
10 years with DragonFlyBSD network stack

Yanmin Qiao

sephe@dragonflybsd.org

DragonFlyBSD project

Abstract

In this paper we are going to introduce the evolution of

DragonFlyBSD’s network stack in the past 10 years:

what’s the current state of its network stack, the im-

portant changes we did to it, why the important changes,

and the lessons we learned. Finally, I’d like to list the

areas that DragonFlyBSD’s network stack can enjoy

help hands.

1. The current state of DragonFlyBSD’s
network stack

1.1. Message passing and thread serialized

DragonFlyBSD’s network stack uses message passing

and is thread serialized. Most of the message passing

used on hot code path is asynchronous. Each CPU has

one network thread bound to it. This network thread

will be referred as netisr-N (N is the CPU id) in the rest

of this paper. Majority of the network protocol pro-

cessing (IP/TCP/UDP) runs locklessly in netisr-N.

UIPC syscalls and NICs just send messages to netisr-N,

and netisr-N does the hard lift. A simplified version of

UIPC sendto syscall is shown in Figure 1.1, and the

simplified version of NIC received packet processing is

shown in Figure 1.2.

1.2. Network data replication and partition

DragonFlyBSD’s are replicated to, partitioned between,

or grows independently on, each CPU, so accessing to

the network data from the netisr-N is lockless (the ex-

ception is UDP wildcard INPCB table, which requires

mostly uncontended per-cpu token to promise the data

stability. Due to the flexibility of socket APIs, Dragon-

FlyBSD’s UDP implementation will not be introduced

in this paper). For example, the static routing entries is

replicated to each CPU, as shown in Figure 1.3. The

TCP INPCBs are partitioned to each CPU when they

are connected, as shown in Figure 1.4. The “cloned”

routing entries grow independently on each CPU, as

shown in Figure 1.5. The replication of wildcard sock-

ets, e.g. TCP listen sockets, is different from other net-

work data replication: only reference to the wildcard

sockets is replicated, but the wildcard sockets them-

selves are not, as shown in Figure 1.6. The wildcard

sockets lookup is lockless when they are replicated in

this fashion. However, enqueuing datagrams to a UDP

mailto:sephe@dragonflybsd.org

wildcard socket or enqueuing connected TCP INPCBs

to a TCP listen socket accept queue will cause serious

contention as shown in Figure 1.6; we will explain how

we address this contention in section 1.6.

1.3. Symmetric receive side scaling (RSS)

DragonFlyBSD uses symmetric receive side scaling

(RSS) to partition network data. RSS calculates the

packet hash using the following formula:

toeplitz(laddr, lport, faddr, fport, key)

What’s the difference between RSS and symmetric

RSS? Symmetric RSS duplicates 2 bytes to create the

40 bytes RSS key, so it allows the addresses-ports 4-

tuple to be commutative. For example, if the example

key in the Microsoft RSS specification [1] is used:

toeplitz(192.168.1.1, 3007, 192.168.1.2, 2003, key) =

0x9e51fb2a

toeplitz(192.168.1.2, 2003, 192.168.1.1, 3007, key) =

0x4c472df4

As you can see the addresses-ports 4-tuple is not com-

mutative for non-symmetric RSS. Let’s see the example

of the symmetric RSS, which creates a 40 bytes key by

duplicating 0x6d and 0x5a:

toeplitz(192.168.1.1, 3007, 192.168.1.2, 2003,

key_dup) = 0xe501e501

toeplitz(192.168.1.2, 2003, 192.168.1.1, 3007,

key_dup) = 0xe501e501

Since symmetric RSS only affects how the RSS key is

generated, applying it to the NIC chips does not posing

any issues. NIC drivers just use toeplitz_get_key() KPI

to extract the system RSS key and configure it to the

chips. And symmetric RSS reduces the Toeplitz hash

computation burden on the host side by using 2 pre-

calculated result arrays. On DragonFlyBSD, the TCP

INPCBs connected through connect(2) are distributed

to the CPUs based on the RSS hash value of the 4-tuple:

toeplitz(laddr, lport, faddr, fport). However, the hash

of the received packets belonging to a specific connec-

tion is calculated by the NIC chips using toeplitz(faddr,

fport, laddr, lport). The symmetric RSS solves this is-

sue in a simple and much less error prone fashion. And

the symmetric RSS paves the way to the per-cpu state

table for the stateful firewalling, which is not imple-

mented by DragonFlyBSD as of this write yet.

