

Summary of Life Estimation Test Archive BD-R DL and TL of Mitsubishi Kagaku Media

Tested by Archive Disc Test Center

NPO-Entity

2013

Lifetime Estimation of MKM Archive BD-R Disc

- Tested by Archive Disc Test Center NPO-Entity
- Test Method
 - Based on Test method for the estimation of lifetime specified in ISO/IEC 16963: 2011 for writable CD and DVD optical discs
 - Stress-condition in Table 1 was used for Eyring method, which is modified for BD-R discs.
- Criteria for Time to failure
 - RSER(Random Symbol Error Rate) < 1×10⁻³

Table 1 Basic stress-condition for use with Eyring method

Toot call	Stress co	ondition	Number of	Total incubation	Total incubation	Intermediate	Equilibration
Test cell	(Incuba	ation)	specimens	subinterval time	time	RH	duration time
number	Temp. (°C)	%RH	-	Hours	Hours	%RH	Hours
Α	80	80	20	250	1000	30	14
В	80	70	20	250	1000	30	12
С	65	80	20	500	2000	35	18
D	70	75	30	625	2500	33	22

Data Analysis

- The coefficients A, $\Delta H/k$ and B of the following reduced Eyring equation are determined by using test results

$$ln(t)=ln(A)+\Delta H/kT+B \times RH$$

t is the time to failure:

A is the pre-exponential time constant;

ΔH is the activation energy per molecule; k is the Boltzmann's constant

T is the temperature (in Kelvin);

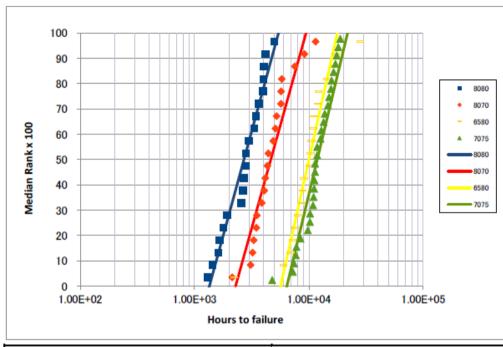
B, C are the RH exponential constants; RH is the relative humidity;

 Estimated Lifetime of 95% lower confidence bound of 5% failure at 25°C/50%RH

DL: 336 years

TL: 2672 years

Table 2 Estimated Lifetime at 25degree/50%RH


95 % lower confidence bound of 5 % failure time					
Regression analysis Least squares method Acceleration factor method					
Statistical method	16963	10995			
BD-R DL 390 years 660 years 336 years 554 years				554 years	
BD-R TL 3414 years 4613 years 2672 years 3588 years					

Company Confidential

DL - Least Squares Method -

Reduced Eyring equation

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

where

y = ln(t),
$$β_0$$
 = ln(A), $β_1$ = \triangle H/k, x_1 = 1/T $β_2$ = -B, x_2 = RH

Figure A.1

Best fit lines of specimen group

A, B, C, D and E on lognormal paper

(Verify that the fitting lines for all stress conditions are reasonably parallel to one another)

Regr	Regression coefficients		Sum of squared residual errors	Standard deviation of residual errors
β0	β1	β2	Ŝe	σ
-20.7605	12071.58	-0.06950	11.78629	0.36807

Table A.1
Regression analysis results

Controlled storage condition		Point estimation	
Temp.(°C) RH(%)		50percentile	
		InB50	16.2526
25	50	B50Life(hours)	11439500
		B50Life(years)	1305

Table A.2 50 percentile of Life distribution (In B₅₀)

DL - Least Squares Method -

- Based on 16963 method
 - $In B_{50} = 16.25 (B_{50} life = 1305.0 years)$
 - $-\sigma = 0.36807$
 - $\ln B_5 = \ln B_{50} 1.64 \times \sigma = 15.65 (B_5 \text{ life} = 713.6 \text{ years})$
 - 95% lower confidence bound of B_5 Life is $(B_5 \text{ life})_L = \exp(\ln B_5 1.64 \times \sigma) = \exp(15.05) = 390 \text{ years}$
- Based on 10995 method
 - $\ln B_{50} = 16.25 (B_{50} \text{ life} = 1305.0 \text{ years})$
 - $-\sigma = 0.36807$
 - $\ln B_5 = \ln (L(0.05, \ln B_{50}, \sigma)) = 15.65 (B_5 \text{ life} = 712.3 \text{ years})$
 - 95% lower confidence = 0.07604
 - 95% lower confidence bound of B_5 Life is $(B_5 \text{ life})_1 = \exp(\ln B_5 0.07604) = \exp(15.57) = 660 \text{ years}$

DL - Acceleration Factor Method -

Table B.1 Log mean for each stress condition

Group	Log mean	Temp.	1/T(Kelvin)	Humidity
Α	7.9017	80	0.002831658	80
В	8.4420	80	0.002831658	70
С	9.2113	65	0.002957267	80
D	9.3788	70	0.002914177	75

