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amplicon-based prediction of microbiome
function
Gongchao Jing1, Yufeng Zhang1,2, Wenzhi Cui3, Lu Liu1, Jian Xu1 and Xiaoquan Su2*

Abstract

Background: Due to their much lower costs in experiment and computation than metagenomic whole-genome
sequencing (WGS), 16S rRNA gene amplicons have been widely used for predicting the functional profiles of
microbiome, via software tools such as PICRUSt 2. However, due to the potential PCR bias and gene profile
variation among phylogenetically related genomes, functional profiles predicted from 16S amplicons may deviate
from WGS-derived ones, resulting in misleading results.

Results: Here we present Meta-Apo, which greatly reduces or even eliminates such deviation, thus deduces much
more consistent diversity patterns between the two approaches. Tests of Meta-Apo on > 5000 16S-rRNA amplicon
human microbiome samples from 4 body sites showed the deviation between the two strategies is significantly
reduced by using only 15 WGS-amplicon training sample pairs. Moreover, Meta-Apo enables cross-platform
functional comparison between WGS and amplicon samples, thus greatly improve 16S-based microbiome
diagnosis, e.g. accuracy of gingivitis diagnosis via 16S-derived functional profiles was elevated from 65 to 95% by
WGS-based classification. Therefore, with the low cost of 16S-amplicon sequencing, Meta-Apo can produce a
reliable, high-resolution view of microbiome function equivalent to that offered by shotgun WGS.

Conclusions: This suggests that large-scale, function-oriented microbiome sequencing projects can probably benefit
from the lower cost of 16S-amplicon strategy, without sacrificing the precision in functional reconstruction that otherwise
requires WGS. An optimized C++ implementation of Meta-Apo is available on GitHub (https://github.com/qibebt-bioinfo/
meta-apo) under a GNU GPL license. It takes the functional profiles of a few paired WGS:16S-amplicon samples as training,
and outputs the calibrated functional profiles for the much larger number of 16S-amplicon samples.
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Background
Interest in microbiome has been fueled by the ability to
profile diverse microbial communities via high-
throughput sequencing [1, 2], which generally adopt one
of two strategies [3]: amplicon sequencing, which most
often employs the 16S rRNA gene as a phylogenetic
marker for bacteria, or shotgun whole-genome

sequencing (WGS), which captures genome-wide se-
quences of the mixture of species within a sample. In
amplicon sequencing, microbial taxonomy structure is
revealed via PCR-based amplification using primers that
target a specific region of the phylogenetic marker gene,
however it does not directly yield the profile of func-
tional genes. In contrast, shotgun WGS constructs a
functional profile from metagenomic sequences [4], yet
its broader application is limited by the much higher
cost and complexity in both experiment and computa-
tion [3, 5, 6]. Therefore, computational tools that predict
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functional profile via 16S amplicons were introduced
[7–10], e.g., PICRUSt derives diversity and relative abun-
dance of molecular functions by tracing the sequenced
16S fragments to presently available microbial genomes.
However, due to the amplification bias induced in 16S
gene PCR [11, 12] and function profile variation among
phylogenetically related genomes, microbiome functional
profiles predicted from 16S amplicons can deviate
greatly from WGS-derived ones (Fig. 1 and Fig. 3a).
To tackle this challenge, we present Metagenomic Apo-

chromat (Meta-Apo). By training on only a small number of
matched WGS:16S-amplicon data pairs (each pair is se-
quenced via both shotgun WGS and 16S-amplicon of the
exactly same microbiome specimen), Meta-Apo produces for
large-scale 16S-amplicon samples post-calibration functional
profiles that are much more consistent with the WGS results
(Fig. 1). Moreover, since shotgun WGS provides more stable
microbiome-based disease detection across multiple studies
than amplicons [13, 14], such calibration by Meta-Apo en-
ables cross-platform functional comparison between WGS
and amplicon samples and thus can greatly improve 16S-
based microbiome diagnosis. For example, using 16S-derived
functional profiles that are calibrated by WGS-derived func-
tional profiles, gingivitis diagnosis accuracy was elevated to
95% from 65%. Therefore, Meta-Apo offers a low-cost strat-
egy to obtain accurate and high-resolution view of micro-
biome functions based on primarily 16S amplicon data.

