
An Architectural Overview of QNX®

Dan Hildebrand
Quantum Software Systems Ltd.

175 Terrence Matthews
Kanata, Ontario K2M 1W8

Canada
(613) 591-0931

danh@quantum.on.ca

Abstract*

This paper presents an architectural overview of the QNX operating system.
QNX is an OS that provides applications with a fully network- and multi-
processor-distributed, realtime environment that delivers nearly the full,
device-level performance of the underlying hardware. The OS architecture
used to deliver this operating environment is that of a realtime microkernel
surrounded by a collection of optional processes that provide POSIX- and
UNIX-compatible system services. By including or excluding various
resource managers at run time, QNX can be scaled down for ROM-based
embedded systems, or scaled up to encompass hundreds of processors—
either tightly or loosely connected by various LAN technologies. Confor-
mance to POSIX standard 1003.1, draft standard 1003.2 (shell and utilities)
and draft standard 1003.4 (realtime) is maintained transparently throughout
the distributed environment.

*This paper appeared in the Proceedings of the Usenix Workshop on Micro-Kernels & Other Kernel Architectures, Seattle, April, 1992. ISBN 1-880446-42-1
QNX is a registered trademark and FLEET is a trademark of Quantum Software Systems Ltd.

Architecture: Past and Present

From its creation in 1982, the QNX architecture has been fundamentally similar to its current
form—that of a very small microkernel (approximately 10K at that time) surrounded by a
team of cooperating processes that provide higher-level OS services. To date, QNX has been
used in nearly 200,000 systems, predominantly in applications where realtime performance,
development flexibility, and network flexibility have been fundamental requirements. The
large installed base has proven that microkernel technology is both commercially viable and
suitable for mission-critical applications such as process control, medical instrumentation,
and financial transaction processing. The performance needs of these applications have been
a significant driving force in the evolution of QNX from version 1.00 up through version
3.15.
In 1989, the development of a POSIX-compliant version of QNX (4.0) began with the goals
of maximizing the performance and flexibility delivered by the previous generation of the
product. This new version was released in 1991. This paper will detail the features of the
new architecture and discuss its strengths and limitations, as well as areas targeted for future
development.

A True Microkernel

The QNX microkernel implements four services: interprocess communication, low-level
network communication, process scheduling, and interrupt dispatching. There are 14 kernel
calls associated with these services. In total, these functions occupy roughly 7K of code and
provide the functionality and performance of a realtime executive (see Appendix A). Given
the small kernel size, processors that provide a reasonable amount of on-chip cache can
deliver excellent performance for applications that heavily use the services of the microker-
nel, since the microkernel and the system interrupt handlers can often fit comfortably within
an on-chip CPU cache of 8K.

processes

network
interface

scheduler

IPC

Network
Manager

interrupts

hardware int.
redirector

Figure 1. — The QNX Microkernel

Quantum Software Systems Ltd. An Architectural Overview of QNX®

© Quantum Software Systems Ltd. 1992 Page 2 of 16

The message-passing facilities provided by the microkernel are blocking versions of Send(),
Receive(), and Reply(). To summarize, a process that does a Send() to another process will
be blocked until the target process does a Receive(), processes the message, and does a
Reply(). If a process executes a Receive() without a message pending, it will block until
another process executes a Send(). Since these primitives copy directly from process to
process without queuing, message delivery performance approaches the memory bandwidth
of the underlying hardware. All system services are built upon these message-passing
primitives. Variations on these IPC primitives (e.g. message queues) have been easily
implemented as servers employing these lower-level services.
Performance of these alternate IPC servers is comparable and often superior to the perfor-
mance of these services implemented within monolithic kernels (see Appendix B).

Processes can request that messages be delivered in priority order (rather than in time order)
and that process execution proceed at the priority of the highest-priority blocked process
waiting for service. This message-driven priority mechanism neatly avoids the priority
inversion problems that can result in fixed-priority message-passing systems. Server proces-
ses are forced to execute at the priority of the process they are serving, and yet automatically
have their priority appropriately boosted when a higher-priority process blocks on the busy
server. As a result, a low-priority process cannot preempt a higher-priority process by
invoking the services of an even higher-priority server.
The messaging primitives support multi-part messaging, such that a message delivered from
one process to another need not occupy a single, contiguous area in memory. Instead, both
the sending and receiving processes can specify an MX table that indicates where the sending
and receiving message fragments exist in memory. This allows messages that have a header
block separate from the data block to be sent without performance-consuming copying of
the data to create a contiguous message. In addition, if the underlying data structure is a ring
buffer, a three-part message will allow a header and two disjoint ranges within the ring buffer
to be sent as a single, atomic message. The MX mapping applied to the message by the
sender and the receiver need not be the same.