Table B.2 Coefficients of reduced Eyring equation

В	ΔH/k	In(A)	
-0.0674	11742.2604	-19.9899	

Table B.3 Acceleration factor for each stress condition

Stress		Calculated Life using "best fit"		Acceleration factors
°C	%RH	Β, ΔΗ/	k, In(A)	Acceleration factors
80	80	2612.77	hours	3483.07
80	70	5126.43	hours	1775.20
65	80	11419.81	hours	796.90
70	75	9644.38	hours	943.60
25	50	9100449.46	hours	
25	50	1038.2	years	1 year = 365.25 days

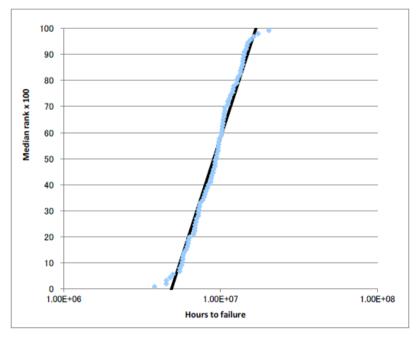
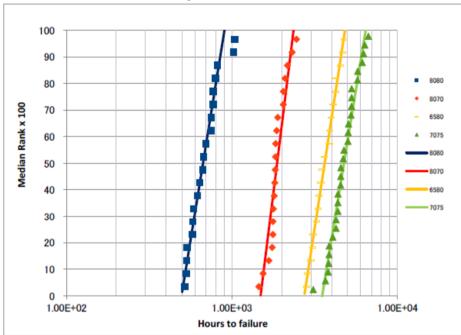


Figure B.1 - Plot of normalized data


DL - Acceleration Factor Method -

- Based on 16963 method
 - In B₅₀ = 16.05 (B₅₀ life = 1066.2 years)
 - $-\sigma = 0.35184$
 - $\ln B_5 = \ln B_{50} 1.64 \times \sigma = 15.47 (B_5 \text{ life} = 598.6 \text{ years})$
 - 95% lower confidence bound of B_5 Life is $(B_5 \text{ life})_L = \exp(\ln B_5 1.64 \times \sigma) = \exp(14.90) = 336 \text{ years}$
- Based on 10995 method
 - $In B_{50} = 16.05 (B_{50} life = 1066.2 years)$
 - $-\sigma = 0.35184$
 - $\ln B_5 = \ln (L(0.05, \ln B_{50}, \sigma)) = 15.47 (B_5 \text{ life} = 597.5 \text{ years})$
 - 95% lower confidence = 0.07528
 - 95% lower confidence bound of B_5 Life is $(B_5 \text{ life})_1 = \exp(\ln B_5 0.07528) = \exp(15.40) = 554 \text{ years}$

TL - Least Squares Method -

Reduced Eyring equation

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

where

y = ln(t),
$$β_0$$
 = ln(A), $β_1$ = $\triangle H/k$, x_1 = 1/T $β_2$ = -B, x_2 = RH

Figure C.1

Best fit lines of specimen group

A, B, C, D and E on lognormal paper (Verify that the fitting lines for all stress conditions are reasonably parallel to one another)

Regr	ression coeffic	ients	Sum of squared residual errors	Standard deviation of residual errors
β_0	β1	β ₂	Ŝe	σ
-26.6528	15060.04	-0.11907	3.86306	0.21072

Table C.1
Regression analysis results

Controlled sto	orage condition	Point estimation		
Temp.(°C)	RH(%)	50perce	entile	
		InB ₅₀	17.9054	
25	50	B ₅₀ Life(hours)	59735287	
		B ₅₀ Life(years)	6814	

Table C.2 50 percentile of Life distribution (In B₅₀)

TL - Least Squares Method -

- Based on 16963 method
 - $\ln B_{50} = 17.91 (B_{50} \text{ life} = 6814.4 \text{ years})$
 - $-\sigma = 0.21072$
 - $\ln B_5 = \ln B_{50} 1.64 \times \sigma = 17.56 (B_5 \text{ life} = 4823.3 \text{ years})$
 - 95% lower confidence bound of B_5 Life is $(B_5 \text{ life})_L = \exp(\ln B_5 1.64 \times \sigma) = \exp(17.21) = 3414 \text{ years}$
- Based on 10995 method
 - $\ln B_{50} = 17.91 (B_{50} \text{ life} = 6814.4 \text{ years})$
 - $-\sigma = 0.21072$
 - $\ln B_5 = \ln (L(0.05, \ln B_{50}, \sigma)) = 17.56 (B_5 \text{ life} = 4818.4 \text{ years})$
 - 95% lower confidence = 0.04353
 - 95% lower confidence bound of B_5 Life is $(B_5 \text{ life})_1 = \exp(\ln B_5 0.04353) = \exp(17.52) = 4613 \text{ years}$

