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 INTRODUCTION TO A GENERAL THEORY OF ELEMENTARY
 PROPOSITIONS.

 BY EMIL L. POST.

 INTRODUCTION.

 In the general theory of logic built up by Whitehead and Rusself* to

 furnish a basis for all mathematics there is a certain subtheoryt which is
 unique in its simplicity and precision; and though all other portions of the
 work have their roots in this subtheory, it itself is completely independent of
 them. Whereas the complete theory requires for the enunciation of its

 propositions real and apparent variables, which represent both individuals.
 and propositional functions of different kinds, and as a result necessitates-

 the introduction of the cumbersome theory of types, this subtheory uses
 only real variables, and these real variables represent but one kind of entity-
 which the authors have chosen to call elementary propositions. The,

 most general statements are formed by merely combining these variables

 by means of the two primitive propositional functions of propositions
 Negation and Disjunction; and the entire theory is concerned with the
 process of asserting those combinations which it regards as true propositions,
 employing for this purpose a few general rules which tell how to assert
 new combinations from old, and a certain number of primitive assertions
 from which to begin.

 This theory in a somewhat different form has long been the subject

 matter of symbolic logic.4 However, although it had reached a high state
 of development as a theory of classes, it had this incurable defect as a,

 logic of propositions, that it used informally in its proofs the very proposi-

 tions whose formal statements it tried to prove. This defect appears to be
 entirely overcome in the development of 'Principia.' But owing to the
 particular purpose the authors had in view they decided not to burden their
 work with more than was absolutely necessary for its achievement, and so

 gave up the generality of outlook which characterized symbolic logic.
 It is with the recovery of this generality that the first portion of our

 paper deals. We here wish to emphasize that the theorems of this DaDer
 * A. N. NIThitehead and B. Russell, Principia Mathematica, Vol. 1, 1910; Vol. 2, 1912;

 Vol. 3, 1913. Camb. Univ. Press.

 t Ibid., Vol. 1, part 1, section A.
 + See C. I. Lewis, "A Survey of Symbolic Logic," University of California Press, 1919.

 An extensive bibliography is given there.
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 164 POST: A General Theory of Elementary Propositions.

 are about the logic of propositions but are not included therein. More

 particularly, whereas the propositions of 'Principia' are particular asser-

 tions introduced for their interest and usefulness in later portions of the

 work, those of the present paper are about the set of all such possible

 assertions. Our most important theorem gives a uniform method for

 testing the truth of any proposition of the system; and by means of this

 theorem it becomes possible to exhibit certain general relations which exist

 between these propositions. These relations definitely show that the

 postulates of 'Principia' are capable of developing the complete system of

 the logic of propositions without ever introducing results extraneous to that

 system-a conclusion that could hardly have been arrived at by the particu-
 lar processes used in that work.

 Further development suggests itself in two directions. On the one hand

 this general procedure might be extended to other portions of 'Principia,'

 and we hope at some future time to present the beginning of such an at-

 tempt. On the other hand we might take cognizance of the fact that the

 system of 'Principia' is but one particular development of the theory-

 particular in the primitive functions it employs and in the postulates it

 imposes on those functions-and so might construct a general theory of such

 developments. This we have tried to do in the other portions of the paper.

 Our first generalization leads to systems which are essentially equivalent
 to that of 'Principia' and connects up with the work of Sheffer* and Nicod t

 in reducing the number of primitive functions and of primitive propositions
 respectively. The second generalization, on the other hand, while including

 the first also seems to introduce essentially new systems. One class of such

 systems, and we study these in detail, seems to have the same relation to

 ordinary logic that geometry in a space of an arbitrary number of dimen-

 sions has to the geometry of Euclid. Whether these "non-Aristotelian"

 logics and the general development which includes them will have a direct

 application we do not know; but we believe that inasmuch as the theory

 of elementary propositions is at the base of the complete system of 'Prin-
 cipia,' this broadened outlook upon the theory will serve to prepare us for
 a similar analysis of that complete system, and so ultimately of mathe-
 matics.

 Finally a word must be said about the viewpoint that is adopted in this

 paper and the method that is used. We have consistently regarded the

 system of ' Principia ' and the generalizations thereof as purely formal de-

 * H. M. Sheffer, "A Set of Five Independent Postulates for Boolean Algebras, with
 Applications to Logical Constants," Trans. Amer. MIath. Soc., 14 (1913), pp. 481-88.

 t J. G. P. Nicod, "A Reduction in the Number of the Primitive Propositions of Logic,"
 Proc. Camb. Phil. Soc., Vol. XIX, Jan., 1917.
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 POST: A General Theory of Elementary Propositions. 165

 velopments,* and so have used whatever instruments of logic or mathe-
 matics we found useful for a study of these developments. The fact that
 one of the interpretations of the system of 'Principia' is part of the
 informal logic we have used in this study makes the full significance of this
 interpretation, at least with regard to proofs of consistency, uncertain, but
 it in no way affects the actual content of the paper which is in connection
 with the formal systems.

 THE SYSTEM OF PRINCIPIA MATHEMATICA.

 1. Description of the System.-Let p, Pl, P2, , q, ql, q2, *.., r, ri,
 r2. . . . arbitrarily represent the variable elementary propositions mentioned
 in the introduction. Then by means of the two primitive functions ' p
 (read not p-the function of Negation) and p V q (p or q-the function of
 Disjunction) with the aid of the primitive propositions

 I. If p is an elementary proposition '- p is an elementary proposition,
 If p and q are elementary propositions p V q is an elementary proposi-

 tion,

 we combine these variables to form the various propositions or rather
 ambiguous values of propositional functions of the system. It is desirable
 in what follows to have before us the vision of the totality of these functions
 streaming out from the unmodified variable p through forms of ever growing
 complexity to form the infinite triangular array

 p

 P Vp Pl Vp2, Pp

 P V -p ..* ,. 3 Pi V P2., * . (Pl V P2) V (p3 V p4),

 (pi V p2), (p V P), --P

 and to note and remember that this array of functions formed merelv
 through combining p's by -'s and V 's constitutes the entire set of enuncia-
 tions it is possible to make in the theory of elementary propositions of
 'Principia.'