READY

SEND
Blocked

REPLY
Blocked

RECEIVE
Blocked

Send()

Receive()

Reply()

Receive()

Send()

Reply()

Send() This process

Send() Other process

Figure 2. States involved in a typical send-receive-reply transaction.

Quantum Software Systems Ltd. An Architectural Overview of QNX®

© Quantum Software Systems Ltd. 1992 Page 3 of 16

Low-level network communications are designed directly into the microkernel and are
provided by an optional process known as the network manager (described later in this
paper). When present, the network manager is directly connected into the microkernel and
provides the microkernel with the facilities needed to move messages to and from other
microkernels on the LAN. By providing network services at this fundamental level in the
system, any services provided in higher architectural layers of the operating system are
transparently accessible to any process, anywhere on the network. Architecturally speaking,
this implementation is very lean, providing as efficient an interface as possible.
The process-scheduling primitives provided by QNX conform to the POSIX 1003.4 (real-
time) draft specification. QNX provides fully preemptive, prioritized context switching with
round-robin, FIFO, and adaptive scheduling. As the POSIX 1003.4 standard emerges from
draft status, the microkernel and system processes will be evolved to match.

Resource Managers and Pathname Space Management

For the microkernel to deliver the functionality specified by POSIX standards and UNIX
conventions, optional processes known as resource managers can be added. A minimal
system, without a filesystem or device I/O system, can be built from a microkernel, a process
manager, and a set of application processes.
The first, and only mandatory, resource manager is the process manager (Proc). Proc
provides services such as process creation, process accounting, memory management,
process environment inheritance (both locally and for network remote processes) and
pathname space management. First-level pathname management is done by Proc because,
unlike a monolithic-kernel system where the filesystem is always present, a filesystem is
optional under QNX. Diskless or ROM-based systems may have no use for a filesystem,
and so are not forced to use one.
Until resource managers begin execution, Proc “owns” the entire pathname space (the root
and everything beneath it). Without any resource managers present to provide services, this
is essentially an empty filesystem. Proc allows resource managers, through a standard API,
to adopt a portion of the namespace (a “domain of authority”) that they would like to
administer. Proc is then responsible for maintaining a prefix tree to track the processes that
own various portions of the pathname space.

...

“message”

part 1 part 2 part n

mx
entry

1

2

n

. . .

Figure 3. Multi-part messages can be specified with an MX control structure. The
Figure 3. microkernel assembles these into a single data stream.

Quantum Software Systems Ltd. An Architectural Overview of QNX®

© Quantum Software Systems Ltd. 1992 Page 4 of 16

When Fsys (the filesystem manager) and Dev (the device manager) are running, the prefix
tree would look something like this:

 / Disk-based filesystem (Fsys)
 /dev Character device system (Dev)
 /dev/hd0 Raw disk volume (Fsys)
 /dev/null Null device (Dev)

When a process opens a file, the open() library routine first sends the filename to Proc where
the pathname is applied against the prefix tree in order to direct the open() to the appropriate
resource manager. In the case of partially overlapping domains of authority, the longest
match to the pathname would win. For example, if /dev/tty0 were opened, the longest
match would occur on /dev, causing the open to be directed to Dev. The pathname
/usr/fred would match against /, directing the open to Fsys.
The process manager on each computer in the network maintains its own prefix tree and
may present identical or different views of the network-wide pathname space to processes
on each node. Pathnames that start with a / are applied against the prefix tree on that node.
Network-unique names are also available to allow applications to specify the absolute
location of resources within the network-wide pathname space. Through the use of prefix
aliasing, portions of the namespace can be mapped to resource managers on other network
nodes. For example, a diskless workstation that booted from the LAN and wished to have
its filesystem root on another node could alias the root of its filesystem to a remote Fsys
process.
With this alias in place, open() calls to /dev would still map to the local Dev process for
control of local devices, but all open() calls for files would result in open messages being
resolved by the prefix mapping table on the previously specified remote node (which would
usually direct file opens to the Fsys process on that node). As a result, processes anywhere
on the network can access all of the network filesystem resources within a single directory
tree, connected to a common root. Alternatively, by using network-absolute pathnames, the
network pathname space can also be manipulated as a collection of individual root filesys-
tems.
By implementing individual domains of authority within the conventional filename space,
portions of the overall functionality of the OS can be implemented in a runtime-optional
manner. Since resource managers live outside the kernel space and are not fundamentally
different from user processes, they can be added or removed dynamically, at runtime,
without requiring that the kernel be relinked to contain different levels of functionality. This
flexibility in sizing allows the OS to be easily scaled up or down, depending on application
needs.
Although placing the services provided by resource managers outside the kernel would at
first appear to be inefficient, the performance results given in Appendix B indicate that the
context switch and IPC performance of the microkernel are more than adequate to keep up
with the raw performance of the hardware.
The network transparency of this namespace allows remote execution of processes to be
logically equivalent to execution on a local processor. The individually administered
pathname spaces blend seamlessly, and there are no “surprises” in how the namespace
behaves. Inheritance of the entire parent process environment, including open file descrip-
tors, environment variables, and the current working directory, is done such that interproces-
sor communications and file I/O operate in accordance with the POSIX 1003.1 specification
in spite of the network-distributed runtime context.