Results
Functional profiles derived from 16S-amplicon and
shotgun WGS: misaligned but isomorphic
To assess the degree of deviation in perceived
microbiome function (annotated using KEGG

Orthology [15]; KO) between the two sequencing
strategies, we started by comparing the functional
profiles of 622 paired human microbiomes (Dataset
1; four body sites: gut, skin, oral and vaginal;
Table 1), each of which was sequenced via both
shotgun WGS and V3-V5-region 16S rRNA ampli-
cons. For WGS, the molecular functional profiles
were derived via HUMAnN2 [17]. For 16S, the pro-
files were inferred using PICRUSt 2 [8] (Methods
and Materials). By comparing the functional profiles
derived from the two sequencing approaches, we
found that the paired WGS:16S-amplicon distances
were significantly higher than within-body-site dis-
tances of WGS (i.e., distances among WGS samples
from the same body site; Fig. 2a; 0.166 ± 0.063 vs.
0.136 ± 0.056). Due to such a high degree of discrep-
ancy between the two strategies, their beta-diversity
exhibited very distinct patterns (Fig. 3a; PC1 two-tail
paired Wilcox test p < 0.01; PC2 two-tail paired Wil-
cox test p < 0.01) and actually resulted in errors, e.g.
the functional profiles of certain skin amplicons were
incorrectly clustered as identical to those of oral WGS.
On the other hand, pairwise distances derived from each
of the two approaches were strongly correlated (Fig. 3b;
Pearson correlation R = 0.86, p < 0.01), revealing a similar
overall shape among the isomorphic beta-diversities (Fig.
3a; Monte-Carlo test p < 0.01). Therefore, functional pro-
files predicted from 16S amplicons (K16S) can be linked to
those from WGS (KWGS) via eq. 1:

KWGS ¼ f K16Sð Þ ð1Þ

Fig. 1 Calibration of predicted functional profiles of microbiome amplicon samples by a small number of WGS:16S-amplicon sample pairs
for training
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Reduction of the deviation in functional profile between
WGS and amplicon datasets by linear regression
modeling
Here we developed the Meta-Apo that exploited eq. 1 to
reduce the deviation in functional profile between ampli-
con and WGS datasets. Meta-Apo consists of two steps:
training and calibration. In the training step, Meta-Apo
estimates the f of eq. 1 by a small number of WGS:16S-
amplicon pairs using linear regression modeling. Then
in the calibration step, by considering WGS results as
the “golden standard”, Meta-Apo calibrates the predicted
functional profiles of amplicon samples using model f
(Methods and Materials for details). To quantitatively
assess its performance, we randomly selected N = 5, 10,
15, 20, 50 and 100 WGS:16S-amplicon pairs from Data-
set 1 as training, and used Meta-Apo to calibrate the
other amplicon samples of this dataset (Methods and
Materials for details). After such calibration, the paired
WGS:16S-amplicon distances were significantly reduced,
as compared to those derived from the same sets of un-

calibrated samples (Fig. 2b; two-tail paired Wilcox test
p < 0.01). Notably, such benefits by Meta-Apo-based cali-
bration became stable when using model f that built
from N = 15 training pairs, and did not change after add-
ing more training pairs (up to 100; Fig. 2b). As a result,
after the calibration (i.e., N = 15 training pairs), the
paired WGS:16S-amplicon distances were significantly
lower than the within-group distances of WGS samples
(0.121 ± 0.055 vs. 0.136 ± 0.056). Principle Coordinate
Analysis (PCoA) confirmed that Meta-Apo actually elim-
inated the overall functional-profile deviation between
sample pairs produced by the two sequencing strategies
(Fig. 3c, PC1 two-tail paired Wilcox test p = 0.30, PC2
two-tail paired Wilcox test p = 0.29; Fig. 3d). Further
comparison on the dominated molecular function pro-
files annotated by KEGG BRITE hierarchical classifica-
tion on all levels (level 3, Fig. 4; level 2, Fig. S1; level 1,
Fig. S2) also suggested that the calibration of amplicons
generated more consistent compositional relative abun-
dances to the WGS than the original uncalibrated data

