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ABSTRACT
Performance characteristics, such as response time, through-
put and scalability, are key quality attributes of distributed
applications. Current practice, however, rarely applies sys-
tematic techniques to evaluate performance characteristics.
We argue that evaluation of performance is particularly cru-
cial in early development stages, when important architec-
tural choices are made. At first glance, this contradicts
the use of testing techniques, which are usually applied to-
wards the end of a project. In this paper, we assume that
many distributed systems are built with middleware tech-
nologies, such as the Java 2 Enterprise Edition (J2EE) or the
Common Object Request Broker Architecture (CORBA).
These provide services and facilities whose implementations
are available when architectures are defined. We also note
that it is the middleware functionality, such as transaction
and persistence services, remote communication primitives
and threading policy primitives, that dominate distributed
system performance. Drawing on these observations, this
paper presents a novel approach to performance testing of
distributed applications. We propose to derive application-
specific test cases from architecture designs so that perfor-
mance of a distributed application can be tested using the
middleware software at early stages of a development pro-
cess. We report empirical results that support the viability
of the approach.
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1. INTRODUCTION
Various commercial trends have lead to an increasing de-
mand for distributed applications. Firstly, the number of
mergers between companies is increasing. The different di-
visions of a newly merged company have to deliver unified
services to their customers and this usually demands an in-
tegration of their IT systems. The time available for deliv-
ery of such an integration is often so short that building a
new system is not an option and therefore existing system
components have to be integrated into a distributed system
that appears as an integrating computing facility. Secondly,
the time available for providing new services are decreasing.
Often this can only be achieved if components are procured
off-the-shelf and then integrated into a system rather than
built from scratch. Components to be integrated may have
incompatible requirements for their hardware and operat-
ing system platforms; they have to be deployed on different
hosts, forcing the resulting system to be distributed. Fi-
nally, the Internet provides new opportunities to offer prod-
ucts and services to a vast number of potential customers.
The required scalability of e-commerce or e-government sites
cannot usually be achieved by centralised or client-server ar-
chitectures but demand the use of distributed software ar-
chitectures.

Given the growing importance of distributed systems, we
are interested in devising systematic ways to ascertain that
a given distributed software architecture meets performance
requirements of their users. Performance can be charac-
terised in several different ways. Latency typically describes
the delay between request and completion of an operation.
Throughput denotes the number of operations that can be
completed in a given period of time. Scalability identifies
the dependency between the number of distributed system
resources that can be used by a distributed application (typ-
ically number of hosts or processors) and latency or through-
put. Despite the practical significance of these various as-
pects it is still not adequately understood how to test the
performance of distributed applications.

Weyuker and Vokolos reported on the weakness of the pub-
lished scientific literature on software performance testing
in [26]. To this date no significant scientific advances have
been made on performance testing. Furthermore the set of
tools available for software performance testing is fairly lim-
ited. The most widely used tools are workload generators



and performance profilers that provide support for test ex-
ecution and debugging, but they do not solve many unclear
aspects of the process of performance testing. In particu-
lar, researchers and practitioners agree that the most criti-
cal performance problems depend on decisions made in the
very early stages of the development life cycle, such as ar-
chitectural choices. Even though iterative and incremental
development has been widely promoted [18, 10, 12], the test-
ing techniques developed so far are very much focused on the
end of the development process.

As a consequence of the need for early evaluation of soft-
ware performance and the weakness of testing, the great
majority of research has focused on performance analysis
models [1, 20, 19, 2, 3, 23] rather than testing techniques.
This research shares in general the approach of translating
architecture designs, mostly given in the Unified Modeling
Language (UML [5]), to models suitable for analysing per-
formance, such as, Layered Queuing Networks (e.g. [19]),
Stochastic Petri Nets (e.g. [2]) or stochastic process alge-
bras (e.g. [20]). Estimates of performance are used to reveal
flaws in the original architecture or to compare different ar-
chitectures and architectural choices. Models may give use-
ful hints of the performance and help identify bottlenecks,
however they tend to be rather inaccurate. Firstly, models
generally ignore important details of the deployment envi-
ronment. For example, performance differences may be sig-
nificant when different databases or operating systems are
used, but the complex characteristics of specific databases
and operating systems are very seldom included in the mod-
els. Secondly, models often have to be tuned manually. For
example, in the case of Layered Queued Networks, solving
contention of CPU(s) requires, as input, the number of CPU
cycles that each operation is expected to use. Tuning of this
type of parameters is usually guessed by experience and as
a result it is not easy to obtain precise models.