 But the actual theory is concerned with the assertion of a certain subset
 of these functions. We denote the assertion of a function by writing H
 before it. Then the motive power for the resulting process of deduction
 is furnished by the two rules of oDeration:

 * For a general statement of this viewpoint see C. I. Lewis, Loc. Cit., Chapter VI,
 section III.
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 166 POST: A General Theory of Elementary Propositions.

 II. The assertion of a function involving a variable p produces the
 assertion of any function found from the given one by substituting for p

 any other variable q, or q, or (q V r) .
 III. "H P" and "H: ' P. V .Q" produce "H Q."

 These enable us to assert new functions from old., or rather in the form in

 which we have put them, generate-new assertions from old. And the com-
 plete set of assertions is produced by applying II and III both to the follow-
 ing assertions which give us the start, and to all derived assertions that may

 result:

 IV. : (P V P) V P, F: [P V (q V r)]. V .q v(p V r),

 F: q * V-*P V q. k:*~( q V r) . V: (P V q) . V p PV r,

 H - (P V q) V * q V P.

 We here again point out what was emphasized in the introduction that

 this theory concerns itself exclusively with the production of particular
 assertions through the detailed use of the rules of operation upon the
 primitive assertions, and as a consequence the set of theorems of this portion
 of 'Principia' consists of the assertions of a certain number of particular
 functions of the above infinite sett

 2. Truth-Table Development.1-Let us denote the truth-value of any
 proposition p by + if it is true and by - if it is false. This meaning of +

 and - is convenient to bear in mind as a guide to thought, but in the
 actual development that follows they are to be considered merely as symbols
 which we manipulate in a certain way. Then if we attach these two

 primitive truth-tables to - and V

 * This operation is not explicitly stated in 'Principia' but is pointed out to ber-neces-
 sary by B. Russell in his "Introduction to Mathematical Philosophy," London, 1919, p. 151.
 Its particular form was suggested to us by the first portion of the operation of "Substitu-
 tion" given by Lewis, loc. cit., p. 295. It will be noticed that the effect of II is to enable
 us to substitute any function of the system for a variable of an asserted function.

 t We have consistently ignored the idea of definition in this description. We here
 rigorously follow the authors in saying that definition is a convenience but not a necessity
 and so need not be considered part of the theoretical development. And so although we
 too shall at times use its shorthand, we do not encumber our theoretical survey with it.

 I Truth-values, truth-functions and our primitive truth-tables are described in 'Prin-
 cipia,' Vol. 1, p. 8 and p. 120, but the general notion of truth-table is not introduced.
 This notion is quite precise with Jevons and Venn (see Lewis, loc. citus, p. 74 and pp. 175
 et seq. respectively) and has its foundation in the formula for the expansion of logical
 functions first given by Boole. (G. Boole, "An Investigation of the Laws of Thought,"
 London, Walton, 1854, especially pp. 72-76.) For the relation to Schr6der see the foot-
 note to section 3.
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 POST: A General Theory of Elementary Propositioms. 167

 p 1H -p P,q p V q
 +i- ++ +
 -9I +-_ +

 -+ +

 we have a means of calculating the truth-values of - p and p V q from those
 of their arguments. Now consider any function f(pi, P2, ... pn) in our
 s-Nstem of functions, which we will designate by F. Then since f is built up
 of combinations of -'s and V's, if we assign any particular set of truth-
 values to the p's, successive application of the above two primitive tables
 will enable us to calculate the corresponding truth-value of f. So corre-
 sponding to each of the 2n possible truth-configurations of the p's a definite
 truth-value of f is determined. The relation thus effected we shall call the
 truth-table of f.

 For example consider the function

 p (~(PV q) V (q V P))

 which is the ultimate definition of the function p q of Principia. We
 have when p is + and q is + the following truth-values of the successive
 components of the function and so finally of the function:

 p:+ 'p:- PV q:+ (P V q):

 q: +, 1 q:- q V P: +, ~~QV P):

 p (~PV q) V (- q V ])) :- (- (- P V q) V - (- q V P)) :+

 the successive truth-values being found by direct application of the primitive
 tables. In the same way the truth-values for p +, q - etc. can be calcu-
 lated and so we finally get the truth-table of p -q, i.e.,

 p),q p-q

 ++-+

 It is needless to sav that in actual work this amount of detail is quite
 unnecessary.

 We shall call the number of variables which appear in a function the
 order of that function as well as that of its truth-table. It is evident that
 there are 221 tables of the nth order. We now prove the

 THEOREM. To every truth-table of whatever order there corresponds at
 least one function of F which has it for its truth-table.
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 168 POST: A General Theory Qf Elementary Propositions.

 For first corresponding to the four tables of the first order I+I, + I
 + -,t+ +we have the functions p vp,pV -p pi - (p V - p), -- p. Now
 assume there is a function for each mth order table. Then in any table of
 order m + I the configurations for which pm+l is + constitute an mth order
 table for which there is some function fi(pil, p2 ... pm). Likewise cor-
 responding to pm+l - we obtain f2(p1, P2, * * pm). Let p. q stand for

 (' p V - q) a function which has the truth-table

 Pq q p * q

 Then it easily follows that the function

 Pm+1 .fl(pl P2, ... Pm) * V * - Pm+1 .f2(P1, P2, ... Pm)

 has for its truth-table the given m + 1st order table.

 The functions of F can then be classified according to their tables as
 follows: those which have all their truth-values +, all -, or some + and
 some -. We shall call these functions respectively positive, negative, and
 mixed. This classification is of great importance in connection with the
 process of substitution which is so fundamental in the postulational de-
 velopment. We shall say that any function obtained from another by the
 process of substitution is contained in that function. We then have the

 THEOREM. Every function contained in a positive function is positive;
 every function contained in a negative function is negative; every mixed function
 contains at least one function for every possible truth-table.

 The first two results are immediate. In the third case note that any
 mixed function f (pl, P2, ... pn) has at least one configuration which yields
 + and one which yields-. Let the truth-value of pi in the positive con-

 figuration be denoted by iand in the negative by t', and construct a func-
 tion q, (p) with the truth-table

 P 4(p)

 + t,

 Then ,t(p) = f(q$1(p), S2(P), *.* (p)) will be + when p is + and -
 when p is -. But by our first -heorem there is at least one function
 g(ql, q2, ... qm) corresponding to aiiy table of order m. Hence t[g(qj, q2,
 ... qh)] is a function contained in f(pi, P2, ... pn) corresponding to that
 table.