Table 1 The WGS and amplicon datasets used in this study

Dataset # of WGS samples # of amplicon samples Amplicon type Paired Source study Body site

Dataset 1 622 622 V3-V5 16S rRNA Yes HMP [2] Gut, Oral, Skin and Vaginal

Dataset 2 295 295 V1-V3 16S rRNA Yes HMP [2] Gut, Oral and Vaginal

Dataset 3 2354 5350 V3-V5 16S rRNA No HMP [2] Gut, Oral, Skin and Vaginal

Dataset 4 2045 2186 V1-V3 16S rRNA No HMP [2] Gut, Oral and Vaginal

Dataset 5 18 150 V1-V3 16S rRNA Partiallya ISME J. 2014 [16] Oral
aOnly 18 WGS:16S-amplicon sample pairs

Fig. 2 Meta-Apo significantly reduces the derivation of functional profile between WGS and amplicon sample pairs from Dataset 1. a The Bray-
Curtis distances between WGS:16S amplicon pairs (without calibration, orange bar) are higher than those of the WGS within-body-site distance
(distances among WGS samples of the same body site, blue bar). b The Bray-Curtis distances between calibrated amplicon samples and their
paired WGS samples become stable when using only 15 training pairs, which is significantly lower than the within-group distances of WGS. Two
panels share the x-axis. The p-values were calculated by two-tail Wilcox tests, ** denotes p < 0.05 and *** denotes p < 0.01
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(Fig. 4). Similarly, Meta-Apo was also effective for the
V1-V3 region 16S rRNA sequences from Dataset 2
(Table 1), by accurately aligning amplicon- and WGS-
derived functional patterns (Fig. S3 and Fig. S4).

Calibration of predicted functions for 16S-amplicons on a
large scale
To evaluate the performance of such calibration for in-
ferred functions on a large scale, we extended Meta-Apo
to 5350 V3-V5 16S rRNA amplicon samples, and com-
pared them to 2354 WGS samples (Dataset 3, collected
from four body sites as Dataset 1, and sequences were
processed using identical methods; Table 1). Although
collected from the same body sites of the same healthy

hosts and sequenced in the same study (Human Micro-
biome Project [2]; HMP), these WGS and amplicon sam-
ples were not paired, i.e., they are not sequenced from
the same microbiome sample (in fact, such exactly
paired data is usually not available at a large scale). On
the other hand, the taxonomical composition in each of
the body sites was internally consistent between WGS
and amplicon (Fig. S5), i.e., regardless of the choice of
sequencing strategy [18]. However, unlike the taxonom-
ical diversity, the two strategies resulted in distinct func-
tional patterns (Fig. 5a; PC1 two-tail Wilcox test p <
0.01; PC2 two-tail Wilcox test p < 0.01), e.g. gut ampli-
cons were clustered with oral WGS, while oral samples
were separated along the line of sequencing strategy.

Fig. 3 Functional beta diversity of the 622 WGS:16S-amplicon sample pairs from Dataset 1. a Overall functional patterns derived from the
amplicon and WGS approaches are isomorphic but separate with significant differences on PC1 and PC2 distributions. b Bray-Curtis distances
calculated by WGS and amplicons are strongly correlated (Pearson correlation R = 0.86, p < 0.01). c Meta-Apo aligns the predicted functional
profiles derived from amplicon samples to those of WGS samples using 15 sample pairs for training, making the PC1 and PC2 of calibrated
functional profiles are closer to WGS samples than the original, non-calibrated amplicon samples. d ΔPC of the WGS:16S amplicon pairs were
significantly reduced. Principle coordinates were calculated by PCoA using the Bray-Curtis distances. The p-values were calculated by two-tail
paired Wilcox tests, and *** denotes p < 0.01
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Fig. 4 Comparison of the dominated functional profiles annotated by KEGG BRITE hierarchical level 3 classification.