With the recent advances in distributed component tech-
nologies, such as J2EE [22] and CORBA [17], distributed
systems are no longer built from scratch [7]. Modern dis-
tributed applications often integrate both off-the-shelf and
legacy components, use services provided by third-parties,
such as real-time market data provided by Bloomberg or
Reuters, and rely on commercial databases to manage per-
sistent data. Moreover, they are built on top of middleware
products (hereafter referred to as middlewares), i.e., middle-
tier software that provides facilities and services to simplify
distributed assembly of components, e.g., communication,
synchronisation, threading and load balancing facilities and
transaction and security management services [8]. As a re-
sult of this trend, we have a class of distributed applications
for which a considerable part of their implementation is al-
ready available when the architecture is defined (e.g. during
the Elaboration phase of the Unified Process). In this pa-
per, we argue that this enables performance testing to be
successfully applied at these early stages.

The main contribution of this paper is the description and
evaluation of a method for testing performance of distributed
software in the early development stages. The method is
based on the observation that the middleware used to build
a distributed application often determines the overall per-
formance of the application. For example, middlewares and

databases usually contain the software for transaction and
persistence management, remote communication primitives
and threading policies, which have great impact on the dif-
ferent aspects of performance of distributed systems. How-
ever, we note that only the coupling between the middle-
ware and the application architecture determines the actual
performance. The same middleware may perform very dif-
ferently in the context of different applications. Based on
these observations, we propose using architecture designs to
derive application-specific performance test cases that can
be executed on the early available middleware platform a
distributed application is built with. We argue that this
allows empirical measurements of performance to be suc-
cessfully done in the very early stages of the development
process. Furthermore, we envision an interesting set of prac-
tical applications of this approach, that is: evaluation and
selection of middleware for specific applications; evaluation
and selection of off-the-shelf components; empirical evalua-
tion and comparison of possible architectural choices; early
configuration of applications; evaluation of the impact of
new components on the evolution of existing applications.

The paper is further structured as follows. Section 2 dis-
cusses related work and highlights the original aspects of
our research. Section 3 gives details of our approach to
performance testing. Section 4 reports about the results of
an empirical evaluation of the main hypothesis of our re-
search, i.e., that the performance of distributed application
can be successfully measured based on the early-available
components. Section 5 discusses the limitations of our ap-
proach and sketches a possible integration with performance
modelling techniques. Finally, Section 6 summarises the
contributions of the paper and sketches our future research
agenda.

2. RELATED WORK
In this section, we briefly review related work in the areas
of performance testing of distributed applications and stud-
ies on the relationships between software architecture and
middleware.

Performance testing of distributed applications
Some authors exploited empirical testing for studying the
performance of middleware products. Gorton and Liu com-
pare the performance of six different J2EE-based middle-
wares [9]. They use a benchmark application that stresses
the middleware infrastructure, the transaction and directory
services and the load balancing mechanisms. The compar-
ison is based on the empirical measurement of throughput
per increasing number of clients. Similarly, Avritzer et al.
compare the performance of different ORB (Object Request
Broker) implementations that adhere to the CORBA Com-
ponent Model [13]. Liu and al. investigate the suitability
of micro-benchmarks, i.e., light-weight test cases focused on
specific facilities of the middlewares, such as, directory ser-
vice, transaction management and persistence and security
support [14].

This work suggests the suitability of empirical measurement
for middleware selection, i.e, for making decisions on which
middleware will best satisfy the performance requirements
of a distributed application. However, as Liu et al. remark
in the conclusions of their paper ([14]), “how to incorpo-



rate application-specific behaviour in the equations and how
far the results can be generalised across different hardware
platforms, databases and operating systems, are still open
problems.” Our research tackles these problems. We study
application-specific test cases for early performance evalu-
ation (or also comparing) the performance of distributed
applications in specific deployment environments, which in-
clude middlewares, databases, operating systems and other
off-the-shelf components.

Weyuker and Vokolos report on the industrial experience
of testing the performance of a distributed telecommunica-
tion application at AT&T [26]. They stress that, given the
lack of historical data on the usage of the target system,
the architecture is key to identify software processes and
input parameters (and realistic representative values) that
will most significantly influence the performance.