 COROLLARY. Every mixed func&on contains at least one positive function
 and one negative function.

This content downloaded from 
�����������207.241.225.86 on Thu, 09 May 2024 23:06:27 +00:00����������� 

All use subject to https://about.jstor.org/terms



 POST: A General Theory Qf Elementary Propositions. 169

 3. The Fundamental Theorem.*-A necessary and suffent condition that
 a function of F be asserted as a result of the postulates II, III, IV is that all

 its truth-values be +.

 Note first that each of the primitive assertions of IV is a positive func-

 tion. Furthermore from the assertion of positive functions we can only
 get positive functiohs. For the only method we have of producing new
 assertions from old is through the use of II and III. Now II can only

 produce positive functions since every function contained in a positive

 function is positive. As for III, if P is + and Q is -, P V Q is -, so

 that so long as P is a positive function and - P v Q is a positive function Q
 must be positive, so that III can only produce positive functions. Hence

 every asserted function is positive and we have proved the condition
 necessary.

 In order to prove it also sufficient we give a method for deriving the

 assertion of any positive function. It will simplify the exposition to intro-

 duce the other two defined functions of 'Principia' besides p . q (p and q)

 given above, viz.,

 PD q -..-pvq Dft; pq.=.p q.qD p Df

 read "p implies q" and "p is equivalent to q" respectively, and having
 the tables

 p,iq p q P,q tp q

 ++ + + +
 +-- __

 _;, > _ ,

 * The method for testing propositions embodied in this theorem is essentially the same
 as that given by Schrdder for the logical system he has developed. (Ernst Schroder, Vor-
 lesungen uiber die Algebra Der Logik, Leipzig, Teubner; 2. Bd. 1. Abth, 1891; ? 32.) But
 we believe the range of significance of the proof we have given to be quite different from
 that of the work of Schr6der. For first, as has been emphasized by Lewis (Loc. cit., Chap.
 IV), formal and informal logic are inextricably bound together in Schroder's development
 to an extent that prevents the system as a whole from being completely determined. As
 a, result the necessity of the condition of the theorem, which evidently requires such a
 complete determination if it is to be proved, remains unproved. As for the sufficiency,
 parts E and C of our proof appear in the proof for the expression of functions given by
 Schroder. (1. Bd, 1890). Part A, however, seems not to have been given explicitly,
 while corresponding to part D are all the theoretical difficulties met with in passing from
 the theory of classes to that of propositions when the development is not strictly formal.
 Hence the sufficiency of the condition is only incompletely proved. The theorem as given
 by Schroder is therefore of only partial significance even in his own system; and when
 transplanted to the system of Principia requires independent proof. Finally we may men-
 tion that the applications we have made of the theorem depend for their significance on
 those parts of the proof which do.not appear, and could not appear, in Schr6der.

 t IlIl can now be written "- p P and " F P v Q" produce " F- Q."
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 170 POST: A General Theory of Elementary Propositions.

 It will be noticed that if we have "Hfi(pi, ... pn) f2(p1, pn) this
 asserted equivalence must have a positive table by the first part of our

 theorem, and so fi and f2 must have the same truth-values for the same
 configurations, i.e., they must have the same truth-table.

 The proof is most conveniently given in four stages.

 A. We prove the theorem p _ q . D . f (p) f (q) where the function f
 may involve other arguments besides the one indicated and need not involve

 that. By means of this theorem we shall be able to replace a constituent
 of a given function by any equivalent function, and have the result equiva-
 lent to the given function.

 It becomes necessary for the first time to introduce the notion of the

 rank of a function which we define inductively as follows: the unmodified

 variablep will be said to be of rank zero, the negative of a function of rank m
 will be of rank m + 1; the logical sum of two functions the rank of one of

 -which equals and the other does not exceed m will be of rank m + 1. Each

 function of F then is of finite rank as well as of finite order.* Returning
 now to the theorem we notice that it is true for a function of rank zero

 since it reduces either to p q . . p = q which follows from p D Pt by II,
 or to p q. D. r _ r which follows from p D . q D p, r = r, III and II.

 Assume now that the theorem holds for functions of rank m and lower.

 Then it also holds for functions of rank m + 1. For if f is of rank m + 1

 it can be written in the form - fi(p), or, f2(p) V f3(p) where fi, f2 and f3
 are at most of rank m; and then the theorem follows by using p = q . D.

 p=7) - q,p= q.D: .r= s: D :p V r.= q v salong withp D q: D:
 q D r.D.p D r, III and II.

 B. Consider now any function f(pi, P2, ... pn). Using (p V q)
 = . t~ p. '~ q and p p with the aid of the equivalence theorem of
 A and p= q: D :q_ r .D .p r we finally obtain f(pi, P2, pn)
 equivalent to a functionf'(pi, p2, ... pn) which is expressed merely through
 combinations of p's and - p's by *'s and V's.

 C.: If we then apply the distributive law of logical multiplication to f',

 it will be reduced to an equivalent function consisting of successive logical

 sums of successive logical products of the p's and - p's. If any of these
 products has neither pn nor - pn as a factor we can introduce them through

 the propositions p V -p, and p: D: q..p.q , whence q:-: (p v - p)
 . q p _ q. V . ' p q. Now apply the commutative and associative laws

 * But whereas the number of functions of given order is infinite those of given rank

 are finite.

 t This as well as all other particular assertions that we use without an indication of
 proof appear in Principia, Vol. I, Part A.

 t This portion of the proof is essentially that given by A. N. Whitehead in his " Univer-
 sal Algebra," p. 46. Camb. Univ. Press, 1898.
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 POST: A General Theory of Elementary Propositions.

 of logical multiplication along with p . p . p so that each product has at
 most one pi and one - pi. Again using the distributive law for purposes
 of factorization along with the commutative and associative laws of addition

 we finally obtain f equivalent to

 fl(Pl, p2, Pn-1) * pn * pn: V :f2(pli *Pn-1) Pn * V *f3(p1, *Pn-1) * 'Pn

 where one or more of the terms and arguments may not appear.

