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Abstract 

In this paper we are going to introduce the evolution of 

DragonFlyBSD’s network stack in the past 10 years: 

what’s the current state of its network stack, the im-

portant changes we did to it, why the important changes, 

and the lessons we learned.  Finally, I’d like to list the 

areas that DragonFlyBSD’s network stack can enjoy 

help hands. 

 

1. The current state of DragonFlyBSD’s 
network stack 

 

1.1. Message passing and thread serialized 

DragonFlyBSD’s network stack uses message passing 

and is thread serialized.  Most of the message passing 

used on hot code path is asynchronous.  Each CPU has 

one network thread bound to it.  This network thread 

will be referred as netisr-N (N is the CPU id) in the rest 

of this paper.  Majority of the network protocol pro-

cessing (IP/TCP/UDP) runs locklessly in netisr-N.  

UIPC syscalls and NICs just send messages to netisr-N, 

and netisr-N does the hard lift.  A simplified version of 

UIPC sendto syscall is shown in Figure 1.1, and the 

simplified version of NIC received packet processing is 

shown in Figure 1.2. 

1.2. Network data replication and partition 

DragonFlyBSD’s are replicated to, partitioned between, 

or grows independently on, each CPU, so accessing to 

the network data from the netisr-N is lockless (the ex-

ception is UDP wildcard INPCB table, which requires 

mostly uncontended per-cpu token to promise the data 

stability.  Due to the flexibility of socket APIs, Dragon-

FlyBSD’s UDP implementation will not be introduced 

in this paper).  For example, the static routing entries is 

replicated to each CPU, as shown in Figure 1.3.  The 

TCP INPCBs are partitioned to each CPU when they 

are connected, as shown in Figure 1.4.  The “cloned” 

routing entries grow independently on each CPU, as 

shown in Figure 1.5.  The replication of wildcard sock-

ets, e.g. TCP listen sockets, is different from other net-

work data replication: only reference to the wildcard 

sockets is replicated, but the wildcard sockets them-

selves are not, as shown in Figure 1.6.  The wildcard 

sockets lookup is lockless when they are replicated in 

this fashion.  However, enqueuing datagrams to a UDP 
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wildcard socket or enqueuing connected TCP INPCBs 

to a TCP listen socket accept queue will cause serious 

contention as shown in Figure 1.6; we will explain how 

we address this contention in section 1.6. 

1.3. Symmetric receive side scaling (RSS) 

DragonFlyBSD uses symmetric receive side scaling 

(RSS) to partition network data.  RSS calculates the 

packet hash using the following formula: 

toeplitz(laddr, lport, faddr, fport, key) 

What’s the difference between RSS and symmetric 

RSS?  Symmetric RSS duplicates 2 bytes to create the 

40 bytes RSS key, so it allows the addresses-ports 4-

tuple to be commutative.  For example, if the example 

key in the Microsoft RSS specification [1] is used: 

toeplitz(192.168.1.1, 3007, 192.168.1.2, 2003, key) = 

0x9e51fb2a 

toeplitz(192.168.1.2, 2003, 192.168.1.1, 3007, key) = 

0x4c472df4 



As you can see the addresses-ports 4-tuple is not com-

mutative for non-symmetric RSS.  Let’s see the example 

of the symmetric RSS, which creates a 40 bytes key by 

duplicating 0x6d and 0x5a: 

toeplitz(192.168.1.1, 3007, 192.168.1.2, 2003, 

key_dup) = 0xe501e501 

toeplitz(192.168.1.2, 2003, 192.168.1.1, 3007, 

key_dup) = 0xe501e501 

Since symmetric RSS only affects how the RSS key is 

generated, applying it to the NIC chips does not posing 

any issues.  NIC drivers just use toeplitz_get_key() KPI 

to extract the system RSS key and configure it to the 

chips.  And symmetric RSS reduces the Toeplitz hash 

computation burden on the host side by using 2 pre-

calculated result arrays.  On DragonFlyBSD, the TCP 

INPCBs connected through connect(2) are distributed 

to the CPUs based on the RSS hash value of the 4-tuple: 

toeplitz(laddr, lport, faddr, fport).   However, the hash 

of the received packets belonging to a specific connec-

tion is calculated by the NIC chips using toeplitz(faddr, 

fport, laddr, lport).  The symmetric RSS solves this is-

sue in a simple and much less error prone fashion.  And 

the symmetric RSS paves the way to the per-cpu state 

table for the stateful firewalling, which is not imple-

mented by DragonFlyBSD as of this write yet. 