Fig. 5 Functional beta diversity of the 2655 WGS samples and the 5350 amplicon samples from Dataset 3. a Functional patterns derived from the
amplicon and WGS approaches are separate with significant differences on PC1 and PC2 distributions. b Meta-Apo aligns the predicted functional
profiles of amplicon samples to those of the WGS samples using 15 sample pairs for training, making the PC1 and PC2 of calibrated functional
profiles of amplicon samples are closer to WGS samples than the original, non-calibrated amplicon samples. Principle coordinates were calculated
by PCoA using the Bray-Curtis distances. The p-values were calculated by two-tail Wilcox tests, and *** denotes p < 0.01
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These observations, which contracted with previous
findings that body site dominates the functional land-
scape of human microbiomes [2, 19], were likely due to
the inaccuracy of 16S-amplicon-based functional predic-
tion. We then calibrated the predictive functional pro-
files of all amplicon samples using Meta-Apo, via the
same model constructed by 15 training WGS:16S-ampli-
con pairs of Dataset 1. Analysis of beta-diversity revealed
that, after the calibration by Meta-Apo calibration, the
deviation of functional profile between amplicon and
WGS samples was greatly reduced (Fig. 5b; PC1 two-tail
Wilcox test p = 0.20; PC2 two-tail Wilcox test p = 0.03).
Furthermore, to test its performance on 16S datasets

of different priming regions, we applied Meta-Apo to
2186 V1-V3-region 16S-rRNA amplicon samples from
Dataset 4 of HMP [2]; Table 1). Meta-Apo resulted in an
equivalent degree of boost in the accuracy of amplicon-
based functional profile reconstruction, using the model
of WGS:16S-amplicon pairs of Dataset 2 (training pairs
N = 15; Fig. S6). Therefore, Meta-Apo is generally applic-
able to the various priming regions of 16S rRNA genes.

Calibration of functional profiles enables cross-platform
comparison between WGS and amplicons and improves
accuracy of disease-status classification
Shotgun WGS can provide more stable microbiome-
based disease detection and classification across multiple
studies than amplicons, due to their higher resolution
and lower sequence amplification bias [13, 14]. However,
shotgun WGS is not yet widely adopted for commercial
or home microbiome test due to its higher cost in both
experiment and analysis. Here using Dataset 5, we show
that with a WGS-based disease classification method,
the Meta-Apo-calibrated functional profiles inferred
from 16S-amplicons can also obtain high classification
accuracy, which is otherwise not possible for non-
calibrated profiles. Dataset 5 contains 150 V1-V3-region
16S rRNA amplicon based human oral microbiomes
with different disease status (healthy and gingivitis), in
which 18 samples were also sequenced by shotgun se-
quencing [16] (Table 1, Table S1 and Methods and Ma-
terials). Therefore, we used the 18 WGS:16S-amplicon
pairs to calibrate the inferred functional profiles of the
other amplicon samples in this dataset, and evaluated
the performance of Meta-Apo for cross-platform com-
parison and status identification.
Although each of the two sequencing approaches was

able to reveal the difference between healthy and disease
microbiomes, the functional profiles of WGS and those
predicted from amplicon samples exhibited a discrete
pattern on the beta-diversity (Fig. 6a). In fact, the effect
size (Adonis R2) of sequencing type exceeded that of dis-
ease status (Fig. 6b, left panel), underscoring the chal-
lenge of cross-platform comparison (i.e., between 16S-

amplicon and WGS) under such circumstances. How-
ever, the calibration of Meta-Apo on amplicon samples
diminished such deviation of reconstructed functional
profile caused by the variation in sequencing strategy
(Fig. 6c). As a result, the effect size of disease status
dominated the sampling factors (Fig. 6b, right panel),
suggesting the feasibility of microbiome-based disease
classification. Therefore, Meta-Apo allows microbiome
diagnosis that crosses the amplicon and WGS platforms.
To quantitatively assess the benefits of using Meta-