 D. Suppose now that the original function is positive; then this equiva-

 lent function will be positive. If in particular it be of first order, it can

 only be p v - p or p . - . p V . p V - p. The first is an asserted function;
 likewise the second through p . . q v p. Hence also f(p) will be asserted
 through p q . .q : p; and so every positive first order function is

 asserted. Assume now that this is true for all mth and lower ordered func-

 tions and let f be any positive (m + 1)st order function. The -reduced
 function being then positive, both f2 and f3 will be positive, and hence will
 be asserted. From the use of p: q . .p q, p . r . V .p. - r: : p

 (r v - r), p: v: S.:). p. S, and p . D . q V p, the reduced function will

 be asserted and so finally f. Hence every positive function can be asserted
 and so the proof is complete.

 We thus see that given any function the theorem gives a direct method

 for testing whether that function can or cannot be asserted; and if the test

 shows that the function can be asserted the above proof will give us an

 actual method for immediately writing down a formal derivation of its assertion

 by means of the postulates of Principia.

 Before we pass on to theorems about the system itself irrespective of

 truth-tables we give the following definitions which apply directly to the

 system: a true function is one that can be asserted as a result of the postu-

 lates, any other is false; a completely false function is a false function such

 that every function therein contained is false-otherwise we call it incom-

 pletely false. We then have the

 COROLLARY. The set of true, completely false, and incompletely false

 functions is identical with the set of positive, negative, and mixed functions

 respectively.

 4. Consequences of the Fundamental Theorem.-In the above develop-

 ment the truth-values +, - were arbitrary symbols which were found
 related in certain suggestive ways through the fundamental theorem. We

 are now in a psoition to give direct definitions of these truth-values in terms

 of the postulational development. In fact we shall define + to be the set

 of true functions, - the set of completely false functions. The truth-value
 of a function will then exist when and only when it is true or completely
 false, and it will be defined as that class (+,-) of which it is a member.
 The content of the fundamental theorem consists now of these two theorems:
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 172 POST: A General Theory of Elementary Propositions.

 1. The truth-value of - p and q V r exists whenever the truth-values of
 p, q and r exist, and depends only on those truth-values as given by the

 primitive tables. It therefore follows that the same is true of any function

 of F, and that the truth-table of such a function can be directly calculated
 from the primitive tables.

 2. The fundamental theorem as stated, or else in the form: if fi and f2

 is any pair of positive and negative functions respectively, then a necessary

 and sufficient condition that a function f(pl, P2, ... pn) be asserted is that
 each of the 2n contained functions found by substituting f, and f2 for the
 p's is asserted. It will be noticed that theorem (1) tells us how to deter-

 mine whether these latter are asserted.

 We now pass on to several theorems about the system.

 THEOREM. It is possible to find 221 funvtions of order n such that no two

 of them are equivalent and such that every other function of order n is equivalent

 to one of these.

 For we can find 22n functions corresponding to the 22' different tables of

 order n. The equivalence-of any two of these will then not have a positive

 table and so will not be asserted. On the other hand any other nth order

 function will have the same table as one of the 22' possible tables, and so

 the corresponding equivalence will be positive and hence asserted.

 THEOREM. An incompletely false function contains at least one function

 for each given function which is equivalent to that given function.
 COROLLARY. An incompletely false function contains at least one true

 function and one completely false function.

 THEOREM. The negative of a completely false function is true.

 For a completely false function has a negative truth-table, and so its

 negative will have a positive table and hence be asserted. It is worth

 noticing that although this theorem is immediate once we have the funda-

 mental theorem it would be quite difficult without it.

 COROLLARY. Every function of F is either true, or its negative is true, or

 it contains both a true function and one whose negative is true.
 THEOREM. The system of elementary propositions of 'Principia' is

 consistent.

 For if it were inconsistent we would have both a function and its negative

 asserted. But then both the function and its negative would have to
 have positive tables whereas if a function has a positive table its negative

 has a negative table.*

 THEOREM. Every function of the system can either be asserted by means

 of the postulates or else is inconsistent with them.

 * This argument requires merely the first part of the fundamental theorem which
 was proved quite simply.

This content downloaded from 
�����������207.241.225.86 on Thu, 09 May 2024 23:06:27 +00:00����������� 

All use subject to https://about.jstor.org/terms



 POST: A General Theory of Elementary Propositions. 173

 For if a function be not asserted as a result of the postulates it will
 contain a function whose negative can be so asserted. If then we assert
 the original function, the contained function will be asserted so that we
 have asserted both a function and its negative, i.e., we have a contra-
 diction.

 COROLLARY. A function is either asserted as a result of the postulates or
 else its assertion will bring about the assertion of every possible elementary
 proposition.

 For by the theorem we would obtain the assertion of both a function
 and its negative and so by - p . :. p : q the assertion of the unmodified
 variable q. But q then represents any elementary proposition.

 In conclusion let us note that while the fundamental theorem shows
 that the postulates bring about the assertion of those and only those
 theorems which should belong to the system, this last theorem enables us
 to say that they also automatically exclude the very possibility of any
 added assertions.

 GENERALIZATION BY TRUTH-TABLES.

 5. General Survey of the Systems Generated.-The system we have

 studied in the preceding sections is a particular system depending upon the
 two primitive functions - p and p V q. Two modes of attack have pre-
 sented themselves. On the one hand we have the original postulational
 method, on the other the truth-table development. In passing to a general
 study of systems of the kind discussed these two methods present themselves
 as instruments of generalization. We reserve the postulational generaliza-
 tion for the next portion of our paper and now take up the truth-table
 generalization.

 To gain complete generality let us assume for our primitives , arbitrary
 functions with an arbitrary number of arguments which we will designate by

 fl(pl, P2, * * * Pm), f2(Pl, P2, * * * Pm2), * * f,, (pl, P2, * * * Pm,)

 and let us attach an arbitrary truth-table to each. By successive combina-
 tions of these functions with different or repeated arguments we generate
 the set of derived functions which as before we designate by F. Again
 each function of F will possess a truth-table in virtue of the tables of the
 primitive functions of which each is composed. Denote the set of truth-
 tables thus generated by T. Then whereas in the system of 'Principia' T
 consists of all possible truth-tables, this will not necessarily be the case here.

 In another paper we completely determine all the possible systems T
 and show that there are 66 systems that can be generated by tables of third and
 lower order, and 8 infinite families of systems that are generated by the intro-
 duction of fourth and higher ordered tables.
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 174 POST: A General Theory of Elementary Propositions.