Quantum Software Systems Ltd. An Architectural Overview of QNX®

© Quantum Software Systems Ltd. 1992 Page 5 of 16

Fsys—The Filesystem Manager

Fsys is the resource manager that provides a POSIX-compliant filesystem for the QNX
environment. It implements a disk structure that uses a bitmap for free space allocation, and
a linked-list-of-extents approach to organizing the data on disk. This approach allows the
system to deliver disk throughput at the application level that approaches the raw capacity
of the hardware (see Appendix B). Fsys performs synchronous writes to disk for data
structures critical to filesystem integrity, allowing the disk system to gracefully survive
unexpected power outages. Special tags embedded in on-disk data structures allow the
filesystem to be easily rebuilt in the event of catastrophic failures as well.
The multithreaded architecture of Fsys allows it to deal with multiple requests in parallel,
such that ramdisk and cache I/O can occur while other threads are blocked, waiting for
physical I/O to occur. This parallelism extends down into the driver as well—if a device can
support multiple pending I/O requests, then the requests can be serviced by the driver in
whatever order is appropriate.
Although an initial study of message-passing operating systems might suggest that a
filesystem would need to copy data around more so than a monolithic kernel filesystem, the
reality is that no additional copying is needed. The MX multipart messaging primitives allow
Fsys to map the contiguous buffers specified by the read() and write() calls of the application
into the non-contiguous cache blocks within Fsys. For a disk read, the disk driver reads
from disk into multiple non-contiguous, LRU-allocated cache blocks. Fsys then invokes the
MX facility within the kernel to atomically gather and copy the scattered blocks into the
contiguous read buffer specified by the application. As a result, even though the filesystem
exists within a message-passing, network-transparent environment, it exhibits the same
amount of data copying that would occur with a filesystem implemented in a monolithic
kernel.
The Fsys process can be started from the command line on a diskless, network-connected
machine, and device drivers can then be dynamically attached to Fsys. In the event that it
is no longer required, Fsys and its drivers can be removed from memory.

Dev—The Device Manager

The device manager (Dev) provides POSIX-compliant device control with some extensions
suitable for realtime communications. In a manner similar to Fsys, Dev can be dynamically
started and its device drivers attached and then later removed from memory if no longer
needed.
Dev can handle baud rates up to 115 Kbaud on modest hardware with non-intelligent UART
devices because of the low interrupt latency provided by the microkernel. With the addition
of intelligent communication boards, a high-bandwidth, multiline communications server
can be configured.
Use of the MX messaging primitives allows Dev to Receive() the write() done by an
application to a device directly into a ring buffer managed by an interrupt handler. With the
MX table appropriately defined, the data received can be laid directly into the ring buffer
managed by Dev. Since writing to a ring buffer can require that the data be mapped into
physically disjoint (but logically contiguous) memory regions, an MX table with three
entries can describe the header and the two physically disjoint sections of the ring buffer.
For the read() case, the data flow from a device goes directly from the driver into the ring
buffer, and from the ring buffer into the application’s read() buffer without redundant
copying to build contiguous messages.