1.4. Illustration of the data sending and receiving

Typical TCP data sending is shown in Figure 1.7. Typ-

ical TCP data receiving is shown in Figure 1.8.

1.5. Accessing network data from non-netisr threads

The accessing to the network data are lockless from

netisr threads, however, sometimes non-netisr threads

also need to access the network data, e.g. the sysctl to

dump the INPCB list. Let’s use the INPCB list dump-

ing sysctl as an example:

- The non-netisr kernel thread is migrated to

CPU-N; N starts from 0.

- For the INPCB on the per-cpu INPCB list,

make a kernel space copy in XINPCB format,

which is used by the userland too. Before

copying the in kernel XINPCB out to the us-

erland, which may block, a “cursor INPCB” is

inserted after the INPCB we made the in ker-

nel XINPCB copy. Then the in kernel

XINPCB is copied out to the userland. Next

INPCB is located using the “cursor INPCB”

inserted before the copyout, so that even the

INPCB list is altered during the copyout, we

still can move on safely. As shown in Figure

1.9.

- Increase N by 1, if N is less than number of

CPUs on the system, then restart. Else, INPCB

list dumping is done.

Several DragonFlyBSD specific kernel scheduling fea-

tures make this possible:

- Kernel thread will only be preempted by the

interrupt kernel threads. The INPCB list is not

accessing or altered by the interrupt threads.

So everything happens before/after the copyout

will not be interrupted.

- Kernel thread will not be moved to other CPUs

by kernel thread scheduler.

1.6. Google’s SO_REUSEPORT

The basic idea of Google’s SO_REUSEPORT is shown

in Figure 1.10. For TCP, it is intended to improve us-

erland workload distribution, since the accepted socket

is distributed to different listen sockets based on SYN’s

packet hash. And obviously, it significantly reduces the

TCP listen socket accept queue contention. While on

DragonFlyBSD, the implementation of Google’s

SO_REUSEPORT is shown in Figure 1.11. There is

one drawback in the SO_REUSEPORT implemented by

Google for Linux: if one of the SO_REUSEPORT TCP

listen sockets is closed, then all accepted sockets on its

accept queue is aborted. On DragonFlyBSD, we ad-

dressed this issue by moving the accepted sockets of the

closing SO_REUSEPORT TCP listen socket to other

SO_REUSEPORT TCP socket listening on the same

local port. Figure 1.12 shows the performance im-

provement and latency reduction of the

SO_REUSEPORT on nginx.

1.7. NIC ring based polling(4)

The polling(4) inherited from FreeBSD is NIC based.

However, all modern NICs support multiple RX rings at

least, and most NICs for the server market support mul-

tiple TX rings in addition to multiple RX rings, so the

NIC based polling(4) is no longer sufficient. The origi-

nal polling(4) seems to support non-NIC devices,

though only NIC drivers have polling(4) support. We

then rework the polling(4), dropped the non-NIC device

support, and make it based on NIC ring. The basic NIC

ring based polling(4) is shown in Figure 1.13. The NIC

drivers supporting the NIC ring base polling(4) only

need to implement the ifnet.if_npoll method like the

following pseudo code:

void

nic_npoll(struct ifnet *ifp, struct ifpoll_info *info)

{

if (!info) {

 Enable interrupt;

 Return;

}

/* Poll status, e.g. link status. */

info->ifpi_status.status_func = nic_poll_status;

/* Per TX ring setup. */

for (i = 0; i < tx_ring_cnt; ++i) {

 /* Poll TX-done, and kick start if_start. */

 info->ifpi_tx[i].poll_func = nic_poll_tx;

 info->ifpi_tx[i].arg = tx_ring[i];

}

/* Per RX ring setup. */

for (i = 0; i < rx_ring_cnt; ++i) {

 /* Poll RXed packets. */

 info->ifpi_rx[i].poll_func = nic_poll_rx;

 info->ifpi_rx[i].arg = rx_ring[i];

}

Disable interrupt;

}

nic_poll_status, nic_poll_tx and nic_poll_rx is quite

self-explain. Another benefit of the NIC ring based

polling(4) is that more NIC rings can be enabled, i.e.

the number of usable RX/TX rings is not constrained by

the available MSI-X vectors. For example, even though

Intel 82576 has 16 RX/TX rings [2], it only has 10

MSI-X vectors, which means 8 TX/RX rings are usable

in interrupt mode. If NIC ring based polling(4) is used,

then all 16 RX/TX rings can be utilized with Intel

82576. NIC ring based polling(4) helps performance

and reduces latency as shown in Figure 1.14.