 If two systems have the same truth-tables the primitives of each can

 evidently be expressed in terms of those of the other so that truth-tables
 are preserved. We can then say that each system has a representation in
 the other and 'the two are equivalent. In particular every truth-system has a
 representation in the system of Principia while every complete systerm, i.e.,

 having all possible truth-tables, is equivalent to it. In the aforementioned

 paper we also determine the ways in which a complete system may be
 generated, and it turns out that one table alone is sufficient to generate it,

 and it can be either of these two

 _+ + -+ _

 a result first given by Sheffer as stated in the introduction.
 The truth-table development for complete systems is essentially the

 same as that given in section 2. It is easy to prove for all systems the
 THEOREM. Every function contained in a positive function is positive;

 every function contained in a negative function is negative; every mixed function
 contains a function for every table of the system.

 6. Postulates for a Complete System.-We now show how to construct

 a set of postulates for any complete system such that: the set of asserted
 functions is identical with the set of positive functions, wthile the assertion of any

 other function brings about the assertion of every elementary proposition
 a property which also characterized the system of 'Principia.'

 Let 'p and p V' q be functions in the given complete system with the

 tables of - and V. Out of -' and V' we then construct p n' q and
 p /' q as p D q and p q are found from - and V, and alsofj(pi, p,),
 * ** ,f(pi, * pm.) with the same tables asfi(p, * pm1), f.. ,fM(p i, * pm,)
 This is possible since - and V, and so -' and V' can generate a complete
 system. All the functions -', V', n', ', fl, f. are ultimately ex-
 pressed in terms of the f's and so belong to the system. Construct now the
 following set of postulates:

 I. If pi, p, pm1 are elementary propositions, fi(pi, * pm1) is.

 If pi, * pmM, are elementary propositions, f (pi, P* pm,) is.
 II. The assertion of a function involving a variable p produces the assertion
 of any function found from the given one by substituting for p any other

 variable q, or fi (ql, * . . qm1), . . or f,,(ql, * L qm,,)
 III. "C P" and " - P ' Q " produces " Q."

 IV. (1) 1 :p V'p.D'p (a) - .fl(pl,p2, pm,) 'fl(pl,P2, Pm1),

 (5) 1 * (U) f- *f,(pl, P2, * Pm,u) ='fg.(pl, P2, * Pm,).
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 POST: A General Theory of Elementary Propositions. 175

 where (1)-(5) are the assertions of IV in sec. 1 with ' and V' in place of

 and V.

 That all asserted functions are positive can be verified as in the proof of

 sec. 4. As for the converse, note that III and IV (1)-(5) being of the same

 form as III and IV of sec. 4 will yield the assertion of all positive functions

 expressed in terms of -' and V'. By the use of (a)-(u) every function

 can be shown to be equivalent (-') to some function expressed by '

 and V' and so every positive function will be asserted. In the same way

 the assertion of any non-positive function will bring about the assertion of

 a non-positive function in ' and V' alone, and so of any proposition.

 We thus see that complete systems are equivalent to the system of

 'Principia' not only in the truth table development but also postulationally.

 As other systems are in a sense degenerate forms of complete systems we

 can conclude that no new logical systems are introduced.

 7. Application to Nicod's Postulate Set.-Although, as in most existence

 theorems, the above set of postulates may not be the simplest in any one

 case, it can be used to advantage in showing that a given set has the same

 property as it possesses. For this purpose we show directly that all asserted

 functions are positive, and then that by means of the given postulates (a)

 each of our formal postulates may be derived (b) that the results derivable

 by our informal postulates can also be derived by the given ones.*
 As an example we consider the set of postulates given by Nicod for the

 theory of elementary propositions in terms of the single primitive function

 of Sheffer's which Nicod denotes by p i q and is termed incompatibility by
 Russell. t It is the first of the two functions given in section 5 as generating

 a complete system. Nicod gives the definitions

 . p.= .pIp Df, p V q.= .p/pIq/q Df

 which we take to be our 'p and p V 'q respectively. His p n q .= . p I q/qDf
 however is not our p n 'q which is -'p V 'q. The primary distinction of

 his system is that he uses but one formal primitive proposition.

 In carrying out the proof suggested we merely note that by means of his

 informal proposition " P " and " I P I R/Q " produce " H Q" we get the
 effect of "I- P" and " PIQ/Q" i.e., "H P n Q" produce "- Q" when

 R = Q. Since he has p n ' q . n . p n q we thus get the effect of " P"

 * That the informal postulates of a system must be proved effectively replaced by

 others in another system is a precaution rarely taken in discussions of equivalence or

 dependence of logical systems. Such a discussion is unnecessary in ordinary mathematical
 systems since their distinctive postulates are all formal, the informal ones being those of

 a common logic. But in comparing logical systems, which usually do contain different
 informal postulates, such a discussion is fundamental.

 t B. Russell, loc. cit., chap. XIV.
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 176 POST: A General Theory of Elementary Propostions.

 and " F P " ' Q " produce " - Q " our III. Likewise each function IV is

 proved with however D in place of n '. But by means of p O q . . p 'q

 this too is remedied. We then easily complete the proof of the

 THEOREM. If in Nicod's system we give to p I q the table

 p, q p[q

 then the set of asserted functions is identical with the resulting set of positive
 functions; and the assertion of any other function would bring about the asser-

 tion of every elementary proposition.

 GENERALIZATION BY POSTULATION.

 8. The Generalized Set of Postulates.-As in the truth-table develop-
 ment we assume arbitrary primitive functions of propositions

 fl(pi, P2, *- Pm)), * ,f(Pli P2, - * pPm,L);

 but in place of the arbitrary associated truth-tables we have a set of postu-
 lates of the following form. We have tried to preserve all the informal

 properties of the postulates of 'Principia' (and of sec. 5) but generalize
 the formal properties completely.

 I. (As in sec. 5.)

 II. (As in sec. 5.)

 III. " gll(Pl, P2, ... Pki) j gKl(P1 P2, .. kK)

 "1K g11(P P2 ... Pk1) 9 KK gKK(Pli, P1, Pk K)
 produce .. produce

 I- gi(P1, P2, . . . P1G1)" F"I gK(P1, P2, ... K
 where the P's are any combinations of f's including the special case of the
 unmodified variable, while the g's are particular combinations of this kind

 which need not have all the indicated arguments.