Apo-calibrated 16S-amplicon-derived functional profiles
for diagnosis, we performed a Microbiome Search En-
gine (MSE) based gingivitis classification [20, 21]. A
database was first constructed by the functional features
of 18 WGS samples, and then the disease status was pre-
dicted using the 123 original 16S and their correspond-
ing Meta-Apo-calibrated amplicons, respectively
(Methods and Materials for details; amplicon samples
collected from the same hosts as the WGS were ex-
cluded to avoid prediction bias). Interestingly, the non-
calibrated 16S-amplicon samples reported a low overall
accuracy of 65.04% (F1-score = 0.6446) in cross-platform
classification of disease status, mainly due to the insensi-
tivity of detecting gingivitis subjects (recall = 0.4756; Fig.
6d). In contrast, after calibration by Meta-Apo, the ac-
curacy of disease classification was raised to 95.12% (F1-
score = 0.9570), while the sensitivity to the disease was
also greatly improved (recall = 0.9390; details in Table
S6). Therefore, for studies where both 16S amplicon and
WGS types of data are available, Meta-Apo provides a
strategy for cross-platform microbiome analysis that can
significantly improve the performance of status
classification.

Meta-Apo calibration model for multiple categories:
accuracy and comprehensiveness
Beta-diversity of microbial functions could be influenced
by various factors (e.g. habitat, status, etc.). For example,
human microbiomes of Dataset 1 were significantly dif-
ferentiated by body-sites (Fig. 3a; Adonis test p-value <
0.01). To measure the sensitivity of Meta-Apo model to
habitats, for skin samples in Dataset 1, we built add-
itional two types of models by N = 15 training samples
that a) all from skin and b) none from skin, respectively.
Then we calculated the paired WGS:16S-amplicon dis-
tances in the same way as Fig. 2b (Methods and Mate-
rials for details). Result showed that distances were
reduced by a model with only skin samples (Fig. S7A),
suggesting the calibration accuracy of samples in a single
category could be further improved by an appropriate
category-specific model. On the other hand, such dis-
tances also enlarged that even worse than un-calibrated
result when removing skin samples from training (Fig.
S7A). This was mainly due the skin-free model lacked of
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adequate functional features that were abundant or
unique in skin samples (Fig. S7B). Hence a model that
covers all four body sites reduced the gap between se-
quencing types while kept the beta-diversity pattern
among multiple habitats (Fig. 3c).
Furthermore, the category-specific model also exhibits

shortage in applications of microbiome-based multi-
category classification (e.g. disease detection), for the
category information is always unknown (e.g. whether a
sample is healthy or disease). Here, an arbitrary
category-specific model may introduce bias to samples
that belong other categories, leading to erroneous pre-
diction results. For amplicon samples of Dataset 5, after
calibration with a model that trained only by healthy
WGS:16S-amplicon pairs, both healthy and disease sam-
ples were shifted to healthy WGS sample (Fig. S8A).

Similarly, all samples were also recognized as unhealthy
if the model only included disease pairs (Fig. S8B). In
such case, a training set that includes both healthy and
disease pairs is optimal. In summary, for calibration of
microbiomes among multiple categories, if category in-
formation is definite (e.g. body-site), category-specific
models will be ideal for each single category, while an
integrated model that covers all categories also works
well; otherwise (e.g. disease detection) an integrated
model is suggested.