1.8. Some useful TCP features

RFC6675 instead of NewReno is used if SACK can be

negotiated. DragonFlyBSD uses Eifel detection

(RFC3522) to detect false retransmission, and uses Eifel

response (RFC4015) to recover from the false timeout.

NCR (RFC4653) is enabled by default to avoid false

fast retransmission. Initial RTO is reduced to 1 seconds

according to RFC6298. Per-routing IW settings are

available according to RFC6928 (IW10), though Drag-

onFlyBSD only increases the default IW from 3 to 4.

1.9. Performance

The performance and latency of HTTP/1.1 short lived

connection, i.e. one request per TCP connection, are

shown in Figure 1.14. As shown in Figure 1.14, NIC

ring based polling(4) gives the best performance

(207Ktps) and lowest average latency (48ms). The test

environment and parameters are shown in Figure 1.15.

The IPv4 forwarding performance is 5Mpps. The test

environment and parameters are shown in Figure 1.16.

2. The evolution of DragonFlyBSD’s net-
work stack

It did take quite some time for DragonFlyBSD’s net-

work stack to reach its current state. The important

changes will be detailed in this section.

2.1. Back in 2006

These were what we have in 2006:

- Mbuf object cache, which greatly accelerated

the mbuf cluster allocation.

- Three network threads on each CPU. One

handles TCP, one handles UDP and another

thread handles other network protocols.

- Message passing was synchronous for all

UIPC syscalls.

- Message passing used DragonFlyBSD’s IPIQ

mechanism.

- Network data were replicated and partitioned

properly.

- Home-made 4-tuple commutative hash was

used to partition network data.

- Everything was still under BGL.

These were designed and implemented by Matthew

Dillon and Jeffrey Hsu. The big picture is shown in

Figure 2.1.

2.2. Packet batching

In 2008, network stuffs became mature enough, so we

began to remove BGL from the per-cpu TCP threads

and per-cpu UDP threads. The first issue unveiled was

the higher than expected IPI rate between the NIC inter-

rupt thread (only legacy interrupt was supported at that

time) and the per-cpu netisr. The solution: aggregating

packets in NIC driver’s interrupt handler and dispatch-

ing the packet batch to the per-cpu netisr, as shown in

Figure 2.2. Thanks to the interrupt moderation, and

interrupt thread cannot be preempted on DragonFly-

BSD, no extra latency was noticed after this change,

and IPv4 forwarding performance was improved bit.

Lesson we learned: avoid IPI if possible, and aggrega-

tion in DragonFlyBSD is good.

2.2. Introduction of symmetric RSS

In 2009, Hasso Tepper raised a question about the mul-

tiple RX ring support. And at that time Intel’s 82571

had already been widely available, and it supports 2 RX

rings. After studying the RSS specification, we decided

that the RSS and DragonFlyBSD’s data partition mech-

anism are good match. The first symmetric RSS hash

implementation used Intel 82571, and the symmetric

RSS hash was used as the default network data partition

hash in 2010. A lot of work had been put the NIC driv-

ers to add the symmetric RSS support since then; as of

today, we have emx(4), igb(4), jme(4), bce(4), bnx(4),

mxge(4) and ix(4) supporting symmetric RSS.

2.3. Single per-cpu network thread

In 2010, with more bits of the kernel becoming MP-

safe, the issues of multiple networking threads per-cpu

were found. First of all, since non-interrupt kernel

threads do not preempt each other, networking threads

on the same CPU tended to lock out of each other,

which caused issues like lacking of mbufs (they were

sitting on the locked-out network threads’ message

port). Thus the per-cpu TCP thread, UDP thread and

netisr became one per-cpu netisr. After this, the net-

work threading is exact same as what we have nowa-

days. Lesson we learned: multiple per-cpu threads han-

dling almost the same kind of tasks do not play well.