 IV. 1 hi(pi, P2, - PI1)
 F h2(pli, P2, ... P12)

 F hA(p P2, ... Pi)

 where the h's are particular combinations of thef's.
 The retention of I and II which are characteristic of the theory of
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 POST: A General Theory of Elementary Propositions. 177

 elementary propositions is our justification for giving that name to the
 systems that may be generated by the above set of postulates. In what
 follows we give what we consider to be merely an introduction to the general
 theory.

 9. Definition of Consistency and Related Concepts.-The prime requi-
 site of a set of postulates is that it be consistent. Since the ordinary notion
 of consistency involves that of contradiction which again involves negation,
 and since this function does not appear in general as a primitive in the
 above system a new definition must be given.

 Now an inconsistent system in the ordinary sense will involve the asser-
 tion of a pair of contradictory propositions which as we have seen will
 bring about the assertion of every elementary proposition through the
 assertion of the unmodified variable p. Conversely since p stands for any
 elementary proposition its assertion would yield the assertion of contra-
 dictory propositions and so render the system inconsistent. The two notions
 are thus equivalent in ordinary systems; and since one retains significance
 in the general case we are led to the

 DEFINITION.-A system will be said to be inconsistent if it yields the asser-
 tion of the unmodified variable p.

 In a consistent system we may then define a true function as one that
 can be asserted as a result of the postulates. Instead of defining a false
 function as one not true, we give the following

 DEFINITION. A false function is one such that if its assertion be added
 to the postulates the system is rendered inconsistent.

 We can then state that in the system of 'Principia' every function is
 true or false. This suggests the

 DEFINITION. If every function of a consistent system is true or false the
 system will be said to be closed.*

 As a justification of this name we may note that the postulates of such a
 system automatically exclude the possibility of any added assertions-a
 state of affairs we believe to be highly desirable in the final form of a logical
 theory.

 10. Properties of Consistent Systems. -In all that follows we assume
 that the system discussed is consistent. If it be inconsistent one could
 hardly say anything, more about it.

 We turn to a theorem which will give us most of the results of this
 section. But first we must state two lemmas which we do not further prove.

 LEMMA 1.-If a given set of functions gives rise to some other function
 in accordance with II and III. and if these functions involve certain letters

 * Had the name not been in use in a different connection we should have introduced
 the term categorical.
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 178 PosT:' A General Theory of Elementary Propositions.

 r1, r2, ... ri upon which no substitution is made in the process, then the
 same deductive process will be valid if we have given the original functions

 with an arbitrary substitution of the r's as described in II provided this

 substitution is also made throughout the process.

 LEMMA 2.-The most general process of obtaining an assertion from a

 given set of assertions in accordance with II and III can be reduced to

 first asserting a number of functions in accordance with II, and then applying

 II and III in such a way that no substitutions are made on the arguments of

 those functions.

 TIIEOREM. Every false function contains a finite set of untrue first order

 functions 01(p), 02(p), * * * q,(p) such that whenever p is replaced by an untrue
 function at least one of these functions remaitns untrue.

 By the definition of false functions there must be some deductive process

 whereby from the given false function and true functions we assert p. By

 lemma 2 we can replace this process by another where from the given false
 function and true functions we obtain certain contained functions from

 which without substitution of the arguments we obtain p. Now first by

 lemma 1 we can equate to p all the arguments thus appearing axid still
 have a valid deductive process for obtaining p. Denote the resulting untrue

 functions which are contained in the original false function by '1(p),

 02 (p), 0.. 4(p). Then secondly by lemma 1 we can replace p by any
 function i1 and still have a valid process which now consists in obtaining A/

 from certain true functions and 'k(0, * * * () If then each X,(01) were
 true, A1, being obtained from true functions in accordance with II and III

 would be true. It follows that if A1 be untrue, some X, (A) must be untrue.
 THEOREM. Every false function contains an infinite number of untrue

 first order functions; and if the systern has at least one false function of order
 greater than one, then each false function contains an infinite nutmber of untrue

 functions of every order.

 By the above theorem the false function contains at least one untrue

 function ,$1(p). By the same theorem some X,k,O1(p) must be untrue, etc.,

 through 4,j, q, . ** 1(p) These are all different being of different rank,
 and are all contained in the given function.

 The last part of the theorem may then be proved by showing that by

 replacing equal by unequal variables in the infinity of functions thus

 gotten from the false function of order greater than one we get untrue
 functions of every order, and so by the above method an infinite number of

 every order in every false function.
 We have immediately the

 THEOREM. A necessary and sufficient condition that a function of a
 closed system be true is that all contained first order functions be true.
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 POST: A General Theory of Elementary Propositions. 179

 COROLLARY. It is also necessary and sufficient that all those of rank greater

 than some finite integer p be true.
 In analogy with corresponding ideas in the system of 'Principia' de-

 fine a completely untrue function as one in which all contained functions

 are untrue with a similar definition for completely false. We then have

 the interesting

 THEOREM. If a system has a completely untrue function, then every false

 function contains a completely untrue function.

 Every function contained in the completely untrue function makes

 at least one X, (p) of a false function untrue. If ,6 is such a contained func-

 tion which makes say X,1 (p) true, then ,1 will be completely untrue, and

 all contained functions will make 4),, (p) true yet some remaining ), (p)
 untrue. By repeating this process we finally obtain a function 4/' such
 that all contained functions make each X, (p) of a set that remains untrue.

 Each such 0, (i') will then be a completely untrue function in the given one.
 COROLLARY. If a closed system has a completely false function every

 false function contains a completely false function.

 If we call such a system completely closed we have the stronger

 THEOREM. In a completely closed system every false function f(pi. P2,
 *.. pn) contains a completely false function f(Ql(p), 142(p), . n . (p))
 where each A1, (p) is either true or completely false.

 By equating all variables to p in the function of the corollary we get such
 a completely false function where some i6's may be incompletely false.
 These are then eliminated by successively substituting for p functions
 which make them true.

 COROLLARY. A necessary and sufficient condition that a function of a
 completely closed system be true is that all contained first order functions found

 by substituting true or completely false functions for the arguments be true.

 This property begins to approximate to the truth-table method. It

 leads us easily to the following criterion for a completely closed postulational

 system being a truth-system which we state without proof.