1.4. Illustration of the data sending and receiving 

Typical TCP data sending is shown in Figure 1.7.  Typ-

ical TCP data receiving is shown in Figure 1.8. 

1.5. Accessing network data from non-netisr threads 

The accessing to the network data are lockless from 

netisr threads, however, sometimes non-netisr threads 

also need to access the network data, e.g. the sysctl to 

dump the INPCB list.  Let’s use the INPCB list dump-

ing sysctl as an example: 

- The non-netisr kernel thread is migrated to 

CPU-N; N starts from 0. 

- For the INPCB on the per-cpu INPCB list, 

make a kernel space copy in XINPCB format, 

which is used by the userland too.  Before 

copying the in kernel XINPCB out to the us-

erland, which may block, a “cursor INPCB” is 

inserted after the INPCB we made the in ker-

nel XINPCB copy.  Then the in kernel 

XINPCB is copied out to the userland.  Next 

INPCB is located using the “cursor INPCB” 

inserted before the copyout, so that even the 



INPCB list is altered during the copyout, we 

still can move on safely.  As shown in Figure 

1.9. 

- Increase N by 1, if N is less than number of 

CPUs on the system, then restart.  Else, INPCB 

list dumping is done. 

Several DragonFlyBSD specific kernel scheduling fea-

tures make this possible: 

- Kernel thread will only be preempted by the 

interrupt kernel threads.  The INPCB list is not 

accessing or altered by the interrupt threads.  

So everything happens before/after the copyout 

will not be interrupted. 

- Kernel thread will not be moved to other CPUs 

by kernel thread scheduler. 

1.6. Google’s SO_REUSEPORT 

The basic idea of Google’s SO_REUSEPORT is shown 

in Figure 1.10.  For TCP, it is intended to improve us-

erland workload distribution, since the accepted socket 

is distributed to different listen sockets based on SYN’s 

packet hash.  And obviously, it significantly reduces the 

TCP listen socket accept queue contention.  While on 

DragonFlyBSD, the implementation of Google’s 

SO_REUSEPORT is shown in Figure 1.11.  There is 

one drawback in the SO_REUSEPORT implemented by 

Google for Linux: if one of the SO_REUSEPORT TCP 

listen sockets is closed, then all accepted sockets on its 

accept queue is aborted.  On DragonFlyBSD, we ad-

dressed this issue by moving the accepted sockets of the 

closing SO_REUSEPORT TCP listen socket to other 

SO_REUSEPORT TCP socket listening on the same 

local port.  Figure 1.12 shows the performance im-

provement and latency reduction of the 



SO_REUSEPORT on nginx. 



1.7. NIC ring based polling(4) 

The polling(4) inherited from FreeBSD is NIC based.  

However, all modern NICs support multiple RX rings at 

least, and most NICs for the server market support mul-

tiple TX rings in addition to multiple RX rings, so the 

NIC based polling(4) is no longer sufficient.  The origi-

nal polling(4) seems to support non-NIC devices, 

though only NIC drivers have polling(4) support.  We 

then rework the polling(4), dropped the non-NIC device 

support, and make it based on NIC ring.  The basic NIC 

ring based polling(4) is shown in Figure 1.13.  The NIC 

drivers supporting the NIC ring base polling(4) only 

need to implement the ifnet.if_npoll method like the 

following pseudo code: 

void 

nic_npoll(struct ifnet *ifp, struct ifpoll_info *info) 

{ 

if (!info) { 

    Enable interrupt; 

    Return; 

} 

 

/* Poll status, e.g. link status. */ 

info->ifpi_status.status_func = nic_poll_status; 

/* Per TX ring setup. */ 

for (i = 0; i < tx_ring_cnt; ++i) { 

    /* Poll TX-done, and kick start if_start. */ 

    info->ifpi_tx[i].poll_func = nic_poll_tx; 

    info->ifpi_tx[i].arg = tx_ring[i]; 