Quantum Software Systems Ltd. An Architectural Overview of QNX®

© Quantum Software Systems Ltd. 1992 Page 6 of 16

Device Driver Support

Rather than insist that device-driver interrupt handlers live only in the kernel space, QNX
provides a system call that allows user processes to connect a handler within a sufficiently
privileged user process to a particular interrupt vector within the kernel. The connected
handler can then be called by the kernel in response to physical interrupts. By existing within
the user process, the handler has full access to the address space of the process for the purpose
of responding to the interrupt. Once the handler has run, it can either wake up the process
it shares code with or simply return to the kernel. The device drivers for Dev take advantage
of this behavior by using the individual interrupts to accumulate characters within a Dev
managed buffer, waking Dev only when a previously defined “significant event” has
occurred (such as a terminal character count, end-of-line condition, or timeout).
With interrupt handlers existing outside the kernel in this manner, the user can dynamically
add and remove interrupt handlers (and the device drivers that contain them) from a running
system. The first-level interrupt handling done by the kernel also takes care of nested and
shared interrupts without imposing the hardware-dependant details and complexities on
user-written interrupt handlers. External interrupt handler support for the microkernel is
fundamental to allowing a resource manager to match the level of performance that resource
management within a monolithic kernel could provide.

Ease of Extension

A fundamental advantage to having device drivers exist within user-level processes is that
developing extensions to the OS is not functionally different from developing user-level
processes. In fact, the development approach used in-house at Quantum is to execute
experimental resource managers under the control of the full-screen, source-level debugger,
so that debugging OS services like a new Fsys process can be done without having to resort
to low functionality tools such as the kernel debuggers typically used to debug kernel-linked
extensions for monolithic kernel operating systems. Since resource managers and device
drivers can be started and removed at will, the laborious process of relinking a kernel and
rebooting to test the new kernel becomes entirely unnecessary.
As an example of how easily extensible the QNX system is, services such as a /proc resource
manager similar to that described in [Pike 90] have been implemented by applications-level
programmers (not kernel architects!) with only a few hours of effort and less than 200 lines
of easily understood C source. In effect, the /proc resource manager packages up a system
resource (the list of active processes in the system) and then presents it to the system as files
and directories that can be manipulated within /proc pathname space.
As a more complex example, a client-side network filesystem cache manager similar to that
described by [Presotto 91] has been implemented with approximately a week of effort. This
cache keeps copies of recently accessed file blocks at the client-side for a node accessing a
network remote Fsys. At open(), the cache verifies that the remote file has not changed
(which would invalidate the locally cached data) and provides the locally cached data as a
performance enhancement. By providing a local disk file for this client-side cache to “spill”
into, a system networked over a slow serial link can still provide reasonable network-remote
filesystem performance. This server represented only 1000 lines of source, and again, was
fully within the reach of an application-level programmer using standard system libraries.
Finally, guest filesystems can be implemented as a resource manager that uses the raw disk
block I/O services of Fsys to present a guest filesystem as a subtree within the root
filesystem. One example is Dosfsys , a PC-DOS filesystem. Dosfsys adopts the /dos

Quantum Software Systems Ltd. An Architectural Overview of QNX®

© Quantum Software Systems Ltd. 1992 Page 7 of 16

pathname as its domain of authority and then presents to the system a series of directories
of the form /dos/a , /dos/b , etc. These directories map onto corresponding PC-DOS media
and the Dosfsys process manipulates the raw blocks on these volumes as indicated by the
I/O requests that enter Dosfsys . File manipulations that can be mapped onto the underlying
filesystem are supported, while others—such as link()—return the appropriate error status
when attempted.

Network Services— FLEET™ Networking Technology

Fault-tolerant
Load-balancing
Efficient
Extensible
Transparent

As mentioned previously, the network manager (Net) is directly connected into the
microkernel. When the microkernel is invoked to pass a message from a local process to a
process on another node, it enqueues a pointer to the message through this private interface
to Net. Similarly, Net can receive messages from other microkernels and give those
messages to the local microkernel. Essentially, the network managers on the network merge
the many remote microkernels into a single microkernel. Since all system services—includ-
ing process creation, debugging, file and device I/O—are accomplished via message passing
through the microkernel, the result is a network of machines that behave like a single
computer. Any services provided in higher architectural layers of the operating system are
transparently accessible to all processes on the network. This is in marked contrast to a
TCP/IP services suite, which provides only very explicit sets of services—typically terminal
sessions and file access. By comparison, this connected microkernel architecture allows the
command:

 ls /usr/danh | grep abc | wc

to be run such that every process will run on a different processor on the network, while the
network-inherited file descriptors provided by Proc cause the pipes to connect and forward
data over the network. The transparency of this environment also facilitates the implemen-
tation of distributed applications. For example, the development of a network-distributed
team make utility was accomplished with only a man-week of effort, starting from a
conventional, non-distributed make.
Just as Fsys and Dev can be started and stopped from the command line, each having a
family of drivers, Net also has a family of drivers and supports the connection of multiple
network drivers to Net. If Net discovers that more than one of the net drivers provides
connectivity to the same node, it will load-balance the traffic between the drivers. The
load-balancing uses an algorithm based on media transmission rate and queue depth.
Command-line options are available to manually coerce network traffic as desired.
Use of multiple network paths between nodes provides better throughput and fault-tolerance
by adding extra network links between network nodes. Application-level changes are not
needed to take advantage of this fault-tolerance, since the support exists locally within the
network manager.

Quantum Software Systems Ltd. An Architectural Overview of QNX®

© Quantum Software Systems Ltd. 1992 Page 8 of 16

Inexpensive serial links can be used as a fall-back network link in case the main LAN fails.
By running the serial link at a high baud rate (Dev is capable of 115 Kbaud), by doing data
compression, and by enabling client-side filesystem caching, serial network performance
can be very snappy.
This facility may also be used to resolve the LAN congestion problems that result when two
file servers on a LAN experience a high volume of point-to-point traffic. With the FLEET
approach, a private network link can be added to join the two servers, moving the
point-to-point traffic off the main LAN and onto the private link. If the two servers are
physically adjacent, unconventional LAN technologies such as point-to-point SCSI or
bus-to-bus DMA become viable options. This approach can be used to implement
CPU/Fileserver groups much as described in [Presotto 91].
The FLEET approach also allows a system backplane bus to be used to construct a
multiprocessor system by building a processor board that uses the backplane bus as a VLAN
(Very Local Area Network). Each processor board would run a QNX OS consisting of a
microkernel, Proc, Net, and a Net.vlan driver. One of the processors could run Net with
both a Net.vlan driver and a Net.ethernet driver to access an external ethernet LAN. By
adding additional hardware to these processors, and the appropriate Dev or Fsys processes,
they become distributed I/O processors. Currently, a test implementation of this architecture
using a Microchannel bus for the VLAN is under joint development with Aox Incorporated.
The Microchannel burst mode and multimaster bus arbitration will perform very well as a
VLAN. In effect, each node on an Ethernet could contain a VLAN of additional processors
within the chassis. This lets the team of processes that normally run on each Ethernet node
to redistribute and run on a team of processors within that node. The compute servers
described by [Tanenbaum 89] can be readily implemented with this hardware.
For embedded applications, a minimal QNX system can be put into less than 100K of ROM
(microkernel, Proc, and some applications). With the addition of a Net process and a Net
driver (approx. 35K), the embedded system could then be connected to a larger network,
becoming a seamless extension of the larger LAN. This would allow the embedded system
to access databases, graphical user interfaces, LAN gateways, and other services. In spite of
the limited functionality of the embedded system, the network link out to the LAN provides
access to the entire LAN’s resources for the processes running on the embedded system.
The embedded system could also boot from the LAN, further reducing its ROM require-

Logical
Node 7

Logical
Node 8

Logical
Node 9

Logical Network 1

Logical Network 2

Logical Network 3

Figure 4. Multiple physical networks happily coexist via logical networks.

Quantum Software Systems Ltd. An Architectural Overview of QNX®

© Quantum Software Systems Ltd. 1992 Page 9 of 16

ments. Because the system debugging services are implemented through standard messages
to the Proc process on the node running the application being debugged, applications on the
embedded system can be debugged from any other node on the LAN.
To host standard transport protocols, a Clarkson-compatible raw packet delivery service
provided by Net and the network drivers is available. With a protocol stack implemented in
this manner, non-QNX machines on the same physical LAN can communicate through the
protocol stack to access the services of the multi-processor QNX LAN. The QNX environ-
ment would appear to the outside world (e.g. TCP/IP) as a single, multiprocessor machine.
Currently, FLEET does not support network bridging. This requires that communication
between nodes not connected to a common network will need to make use of intermediate
agent processes to pass messages from LAN to LAN. Research is in progress to define a
routing process running as an adjunct to Net to perform this function.