Our work extends this consideration to a wider set of dis-
tributed applications, i.e., distributed component-based soft-
ware in general. Moreover, we aim to provide a systematic
approach to test-definition, implementation and deployment
that are not covered in the work of Weyuker and Vokolos.

Software architecture and middleware
Medvidovic, Dashofy and Taylor state the idea of coupling
the modelling power of software architectures with the im-
plementation support provided by middleware [15]. They
notice that “architectures and middleware address similar
problems, that is large-scale component-based development,
but at different stages of the development life cycle.” They
propose to investigate the possibility of defining systematic
mappings between architectures and middlewares. To this
end, they study the suitability of a particular element of soft-
ware architecture, the software connector. Metha, Phadke
and Medvidovic himself moreover present an interesting tax-
onomy of software connectors [16].

Although they draw on similar assumptions (i.e., the re-
lationships between architecture and middleware), our re-
search and that of Medvidovic et al. have different goals:
We aim at measuring performance attributes of an architec-
ture based on the early available implementation support
(which the middleware is a significant part of); Medvidovic
and colleagues aim at building implementation topologies
(e.g., bridging of middlewares) that preserve the properties
of the original architecture. However, the results of pre-
vious studies on software connectors and the possibility of
mapping architectures on middlewares may be important for
engineering our approach.

3. EARLY TESTING OF PERFORMANCE
In this section, we introduce our approach to early perfor-
mance testing of distributed component-based applications.
We also focus on the aspects of the problem that need fur-
ther investigation. Our long-term goal is to realize a soft-
ware tool that supports the application of the approach we
describe below.

Our approach comprises a performance testing process that
consists of the following phases:

1. Selection of the use-case scenarios (hereafter referred
to simply as use-cases) relevant to performance, given
a set of architecture designs.

2. Mapping of the selected use-cases to the actual deploy-
ment technology and platform.

3. Generation of stubs of components that are not avail-
able in the early stages of the development life cycle,
but are needed to implement the use cases.

4. Execution of the test, which in turn includes: deploy-
ment of the Application Under Test (AUT), creation
of workload generators, initialisation of the persistent
data and reporting of performance measurements.

We now discuss the research problems and our approach
to solving them for each of the above phases of the testing
process.

Selecting performance use-cases
The design of test suites for performance testing is radically
different from the case of functional testing. (This has been
noticed by many authors, e.g. [26].) In performance testing,
the functional details of the test cases, i.e., the actual val-
ues of the inputs, are generally of little importance. Table 1
classifies the main parameters relevant to performance test-
ing of distributed applications. First, important concerns
are traditionally associated with workloads and physical re-
sources, e.g., the number of users, the frequencies of inputs,
the duration of the test, the characteristics of the disks, the
network bandwidth and the number and speed of CPU(s).
Next, it is important to consider the middleware configura-
tion, for which the table reports parameters in the case of
J2EE-based middlewares. Here, we do not comment further
on workload, physical resource and middleware parameters,
which are extensively discussed in the literature (e.g., [26,
25, 14]).

Other important parameters of performance testing in dis-
tributed settings can be associated with interactions among
distributed components and resources. Different ways of
using facilities, services and resources of middlewares and
deployment environments likely correspond to different per-
formance results. Performance will differ if the database is
accessed many times or never. A given middleware may per-
form adequately for applications that stress persistence and
quite badly for transactions. In some cases, middlewares
may perform well or badly for different usage patterns of
the same service. Application-specific cases for performance
should be given such that the most relevant interactions
specifically triggered by the AUT are covered.

The last row of Table 1 classifies the relevant interactions
in distributed settings according to whether they take place
between the middleware and the components, among the
components themselves1 or to access persistent data in a
database. This taxonomy is far from complete and we are

1Although interactions among distributed components map
on interactions that take actually place at the middleware
level, they are elicited at a different abstraction level and
thus they are considered as a different category in our clas-
sification.