Meta-Apo calibration model is experimental-protocol
specific
Since the Meta-Apo builds a calibration model by solv-
ing f in eq. 1 using WGS:16S-amplicon pairs, it is im-
portant to note that the calibration model of Meta-Apo

Fig. 6 Cross-platform comparison of healthy and gingivitis oral microbiomes based on non-calibrated and calibrated functional profiles. a
Functional patterns derived from the amplicon and WGS approaches are distinct, which suggests cross-platform comparison can be a significant
challenge under such circumstances. b Comparing the effect size of the sampling factors by Adonis test. c Meta-Apo aligns the predicted
functional profiles of amplicon samples to those of the WGS samples. d Healthy status classification of the original and the Meta-Apo-calibrated
amplicon samples by MSE-based classification from WGS samples. Distances for Adonis test and PCoA were calculated using Bray-Curtis metrics
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is not universal but specific to experimental protocols,
i.e., amplicon sequences used in training and calibration
should be produced via a consistent procedure. To test
the effect of this issue, we calibrated the original oral
amplicons of Dataset 5 using the calibration model con-
structed from the WGS:16S-amplicon pairs of Dataset 2.
In both Dataset 2 and Dataset 5, WGS samples were se-
quenced by the Roche 454 platform, and the 16S rRNA
sequences were amplified from the V1-V3 region and se-
quenced via the Illumina platform. However, the DNA
was processed by different sampling and extraction pro-
tocols: Dataset 2 used the HMP 16S 454 protocol
(http://hmpdacc.org), whereas Dataset 5 used the Larry
Fernery’s protocol [22] with minor modifications (the
two protocols mainly differ in primer design and DNA
extraction method). As a result, after calibration by
Meta-Apo, the effect size (Adonis R2) of sequencing type
was still larger than that of the disease status, which is
similar to the case of non-calibrated samples (Fig. S9A),
and the beta-diversity pattern of calibrated amplicons
was shifted towards an unexpected direction that is dis-
tinct from both the non-calibrated amplicons and the
WGS samples (Fig. S9B). Therefore, the Meta-Apo cali-
bration model is experimental-protocol specific, and
transplantation of it among datasets generated from dis-
tinct experimental protocols (such as those related to
primer design and DNA extraction) should take caution.

Conclusion and discussion
The rapid expansion of microbiome research has driven
large-scale analyses of microbiome, from both taxonom-
ical and functional perspectives [20]. At present, due to
their much lower experimental and computation costs,
16S-amplicon-based samples still outnumber WGS-
based samples by a factor of 100. In addition, in circum-
stances where biomass is not adequate for shotgun
WGS, 16S-amplicon based methods are still more prac-
tical. Therefore, the ability to accurately and reliably re-
construct microbiome function based on 16S-amplicon
datasets would greatly accelerate large-scale microbiome
data mining and thus is highly desirable. Meta-Apo fills
such a niche, by calibrating the functional profiles for a
large number (e.g. over 5000) of 16S-amplicon samples
via only a much smaller number (e.g., 15–20 human
microbiomes) of WGS:16S-amplicon paired samples for
training. Adopting this strategy and tool, large-scale,
function-oriented microbiome sequencing projects can
probably benefit from the lower cost of 16S-amplicon
strategy, yet without sacrificing the higher precision in
functional reconstruction of WGS strategy.
Notably, the accuracy of 16S rRNA-based functional

reconstruction is also dependent on the resolution of
taxonomy profiling [23] and the number of reference ge-
nomes available [7]. At present, the number of complete

microbial genomes for 16S-based functional profile pre-
diction is over 20,000 [24], and they are mainly from hu-
man microbiota (e.g. reference database of PICRUSt 2).
This is still one to two orders of magnitudes lower than
the number of known 16S rRNA genes [25] (e.g. refer-
ence full-length 16S rRNA already number over 2 mil-
lions), therefore the calibration of 16S-based functional
profiles for environmental microbiomes, in which
complete reference genomes are much more sparse, can
be more difficult. On the other side, currently the cali-
bration of amplicon-based functional profiling for envir-
onmental microbiomes is also limited by the lack of
appropriate WGS:16S-amplicon sample pairs. However,
technology development in large-scale cultivation-based
[26, 27] or single-cell-based sequencing [28] are rapidly
elevating the number of novel microbial genomes (and
their associated 16S rRNA genes). Therefore, with new
tools such as Meta-Apo, amplicon-based sequencing and
analysis strategy should continue to contribute to func-
tional interrogation of microbiota, for both historical
and emerging microbiome projects.