 THEOREM. A necessary and sufficient condition that a completely closed
 postulational system be a truth-system is that a true first order function remains

 true whenever we replace a true or'completely false constituent function by any

 other true or completely false first order function respectively.*

 * In making a more complete study of the postulational generalization it would be
 desirable to classify all the systems that may result more or less in the way in which we
 have classified truth-systems through the associated systems of truth-tables. In this
 connection we might define the order of a set of postulates as the largest number of premises
 used in deriving a conclusion in III, and the order of a system as the lowest order a set of
 postulates deriving it can have. It is then of interest to note that whereas the set of postu-
 lates of the systemn of 'Principia' is of the second order, the system itself is of the first order.
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 180 POST: A General Theory of Elementary Propositions.

 M-VALUED TRUTH-SYSTEMS.*

 11. The Generalized (-, V) System.-We have, seen that the truth-

 table generalization, at least with regard to complete systems, is included in

 the postulational development. We now show that the latter is more

 general bv presenting a new class of systems, distinct from the two-valued

 systems of symbolic logic, which can be generated by a completely closed

 set of postulates.

 In these systems instead of the two truth-values ?, - we have m

 distinct "truth-values" tl, t2, **., tm where m is any positive integer. A
 function of order n will now have ml configurations in its truth-table, so

 that there will be mmn truth-tables of order n. Calling a system having all

 possible tables complete, we now show that the following two tables generate
 a complete system.

 P mP p, q pVmq

 ti t2 tit, ti
 t2 t3 . . . . . .
 . . . . . . t, ltjl t,L 1 c
 tm ti .2 -j2

 tL 2t2 tj2

 tmtn tm

 We see that 'mp, the generalization of - p, permutes the truth-values
 cyclically, while p Vmq, the generalization of p V q has the higher of the

 two. truth-values. t
 To construct a function for any first order table, of which there are mm,

 note that

 ti(P). P V mP Vn2P: V m .. p Df,

 where 2p. = . -p Df, etc., has all its truth values ti. Then

 Tmi(p) * = * ' (< 'mti(p) .Vm*.p):Vm. * ;llp) Df

 has all values tm except the first which is tmi. Any first order table

 P f(P)"

 ti tm,
 t2 tm2

 t-m tMm'

 can then be constructed by the function

 * See Lewis, loc. cit., p. 222 for the term "Two-Valued Algebra."
 t The higher truth-value has here the smaller subscript.
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 POST: A General Theory of Elementary Propositions. 181

 Tm? (p) * Vm *Tm2 ( m P): Vm. m3( ~m, p) * Vm Tmm(''m P).

 Construct now a function for the table

 P o~mp

 ti tm
 t2 tm-1

 tm ti

 and define p . mq. = . zm(vmp. Vm. Cmq) Df which is the generalization

 of p . q and has the lower of the two truth values of its arguments. We

 can now construct a table all of whose value$ are tm except for one con-

 figuration tmi, tm2*, tm, when it is tmmm..imn = t,, by the function

 Tr ( m-mM_m1rp1) mTg (m m2+Ip2)*m*** (m P7)

 and so any table by constructing such a function for each configuration

 and then "summing up" by V

 12. Classification of Functions-the m dimensional Space Analogy.-

 The generalization of the classification of functions into positive, negative

 and mixed is afforded us by the following

 THEOREM. A function contains at least one function for every trutth-table

 whose values are contained among the values of the given table.

 Let tm1 * tm A be the truth-values that appear in the table of a given
 function f(pi, P2, ** p.). Then we can pick out ,u configurations having
 these values respectively. Construct functions +,$(p) such that when p
 has the vlaue t,,i of one of these configurations, O, (p) have the value of pi
 in that configuration. It is then easily seen that f(s1b(p), . n, b(p)) has
 the value t,j whenever p has the value tn,. If then 41(ql, q2, * , ql) have
 a table whose values are among the t,<s f(S (), , n(4)) will be a
 function contained in the given function with that table.

 We are thus led to a classification of functions by means of their truth-
 tables such that the set of tablesyf contained in a given function is the same
 for all functions in a given class. We then have m classes of functions where

 but one truth-value appears, [m(m -1)]/2! with two truth-values, ...,
 [m(m - 1) ... (m - ,u + 1)]/,x! with ,u truth-values, * one class with
 all m truth-values. We thus have 2n - 1 classes of functions which when

 m = 2 reduces to the three classes of positive, negative and mixed functions.
 These formulae suggest an analogy which, if well founded, is of great

 interest. For this purpose replace the set of functions having all of a given
 set of ,u truth-values by all functions whose values are among these ,t values.

 If then we compare the functions of our complete system to the points of a
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 182 PosT: A General Theory of Elementary Propositions.

 space of m dimensions,* the m classes of functions with but one truth-value

 would correspond to the m coordinate axes, the [m(m - 1)]/2! classes of

 functions with no more than two truth-values to the [En(m -1)12! co-
 ordinate planes, etc., so that except for the absence of an origin all properties

 of determination and intersection within the coordinate configurations go

 over. If then we attach the name m-dimensional truth-space to our system,

 we observe the following difference, that whereas the highest dimensioned

 intuitional point space is three, the highest dimensioned intuitional proposi-

 tion space is two. But just as we can interpret the higher dimensioned

 spaces of geometry intuitionally by using some other element than point,

 so we shall later interpret the higher dimensioned spaces of our logic by

 taking some other element than proposition.

 13. Truth-Table Characteristics of Asserted Functions.-The'following

 analysis presupposes that in constructing a set of postulates for the system
 we at least wish to impose the

 CONDITION.-If a function is asserted, all functions with the same truth-
 table will be asserted.

 It follows from the theorem of the preceding section that under the given

 condition, if afunction is asserted, every function of the truth-space it determines

 is asserted.

 We can now prove that if the system is to be completely closed its asserted
 functions must constitute a single truth-space contained in the given truth space.

 For if there were at least two such spaces, then a function having all their

 truth-values would be false, and so would contain a completely false function.
 This in turn would contain functions with but one 'truth-value; and these

 being therefore in one of the two given spaces would be true which contra-
 dicts their being in a completely false function.

 No loss of generality ensues if we take the truth values of this contained

 truth-space of asserted functions to be ti, t2, * * * t, where, to avoid degener-

 ate cases 0 < u < Km. We now show that a completely closed set of postu-
 lates can be constr-ucted for all such systems.