Workload Number of clients
Client request frequency
Client request arrival rate
Duration of the test

Physical Number and speed of CPU(s)
resources Speed of disks

Network bandwidth
Middleware Thread pool size
configuration Database connection pool size

Application component cache size
JVM heap size
Message queue buffer size
Message queue persistence

Application Interactions with the middleware
specific - use of transaction management

- use of the security service
- component replication
- component migration
Interactions among components
- remote method calls
- asynchronous message deliveries
Interactions with persistent data
- database accesses

Table 1: Performance parameters

conducting further studies and empirical assessments in this
direction. However, we believe that a taxonomy of dis-
tributed interactions is key for using our approach. Based
on such a taxonomy, our next step is the definition of appro-
priate metrics to evaluate the performance relevance of the
available use-cases according to the interactions that they
trigger. This not only supports the selection of sets of use-
cases so that they adequately represent the performance of
the target application but also enables the definition of a
reasonable distribution of the selected use-cases in the fi-
nal workload, according to the basic principles of synthetic
workload modelling [11, 24].

Mapping use-cases to middleware
In the initial stages of a software process, software architec-
tures are generally defined at a very abstract level. Often,
they just describe the business logic and abstract many de-
tails of deployment platforms and technologies. One of the
expected strengths of our approach is indeed the possibility
of driving software engineers through the intricate web of
architectural choices, technologies and deployment options,
keeping the focus on the performance of the final product.
To this end, however, we need to understand how abstract
use-cases are mapped to possible deployment technologies
and platforms.

Let us for example consider the use-case fragment in Fig-
ure 1(a), which represents in UML the creation of a compo-
nent C of type Component issued by a client with the mes-
sage create. The deployment of such use-case on a J2EE-
based middleware will likely map on a component (namely,
an Enterprise Java Bean) with the interactions shown in
Figure 1(b). The message create from the client will be ac-
tually delivered to a component container that is part of the
middleware. The middleware will then dispatch the request

to the actual component C with two messages, create and
post create, sent respectively before and after the initiali-
sation of the support structures for C within the middleware.
Optionally, the client will use the directory service provided
by the middleware, through the Java Naming and Directory
Interface (JNDI), to retrieve the component factory respon-
sible for creating C. Furthermore, we ought to specify the
transactional behaviour, e.g., whether the method will ex-
ecute in the context of the client transaction or a newly
created (nested) transaction.

To address the mapping of abstract use-cases to specific de-
ployment technologies and platforms, we intend to leverage
recent studies on software connectors [16, 15]. Well charac-
terised software connectors may be associated with deploy-
ment topologies that preserve the properties of the original
architecture. Also, possible implementation alternatives can
be defined in advance as characteristics of the software con-
nectors. For instance, with reference to example above, we
would like to define a component creation connector that
provides properties for the case showed in Figure 1(a). Then,
we would like to associate with this connector, the J2EE de-
ployment topology given in Figure 1(b) and the list of the
possible transaction behaviours. Deployment topologies and
alternatives might vary for different deployment technologies
and platforms. Previous studies on software connectors are
precious references in this direction, but further work is still
needed to understand the many dimensions and species of
software connectors and their relationships with the possible
deployment technologies and platforms.

Generating stubs
So far, we have suggested that early test cases of perfor-
mance can be derived from instances of architecture use-
cases and that software connectors can be exploited as a
means to establish the correspondence between the abstract
views provided by the use-cases and the concrete instances.
However, to actually implement the test cases, we must also
solve the problem that not all the application components
that participate in the use-cases are available in the early
stages of the development life cycle. For example, the com-
ponents that implement the business logic are seldom avail-
able, although they participate in most of the use-cases. Our
approach uses stubs in place of the missing components.

Stubs are fake versions of components that can be used in-
stead of the corresponding components for instantiating the
abstract use-cases. In our approach, stubs are specifically
adjusted to use-cases, i.e., different use-cases will require
different stubs of the same component. Stubs will only take
care that the distributed interactions happen as specified
and the other components are coherently exercised. Our
idea of the engineered approach is that the needed stubs are
automatically generated based on the information contained
in use-cases elaborations and software connectors. For ex-
ample, referring once again to Figure 1, if the component
C was not available, its stub would be implemented such
that it is just able to receive the messages create through
the actual middleware. It would contain empty code for the
methods create and post create, but set the corresponding
transaction behaviour as specified. In a different case, if the
persistence of the instances of C and the corresponding in-
teractions with the database, were specified in the use-case,
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Figure 1: An abstract use-case (a) and its deployment view (b)

the database calls (as far as they can be extracted from the
use-case) would be included in the method create of C. If
it was also the case that the database was an early-available
component, the actual SQL code for the stated interactions
would be hard-coded in the stub of C. Of course, many
functional details of C are generally not known and cannot
be implemented in the stub. Normally, this will result in
discrepancies between execution times within the stubs and
the actual components that they simulate.