Methods and materials
Meta-Apo takes the functional profiles of a small num-
ber of WGS:16S-amplicon sample pairs as training, and
outputs the calibrated functional profiles of large-scale
amplicon samples. It consists of two steps: training and
calibration. In the training step, Meta-Apo estimates the
f of eq. 1 by a small number of WGS:16S-amplicon pairs
using linear regression modeling. Then in the calibration
step, considering WGS results as the “golden standard”,
Meta-Apo calibrates the predicted functional profiles of
amplicon samples using model f.

The training step of meta-Apo
Basically, the functional profile of a single microbiome
Kmicrobiome consists of a series of molecular functions
(e.g. KEGG Orthology) and their relative abundance as
follows:

Kmicrobiome ¼ kfunction 1; kfunction 2;…; kfunction i
� � ð2Þ

in which k function i represents the relative abundance of
a molecular function. Based on the isomorphism (Fig.
3a; Monte-Carlo test p < 0.01) and strong linear correl-
ation (Fig. 3b; Pearson correlation R = 0.86, p < 0.01) of
functional profiles between WGS and amplicons, for
each function, we can link their relative abundance
values between the two approaches by further trans-
forming eq. 1 as

kWGS ¼ f k16Sð Þ ¼ θ0k16S þ θ1 ð3Þ
In eq. 3, Meta-Apo solves the mapping model f by lin-

ear regression algorithm using function profiles of N
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(e.g. N = 15) exactly paired WGS:16S-amplicon samples as
training. Specifically, Meta-Apo calculates the two param-
eters of θ0 and θ1 in eq. 3 for each function that fits k16s to
kWGS by minimizing their total square error in eq. 4:

E ¼ 1
2

XN

i¼1
f k16Sð Þ − kWGSð Þ2 ð4Þ

Thus, in the training step, Meta-Apo calculates the pa-
rameters θ1 and θ0 by the Least Square Method (LSM)
solution described in eq. 5:

θ0 ¼ N�PN
i¼1k16s�kWGS −

PN
i¼1k16s�

PN
i¼1kWGS

N�PN
i¼1k16s

2 −
PN

i¼1k16S
� �2

θ1 ¼
PN

i¼1k16s
2�PN

i¼1kWGS −
PN

i¼1 k16s�kWGSð Þ�PN
i¼1k16s

N�PN
i¼1k16s

2 −
PN

i¼1k16S
� �2

ð5Þ

The calibration step of meta-Apo
With the optimal mapping model f for each molecular
function derived from data training, Meta-Apo estimates
the expected relative abundance of each input molecular
function that was inferred from 16S rRNA amplicon se-
quences by eq. 6

kexpected ¼ θ1k16S þ θ0 ≈ kWGS ð6Þ
Since the mapping model has been optimized to

minimize the difference between expected and “real”
function abundance derived from WGS data, Meta-Apo
calibrates the predicted functional profiles of amplicon
samples to the WGS-level resolution.

Datasets and profiling
In this work we prepared five human microbiome data-
sets from two studies (Table 1) to evaluate the perform-
ance of Meta-Apo. Samples in Dataset 1, 2, 3 and 4 were
produced by HMP phase I [2] that collected from four
body sites (gut, oral, skin and vaginal) of healthy hosts
(downloaded from Data Analysis and Coordination Cen-
ter of HMP at https://www.hmpdacc.org/hmp/, details
available in Table S1, S2, S3 and S4). Dataset 1 contains
622 paired WGS:16S-amplicon microbiomes that each
sample was sequenced by both WGS and V3-V5 region
16S rRNA amplicon sequencing. Dataset 2 contains 295
sample pairs of WGS and V1-V3 region 16S rRNA
amplicon samples. Dataset 3 contains 2354 WGS sam-
ples and 5350 V3-V5 16S rRNA amplicon samples. Data-
set 4 contains 2045 WGS samples and 2186 V1-V3 16S
rRNA amplicon samples. Samples in Dataset 3 and Data-
set 4 are not paired but collected from the same body
sites of healthy hosts and sequenced by the same study
along with consistent protocol. Dataset 3 and Dataset 4