} 

/* Per RX ring setup. */ 

for (i = 0; i < rx_ring_cnt; ++i) { 

    /* Poll RXed packets. */ 

    info->ifpi_rx[i].poll_func = nic_poll_rx; 

    info->ifpi_rx[i].arg = rx_ring[i]; 

} 

Disable interrupt; 

} 

nic_poll_status, nic_poll_tx and nic_poll_rx is quite 

self-explain.  Another benefit of the NIC ring based 

polling(4) is that more NIC rings can be enabled, i.e. 

the number of usable RX/TX rings is not constrained by 

the available MSI-X vectors.  For example, even though 

Intel 82576 has 16 RX/TX rings [2], it only has 10 

MSI-X vectors, which means 8 TX/RX rings are usable 

in interrupt mode.  If NIC ring based polling(4) is used, 

then all 16 RX/TX rings can be utilized with Intel 

82576.  NIC ring based polling(4) helps performance 

and reduces latency as shown in Figure 1.14. 

1.8. Some useful TCP features 

RFC6675 instead of NewReno is used if SACK can be 

negotiated.  DragonFlyBSD uses Eifel detection 

(RFC3522) to detect false retransmission, and uses Eifel 

response (RFC4015) to recover from the false timeout.  

NCR (RFC4653) is enabled by default to avoid false 

fast retransmission.  Initial RTO is reduced to 1 seconds 



according to RFC6298.  Per-routing IW settings are 

available according to RFC6928 (IW10), though Drag-

onFlyBSD only increases the default IW from 3 to 4. 

1.9. Performance 

The performance and latency of HTTP/1.1 short lived 

connection, i.e. one request per TCP connection, are 

shown in Figure 1.14.  As shown in Figure 1.14, NIC 

ring based polling(4) gives the best performance 

(207Ktps) and lowest average latency (48ms).  The test 

environment and parameters are shown in Figure 1.15.  

The IPv4 forwarding performance is 5Mpps.  The test 

environment and parameters are shown in Figure 1.16. 

 

2. The evolution of DragonFlyBSD’s net-
work stack 

It did take quite some time for DragonFlyBSD’s net-

work stack to reach its current state.  The important 

changes will be detailed in this section. 

2.1. Back in 2006 

These were what we have in 2006: 

- Mbuf object cache, which greatly accelerated 

the mbuf cluster allocation. 

- Three network threads on each CPU.  One 

handles TCP, one handles UDP and another 

thread handles other network protocols. 

- Message passing was synchronous for all 

UIPC syscalls. 

- Message passing used DragonFlyBSD’s IPIQ 

mechanism. 



- Network data were replicated and partitioned 

properly. 

- Home-made 4-tuple commutative hash was 

used to partition network data. 

- Everything was still under BGL. 

These were designed and implemented by Matthew 

Dillon and Jeffrey Hsu.  The big picture is shown in 

Figure 2.1. 

2.2. Packet batching 

In 2008, network stuffs became mature enough, so we 

began to remove BGL from the per-cpu TCP threads 

and per-cpu UDP threads.  The first issue unveiled was 

the higher than expected IPI rate between the NIC inter-

rupt thread (only legacy interrupt was supported at that 

time) and the per-cpu netisr.  The solution: aggregating 

packets in NIC driver’s interrupt handler and dispatch-

ing the packet batch to the per-cpu netisr, as shown in 

Figure 2.2.  Thanks to the interrupt moderation, and 

interrupt thread cannot be preempted on DragonFly-

BSD, no extra latency was noticed after this change, 

and IPv4 forwarding performance was improved bit.  

Lesson we learned: avoid IPI if possible, and aggrega-

tion in DragonFlyBSD is good. 

2.2. Introduction of symmetric RSS 

In 2009, Hasso Tepper raised a question about the mul-

tiple RX ring support.  And at that time Intel’s 82571 

had already been widely available, and it supports 2 RX 

rings.  After studying the RSS specification, we decided 

that the RSS and DragonFlyBSD’s data partition mech-

anism are good match.  The first symmetric RSS hash 

implementation used Intel 82571, and the symmetric 

RSS hash was used as the default network data partition 

hash in 2010.  A lot of work had been put the NIC driv-

ers to add the symmetric RSS support since then; as of 

today, we have emx(4), igb(4), jme(4), bce(4), bnx(4), 

mxge(4) and ix(4) supporting symmetric RSS. 