 14. A Completely Closed Set of Postulates for the Systems.-I and II

 are determined directly as in the general case. To obtain III, construct a
 function p v " q whose table is given by the following: when the truth-value

 of p is that of q or lower, p v y q will have the value t1, while if the truth-

 value of p is above that of q, then if the value of p is t,J or higher, p v y q

 will have the value of q, while if it is below t,,, say t, and that of q is t,,
 then the truth-value of p v m q will be t,,-,+,. III will then be simply

 * Or we might take the truth-table as element in which case the system is perhaps
 smoother than before.
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 "F Q

 produce

 "C Q"

 Now by generalizing each part A, B, C, D of the proof of the fundamental

 theorem of sec. 3 it can be shown that by the assertion of a finite number

 of functions with values from t1 to t, all such can be obtained.* If then we

 assert these functions in IV we shall have everv function in the ,u-space

 asserted. Furthermore no others can be asserted for by the use of II and

 III we can only get functions with values from ti to t,, by means of functions
 similarly restricted. This is obvious in II while in III if the value of P is

 from t1 to t, while that of Q is below t,,, then from the above definition of the

 table of P S Q it would have the value of Q and so be below t,. But that

 contradicts the assumption that the premises had values from ti to t,,.
 This set of postulates will then give the proper set of true functions.

 Furthermore let us suppose that we assert a function with at least one value

 below t,. This will contain a function ?(p) with but one value, and that

 below t,A. By II, ?(p) will be asserted. Furthermore since ?(p) . . ?(p)
 D 7 'm ?(p) has its value t1 it will be asserted, and so we obtain by III
 %'m ?(p). Repetition of this process will finally give us a function i/(p)
 with but one value tin. But i1(p) * O A p is asserted having but one value ti.
 We thus obtain the assertion of p. The system is therefore closed. And

 since all functions with values from t,+i to t1n are completely false, the system
 is completely closed.

 15. Comparison of Systems.-As in the truth-table development we can

 generalize the systems by using arbitrary functions as primitives, and as

 was done there we can show how to generate a complete m-dimensioned

 system by one second order function, and how to give a completely closed

 set of postulates for all complete systems. The problem of determining all

 possible systems of m-dimensional truth-tables, however, is one we have not
 considered, though its solution would through considerable light on the
 ordinary problem.

 We turn now to the following
 DEFINITIONS. A closed system S with primitives fl, f2, .. fn has a

 representation in a closed system S' with primitives fi, f', * f,,, if we can so
 replace the f's by functions in S' that a function in S will be true when and only
 when the correspondent in S' is true.

 Two systems are equivalent if each has a representation in the other.

 Denote a complete m-dimensional truth-system with the asserted func-
 tions forming a truth-space of u dimensions by ,.T.. We then have the

 * Lack of space prevents us from givingf the details.
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 184 POST: A General Theory of Elementary Propositions.

 THEOREM. Two complete truth-systems , Tm and , T' are equivalent
 when and only when , = ,u' and m = m'.

 The conditions are clearly sufficient since we can make truth-values

 correspond. To prove them necessary suppose m > m'. If we construct

 m!m functions of first order in T with different truth-tables then there will

 be two, ?1(p), ?2(P) whose correspondents 44(p), ?2(p) have the same
 truth-tables since there are in T' only mm of first order. Let.x(p, q) have

 value ti when p and q have the same value and t4 otherwise. Then x(ol, 01)
 is true; hence x'(4", 44) is. '2 having the same table as 44, x'(Oi, Ot) is
 true, and hence X(01, 42) the correspondent. But that would make 4i
 have the same table as O2. Now suppose M > M'. If 4 have all the values
 from t1 to t,, and no others there are ,y" functions with values ti to t,, of
 the form {+i(p). These will then be asserted and so the correspondents

 will be asserted and have values tt to t,,,. Since we can only have ,u' func-

 tions 4/'0'(p) with different tables, we can find two of the ,yL correspondents
 with the same table. The above contradiction then results as before.

 For representation we have only found the

 THEOREM. To represent ATm in tTin it is necessary to have ,u c
 m c i'; it is sufficient to have ,u c ,u', m- c m'-

 COROLLARY. A necessary and sufficient condition that A Tm have a repre-
 sentation in ,, Tnw is that m m i'.

 It is of interest to note as a result that the only complete truth-systems

 equivalent to the system of 'Principia' are lT2's; and though it can be
 represented in every complete truth-system, only 1T2's can be represented
 in it. We have thus verified our statement that we obtain essentially new
 logical systems.

 16. Interpretation of m-valued Truth-systems in Terms of Ordinary

 Logic.-Let the elementary proposition of the (-m, Vm) system be inter-
 preted as an ordered set of (m - 1) elementary propositions of ordinary

 logic P = (p1, P2, ... pm-i) such that if one proposition is true all those
 that follow are true. P will be then be said to have the truth-value ti if

 all the p's are true, t2 if all but one are true, etc. Also P will be said to be
 true if at most (/, - l)p's are false.

 If P = (Pl, P2, . . Pm-l), Q = (ql, q2, ... qm-i) we define

 PVmQ. .(piVql p2Vq2 ... pmVqm) Df

 ~-mP. = (-(pl V p2 V .. **pm- 1) i (P 1 V .. **pm-1) .V .pl . p21 .. *

 -(pi V .. vpm-1). V . ,, p-2.pm-1) Df

 We easily justify these definitions by showing first that PVmQ and '-m
 P are " elementary propositions " when P and Q are, and secondly that they
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 POST: A General Theory of Elementary Propositions. 185

 have the proper truth tables. Thus in P V mQ the first p, V q, to be true is
 the first for which either p or q is true; also all later terms will have p or q

 true and so will be true. P V mQ is therefore elementary and has the required

 table.

 But in spite of this representation 1 T2 still appears to be the fundamental

 system since its truth-values correspond entirely to the significance of true

 and completely false, whereas in ,, Tm, m > 2 either ,u > 1 or m - ,u > 1,
 and this equivalence no longer holds. We must however take into account

 the fact that our development has been given in the language of 1T2 and

 for that very reason every other kind of system appears distorted. This

 suggests that if we translate the entire development into the language of

 any one , Tm by means of its interpretation, then it would be the formal
 system most in harmony with regard to the two developments.
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