The main hypothesis of our work is that performance mea-
surements in the presence of the stubs are good enough ap-
proximations of the actual performance of the final appli-
cation. This descends from the observation that the avail-
able components, e.g., middlewares and databases, embed
the software that mainly impact performance. The coupling
between such implementation support and the application-
specific behaviour can be extracted from the use-cases, while
the implementation details of the business components re-
main negligible. In other words, we expect that the discrep-
ancies of execution times within the stubs are orders of mag-
nitude less than the impact of the interactions facilitated by
middleware and persistence technology, such as databases.
We report a first empirical assessment of this hypothesis in
Section 4 of this paper, but are aware that further empirical
studies are needed.

Executing the test
Building the support to test execution shall mostly involve
technical rather than scientific problems, at least once the
research questions stated above have been answered. Part
of the work consists of engineering the activities of select-
ing the use-cases, mapping them to deployment technologies
and platforms, and generating the stubs to replace missing
components. Also, we must automate deployment and im-
plementation of workload generators, initialisation of per-
sistent data, execution of measurements and reporting of
results. No relevant aspects for research are directly con-
nected with this.

4. PRELIMINARY ASSESSMENT
This section empirically evaluates the core hypothesis of our
research, i.e., that the performance of a distributed appli-
cation can be successfully tested based on the middleware
and/or off-the-shelf components that are available in the
early stages of the software process. To this end, we con-
ducted an experiment in a controlled environment. First,
we considered a sample distributed application for which we
had the whole implementation available. Then, we selected
an abstract use-case of the application and implemented it
as a test case based on the approach described in Section 3.
Finally, we executed the performance test (with different
amounts of application clients) on the early available compo-
nents and compared the results with the performance mea-
sured on the actual application.

Experiment setting
As for the target application, we considered the Duke’s Bank
application presented in the J2EE tutorial [4]. This appli-
cation is distributed by Sun under a public license, thus
we were able to obtain the full implementation easily. The
Duke’s bank application consists of 6,000 lines of Java code
that is meant to exemplify all the main features of the J2EE
platform, including the use of transactions and security. We
consider the Duke’s bank application to be adequately rep-
resentative of medium-size component-based distributed ap-
plications. The Duke’s bank application is referred to as
DBApp in the remainder of this paper.

The organisation of the DBApp is given in Figure 2 (bor-
rowed from [4]). The application can be accessed by both
Web and application clients. It consists of six EJB (Enter-
prise Java Beans [22]) components that handle operations
issued by the users of a hypothetic bank. The six compo-
nents can be associated with classes of operations that are
related to bank accounts, customers and transactions, re-
spectively. For each of these classes of operations a pair
of session bean and entity bean is provided. Session beans
are responsible for the interface towards the users and the
entity beans handle the mapping of stateful components to
underlying database table. The arrows represent the possi-
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Figure 2: The Duke’s Bank application

ble interaction patterns among the components. The EJBs
that constitute the business components are deployed in a
single container within the application server (which is part
of the middleware). For the experiment we used the JBoss
application server and the MySql database engine, running
on the same machine.

Then, we selected a sample use-case that describes the trans-
fer of funds between two bank accounts. Figure 3 illustrates
the selected use-case in UML. A client application uses the
service Transfer provided by the DBApp. This service re-
quires three input parameters, representing the two accounts
and the amount of money, respectively involved in the trans-
fer. The business components of the DBApp realize the ser-
vice using the database for storing the persistent data: the
database is invoked four times, for updating the balances
of the two accounts and recording the details of the corre-
sponding transactions. We assume that the database engine
is software that is available early in the software process.
Thus, for the test, we used the same database engine, ta-
ble structure and SQL code than in the original application.
This is why we represented the database as a shadowed box
in the figure. Differently from the database, the business
components of the DBApp are assumed to be not available,
thus we had to generate corresponding stubs.