TL - Acceleration Factor Method -

Table D.1 Log mean for each stress condition

Group	Log mean	Temp.	1/T(Kelvin)	Humidity
Α	6.5050	80	0.002831658	80
В	7.5358	80	0.002831658	70
С	8.1987	65	0.002957267	80
D	8.4668	70	0.002914177	75

Table D.2 Coefficients of reduced Eyring equation

В	ΔH/k	ln(A)
-0.1159	14751.4004	-26.0218

Table D.3 Acceleration factor for each stress condition

S	tress	Calculated Life using		Acceleration
°C	%RH	"best fit" Β, Δ	H/k, ln(A)	factors
80	80	650.10	hours	71862.74
80	70	2071.69	hours	22550.66
65	80	4146.57	hours	11266.65
70	75	3920.20	hours	11917.24
25	50	46717966.77	hours	
25	50	5329.45	years	1 year = 365.25 days

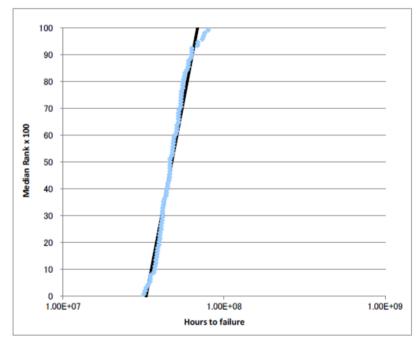


Figure D.1 - Plot of normalized data

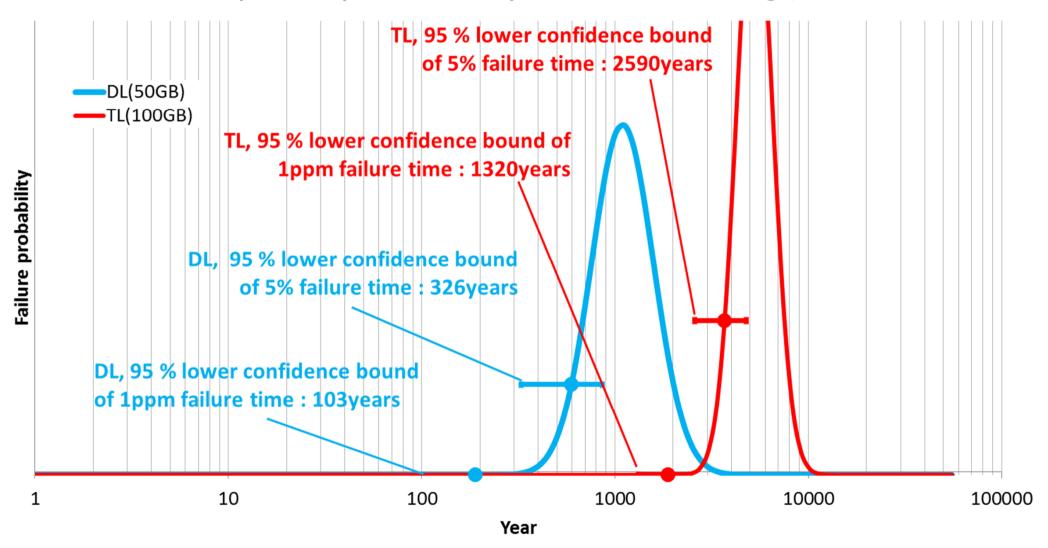
Company Confidential

TL - Acceleration Factor Method -

Based on 16963 method

- $\ln B_{50} = 17.65$ (B_{50} life = 5265.9 years)
- $-\sigma = 0.20684$
- $\ln B_5 = \ln B_{50} 1.64 \times \sigma = 17.31 (B_5 \text{ life} = 3751.1 \text{ years})$
- 95% lower confidence bound of B_5 Life is $(B_5 \text{ life})_L = \exp(\ln B_5 1.64 \times \sigma) = \exp(16.97) = 2672 \text{ years}$

Based on 10995 method


- $\ln B_{50} = 17.65$ (B_{50} life = 5265.9 years)
- $-\sigma = 0.20684$
- $\ln B_5 = \ln (L(0.05, \ln B_{50}, \sigma)) = 17.31 (B_5 \text{ life} = 3756.1 \text{ years})$
- 95% lower confidence = 0.04346
- 95% lower confidence bound of B_5 Life is $(B_5 \text{ life})_1 = \exp(\ln B_5 0.04346) = \exp(17.26) = 3588 \text{ years}$

Long term stability=Less migration

Failure probability for MKM Enterprise Grade BD-R at 25degC/50%RH

Based on Life Estimation Test Report of MKM BD-R DL and BD-R BDXL TL by ADTC (Archive Disc Test Center-NPO Entity)