Maintainability

A fundamental problem with the maintenance of a monolithic kernel operating system is
that all of the kernel code runs in a common, shared address space. The danger that one
portion of the kernel might corrupt the data space of another is very real, and must be
considered every time new drivers are linked into the kernel. The approach taken by QNX
is to explicitly define the interfaces between the components that make up the OS, such that
each resource manager, just like user processes, runs in its own memory-protected space,
and all communication between the OS modules is through standard system IPC services.
As a result, errors introduced by one resource manager will be constrained to that subsystem
and will not corrupt other, unrelated resource managers in the system.
Given that new resource managers and device drivers can be debugged and profiled using
the same tools as would be used on user processes, system development becomes at least as
well instrumented as application development. This is very important, as it allows much
greater freedom to experiment with new approaches to implementing OS subsystems
without incurring the tremendous effort of debugging a kernel with limited tools.
The architecture also demonstrates a relative simplicity and ease of implementation that
allows the maintenance of existing code to be manageable, and the addition of new features
to be a task with a reasonable scope. The following table presents the source line count and
code size for the various modules that make up the QNX system (all of the source line counts
in this paper were generated by counting the semicolons in the C source files).

Lines of
 Source Code Size

 Microkernel 605 7K
 Proc 3924 52K
 Fsys 4457 57K
 Fsys.ahascsi 596 11K
 Dev 2204 23K
 Dev.con 1885 19K
 Net 1142 18K
 Net.ether 1117 17K

 15930 lines 204 Kbytes

This source line count compares favorably to [Pike 90], although the design goals for the
two systems are somewhat different.

Quantum Software Systems Ltd. An Architectural Overview of QNX®

© Quantum Software Systems Ltd. 1992 Page 10 of 16

Future Directions

Now that QNX is UNIX source code compatible, development of binary compatibility is
under way. The combination of source and binary compatibility (ABI) will allow existing
UNIX applications to be hosted on a QNX runtime platform and benefit from network-
transparent distributed processing and enhanced system performance.
The emergence of commercially successful symmetric shared-memory multiprocessor
machines has also raised the issue of multiprocessor support in the QNX microkernel. Given
that the microkernel is less than 7K in size, the complexities of multiprocessor support can
be constrained to a well-defined portion of the system and will result in a robust implemen-
tation. Since the resource manager processes that provide the remainder of the operating
system services are multithreaded independent processes, they will inherit the multiproces-
sor support provided by the microkernel without modification, and the individual com-
ponents of the operating system will then achieve true concurrency.

Performance

A necessary challenge that QNX had to meet was the performance needs of a customer base
primarily concerned with realtime applications. Although an elegant OS architecture is a
joy to work with, “academic elegance” will not necessarily create a commercially successful
operating system—it must also provide performance better than traditional monolithic
kernel operating systems. A design goal of many of the current microkernel operating
systems has been to attempt to match the performance of monolithic kernel systems
[Guillemont 91]. Given that current monolithic systems, such as UNIX SVR4, fail to deliver
the full performance of the hardware (Appendix B), matching only this level of performance
will fail to provide consumers of operating system technology with a significant advantage
of using a microkernel-based system. Much as with RISC processors, until a new technology
can deliver a clear performance advantage, it will remain little more than an architectural
detail to an end-user, and not a factor to influence buying decisions.
For QNX to deliver the full performance of the hardware to the application level (and to
exceed the performance of monolithic kernel operating systems), a number of architectural
innovations were developed. A necessary precondition for these enhancements was that
realtime system performance not be compromised. Even though the increased generality of
the message-passing model might at first study indicate that it has more overhead than the
monolithic kernel, there are a number of architectural ideas that correct this misconception.
Two concepts that contributed significantly to overall system performance were the support
for interrupt handlers directly within resource managers, and the multipart messaging
primitives.
Appendix B contains the performance results for both a DELL UNIX SVR4 v2.1 implemen-
tation and a QNX 4.1 implementation performing similar operations. DELL UNIX was
chosen for its reputation as a well-performing port of the SVR4 product to the Intel 80x86
architecture. In the first section the timing for a typical UNIX kernel call (umask) is
compared, but under QNX, umask() is actually implemented as a message to Proc. The QNX
system call rate for umask() is roughly one third that of UNIX, given that these calls represent
a different sequence of execution for QNX than for UNIX. The sequence executed is as
follows:

Quantum Software Systems Ltd. An Architectural Overview of QNX®

© Quantum Software Systems Ltd. 1992 Page 11 of 16

 1) The test program calls Send() in the kernel
 2) The kernel schedules Proc to run
 3) A context switch to Proc
 4) Proc returns from the Receive() call it was blocked on
 5) Proc processes the request
 6) Proc calls Reply() in the kernel
 7) The kernel schedules the test program to run
 8) The test program returns from the Send() kernel call