For implementing the stubs, we had to map the abstract use-

Duke’s Bank Database

Update account_from
Transfer (account_from, 

account_to,
amount)

Update account_to

Log transaction of account_from

Log transaction of account_to

Figure 3: A sample use-case for the Duke’s Bank

case on the selected deployment technology, namely J2EE.
We already commented on the role that software connectors
may play in the mapping. However, our research is not yet
mature enough to exploit software connectors for this pur-
pose. Presently, we just manually augmented the use-case
with the necessary information as follows. As for the inter-
action between the clients and the DBApp, we specified that
the service Transfer is invoked as a synchronous call and
starts a new transaction. As for the interaction between the
DBApp and the database, we specified that: the four invoca-
tions are synchronous calls that take place in the context of
a single transaction and embed the available SQL code; the
database connection is initialised for each call2; the DBApp
uses entity beans and bean managed persistence3 to handle
the interactions with the database tables. Based on this in-
formation, we implemented the stubs as needed to realize
the interactions in the considered use-case and we deployed
the test version of the DBApp (referred to as DBTest) on
the JBoss application server.

Finally, we implemented a workload generator and initialised
the persistent data in the database. The workload generator
is able to activate a number of clients at the same time and
takes care of measuring the average response time. For the
persistent data, we instantiated the case in which each client
withdraws money from its own account (i.e., there exists a
bank account for each client) and deposits the corresponding
amount to the account of a third party, which is supposed to
be the same for all clients. This simulates the recurrent case
in which a group of people is paying the same authority over
the Internet. Incidentally, we notice that, in an automated
test environment, initialisation of persistent data would only
require to specify the performance sensible part of the infor-
mation, while the actual values in the database tables are
generally of little importance. For example, in our case, only
the number of elements in each table and the relationships
with the instanced use-case, i.e., whether all clients access
the same or a different table row, are the real concerns.

With reference to the performance parameters of Table 1,
we generated a workload, to test both DBApp and DBTest,
with increasing numbers of clients starting from one to one
hundred. The two applications were deployed on a JBoss 3.0
application server running on a PC equipped with a Pen-
tium III CPU at 1 GHz, 512 MB of RAM memory and the
Linux operating system. To generate the workload we run
the clients on a Sun Fire 880 equipped with 4 Sparc CPUs
at 850 MHz and 8 GB of RAM. These two machines were
connected via a private local area network with a bandwidth
of 100 MBit/sec. For the stubs we used the same geograph-
ical distances as the components of the actual application.
Moreover, in order to avoid influences among the experi-
ments that could be caused by the contemporary existence
of a lot of active session beans, we restarted the application

2Although this may sound as a bad implementation choice,
we preferred to maintain the policy of the original applica-
tion to avoid biases on the comparison.
3Entity beans are J2EE components that represent persis-
tent data within an application. Each database table is as-
sociated to an entity bean. The data in the entity bean are
taken synchronised with the database. In the case of bean
managed persistence the synchronisation code is embedded
in the entity bean.



Figure 4: Latency of DBApp and DBTest for in-
creasing numbers of clients

server between two successive experiments. JBoss has been
used running the default configuration. Finally, the spe-
cific setting concerning the particular use case, as already
discussed in the previous paragraphs, foresaw the use of re-
mote method calls between the components and the use of
the transaction management service, in order to handle the
data shared by the various beans consistently.

Experiment results
We have executed both DBApp and DBTest for increas-
ing numbers of clients and measured the latency for the test
case. We repeated each single experiment 15 times and mea-
sured the average latency time. Figure 4 shows the results
of the experiments. It plots the latency time of both DBApp
and DBTest against the number of clients, for all the repeti-
tions of the experiment. We can see that the two curves are
very near to each other. The average difference accounts for
the 9.3% of the response time. The experiments also showed
a low value for the standard deviation. The ratio between
σ and the expectation results, in fact, definitively lower of
the 0.15, both for the DBApp and for the DBTest.

The results of this experiment suggest the viability of our
research because they witness that the performance of the
DBApp in a specific use-case is well approximated by the
DBTest, which is made out of the early-available compo-
nents. However, although the first results are encouraging,
we are aware that a single experiment cannot be generalised.
We are now working on other experiments to cover the large
set of alternatives of component-based distributed applica-
tions. We plan to experiment with different use-cases, sets
of use-cases for the same test case, different management
schemas for transactions and performance, different commu-
nication mechanisms such as asynchronous call, J2EE-based
application server other than JBoss, CORBA-based middle-
wares, other commercial databases and in the presence of
other early-available components.