share identical WGS samples, however, due to the lack
of WGS and V1-V3 amplicon pairs from skin in Dataset
2 for the training purpose, we also removed the skin
samples from Dataset 4 for the testing (the sample num-
ber of Dataset 4 in Table 1 was after such removal).
Dataset 5 was produced by Huang, et al., ISME J. 2014
[16], which was collected from oral microbial communi-
ties of healthy and gingivitis hosts. It contains 150 V1-
V3-region 16S rRNA amplicon oral microbiomes (50
healthy and 100 gingivitis), in which 18 samples (9
healthy and 9 gingivitis) were also sequenced by shotgun
sequencing (details available in Table S5).
For all WGS samples, functional profiles were directly

analyzed by HUMAnN2 [17] and annotated with KEGG
Orology (KO), and taxonomical compositions on Genus
level were analyzed by MetaPhlAn 2 [29]. For the 16S
rRNA amplicon sequences, Operational Taxonomy
Units (OTUs) were picked and annotated against Green-
Genes (version 13–8) [30] database with cutoff similarity
of 97% by Parallel-META 3 [31] and taxonomical rela-
tive abundances on Genus level were calibrated by 16S
rRNA copy number from IMG/M database [32], then
the KO functional profiles were inferred by PICRUSt 2
[8].

Random sample selection for construction of calibration
training model
To test the performance of Meta-Apo, we randomly se-
lected N = 5, 10, 15, 20, 50 and 100 WGS:16S-amplicon
pairs from Dataset 1 as training, and used Meta-Apo to
calibrate the other amplicon samples of this dataset. The
procedure of each N that includes sample selection,
model training and calibration was repeated for 10
times, and iterations on each N were performed respect-
ively. In addition, we also ensured that the N training
samples covered all body sites of Dataset 1 (Table 1;
Gut, Oral, Skin and Vaginal). After calibration, the
paired WGS:16S-amplicon distances of each N (Fig. 2b)
were calculated by the mean values of the 10 repeats.
We then randomly chose a calibration model from the
10 repeats of N = 15 for further PCoA (Fig. 3c and d)
and pathway analysis (Fig. 4) of Dataset 1, as well as the
calibration and PCoA of Dataset 3 (Fig. 5b). Results of
Dataset 2 (Fig. S1 and Fig. S2C) and Dataset 4 (Fig. S4)
were produced in the same way.

Cross-platform disease classification using microbiome
functional profiles
For Dataset 5, we constructed the MSE [20] database
with KO profiles analyzed from 18 WGS samples (9
healthy and 9 gingivitis; Table S5). Then each of the ori-
ginal amplicon samples and the calibrated amplicon
samples was searched against this database using KO
profiles for status classification [21]. Amplicon samples
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collected from the same hosts as the WGS were ex-
cluded from this testing to avoid the prediction and stat-
istical bias. The classification results were evaluated
from the follow aspects:

a. accuracy = (true positive + true negative) / (# of all
test samples)

b. F1-score = (2 * recall * precision) / (recall +
precision), in which
recall = (true positive) / (true positive + false
negative)
precision = (true positive) / (true positive + false
positive)

Software packages for PCoA and statistics
The Principle Coordinate Analysis was performed by the
“vegan” [33] package in R [34]. The two-tail Wilcox tests
were performed by the “wilcox.test” function in R with
“two.sided” parameter and 95% confidence level (conf.le-
vel = 0.95). The Monte-Carlo tests were performed by
the “ade4” [35] package in R with 10,000 times
permutation.
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