In effect, QNX is doing two kernel calls, doing two message passes, executing the scheduling
code twice, and performing two context switches in roughly the time it takes the UNIX
system to perform three kernel calls. During this process, there are two points at which other
processes can be scheduled, rather than only at system timer intervals. It might appear that
an obvious optimization would be to add more kernel calls to the microkernel. However,
note that these operations are not those that typically form the bottleneck for system-level
performance. Another advantage for these calls to remain as messages to Proc is that they
are network-transparent and can be invoked from any processor on the network.
The Yield() call is a true kernel call under QNX, and the results in Appendix B show the
kernel call rate to be more than three times that of the UNIX kernel. Implementing the other
calls measured in this report in the microkernel would have resulted in much faster kernel
call times, but since these are not a performance bottleneck for the system, there is no
pressing need to enlarge the kernel to accommodate them. Additionally, the greater the
complexity of the microkernel, the slower the more important kernel calls will become, until
the microkernel has grown back into a monolithic kernel, with all the limitations this implies.
At the system performance level, for IPC, pipe I/O, and disk I/O, we see that QNX
outperformed the UNIX system by a substantial margin. In fact, the QNX system was able
to deliver virtually all of the raw device throughput to the application, while the SVR4 system
fell far short. For disk I/O, QNX was substantially faster than SVR4. As faster peripheral
devices appear, the ability to deliver the full performance of that hardware will make possible
a class of applications that the kernel overhead of UNIX will not be able to accommodate
without much larger investments in processor power. In the network case, the QNX Net
process and its drivers deliver very nearly the entire cable bandwidth to the application, even
with only moderately powerful machines.

Conclusion

With the experience gained from implementing and analyzing the QNX microkernel
architecture, it is clear that a microkernel system can both outperform and provide greater
functionality than a monolithic kernel system while still providing a compatible API for
application programs. Existing application source code continues to work unchanged, yet
the development of OS extensions becomes much easier. The flexibility of the OS platform
also paves the way for greater variety and easier experimentation with alternative operating
system features as well. Much as innovations in RISC processor architectures have generated
a flurry of new performance capabilities in computer hardware, the microkernel OS
architecture will generate a renaissance of new performance and functionality standards in
operating system technology.

Quantum Software Systems Ltd. An Architectural Overview of QNX®

© Quantum Software Systems Ltd. 1992 Page 12 of 16

References

[Guillemont 91] M. Guillemont, J. Lipkis, D. Orr, and M. Rozier. A Second-Generation
 Micro-Kernel Based UNIX: Lessons in Performance and Compatibility. Proceedings of
 the Usenix Winter’91 Conference, Dallas, January 21-25, 1991, pp. 13-22
[Pike 90] Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey. Plan 9 from Bell
 Labs. Proceedings of the Summer 1990 UKUUG Conference, London, July, 1990, pp. 1-9

[Presotto 91] Dave Presotto, Rob Pike, Ken Thompson, and Howard Trickey. Plan 9, A
 Distributed System. Proceedings of the Spring 1991 EurOpen Conference, Tromsö, May,
 1991, pp. 43-50
[Tanenbaum 89] Andrew Tanenbaum, Rob van Renesse, and Hans van Staveren. A
 Retrospective and Evaluation of the Amoeba Distributed Operating System. Technical
 Report, Vrije University, Amsterdam, October, 1989, pp. 27

Quantum Software Systems Ltd. An Architectural Overview of QNX®

© Quantum Software Systems Ltd. 1992 Page 13 of 16

Appendix A

Interrupt handler simply terminates. Times are for a 20 MHz 386
processor in protected mode.

Interrupt handler terminatesand triggers a proxy. Times are for a 20
MHz 386 processor in protected mode.

interrupt
occurs

interrupt handler
runs

19.0 µsec
Til

interrupt handler
finishes

interrupted process
continues execution

17.4 µsec

Tiret

Tint

Til
Tint
Tiret

interrupt latency

interrupt processing time

interrupt termination time

interrupt
occurs

interrupt handler
runs

19.0 µsec
Til

interrupt handler
finishes and
triggers a proxy

driver process
runs

45.2 µsec

Tsl

Tint

Til
Tint
Tsl

interrupt latency

interrupt processing time

scheduling latency

The interrupt latency (Til) in the above diagram represents the minimum latency—that
which occurs when interrupts were fully enabled at the time the interrupt occurred.
Worst-case interrupt latency will be this time plus the longest time in which QNX, or the
running QNX process, disables CPU interrupts.