5. SCOPE AND EXTENSIONS
Our results support the possibility that using stubs for the
application code, but the real middleware and database pro-
posed for the application, can provide useful information on
the performance of a distributed application. This is par-
ticularly true for enterprise information system applications
that are based on distributed component technologies, such
as J2EE and CORBA. We have already commented that
for this class of distributed applications the middleware is
generally responsible for most of the implementation sup-
port relevant to performance, e.g., mechanisms for handling
distributed communication, synchronisation, persistence of
data, transactions, load balancing and threading policies.
Thus in most cases critical contention of resources and bot-
tlenecks happen at the middleware level, while the execution
time of the business components is negligible.

Our approach allows providers of this class of distributed ap-
plications to test whether, and to which extent, a given mid-
dleware may satisfy the performance requirements of an ap-
plication that is under development. In this respect, our ap-
proach may perform better than pure benchmarking of mid-
dlewares (e.g., [9, 13, 14]), because it enables application-
specific evaluation, i.e., it generates test cases that take
into account the specific needs of a particular business logic
and application architectures. Moreover, the approach has
a wider scope than solely testing the middleware. It can be
generalised to test all components that are available at the
beginning of the development process, for example, compo-
nents acquired off-the-shelf by third parties. Based on the
empirical measurements of performance, tuning of architec-
tures and architectural choices may also be performed.

Despite these valuable benefits, however, we note that our
approach cannot identify performance problems that are due
to the specific implementation of late-available components.
For example, if the final application is going to have a bot-
tleneck in a business component that is under development,
our approach has no chance to discover the bottleneck that
would not be exhibited by a stub of the component. Per-
formance analysis models remain the primary reference to
pursue evaluation of performance in such cases.

Currently, we are studying the possibility of combining em-
pirical testing and performance modelling, aiming at in-
creasing the relative strengths of each approach. In the rest
of this section we sketch the basic idea of this integration.

One of the problem of applying performance analysis to
middleware-based distributed systems is that the middle-
ware is in general very difficult to represent in the analy-
sis models. For instance, let us consider the case in which
one wants to provide a detailed performance analysis of the
DBApp, i.e., the sample application used in Section 4. To
this end, we ought to model the interactions among the busi-
ness components of DBApp as well as the components and
processes of the middleware that interact with DBApp. The
latter include (and are not limited to) component proxies
that marshal and unmarshal parameters of remote method
invocations, the transaction manager that coordinates dis-
tributed transactions, the a database connectivity driver
that facilitates interactions with the database, and the pro-
cesses for automatic activation and deactivation of objects



Figure 5: A sample LQN model for DBApp

or components. Thus, although the application has a sim-
ple structure, the derivation of the correspondent analysis
model becomes very costly.

We believe that this class of issues can be addressed by com-
bining empirical testing and performance modelling accord-
ing to the following process:

1. The analysis model is built and solved, abstracting
from the presence of the middleware. The resulting
model will generally have a simple structure.

2. Empirical testing is used to simulate the results of
the model (e.g., frequency of operations) on the ac-
tual middleware, thus computing how the execution of
the middleware and the contention of resources within
the middleware affects the performance characteristics
of the modelled interactions (e.g., the response time
of a given operation may increase because it involves
middleware execution).

3. Model parameters are tuned according to the testing
results.

4. The process is repeated until the model stabilises.

For instance, Figure 5 shows a Layered Queuing Network
(LQN) corresponding to the use-case of Figure 3. A de-
tailed description of LQN models is beyond the scope of
this paper, and we refer interested readers to [19]. The lay-
ers in Figure 5 represent the main interacting components,
i.e., the client, the application and the database. Each com-
ponent may be present in a number of copies (or threads).
White boxes represent the services that each layer provides
(limited to services of interest for the considered use-case).
Connections between white boxes indicate client-server rela-
tionships between services, with arrows pointing to servers.
In the specific case represented in the figure, clients inter-
act with the application through the moneyTransfer service,
which in turn uses services of the database layer to update
accounts and log transaction details. Other important pa-
rameters of the model that are not indicated in the figure
include: the number of calls for each service (for example,
both the database services are used twice in the considered
case), the CPU and the CPU-time used by each service and
the service thinking-times.