2.4. Asynchronous message passing

In 2011, the synchronous message passing for the UIPC

syscalls became the bottleneck for further improvement,

as shown in Figure 2.3. We took on the socket sending

as the first step: since most of the return values for

sending is either not widely used, e.g. UDP socket send-

ing errors (Linux always returns 0), or is actually asyn-

chronous, e.g. TCP socket’s sending errors caused by

connection dropping, we made the sending asynchro-

nous and always return 0 for non-blocking socket if its

sending buffer is not full as shown in Figure 1.1. This

takes the advantage of the full pipe-lining effect, im-

proves performance a lot, and greatly reduces the

scheduling cost as mentioned in [3]. Once the message

passing for send UIPC syscall was made asynchronous,

IPIQ for the message passing could no longer be used

due to the message ordering issue discovered later on.

The issue is shown in Figure 2.4. We then switched to

spinlock based message port for netisr-N, since the pro-

tocol processing is much more time consuming com-

pared with the dequeue/enqueue to the netisr-N’s mes-

sage port, not much contention was/is observed on the

netisr-N message port’s spinlock. And packet batching

in the NIC interrupt is no longer necessary, since

spinlock based message port sends IPI only is the target

thread owning the message port is waiting. Ever since

the discovery that asynchronous message passing is

tremendous, great amount of effort has been made to

use asynchronous message passing for UIPC syscalls

used by application hot code path, and the result is al-

ways encouraging. For example, after we made the

setsockopt(TCP_NODELAY) asynchronous, the per-

formance of short lived HTTP/1.1 (one request per TCP

connection) connection increased 19%, from 156Ktps

to 186Ktps. And we are still moving on in that direc-

tion. Lesson we learned: asynchronous message passing

is one of the critical parts for a performant message

passing system.

2.5. Statistics maniac

In 2013, during the round-up of IPv4 forwarding per-

formance improvement cycle, we found that the largest

performance improvement was from making the ifnet

statistics per-cpu; its performance improvement ratio is

even higher than adding multiple NIC TX ring support!

The lesson we learned: don’t overlook the globally

shared statistics, especially ones that are updated at high

frequency.

2.6. Rebirth of SO_REUSEPORT

Again in 2013, while we were having headache to re-

ducing the contention on the TCP listen socket accept

queue, Google proposed a new SO_REUSEPORT se-

mantics to Linux (Thank Aggelos Economopoulos for

bringing it up to me). We were so excited about that it;

we leveraged that idea, implemented it within one week,

and addressed one drawback mentioned in Google’s

original proposal (as pointed out by nginx folks). And

our patch to nginx to support SO_REUSEPORT was

accepted (several years later though). The improvement

is shown Figure 1.12. A good lesson to me at least:

open more eyes to what’s going on around.

2.7. Acrobatic UDP

In 2014, UDP INPCB tables were made MP-safe. This

was a complex process due to the flexibility of UDP

socket APIs, we’d discuss it someplace else.

3. The parts of the DragonFlyBSD’s net-

work stack that can really enjoy help

hands.

- The IPsec stack.
- The IPv6 stack; though I am making progress,

the progress is slow.

- Per-cpu pf static rule table replication.

- Per-cpu pf/ipfw state table partition.

4. Reference
[1] Verifying the RSS Hash Calculation

https://msdn.microsoft.com/en-

us/windows/hardware/drivers/network/verifyin

g-the-rss-hash-calculation

[2] Intel® 82576EB Gigabit Ethernet Controller

Datasheet

http://www.intel.com/content/dam/www/public

/us/en/documents/datasheets/82576eg-gbe-

datasheet.pdf

[3] An Evaluation of Network Stack Paralleliza-

tion Strategies

in Modern Operating Systems

https://www.usenix.org/legacy/events/usenix06

/tech/full_papers/willmann/willmann_html/ind

ex.html

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf
https://www.usenix.org/legacy/events/usenix06/tech/full_papers/willmann/willmann_html/index.html
https://www.usenix.org/legacy/events/usenix06/tech/full_papers/willmann/willmann_html/index.html
https://www.usenix.org/legacy/events/usenix06/tech/full_papers/willmann/willmann_html/index.html