Interrupt and Process Latency

 Typical Interrupt
 Interrupt Termination Scheduling
Processor Latency time Latency Context
 (Til) (Tiret) (Tsl) Switch

33 Mhz 486 6 µsec 5 µsec 14 µsec 17 µsec
25 Mhz 486 8 µsec 7 µsec 18 µsec 22 µsec
33 Mhz 386 11 µsec 10 µsec 27 µsec 33 µsec
20 Mhz 386 19 µsec 17 µsec 45 µsec 55 µsec
16 Mhz 386SX 32 µsec 29 µsec 77 µsec 94 µsec
18 Mhz 286 65 µsec 59 µsec 163 µsec 188 µsec

Quantum Software Systems Ltd. An Architectural Overview of QNX®

© Quantum Software Systems Ltd. 1992 Page 14 of 16

Appendix B

System performance numbers comparing QNX4.1 to SVR4 UNIX.

Hardware Environment:

 Processor: Intel 80486 at 33 MHz, ISA bus
 Cache: 8K on chip, 0K off chip
 RAM: 16 Megabytes
 Disk: 1.2 Gigabyte Micropolis SCSI Disk
 Controller: Adaptec 1542B

Software Environment:

A default installation of QNX4.1 with the pipe manager was used for the QNX benchmarks.
A default installation of DELL SVR4 v2.1 UNIX was used for the UNIX benchmarks.
Both QNX and DELL UNIX were run in multiuser mode. The QNX system used a fixed-size
2M cache and the DELL system used the default SVR4 caching algorithms.

Results:

Kernel Call:
QNX UNIX Ratio

umask umask() system call (umasks/sec) 10560 28743 0.37
Yield Yield() system call (yields/sec) 99760 n/a 3.49 ➀
message message passing (msgs/second) 26296 1887 13.94 ➁

➀ Since the Yield() call is defined in POSIX 1003.4 and is not supported under DELL ➀
➀ UNIX, we will assume that if it was supported, the UNIX kernel would be able to ➀
➀ perform it as quickly as the umask() call. Making this assumption allows us to compute
➀ a comparison ratio. The Yield() kernel call under QNX is implemented in a manner ➀
➀ roughly comparable to the umask() kernel call in UNIX and serves well for comparison
➀ of kernel entry overhead. ➀❃❏❍❐❁❒❉▲❏■ ❏❆ ❋❅❒■❅● ❅■▼❒❙ ❏❖❅❒✍
❈❅❁❄✎

➁ QNX is using its native Send()/Receive()/Reply() messaging primitives while UNIX is
➁ using its standard message-passing facilities.

Pipe I/O:

Block size QNX UNIX Ratio

1024 bytes (bytes/second) 1948398 916598 2.13
16384 bytes (bytes/second) 3886920 2114722 1.84

Quantum Software Systems Ltd. An Architectural Overview of QNX®

© Quantum Software Systems Ltd. 1992 Page 15 of 16

Sequential file I/O:

Write a 16M file, and then read it, using 8192-byte read() and write() calls. Both the UNIX
UFS and S5-1K filesystems were tested.

QNX UNIX Ratio
 UFS

Read (bytes/second) 1430404 289811 4.94
Write (bytes/second) 777875 262513 2.96

QNX UNIX Ratio
S5-1K

Read (bytes/second) 1430404 175200 8.16
Write (bytes/second) 777875 60068 12.95

QNX Network Throughput:

Measured as the data transfer rate from a user process on one node to a user process on a
second node across a private, two-node network. Each node is a 33 MHz 386.

Arcnet theoretical maximum: 200,800 bytes/second 2.5 Mbits/second
Single Arcnet: 190,000 bytes/second 95% efficient
Dual Arcnet: 380,000 bytes/second 95% efficient

Ethernet theoretical maximum: 1,185,840 bytes/second 10 Mbits/second
Ethernet: 960,000 K/second 81% efficient

Readers familiar with the transfer rates seen with NFS on an Ethernet with this class of
processor will appreciate these performance numbers.

Quantum Software Systems Ltd. An Architectural Overview of QNX®

© Quantum Software Systems Ltd. 1992 Page 16 of 16

