7,179,24323,10057317311,2467064172726591731 5 3
2,3,7,179,24323,10057317467,513449911932648503 5 3
2,3,7,179,24323,10057317967,145121431390804003 5 3
2,3,7,179,24323,10057320619,30202945461748519 5 3
2,3,7,179,24323,10057325347,12523178395739983 5 3
2,3,7,179,24323,10057454579,736667018400959 5 3
2,3,11,17,79,1049,3696653 7 7
2,3,11,23,31,47059,3375982667 5 257468755
2,3,11,23,31,47059,165128325167 5 89784175
2,3,11,23,31,47059,165128325167 7 45808253
2,3,11,23,31,47147,11061526082145911 17 86259
2,3,11,23,31,211031,601432790177275 71 13
2,3,11,23,31,12017087,26715920281613179 7 965

Although J9,3 is not perfectible, each of the five solutions to equation (1) with
no ni = 3 results in a perfectible flower of type J9,6. They are presented in Table
4.

Solutions to equation (5), or more generally to
k∑

i=1

1
ni
−

k∏
i=1

1
ni

= 1(9)

also lead to perfect weights for graphs of type Jk,m. Namely, if n1, . . . , nk satisfy
equation (9), then the graph

is perfectly weighted for m =
∏k

i=1 ni − 2. Again, Lemma 3.2 provides the proof.
All solutions to equation (9) are known for k ≤ 7 (there are 50 of them), and more
than 400 are known for k = 8 ([6], [1]).
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Table 4. Examples of perfect weights on J9,6
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