2.3. Single per-cpu network thread 

In 2010, with more bits of the kernel becoming MP-

safe, the issues of multiple networking threads per-cpu 

were found.  First of all, since non-interrupt kernel 

threads do not preempt each other, networking threads 

on the same CPU tended to lock out of each other, 

which caused issues like lacking of mbufs (they were 

sitting on the locked-out network threads’ message 

port).  Thus the per-cpu TCP thread, UDP thread and 

netisr became one per-cpu netisr.  After this, the net-

work threading is exact same as what we have nowa-

days.  Lesson we learned: multiple per-cpu threads han-

dling almost the same kind of tasks do not play well. 

2.4. Asynchronous message passing 

In 2011, the synchronous message passing for the UIPC 

syscalls became the bottleneck for further improvement, 

as shown in Figure 2.3.  We took on the socket sending 

as the first step: since most of the return values for 



sending is either not widely used, e.g. UDP socket send-

ing errors (Linux always returns 0), or is actually asyn-

chronous, e.g. TCP socket’s sending errors caused by 

connection dropping, we made the sending asynchro-

nous and always return 0 for non-blocking socket if its 

sending buffer is not full as shown in Figure 1.1. This 

takes the advantage of the full pipe-lining effect, im-

proves performance a lot, and greatly reduces the 

scheduling cost as mentioned in [3].  Once the message 

passing for send UIPC syscall was made asynchronous, 

IPIQ for the message passing could no longer be used 

due to the message ordering issue discovered later on.  

The issue is shown in Figure 2.4.  We then switched to 

spinlock based message port for netisr-N, since the pro-

tocol processing is much more time consuming com-

pared with the dequeue/enqueue to the netisr-N’s mes-

sage port, not much contention was/is observed on the 

netisr-N message port’s spinlock.  And packet batching 

in the NIC interrupt is no longer necessary, since 

spinlock based message port sends IPI only is the target 

thread owning the message port is waiting.  Ever since 

the discovery that asynchronous message passing is 

tremendous, great amount of effort has been made to 

use asynchronous message passing for UIPC syscalls 

used by application hot code path, and the result is al-

ways encouraging.  For example, after we made the 

setsockopt(TCP_NODELAY) asynchronous, the per-

formance of short lived HTTP/1.1 (one request per TCP 

connection) connection increased 19%, from 156Ktps 

to 186Ktps.  And we are still moving on in that direc-

tion.  Lesson we learned: asynchronous message passing 

is one of the critical parts for a performant message 

passing system. 

2.5. Statistics maniac 

In 2013, during the round-up of IPv4 forwarding per-

formance improvement cycle, we found that the largest 

performance improvement was from making the ifnet 

statistics per-cpu; its performance improvement ratio is 

even higher than adding multiple NIC TX ring support!  

The lesson we learned: don’t overlook the globally 

shared statistics, especially ones that are updated at high 

frequency. 

2.6. Rebirth of SO_REUSEPORT 

Again in 2013, while we were having headache to re-

ducing the contention on the TCP listen socket accept 

queue, Google proposed a new SO_REUSEPORT se-

mantics to Linux (Thank Aggelos Economopoulos for 

bringing it up to me).  We were so excited about that it; 

we leveraged that idea, implemented it within one week, 

and addressed one drawback mentioned in Google’s 

original proposal (as pointed out by nginx folks).  And 

our patch to nginx to support SO_REUSEPORT was 

accepted (several years later though).  The improvement 



is shown Figure 1.12.  A good lesson to me at least: 

open more eyes to what’s going on around. 

2.7. Acrobatic UDP 

In 2014, UDP INPCB tables were made MP-safe.  This 

was a complex process due to the flexibility of UDP 

socket APIs, we’d discuss it someplace else. 

 

3. The parts of the DragonFlyBSD’s net-

work stack that can really enjoy help 

hands. 

- The IPsec stack. 
- The IPv6 stack; though I am making progress, 

the progress is slow. 

- Per-cpu pf static rule table replication. 

- Per-cpu pf/ipfw state table partition. 
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