Although the middleware is not explicitly represented in the
model, it is involved in the execution of each service and
affects, for example, the ideal CPU-time and thinking-time.
Once empirical measurements are available, the parameters
of the LQN model can be tuned accordingly. On the other
hand, by solving the model we can compute the frequency of
invocations of each service for different numbers of clients.
Thus, we can generate the test cases for the middleware
accordingly.

The cost of the approach depends on the number of itera-
tions of the process. We expect models to stabilise in a few
iterations. However, experimental evidence of this is still
missing and further work is required to understand costs
and benefits of the integrated approach.

6. CONCLUSIONS AND FUTURE WORK
Distributed component technologies enforce the use of mid-
dleware, commercial databases and other off-the-shelf com-
ponents and services. The software that implements these
is available in the initial stages of a software process and
moreover it generally embeds the software structures, mech-
anisms and services that mostly impact the performance in
distributed settings. This paper proposed to exploit the
early availability of such software to accomplish empirical
measurement of performance of distributed applications at
architecture-definition-time. To the best of our knowledge,
the approach proposed in this paper is novel in software
performance engineering.

This paper fulfilled several goals. It discussed the published
scientific works related to ours, thus positioning our ideas
in the current research landscape. It described a novel ap-
proach to performance testing that is based on selecting per-
formance relevant use-cases from the architecture designs,
and instantiating and executing them as test cases on the
early available software. It indicated important research di-
rections towards engineering such approach, i.e.: The classi-
fication of performance-relevant distributed interactions as
a base to select architecture use-cases; The investigation of
software connectors as a mean to instantiate abstract use-
cases on actual deployment technologies and platforms. It
reported on experiments that show as the actual perfor-
mance of a sample distributed application is well approx-
imated by measurements based only on its early available
components, thus supporting the main hypothesis of our re-
search. It finally identified the scope of our approach and
proposed a possible integration with performance modelling
techniques aimed at relaxing its limitations.

Software performance testing of distributed applications has
not been thoroughly investigated so far. The reason for this
is, we believe, that testing techniques have traditionally been
applied at the end of the software process. Conversely, the
most critical performance faults are often injected very early,
because of wrong architectural choices. Our research tack-
les this problem suggesting a method and a class of appli-
cations such that software performance can be tested in the
very early stages of development. In the long term and as
far as the early evaluation of middlewares is concerned, we
believe that empirical testing may outperform performance
estimation models, being the former more precise and easier
to use. Moreover, we envision the application of our ideas



to a set of interesting practical cases:

Middleware selection: The possibility of evaluating and
selecting the best middleware for the performance of
a specific application is reckoned important by many
authors, as we already pointed out in Section 2 of this
paper. To this end, our approach provides a valuable
support. Based on the abstract architecture designs,
it allows to measure and compare the performance of a
specific application for different middleware and mid-
dleware technologies.

COTS selection: A central assumption of traditional test-
ing techniques is that testers have complete knowledge
of the software under test as well as of its requirements
and execution environment. This is not the case for
components off-the-shelf (COTS) that are produced
independently and then deployed in environments not
known in advance. Producers may fail in identifying
all possible usage profiles of a component and there-
fore testing of the component in isolation (performed
by producers) is generally not enough [21]. Limited to
the performance concerns, our approach allows to test
off-the-shelf components in the context of a specific ap-
plication that is being developed. Thus, it can be used
to complement the testing done by COTS providers
and thus assist in selecting among several off-the-shelf
components.

Iterative development: Modern software processes pre-
scribe iterative and incremental development in order
to control risks linked to architectural choices (see e.g.,
the Unified Process [6]). Applications are incremen-
tally developed in a number of iterations. During an
iteration, a subset of the user requirements is fully im-
plemented. This results in a working slice of the appli-
cation that can be presently evaluated and, in the next
iteration, extended to cover another part of the miss-
ing functionality. At the beginning of each iteration,
new architectural decisions are generally made whose
impact must be evaluated with respect to the current
application slice. For performance concerns, our ap-
proach can be used when the life cycle architecture is
established during the elaboration phase, because it
allows to test the expected performance of a new soft-
ware architecture based on the software that is initially
available.

We are now continuing the experiments for augmenting the
empirical evidence of the viability of our approach, providing
a wider coverage of the possible alternatives of component-
based distributed applications. We are also working for engi-
neering the approach, starting from the study of the research
problems outlined in this paper.
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